JPH03161096A - Treatment process for organic soil water - Google Patents

Treatment process for organic soil water

Info

Publication number
JPH03161096A
JPH03161096A JP29899189A JP29899189A JPH03161096A JP H03161096 A JPH03161096 A JP H03161096A JP 29899189 A JP29899189 A JP 29899189A JP 29899189 A JP29899189 A JP 29899189A JP H03161096 A JPH03161096 A JP H03161096A
Authority
JP
Japan
Prior art keywords
aerobic
bod
ammonium nitrite
nitrification
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29899189A
Other languages
Japanese (ja)
Inventor
Masahide Shibata
雅秀 柴田
Miyuki Susa
諏佐 美由紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP29899189A priority Critical patent/JPH03161096A/en
Publication of JPH03161096A publication Critical patent/JPH03161096A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To treat raw sewage water efficiently by including the processes of the aerobic biological treatment, the biological nitrification treatment and the ammonium nitrite decomposition treatment, and separating the ammonium nitrile producing process and the ammonium nitrite decomposing process. CONSTITUTION:The process consists of three respective processes of the direct removal process I for removing impurities in organic soil water, the aerobic process II for decomposing BOD and producing ammonium nitrite and the inorganic denitrification process III for decomposing ammonium nitrite produce in the aerobic process and turning the same into nitrogen gas. The BOD removal process and the N removal process for the raw sewage water can be carried out efficiently by the process to recover treated water of high quality in a short time.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は有機性汚水の処理方法に係り、特にし尿系汚水
を効率的に処理することができる有機性汚水の処理方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for treating organic wastewater, and particularly to a method for treating organic wastewater that can efficiently treat human waste wastewater.

[従来の技術] し尿系汚水には、3 0 0 0 〜4 0 0 0 
p p mのアンモニア性窒素等が含有されていること
から、し尿系汚水の処理には、これを効率的に除去する
必要がある。従来、窒素除去プロセスとしては、生物学
的な硝化脱仝法が多く用いられている。この方法は多く
の利点を有する反面、 ■ 硝化のために多量の02が必要である。
[Prior art] Human waste sewage contains 3000 to 4000
Since it contains ppm of ammonia nitrogen, etc., it is necessary to efficiently remove this in the treatment of human waste wastewater. Conventionally, biological nitrification and denitrification methods have been widely used as nitrogen removal processes. Although this method has many advantages, (1) it requires a large amount of 02 for nitrification;

■ 脱窒のために、水素供与体としてBODの供給が必
要である. といった欠.点がある。これに対して、02の消費を軽
減するために、固定化亜硝酸菌を用い、生物的硝化を亜
硝酸型で行ない、生成した亜硝酸アンモニウムを触媒を
用いて、単一糟でN2ガスに分解する方式が提案されて
いる(特開昭62−197196号). [発明が解決しようとする課題} しかしながら、上記特開昭62−1 97 1 96号
の方法で実際にし尿系汚水の処理を行なっても、アンモ
ニア性窒素の除去はできなかった。その理由は,この方
法においては触媒の作成が極めて微妙で再現性がないた
めと考えられる。即ち、亜硝酸アンモニウムの高温下で
の分解は公知であり、このような分解に白金族元素が触
媒効果を有することも知られているが、常温における亜
硝酸アンモニウムの触媒分解は困難である。一方、固定
化菌は加温すると熱で死滅してしまう。このため、生物
的硝化による亜硝酸アンモニウム生戒と、亜硝酸アンモ
ニウムの触媒分解とを同時に同一楢で行なう特開昭62
−197196号の方法では、亜硝酸生成と亜硝酸アン
モニウムの分解との両方に好適な条件を設定することが
できないことから、脱窒効果を得ることができない.本
発明は上記従来の問題点を解決し、し尿系汚水を効率的
に処理することができる有機性汚水の処理方法を提供す
ることを目的とする。
■ For denitrification, it is necessary to supply BOD as a hydrogen donor. Such a lack. There is a point. On the other hand, in order to reduce the consumption of 02, biological nitrification is performed in the nitrite form using immobilized nitrite bacteria, and the generated ammonium nitrite is decomposed into N2 gas using a catalyst using a catalyst. A method has been proposed (Japanese Patent Laid-Open No. 197196/1983). [Problems to be Solved by the Invention] However, even if human waste wastewater was actually treated using the method disclosed in JP-A-62-197196, ammonia nitrogen could not be removed. The reason for this is thought to be that the preparation of the catalyst in this method is extremely delicate and not reproducible. That is, decomposition of ammonium nitrite at high temperatures is known, and it is also known that platinum group elements have a catalytic effect on such decomposition, but catalytic decomposition of ammonium nitrite at room temperature is difficult. On the other hand, immobilized bacteria are killed by heat when heated. For this reason, in Japanese Patent Application Laid-open No. 62 (1982), ammonium nitrite biocontrol through biological nitrification and catalytic decomposition of ammonium nitrite are simultaneously carried out in the same oak.
In the method of No. 197196, it is not possible to set conditions suitable for both the production of nitrous acid and the decomposition of ammonium nitrite, and therefore no denitrification effect can be obtained. An object of the present invention is to solve the above-mentioned conventional problems and provide a method for treating organic wastewater that can efficiently treat human waste wastewater.

[課題を解決するための手段] 本発明の有機性汚水の処理方法は、有機性汚水を好気性
生物処理してBODを酸化分解すると共に、生物学的硝
化処理して亜硝酸アンモニウムを生成させる工程と、生
成させた亜硝酸アンモニウムを分解して窒素ガスとする
工程とを含むことを特徴とする. 即ち、本発明の有機性汚水の処理方法は、上記従来の問
題点を排除するために、亜硝酸アンモニウム生成工程と
亜モrj酸アンモニウムの分解工程とを分離したもので
ある。
[Means for Solving the Problems] The method for treating organic wastewater of the present invention includes the steps of subjecting organic wastewater to aerobic biological treatment to oxidize and decompose BOD, and biologically nitrifying it to generate ammonium nitrite. and a step of decomposing the generated ammonium nitrite into nitrogen gas. That is, in order to eliminate the above-mentioned conventional problems, the method for treating organic wastewater of the present invention separates the ammonium nitrite production step and the ammonium ammonium ammonite decomposition step.

以下に図面を参照して本発明を詳細に説明する. 第1図は本発明の有機性汚水の処理方法の一実施方法を
示,す系統図である。
The present invention will be explained in detail below with reference to the drawings. FIG. 1 is a system diagram showing one implementation method of the organic wastewater treatment method of the present invention.

図示の如く、本実施例の方法は、基本的には、有機性汚
水の夾雑物を除去する直脱工程■と、好気性生物処理し
てBODを酸化分解すると共に亜硝酸アンモニウムを生
成させる好気工程+1と、好気工程で生成した亜硝酸ア
ンそニクムを分解して窒素ガスとする無機脱窒工程■と
の3つの工程よりなる. 即ち、本実施例の方法においては、まず有機性汚水、例
えばし尿系汚水(生し尿等)を配管11より凝集槽1に
導入し、配管12より凝集剤を添加して攪拌機IAにて
攪拌して凝集させた後、配管13より脱水機2に送給し
て脱水処理することにより、含有されるSS戊分等の夾
雑物を除去する(直脱工程■). 一般に生し尿中には約13000ppmのSS成分が含
有されているが、この直脱工程■(てSSの95%以上
、BODの約50%が除去される. 次いで、脱水機2から得られる夾雑物を除去した汚水は
配管14より好気槽3に送給し、好気性生物処理する(
好気工程■)。この好気工程nでは、配管15より空気
を供給する好気条件下BOD菌及び亜硝酸菌の存在下、
BODを生物分解させると共に、NH4をNO2に硝化
してNH4 NO2を生成させる. ところで、本発明の如く、BOD分解と硝化とを同一檜
で行なう場合、通常の浮遊方式では、BOD分解菌と硝
化菌(本発明では亜硝酸菌)とを区別して扱えないので
、汚泥中の各菌の比は、槽入口の汚水のBOD,NH4
+濃度に各菌の収率をかけた値の割合で存在することに
なる.し尿系汚水の場合、MLSS中に占める硝化菌の
割合は数%にしかすぎず、十分な硝化効率を得ることが
できない.これを改善する方法として、次の■、■の方
法を採用することが可能である。
As shown in the figure, the method of this example basically consists of a direct desorption step (2) to remove impurities from organic wastewater, and an aerobic biological treatment to oxidize and decompose BOD and generate ammonium nitrite. It consists of three steps: step +1 and inorganic denitrification step (2), in which anthonicum nitrite produced in the aerobic step is decomposed into nitrogen gas. That is, in the method of this embodiment, first, organic wastewater, for example, human waste wastewater (raw human waste, etc.) is introduced into the flocculating tank 1 through the pipe 11, a flocculant is added through the pipe 12, and the mixture is stirred by the agitator IA. After agglomerating the water, it is sent to the dehydrator 2 through the pipe 13 for dehydration treatment, thereby removing impurities such as SS fraction contained therein (direct dehydration step ①). Generally, raw human urine contains about 13,000 ppm of SS components, but in this direct removal process (2), more than 95% of SS and about 50% of BOD are removed. The wastewater from which substances have been removed is sent to the aerobic tank 3 through the pipe 14, where it is treated with aerobic organisms (
Aerobic process ■). In this aerobic step n, in the presence of BOD bacteria and nitrite bacteria under aerobic conditions where air is supplied from the pipe 15,
It biodegrades BOD and nitrifies NH4 to NO2 to generate NH4 NO2. By the way, when BOD decomposition and nitrification are performed in the same cypress as in the present invention, BOD decomposing bacteria and nitrifying bacteria (in the present invention, nitrite bacteria) cannot be treated separately in the normal floating method. The ratio of each bacteria is BOD, NH4 of the wastewater at the tank inlet.
+ concentration multiplied by the yield of each bacterium. In the case of human waste wastewater, the proportion of nitrifying bacteria in MLSS is only a few percent, making it impossible to obtain sufficient nitrification efficiency. As a method to improve this, it is possible to adopt the following methods (1) and (2).

■ 浮遊汚泥(BOD菌〉と固定化硝化菌を同一槽内で
運転ずる方法。これにより、浮遊汚泥と固定化硝化菌と
を別々の設定条件で運転することができ、硝化菌の系内
存在割合を増加させ・ることができる。両者をより分割
し易いように、固定の際に、適当な無機材を共固定して
比重差を大きくすることも有効である. ■ 第1図に示す如く、直脱工程により、し尿系汚水中
のSS成分を別途処理して、し尿中のNH4◆/BOD
比を上げる。なお、この直脱工程は、無機脱窒工程の触
媒活性の阻害防止にも有効である.即ち、汚水中のSS
性BODの一部は難分解性であり、その存在は無機脱窒
工程の触媒活性を阻害するものとなるが、直脱工程を設
けてSS戒分を除去することにより、この活性阻害を低
減することができる. 本発明においては、上記■、■の方法を同時C採用する
のが好適である. 好気工程において、汚水中のB O D ハB O D
 mの存在下好気条件で生物的に分解処理され、この過
程でCO2を発生させる。このCO2は汚水中のアンモ
ニア成分(NH4+)と反応してNH4 HCO3どな
る。
■ A method in which suspended sludge (BOD bacteria) and immobilized nitrifying bacteria are operated in the same tank.This allows the suspended sludge and immobilized nitrifying bacteria to be operated under different set conditions, reducing the presence of nitrifying bacteria in the system. The ratio can be increased.In order to make it easier to separate the two, it is also effective to increase the difference in specific gravity by co-fixing an appropriate inorganic material when fixing. ■ As shown in Figure 1. Through the direct desorption process, SS components in human waste water are separately treated, and NH4◆/BOD in human waste is
Increase the ratio. This direct denitrification process is also effective in preventing inhibition of catalyst activity in the inorganic denitrification process. That is, SS in wastewater
A part of BOD is difficult to decompose, and its presence inhibits the catalytic activity of the inorganic denitrification process, but by removing SS components through a direct denitrification process, this inhibition of activity can be reduced. can do. In the present invention, it is preferable to simultaneously employ methods ① and ② above. In the aerobic process, B O D in wastewater
It is biodegraded biologically under aerobic conditions in the presence of m, and CO2 is generated in this process. This CO2 reacts with the ammonia component (NH4+) in the wastewater to form NH4 HCO3.

好気工程ではNH4+をNO2に硝化するが、ここでは
、次工程の無機脱窒工程でNH*NO2−4 N 2 
+ 2 8 2 0の分解脱窒を行なうために、NH4
 NO2を生成させる必要がある。即ち、硝化を50%
で止めて、N H 4 ” / N O 2−″冨1の
硝化処理水を得る。
In the aerobic process, NH4+ is nitrified to NO2, but here, in the next inorganic denitrification process, NH*NO2-4 N2
+ 2 8 2 0 to perform denitrification denitrification, NH4
It is necessary to generate NO2. That is, 50% nitrification
Stop at 1 to obtain nitrified water with a concentration of NH4''/N02-'' of 1.

以下にこの点について説明する。This point will be explained below.

汚水中には重炭酸塩、炭酸塩、リン酸塩等の様々なpH
綴衝力を有する物質即ちバッファーが存在する.そして
硝化が進行しNO2−イオンが生戒すると共に、バッフ
ァーが消費される。バッファーが全て消費されるとPH
が急激に低下し、硝化が止まる。従って、廃水中のNH
4+濃度とバッファ−濃度即ちアルカリ度とを測定し、
この当量比を調整するべく酸又はアルカリを添加するこ
とにより、バッファーを調整し、硝化率を所望の値にす
ることができる。即ち、廃水中のアンモニア濃度とアル
カリ度とが等当量の場合には、廃水中のNH4+の半分
が硝化されNH4 NO2( N H 4 7’ N 
O 2 = 1 )が生成した段階でバッフ1−が残存
しないため、pHが低下し硝化が止まり、硝化率50%
となる。また、アンモニア濃度がアルカリ度よりも高い
場合には、硝化量がより少ない段階でバッファーが全て
消化され硝化が止まった際にNH4+が残存し、硝化率
は50%未満となる.一方、アンモニア濃度がアルカリ
度よりも低い場合には、硝化が半分進行した段階でも、
バッファーが残存するためPHは下がらず、更に硝化が
進み硝化率は50%を超えるものとなる。
Sewage contains various pH levels such as bicarbonate, carbonate, and phosphate.
There is a substance that has a binding force, that is, a buffer. As nitrification progresses and NO2- ions are released, the buffer is consumed. When all buffers are consumed, PH
decreases rapidly and nitrification stops. Therefore, NH in wastewater
4+ concentration and buffer concentration or alkalinity,
By adding acid or alkali to adjust this equivalent ratio, the buffer can be adjusted and the nitrification rate can be adjusted to a desired value. That is, when the ammonia concentration and alkalinity in wastewater are equivalent, half of the NH4+ in the wastewater is nitrified and converted to NH4 NO2 (NH4 7'N
Since no buffer 1- remains at the stage when O2 = 1) is generated, the pH decreases and nitrification stops, resulting in a nitrification rate of 50%.
becomes. Furthermore, when the ammonia concentration is higher than the alkalinity, the buffer is completely digested at a stage where the amount of nitrification is smaller, and when nitrification stops, NH4+ remains, and the nitrification rate is less than 50%. On the other hand, if the ammonia concentration is lower than the alkalinity, even when nitrification is half completed,
Since the buffer remains, the pH does not decrease, and nitrification progresses further, resulting in a nitrification rate of over 50%.

ところで、生物的硝化反応は次の基礎式で示される。By the way, the biological nitrification reaction is expressed by the following basic equation.

NH4” +372 02 = NO2− +H2 0−}−2H” 従来においては生成するH+によるpHの低下を防ぐ−
ため通常%PHコントロールを行なって100%硝化を
行なっている。
NH4" +372 02 = NO2- +H2 0-}-2H" In the past, the pH was prevented from decreasing due to the generated H+.
Therefore, 100% nitrification is normally performed by controlling the %PH.

一方、汚水中のNの形態はNH4−Nが多く、その発生
の源は、タンパクのア主ノ基の分解による。汚水中に共
イtするBODが分解すると、CO2の生戊があり、こ
れとNH4+が結合して、NH4+の形,蟻はN H 
4 8 C O 3となる。
On the other hand, most of the N in wastewater is in the form of NH4-N, and the source of its generation is the decomposition of the amine groups of proteins. When BOD, which is common in sewage, decomposes, CO2 is produced, and NH4+ combines with this to form NH4+, and ants produce NH
4 8 C O 3.

NH4 HCO3をPH無調整で硝化反応を行なった時
の反応式は下記の通りである。
The reaction formula when nitrifying NH4HCO3 without pH adjustment is as follows.

N H 4 H C O s + 3/4 0 2→1
/2NH4NO2+ 3/2 H 2 0 + C 0
 2N H 4 N O 2が生戒した時、原水中のN
H4HCO3は全て消費され、これ以外のバッファ−が
液中になければ、pHが低下し、硝化が止まる。即ち、
N H 4 / N O 2− 1の状態で自然に反応
が停止する。
N H 4 H CO s + 3/4 0 2→1
/2NH4NO2+ 3/2 H 2 0 + C 0
2N H 4 N O When 2 is released, the N in the raw water
If all the H4HCO3 is consumed and no other buffer is present in the solution, the pH will drop and nitrification will stop. That is,
The reaction spontaneously stops in a state of NH 4 /N O 2-1.

本発明においては、好気工程IIへの流入水中のバッフ
ァ−量がNH4+と等モル量であれば、PH無調整でN
 H 4/ N O 2 = 1の処理水を得ることが
できる。
In the present invention, if the amount of buffer in the inflow water to aerobic step II is equimolar to NH4+, N
Treated water with H 4 /N O 2 = 1 can be obtained.

しかしながら、BOD酸化の過程で酸やアルカリの生成
を伴なったり、あるいは直脱工程で無機凝集剤を用いて
アルカリ度が低下して、NH4+とアルカリ度の当量関
係がずれてN H 4 / N O 2=1となら・な
い場合には、NH4+濃度と、液のバッファ一量即ちア
ルカリ度を測定して、予めその当量比を調整することが
重要となる。即ち、N H 4 / N O 2 > 
1の場合では、所定量のアルカリを添加し、N H 4
 / N 0 2 < 1の場合では酸を添加する. このように、アンモニア濃度とアルカリ度を測定し、両
者の当量比が1になるように酸又はアルカリを添加して
硝化菌による硝化を行なうことにより、硝化率を50%
としてN H 4 / N O 2 = 1の処理水を
得ることが可能とされ、この場合には、亜硝酸型硝化と
N H a N O 2の化学的分解とを段階的に行う
ことにより、効率的な硝化、脱窒を行なうことが可能と
される。
However, the process of BOD oxidation is accompanied by the production of acids and alkalis, or the alkalinity is reduced by using an inorganic flocculant in the direct desorption process, and the equivalence relationship between NH4+ and alkalinity is shifted, resulting in NH4/N. If O2=1 or not, it is important to measure the NH4+ concentration and the amount of buffer in the solution, that is, the alkalinity, and adjust the equivalence ratio in advance. That is, N H 4 / N O 2 >
In case 1, a predetermined amount of alkali is added and N H 4
/ If N 0 2 < 1, add acid. In this way, by measuring the ammonia concentration and alkalinity, adding acid or alkali so that the equivalent ratio of both is 1, and performing nitrification using nitrifying bacteria, the nitrification rate can be reduced to 50%.
It is possible to obtain treated water with N H 4 / N O 2 = 1, and in this case, by performing nitrite-type nitrification and chemical decomposition of N H a N O 2 in stages, It is believed that efficient nitrification and denitrification can be performed.

好気工程Hの処理水は、次いで配管16より、ヒータ4
を備える触媒5Aを充填した分解塔5に送給して、加熱
下で好気工程I1で生戊したN}14 NO2を無磯的
にN2ガスに分解脱窒する。分解塔5の処理水は、配管
17より抜き出し、水冷管6を経て、ガス抜き槽7に送
り、N2ガスを分離し、処理水は配管!8を経て県外へ
排出する. このように、し尿系汚水中に、凝集剤添加によりし尿中
のssF&分等を除去し(直脱工程)、溶解性BOI)
成分を好気処理により分解すると共に、窒素成分を硝化
菌辷より生物的硝化を行ないNH4NO2を生成させ(
好気工程)、生戒したN H 4 N O 2を無機的
にN2ガスに脱窒する(無機脱窒工程)ことににより、
効率的なし尿処理を行なうことが可能とされる. なお、本発明の有機性汚水の処理方法においては必ずし
も必要とはされないが、直脱工程を設けて有機性汚水中
のSS戒分等の夾雑物を除去することにより、次工程の
好気工程での反応速度を向上させることができ、後工程
の処理効率が高められ、高負荷処理が可能とされる。ま
た、SS性BODの一部はH’JI物分解性であり、そ
の存在は後段の無機脱窒工程の触媒活性を阻害するもの
となるが、SS成分の除去は、この活性阻害の低減化に
も有効である。
The treated water from the aerobic process H is then passed through the pipe 16 to the heater 4.
The N}14 NO2 produced in the aerobic step I1 is decomposed and denitrified into N2 gas in a non-porous manner under heating. The treated water from the decomposition tower 5 is extracted from the piping 17, passed through the water-cooled pipe 6, and sent to the degassing tank 7, where the N2 gas is separated. 8 and then discharged outside the prefecture. In this way, ssF and other substances in human waste are removed by adding a flocculant to human waste wastewater (direct removal process), and soluble BOI)
The components are decomposed by aerobic treatment, and the nitrogen components are biologically nitrified by nitrifying bacteria to produce NH4NO2 (
aerobic process), by inorganically denitrifying the purified N H 4 N O 2 to N2 gas (inorganic denitrification process),
It is believed that efficient human waste treatment is possible. Although it is not necessarily necessary in the method of treating organic wastewater of the present invention, by providing a direct removal step to remove impurities such as SS in organic wastewater, it is possible to improve the aerobic step of the next step. It is possible to improve the reaction rate in the process, improve the processing efficiency of the post-process, and enable high-load processing. In addition, some of the SS BOD is decomposable by H'JI substances, and its presence inhibits the catalytic activity of the subsequent inorganic denitrification process. Removal of the SS component can reduce this activity inhibition. It is also effective for

[作用] 本発明の有機性汚水の処理方法において、好気工程では
、BODの酸化分解と、NH4 NO2の生成を行なう
.このようにBODの酸化分解とNH4 NO2の生成
とを同一槽内で行なうことにより、硝化反応効率を高め
ることが可能とされる。
[Function] In the method for treating organic wastewater of the present invention, in the aerobic step, oxidative decomposition of BOD and generation of NH4 NO2 are performed. By performing the oxidative decomposition of BOD and the generation of NH4 NO2 in the same tank in this way, it is possible to increase the efficiency of the nitrification reaction.

無機脱窒工程では、好気工程で生戊したNH4 NO2
を無機的に分解してN2ガスを除去する,NH4NO2
は70℃程度で分解し始め、分解速度はより高温にする
ほど速くなり、200℃では脱窒速度100kg−N/
m”−日程度が達成される。得に、触媒を共存させた状
態で温度を上げk場合には、この向上効果はより大きい
。因みに、pt−アルミナ触媒を充填した塔にて200
℃で反応させた場合には、脱窒速度は最大で3000k
g−N/rn’・日以上が可能である。
In the inorganic denitrification process, NH4 NO2 produced in the aerobic process
NH4NO2 is inorganically decomposed to remove N2 gas.
begins to decompose at around 70°C, and the decomposition rate increases as the temperature increases; at 200°C, the denitrification rate is 100 kg-N/N.
This improvement effect is even greater when the temperature is raised in the presence of a catalyst.Incidentally, in a column packed with a pt-alumina catalyst,
When the reaction is carried out at ℃, the denitrification rate is up to 3000k.
g-N/rn'·day or more is possible.

本発明の方法では、NH4 NO2を生戒させる好気工
程とNH4 NO2を分解脱窒する無機脱窒工程を分割
して行なうため、各々好適な反応条件を独立して設定す
ることができる。このため、硝化効率、脱窒効率は著し
く高められる.[実施例] 以下に実施例を挙げて、本発明をより具体的に説明する
. 実施例1 第1図に示す方法により第1表に示す水質の生し尿の処
理を10117日の負荷で行なった。
In the method of the present invention, the aerobic step in which NH4 NO2 is released and the inorganic denitrification step in which NH4 NO2 is decomposed and denitrified are carried out separately, so that suitable reaction conditions for each can be set independently. Therefore, the nitrification efficiency and denitrification efficiency are significantly increased. [Example] The present invention will be explained in more detail with reference to Examples below. Example 1 Human waste having the water quality shown in Table 1 was treated by the method shown in FIG. 1 at a load of 10,117 days.

なお、直脱工程Iにおいては、凝集剤としてカチオンポ
リマ−2 0 0 m g / i及びポリ硫酸鉄5 
0 0 m g / Itを添加した.また、好気工程
■では、固定化硝化菌充填率10%、浮遊汚泥1000
0ppm,滞留時間2日で処理し、固液分離はUFgで
行なった.無機脱窒工程IIIの分解!55には触媒と
して0.5%pt−アルよナを充填し、温度200℃、
圧力30kg/am’%滞留時間15分で処理した。
In addition, in the direct desorption step I, cationic polymer 200 mg/i and polyferric sulfate 5 were used as flocculants.
00 mg/It was added. In addition, in the aerobic process
The treatment was carried out at 0 ppm with a residence time of 2 days, and solid-liquid separation was performed with UFg. Decomposition of inorganic denitrification process III! 55 was filled with 0.5% pt-aluminum as a catalyst, and the temperature was 200°C.
The treatment was carried out at a pressure of 30 kg/am'% and a residence time of 15 minutes.

各工程の排出水の水質を第1表に示す。Table 1 shows the quality of the waste water from each process.

第1表より、本発明の方法によれば、高水質の処理水が
得られることが明らかである。
From Table 1, it is clear that according to the method of the present invention, treated water of high quality can be obtained.

第1表 [発明の効果] 以上詳述した通り、本発明の有機性汚水の処理方法によ
れば、有機性汚水を、効率的に脱BOD、脱N処理する
ことができ、高水貿の処理水を短時間で回収することが
可能とされる。
Table 1 [Effects of the Invention] As detailed above, according to the method for treating organic wastewater of the present invention, organic wastewater can be efficiently de-BOD and de-N treated, and can be used in high water trade. It is possible to recover treated water in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す系統図である。 FIG. 1 is a system diagram showing one embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)有機性汚水を好気性生物処理してBODを酸化分
解すると共に、生物学的硝化処理して亜硝酸アンモニウ
ムを生成させる工程と、生成させた亜硝酸アンモニウム
を分解して窒素ガスとする工程とを含むことを特徴とす
る有機性汚水の処理方法。
(1) A process of aerobic biological treatment of organic wastewater to oxidize and decompose BOD and biological nitrification treatment to generate ammonium nitrite, and a process of decomposing the generated ammonium nitrite into nitrogen gas. A method for treating organic wastewater, characterized by comprising:
JP29899189A 1989-11-17 1989-11-17 Treatment process for organic soil water Pending JPH03161096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29899189A JPH03161096A (en) 1989-11-17 1989-11-17 Treatment process for organic soil water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29899189A JPH03161096A (en) 1989-11-17 1989-11-17 Treatment process for organic soil water

Publications (1)

Publication Number Publication Date
JPH03161096A true JPH03161096A (en) 1991-07-11

Family

ID=17866812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29899189A Pending JPH03161096A (en) 1989-11-17 1989-11-17 Treatment process for organic soil water

Country Status (1)

Country Link
JP (1) JPH03161096A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100415252B1 (en) * 2001-03-09 2004-01-16 주식회사 제일엔지니어링 Biological Nitrogen Removal from Nitrogen-Rich Wastewaters by Partial Nitrification and Anaerobic Ammonium Oxidation
JP2006130397A (en) * 2004-11-05 2006-05-25 Hitachi Plant Eng & Constr Co Ltd Waste water treatment system
CN109607974A (en) * 2019-01-18 2019-04-12 南京首帆环保科技有限公司 A kind of processing method of butyronitrile gloves production technology waste water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100415252B1 (en) * 2001-03-09 2004-01-16 주식회사 제일엔지니어링 Biological Nitrogen Removal from Nitrogen-Rich Wastewaters by Partial Nitrification and Anaerobic Ammonium Oxidation
JP2006130397A (en) * 2004-11-05 2006-05-25 Hitachi Plant Eng & Constr Co Ltd Waste water treatment system
JP4678577B2 (en) * 2004-11-05 2011-04-27 株式会社日立プラントテクノロジー Wastewater treatment system
CN109607974A (en) * 2019-01-18 2019-04-12 南京首帆环保科技有限公司 A kind of processing method of butyronitrile gloves production technology waste water

Similar Documents

Publication Publication Date Title
US3957632A (en) Waste-water purification
US5098572A (en) Method and apparatus for increasing sludge concentration in water purification installations
JP4644107B2 (en) Method for treating wastewater containing ammonia
US20070251868A1 (en) Method and apparatus for nitrogen removal and treatment of digester reject water in wastewater using bioagumenation
JP2003126887A (en) Method and device for treating water containing phosphorus and ammonia
Park et al. Effects of fill modes on N2O emission from the SBR treating domestic wastewater
JP2661093B2 (en) Wastewater treatment method by activated sludge method
Takizawa et al. Nitrogen removal from domestic wastewater using immobilized bacteria
JPH03161096A (en) Treatment process for organic soil water
JPH08309366A (en) Removal of nitrogen and phosphorus from waste water
JPH06178995A (en) Anaerobic digestion treatment of organic waste water
JPH03161095A (en) Raw sewage treatment process
JPS6153120B2 (en)
JP3736397B2 (en) Method for treating organic matter containing nitrogen component
JPH02198695A (en) Nitrite type nitrification method
JP2003094096A (en) Method for treating organic waste, apparatus therefor, and sludge
JP3944981B2 (en) Method for treating selenium and nitrogen-containing water
JP3937625B2 (en) Biological treatment method for organic waste
JP2002233889A (en) Method of removing nitrogen or phosphorus in waste water
WO2007050714A2 (en) Method and apparatus for nitrogen removal in wastewater using bioaugmentation
JPH03258388A (en) Treatment of nh3-containing waste water
JPS6014997A (en) Treatment of organic filthy water
JPS58150496A (en) Process for methane fermentation of waste liquid highly contg. nitrogen
JP2002273476A (en) Treatment of waste water containing high-concentration nitrogen
JPH0218155B2 (en)