JP2002233889A - Method of removing nitrogen or phosphorus in waste water - Google Patents

Method of removing nitrogen or phosphorus in waste water

Info

Publication number
JP2002233889A
JP2002233889A JP2001035025A JP2001035025A JP2002233889A JP 2002233889 A JP2002233889 A JP 2002233889A JP 2001035025 A JP2001035025 A JP 2001035025A JP 2001035025 A JP2001035025 A JP 2001035025A JP 2002233889 A JP2002233889 A JP 2002233889A
Authority
JP
Japan
Prior art keywords
phosphorus
wastewater
nitrification
reaction tank
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001035025A
Other languages
Japanese (ja)
Other versions
JP3797114B2 (en
Inventor
Takayoshi Niimura
孝善 新村
Kazue Nishi
和枝 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagoshima Prefecture
Original Assignee
Kagoshima Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagoshima Prefecture filed Critical Kagoshima Prefecture
Priority to JP2001035025A priority Critical patent/JP3797114B2/en
Publication of JP2002233889A publication Critical patent/JP2002233889A/en
Application granted granted Critical
Publication of JP3797114B2 publication Critical patent/JP3797114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To decrease the nitrogen and phosphorus of a high concentration discharged from a water treatment facility to a public water basin and to provide a method of effectively utilizing industrial wastes and alcoholic beverage residues. SOLUTION: The method of forming condensed water 22 by drying and thickening the alcoholic beverage residues and decreasing or removing the nitrogen or phosphorus from waste water 21 containing the nitrogen or phosphorus of the high concentration by using the resultant condensed water and organisms, in which the organisms contain microorganisms, more preferably >=1 of the microorganisms formed by acclimatizing activated sludge or phosphorus accumulated bacteria, nitrifying bacteria or denitrifying bacteria. An example by a circulating nitrifying liquid 34 using a denitrification reaction chamber 25, a nitrification reaction chamber 28 and a nitrification chamber 29 is shown.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】生活排水、工場排水、畜産排
水等の窒素またはリン成分を多く含む排水を生物処理し
て窒素またはリン除去の利用方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of removing nitrogen or phosphorus by biological treatment of waste water containing a large amount of nitrogen or phosphorus, such as domestic wastewater, industrial wastewater, and livestock wastewater.

【0002】[0002]

【従来の技術】排水処理施設では主に微生物を利用して
汚染源となる有機物を除去している。しかし排水中に窒
素やリンなどの栄養塩類が多く含まれると、その栄養成
分が残ったまま公共水域へ排出され、湖沼や閉鎖性海域
等での富栄養化が大きな環境問題となっている。これら
の対策としては薬剤が使用され、窒素除去にはメタノー
ルが、リン除去にはアルミニウム・鉄系凝集剤が使用さ
れているのは刊行物や文献等で公知である。一方、酒類
製造時に発生する残さは、肥料や飼料としての利用が検
討されているが、その大部分は産業廃棄物として海洋投
棄などの処理がなされて環境問題を引き起こしている。
2. Description of the Related Art Wastewater treatment facilities mainly use microorganisms to remove organic substances, which are pollution sources. However, when the wastewater contains a large amount of nutrients such as nitrogen and phosphorus, the nutrient components are discharged to public waters while remaining, and eutrophication in lakes and marshes and closed seas has become a major environmental problem. As a countermeasure against these, a chemical is used, and it is known in publications and literatures that methanol is used for removing nitrogen and an aluminum-iron coagulant is used for removing phosphorus. On the other hand, the residues generated during the production of alcoholic beverages are being considered for use as fertilizers and feed, but most of them are treated as industrial waste, such as dumping into the ocean, causing environmental problems.

【0003】[0003]

【発明が解決しようとする課題】解決しようとする問題
点は、従来の排水処理施設から公共水域へ排出される高
濃度の窒素やリンなどを減少すること、並びに産業廃棄
物として酒類残さを有効活用することなどの点である。
The problems to be solved are to reduce high-concentration nitrogen and phosphorus discharged from the conventional wastewater treatment facility to public waters, and to effectively use liquor residue as industrial waste. It is a point of utilizing.

【0004】[0004]

【課題を解決するための手段】本発明は、酒類残さを乾
燥し濃縮して凝縮水を生成し、得られた凝縮水と生物と
を用いて、高濃度の窒素またはリンを含む排水から窒素
またはリンを減少・除去する方法である。本来除去すべ
きBODなどを多く含有する凝縮水をさらに添加すると
いう新しい発想に基づく、高濃度の窒素またはリンを含
む排水から窒素またはリンを減少・除去する方法であ
る。すなわち、
SUMMARY OF THE INVENTION The present invention provides a method for drying and concentrating liquor residue to produce condensed water, and using the obtained condensed water and organisms to remove nitrogen from wastewater containing high concentrations of nitrogen or phosphorus. Alternatively, it is a method of reducing or removing phosphorus. This is a method for reducing or removing nitrogen or phosphorus from wastewater containing high concentrations of nitrogen or phosphorus, based on a new idea of further adding condensed water containing a large amount of BOD and the like that should be removed. That is,

【0005】酒類製造時に発生する残さから凝縮水を生
成し、これを生物と共存した排水に添加し、排水中の窒
素またはリンを除去する方法であり、焼酎製造時に発生
する残さから凝縮水を生成し、これを生物と共存した排
水に添加し、排水中の窒素またはリンを除去する方法と
することも好ましい。共存させる生物が微生物、好まし
くは活性汚泥を馴養したものである。あるいは生物が微
生物、好ましくはリン蓄積菌、硝化菌または脱窒菌から
選ばれた少なくとも一つを含むことからなるこれらの方
法であってもよい。
[0005] In this method, condensed water is generated from the residue generated during the production of alcoholic beverages, and is added to wastewater coexisting with living organisms to remove nitrogen or phosphorus from the wastewater. It is also preferable to adopt a method of producing and adding this to wastewater coexisting with living organisms to remove nitrogen or phosphorus in the wastewater. The coexisting organism is one that has acclimated to microorganisms, preferably activated sludge. Alternatively, these methods may be used, in which the organism contains at least one selected from microorganisms, preferably phosphorus-accumulating bacteria, nitrifying bacteria, or denitrifying bacteria.

【0006】活性汚泥処理施設に直接的に凝縮水を添加
する方法であっても、また活性汚泥処理施設の後処理と
して活性汚泥を馴養したものを共存させた活性汚泥処理
水に凝縮水を添加する方法であってもよい。この方法に
おいて、保温温度が5〜40℃、好ましくは20〜30
℃であり、凝縮水を添加した混合排水の有機物量はBO
D容積負荷で0.1〜2.0g−BOD/l・日、好ま
しくは0.3〜0.8g−BOD/l・日であり、混合
排水の窒素量は窒素容積負荷が0.03〜1.0g−N
/l・日、好ましくは0.1〜0.3g−N/l・日
で、混合排水の活性汚泥反応槽での滞留時間が4〜48
時間、好ましくは6〜24時間であり、反応後の沈降時
間が2〜10時間、好ましくは4〜8時間であり、活性
汚泥反応槽のpHを5〜10、好ましくは6.5〜8.
5に調整することからなるこれらの排水中の窒素または
リンを除去する方法はより好ましい。
In the method of adding condensed water directly to the activated sludge treatment facility, the condensed water is added to the activated sludge treated water coexisting with the activated sludge as a post-treatment of the activated sludge treatment facility. May be used. In this method, the heat retention temperature is 5 to 40C, preferably 20 to 30C.
° C, and the amount of organic matter in the mixed wastewater to which condensed water is added is BO
D volume load is 0.1 to 2.0 g-BOD / l.day, preferably 0.3 to 0.8 g-BOD / l.day, and the amount of nitrogen in the mixed waste water is 0.03 to 1.0g-N
/ L · day, preferably 0.1-0.3 g-N / l · day, and the residence time of the mixed wastewater in the activated sludge reactor is 4-48.
Time, preferably 6 to 24 hours, the sedimentation time after the reaction is 2 to 10 hours, preferably 4 to 8 hours, and the pH of the activated sludge reaction tank is 5 to 10, preferably 6.5 to 8.
The method of removing nitrogen or phosphorus in these wastewaters by adjusting to 5 is more preferable.

【0007】さらに、排水処理施設の前処理として、脱
窒反応槽および硝化反応槽の容量比が1:1〜1:10
である一定温度に保った硝化液循環脱窒装置を用いて、
凝縮水を添加した混合排水と硝化反応槽からの循環硝化
液とを混合し、これをリン蓄積菌を含む脱窒反応槽に流
入し、脱窒菌による脱窒反応をし、反応後にBODが1
50mg/l以下である脱窒処理水を硝化反応槽に流入
し、pHを調整しながら硝化菌による硝化反応をし、反
応後の一部を処理水として放出すると共に残部を循環硝
化液とすることからなる排水中の窒素またはリンを除去
する方法でもよい。
Further, as a pretreatment of the wastewater treatment facility, the capacity ratio between the denitrification reactor and the nitrification reactor is 1: 1 to 1:10.
Using a nitrification liquid circulation denitrification device kept at a certain temperature,
The mixed wastewater to which condensed water was added and the circulating nitrification solution from the nitrification reaction tank were mixed, and the mixture was flowed into a denitrification reaction tank containing phosphorus-accumulating bacteria, and subjected to a denitrification reaction by the denitrification bacteria.
Denitrification treatment water of 50 mg / l or less flows into the nitrification reaction tank, a nitrification reaction by nitrifying bacteria is performed while adjusting the pH, a part of the reaction is released as treated water, and the remainder is used as a circulating nitrification liquid. Alternatively, a method of removing nitrogen or phosphorus in wastewater may be used.

【0008】この方法において、反応温度が5〜40
℃、好ましくは25〜37℃であり、凝縮水を添加した
混合排水の有機物量はBOD容積負荷で0.1〜2.0
g−BOD/l・日、好ましくは0.3〜0.8g−B
OD/l・日であり、混合排水の窒素量は窒素容積負荷
が0.01〜1.0g−N/l・日、好ましくは0.0
3〜0.3g−N/l・日で、凝縮水を添加した混合排
水と硝化反応槽からの循環硝化液との容量比が1:1〜
1:20、好ましくは1:3〜1:5であり、脱窒反応
槽での滞留時間が0.5〜24時間、好ましくは1〜1
2時間であり、硝化反応槽内での滞留時間が1.5〜9
6時間、好ましくは5〜36時間であり、硝化反応槽の
pHを5〜10、好ましくは6.5〜8.5に調整する
ことからなるこれらの排水中の窒素またはリンを除去す
る方法はより好ましい。BODが300mg/l以上に
なると硝化菌は優占種となりがたい。
In this method, the reaction temperature is 5 to 40.
° C, preferably 25 to 37 ° C, and the organic matter content of the mixed wastewater to which condensed water was added was 0.1 to 2.0 in terms of BOD volume load.
g-BOD / l.day, preferably 0.3-0.8 g-B
OD / l · day, and the nitrogen amount of the mixed wastewater is 0.01 to 1.0 g-N / l · day, preferably 0.0
At 3 to 0.3 g-N / l day, the volume ratio of the mixed wastewater to which condensed water is added and the circulating nitrification liquid from the nitrification reaction tank is 1: 1 to 1
1:20, preferably 1: 3 to 1: 5, and the residence time in the denitrification reactor is 0.5 to 24 hours, preferably 1 to 1 hour.
2 hours, and the residence time in the nitrification reaction tank is 1.5 to 9
A method for removing nitrogen or phosphorus in these wastewaters, which comprises adjusting the pH of the nitrification reactor to 5 to 10, preferably 6.5 to 8.5 for 6 hours, preferably 5 to 36 hours, is described. More preferred. When the BOD exceeds 300 mg / l, nitrifying bacteria are unlikely to become the dominant species.

【0009】酒類製造時に発生する残さを乾燥機・濃縮
機を用いて乾燥し濃縮する。そのとき蒸発気体を凝縮す
ることにより凝縮水を得る。排水処理施設から公共水域
へ排出される窒素やリン濃度が排水基準値を超えると、
希釈するか再度排水処理施設に戻していた。高濃度の排
水を硝化液循環脱窒装置で処理した一次処理水が基準に
達しない場合は、さらに同型の硝化液循環脱窒装置を連
結して多段式にした装置を用いて処理した二次処理水の
窒素やリン濃度を基準値以下に減少・除去することがで
きる。
[0009] The residue generated during the production of alcoholic beverages is dried and concentrated using a dryer / concentrator. At that time, condensed water is obtained by condensing the vaporized gas. If the concentration of nitrogen and phosphorus discharged from the wastewater treatment facility to public waters exceeds the wastewater standard,
Diluted or returned to wastewater treatment facility. If the primary treatment water obtained by treating high-concentration wastewater with a nitrification liquid circulating denitrification device does not reach the standard, the secondary treatment is performed using a multistage type nitrification solution circulating denitrification device connected to the same type. Nitrogen and phosphorus concentrations in treated water can be reduced or removed below the reference value.

【0010】酒類として、清酒、ビール、リキュール、
雑酒、焼酎などが挙げられる。焼酎として、芋焼酎、麦
焼酎、米焼酎、ごま焼酎、ひえ焼酎、とうもろこし焼
酎、黒糖焼酎などが挙げられる。乾燥機として、蒸気薄
膜間接乾燥機、減圧乾燥機、真空乾燥機、ドラムドライ
ヤ、スプレードライヤ、赤外線乾燥機、熱風乾燥機、定
温乾燥機、送風乾燥機などが挙げられる。濃縮機とし
て、減圧濃縮機、減圧蒸留濃縮機などが挙げられる。
Sake, beer, liqueur,
Various types of sake and shochu. Examples of shochu include potato shochu, wheat shochu, rice shochu, sesame shochu, fly shochu, corn shochu, and brown sugar shochu. Examples of the dryer include a vapor thin film indirect dryer, a vacuum dryer, a vacuum dryer, a drum dryer, a spray dryer, an infrared dryer, a hot air dryer, a constant temperature dryer, and a blast dryer. Examples of the concentrator include a vacuum concentrator and a vacuum distillation concentrator.

【0011】得られた凝縮水は、有機性炭素(TO
C)、酢酸、エタノールを主に含む水溶液であり、pH
として3〜5の値を示し、化学的酸素消費量(COD)
は1000〜9000mg/l、生物学的酸素消費量
(BOD)は3000〜25000mg/lである。無
機性炭素(IC)、全窒素(TN)、全リン(TP)な
どは極めて少ない。生物は、ほてい、葦、芦、微生物、
細菌、活性汚泥などであり、微生物として、リン蓄積
菌、硝化菌または脱窒菌、あるいは活性汚泥から選ばれ
た少なくとも一つを含むものが好ましい。排水は、生活
排水、工場排水、農業排水、畜産排水、メタン発酵処理
排水などをいい、高濃度の窒素またはリン成分を含有す
る排水処理施設からの処理水を含む。また、排水は廃水
も含むものとする。
The obtained condensed water is made of organic carbon (TO)
C) an aqueous solution mainly containing acetic acid and ethanol,
As the value of 3 to 5 and the chemical oxygen consumption (COD)
Is 1000-9000 mg / l and the biological oxygen consumption (BOD) is 3000-25000 mg / l. Inorganic carbon (IC), total nitrogen (TN), total phosphorus (TP), etc. are extremely small. The creatures, most of them, reeds, reeds, microorganisms,
Bacteria, activated sludge, and the like, and microorganisms containing at least one selected from phosphorus accumulating bacteria, nitrifying bacteria, or denitrifying bacteria, or activated sludge are preferable. Wastewater refers to domestic wastewater, industrial wastewater, agricultural wastewater, livestock wastewater, methane fermentation wastewater, etc., and includes treated water from wastewater treatment facilities containing high concentrations of nitrogen or phosphorus components. Wastewater shall also include wastewater.

【0012】[0012]

【発明の実施の形態】窒素やリンなどの栄養塩類を多く
含む排水において、凝縮水をさらに添加混合して生物処
理で窒素やリンを効率的に除去できることを実現した。
以下、本発明方法を実施例により説明するが、本発明は
以下の実施例に限定されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION In waste water containing a large amount of nutrients such as nitrogen and phosphorus, it has been realized that nitrogen and phosphorus can be efficiently removed by biological treatment by further adding and mixing condensed water.
Hereinafter, the method of the present invention will be described with reference to examples, but the present invention is not limited to the following examples.

【0013】[0013]

【実施例】〔実施例1〕蒸気薄膜間接乾燥機(装置:サ
イクロンドライヤー、(株)オカドラ製造)を用いて芋
焼酎残さ100kgを90℃で乾燥した。このとき発生
する蒸気を20℃で凝縮し、収集し、いわゆる凝縮水を
82l得た。液体クロマトグラフ、ガスクロマトグラ
フ、窒素・リン分析装置、全炭素・全窒素分析装置を用
いて、JIS K 102に準拠して、得られた凝縮水
を分析した。その結果を表1に示した。
EXAMPLES Example 1 100 kg of potato shochu residue was dried at 90 ° C. using an indirect steam thin-film dryer (apparatus: Cyclone Dryer, manufactured by Okadra Co., Ltd.). The steam generated at this time was condensed at 20 ° C. and collected, and 82 l of so-called condensed water was obtained. The obtained condensed water was analyzed using a liquid chromatograph, a gas chromatograph, a nitrogen / phosphorus analyzer, and a total carbon / total nitrogen analyzer in accordance with JIS K102. The results are shown in Table 1.

【0014】〔実施例2〕減圧濃縮機を用いて缶内圧力
450mmHg,品温70℃で麦焼酎残さ50kgを濃縮
した。このとき発生する蒸気を20℃で凝縮し、収集
し、いわゆる凝縮水を35l得た。液体クロマトグラ
フ、ガスクロマトグラフ、窒素・リン分析装置、全炭素
・全窒素分析装置を用いて、JIS K 0102に準
拠して、得られた凝縮水を分析した。その結果を表1に
示した。
Example 2 Using a vacuum concentrator, 50 kg of barley shochu residue was concentrated at a can pressure of 450 mmHg and a product temperature of 70 ° C. The steam generated at this time was condensed at 20 ° C. and collected, so that 35 l of so-called condensed water was obtained. The condensed water obtained was analyzed using a liquid chromatograph, a gas chromatograph, a nitrogen / phosphorus analyzer, and a total carbon / total nitrogen analyzer in accordance with JIS K0102. The results are shown in Table 1.

【0015】[0015]

【表1】 [Table 1]

【0016】〔実施例3〕食肉工場から採取した活性汚
泥2.0lをアクリル製の回分式活性汚泥反応槽3.0
lに入れた。実施例1で得た芋焼酎残さからの凝縮水
3.0lを7倍に希釈し、これをメタン発酵排水と混合
した。この混合排水BOD濃度1300mg/lに調整
した。これを反応槽に0.3l入れ、7日間馴養した。
次に窒素濃度234mg/l、リン濃度17.1mg/
l含有の上記混合排水を毎日1.0l供給し、16時間
通気させ生物処理した。8時間静置沈降後、上澄液1.
0lを排出させ、また新たに混合排水を1.0l投入し
て生物処理を7日間行った。その結果、混合排水は窒素
49mg/lとリン濃度4.0mg/lの処理水とな
り、窒素・リンそれぞれ79%、77%除去できた。
Example 3 2.0 liters of activated sludge collected from a meat factory was applied to an acrylic batch activated sludge reaction tank 3.0.
l. 3.0 l of condensed water from the potato shochu residue obtained in Example 1 was diluted 7-fold and mixed with methane fermentation wastewater. The mixed wastewater BOD concentration was adjusted to 1300 mg / l. This was put into a reaction tank in an amount of 0.3 l, and acclimated for 7 days.
Next, a nitrogen concentration of 234 mg / l and a phosphorus concentration of 17.1 mg / l
1.0 l of the above mixed wastewater containing 1 l was supplied daily and aerated for 16 hours for biological treatment. After settling for 8 hours, 1.
0 l was discharged, and 1.0 l of mixed waste water was further charged, and biological treatment was performed for 7 days. As a result, the mixed waste water was treated water having a nitrogen concentration of 49 mg / l and a phosphorus concentration of 4.0 mg / l, and 79% and 77% of nitrogen and phosphorus could be removed, respectively.

【0017】〔比較例1〕BOD濃度を同一とし,窒素
濃度1170mg/lリン濃度85mg/lの、凝縮水
未添加の排水を調整した。この排水を毎日1.0lずつ
投入して16時間通気させ生物処理した。8時間静置沈
降後、その上澄液1.0lを排出させ、また新たに排水
を1.0l投入して生物処理を7日間行った。その結
果、窒素・リンはそれぞれ11%、5%除去できた。
[Comparative Example 1] Wastewater without condensed water was prepared with the same BOD concentration and a nitrogen concentration of 1170 mg / l and a phosphorus concentration of 85 mg / l. The wastewater was charged 1.0 l each day and aerated for 16 hours for biological treatment. After settling for 8 hours, 1.0 liter of the supernatant was discharged, and 1.0 liter of newly discharged water was added to carry out biological treatment for 7 days. As a result, nitrogen and phosphorus could be removed by 11% and 5%, respectively.

【0018】〔実施例4〕実施例1で得た芋焼酎残さか
らの凝縮水2.0lを9倍に希釈し、これとメタン発酵
排水と混合してBOD濃度1100mg/lに調整した
以外は、実施例3と同様な処理をした。窒素濃度117
mg/l、リン濃度8.5mg/lの混合排水を生物処
理した結果、処理水の窒素濃度22mg/l、リン濃度
0.8mg/lとなり、それぞれ除去率81%、91%
とさらに高い効率で除去されている。
[Example 4] Except that 2.0 L of condensed water from the potato shochu residue obtained in Example 1 was diluted 9 times and mixed with methane fermentation wastewater to adjust the BOD concentration to 1100 mg / L. The same processing as in Example 3 was performed. Nitrogen concentration 117
As a result of biological treatment of mixed wastewater having a concentration of 8.5 mg / l and a concentration of 8.5 mg / l, the nitrogen concentration of the treated water was 22 mg / l and the phosphorus concentration was 0.8 mg / l, and the removal rates were 81% and 91%, respectively.
And has been removed with even higher efficiency.

【0019】〔実施例5〕硝化液循環脱窒装置は、脱窒
反応槽と硝化反応槽を連結した装置であり、これを図2
に示す。脱窒反応槽は図2に示した容積0.45l、高
さ55cmの塔型リアクターである。実施例2で得た麦
焼酎残さからの凝縮水を添加した混合排水をタイマー制
御した送液ポンプで脱窒反応槽へ供給した。この槽の温
度を保温水で35〜37℃に保った。し尿処理場の活性
汚泥を投入して、脱窒菌を3週間馴養した。硝化反応槽
は、硝化菌を固定させるため固定材としてその材質がポ
リプロピレンとポリスチレン製からなる径10mm、長
さ15mmの網目構造円筒体(頭髪用カール)を用いた
浸水ろ床型硝化反応槽で、空隙率90%・反応容積1.
35lである。し尿処理場の活性汚泥2.5lを硝化槽
2.5lに投入し、硝化菌を3週間馴養した。なお、硝
化反応槽内温度はセラミックヒータで28〜30℃に保
温し、5%炭酸水素ナトリウム溶液または1規定塩酸溶
液を使用してpHを7.4〜8.0にコントロールし
た。硝化反応槽の溶存酸素は2mg/l以上にコントロ
ールした。上記の麦凝縮水とメタン発酵排水を混合し
た、BOD濃度2080mg/lの混合排水を毎日0.
9l硝化液循環脱窒装置に供給した。脱窒反応槽と硝化
反応槽で処理したのち循環硝化液として4.5l/日
(容量比1:5)循環し、混合排水と合流させて再び脱
窒反応槽へ供給して生物処理を行い、窒素とリンの除去
率を求めた。その結果、窒素除去率80%、リン除去率
46%であった。
[Embodiment 5] A nitrification liquid circulation denitrification apparatus is an apparatus in which a denitrification reaction tank and a nitrification reaction tank are connected to each other.
Shown in The denitrification reaction tank is a tower reactor having a capacity of 0.45 l and a height of 55 cm shown in FIG. The mixed wastewater to which condensed water from the barley shochu residue obtained in Example 2 was added was supplied to a denitrification reaction tank by a liquid feed pump controlled by a timer. The temperature of this tank was maintained at 35 to 37 ° C. with warm water. Activated sludge from the night soil treatment plant was charged, and the denitrifying bacteria were acclimated for 3 weeks. The nitrification reaction tank is a submerged filter bed type nitrification reaction tank using a meshed cylindrical body (curl for hair) with a diameter of 10 mm and a length of 15 mm made of polypropylene and polystyrene as a fixing material for fixing nitrifying bacteria. , Porosity 90%, reaction volume 1.
35 l. 2.5 l of activated sludge from the night soil treatment plant was charged into 2.5 l of the nitrification tank, and the nitrifying bacteria were acclimated for 3 weeks. The temperature in the nitrification reactor was kept at 28 to 30 ° C. by a ceramic heater, and the pH was controlled to 7.4 to 8.0 using a 5% sodium hydrogen carbonate solution or a 1N hydrochloric acid solution. The dissolved oxygen in the nitrification reactor was controlled at 2 mg / l or more. The mixed wastewater having a BOD concentration of 2080 mg / l, which is obtained by mixing the above-mentioned wheat condensed water and methane fermentation wastewater, is mixed with 0. 0 mg / l daily.
The solution was supplied to a 9 l nitrification liquid circulation denitrification apparatus. After being treated in the denitrification reaction tank and the nitrification reaction tank, it is circulated as a circulating nitrification solution at a rate of 4.5 l / day (volume ratio 1: 5), combined with the mixed wastewater and supplied again to the denitrification reaction tank for biological treatment. The removal rates of nitrogen and phosphorus were determined. As a result, the nitrogen removal rate was 80% and the phosphorus removal rate was 46%.

【0020】〔実施例6〕実施例2で得た麦焼酎残さか
らの凝縮水を畜産排水(窒素濃度2650mg/l)に
添加混合し、BOD濃度1680mg/l、窒素濃度5
30mg/l、リン濃度16mg/lの混合排水に調整
した。この調整した混合排水を、毎日0.9lずつ脱窒
反応槽に供給し、次に、脱窒反応槽から硝化反応槽に送
り、その処理水のうち循環硝化液として3.6l/日
(容量比1:4)循環させ、混合排水と合流後再び脱窒
反応に供給し、生物処理を行って窒素とリンの除去試験
を行った。処理水の窒素濃度は132mg/lで除去率
75%、リン濃度9.2mg/l、除去率43%であっ
た。
Example 6 Condensed water from the barley shochu residue obtained in Example 2 was added to livestock wastewater (nitrogen concentration 2650 mg / l) and mixed, and the BOD concentration was 1680 mg / l and the nitrogen concentration was 5
The mixture was adjusted to a mixed wastewater having a concentration of 30 mg / l and a phosphorus concentration of 16 mg / l. The adjusted mixed wastewater is supplied to the denitrification reaction tank at a rate of 0.9 l / day, then sent from the denitrification reaction tank to the nitrification reaction tank, and 3.6 l / day (volume) (Ratio 1: 4) The mixture was circulated, mixed with the mixed waste water, and then supplied again to the denitrification reaction, and subjected to biological treatment to conduct a nitrogen and phosphorus removal test. The nitrogen concentration of the treated water was 132 mg / l, the removal rate was 75%, the phosphorus concentration was 9.2 mg / l, and the removal rate was 43%.

【0021】〔実施例7〕実施例6と同一の混合排水を
調整した。この調整した混合排水を、毎日0.9lずつ
脱窒反応槽に供給し、次に、脱窒反応槽から硝化反応槽
に送り、その処理水のうち循環硝化液として14.4l
/日(容量比1:16)循環させ、混合排水と合流後再
び脱窒反応に供給し生物処理を行った。その結果、処理
水の窒素除去率65%、リン除去率30%であった。
Example 7 The same mixed waste water as in Example 6 was prepared. The adjusted mixed wastewater is supplied to the denitrification reaction tank at a rate of 0.9 l / day, and then sent from the denitrification reaction tank to the nitrification reaction tank.
/ Day (volume ratio 1:16), and after merging with the mixed wastewater, the mixture was supplied again to the denitrification reaction to carry out biological treatment. As a result, the nitrogen removal rate of the treated water was 65% and the phosphorus removal rate was 30%.

【0022】〔比較例2〕畜産排水を普通の水で希釈
し、BOD濃度750mg/l、窒素濃度 530mg
/l、リン濃度16mg/lに調整した以外は、実施例
6と同様に処理した。処理水の窒素濃度は408mg/
lで除去率23%、その他は硝酸性窒素として多く処理
水中に残存した。また、リン濃度14.2mg/lでリ
ン除去率11%であった。この結果,凝縮水未添加は1
/3の低い除去であった。
[Comparative Example 2] Livestock wastewater was diluted with ordinary water, and the BOD concentration was 750 mg / l and the nitrogen concentration was 530 mg.
/ L and phosphorus concentration were adjusted to 16 mg / l. The nitrogen concentration of the treated water is 408mg /
1 and the removal rate was 23%, and the others were much as nitrate nitrogen and remained in the treated water. The phosphorus removal rate was 11% at a phosphorus concentration of 14.2 mg / l. As a result, 1
/ 3 low removal.

【0023】〔実施例8〕麦焼酎残さを間接乾燥機で乾
燥して得られた凝縮水を用いた。この凝縮水と工場排水
を混合し、BOD濃度1500mg/l、窒素濃度を1
70mg/l、リン濃度17.1mg/lを含む混合排
水を調整した。毎日1.0lずつ混合試料を回分式活性
汚泥反応槽に投入して16時間通気させ生物処理したの
ち、8時間静置沈降後その上澄液1.0l排出させ,ま
た新たに混合排水を1.0l投入して生物処理を7日間
行った。7日目の処理水の結果は、窒素濃度25.5mg
/lで除去率は85%、リン濃度4.0mg/lで除去率
は77%を示した。
Example 8 Condensed water obtained by drying wheat shochu residue with an indirect dryer was used. This condensed water and factory wastewater are mixed, and a BOD concentration of 1500 mg / l and a nitrogen concentration of 1
A mixed wastewater containing 70 mg / l and a phosphorus concentration of 17.1 mg / l was prepared. 1.0 l of the mixed sample was placed in a batch activated sludge reactor every day and subjected to biological treatment by aeration for 16 hours. After standing for 8 hours, the supernatant was discharged and 1.0 l of the supernatant was discharged. The biological treatment was carried out for 7 days by charging 0.01. As a result of the treated water on the seventh day, the nitrogen concentration was 25.5 mg.
The removal rate was 85% at 1 / l and 77% at a phosphorus concentration of 4.0 mg / l.

【0024】〔比較例3〕工場排水を普通の水で希釈
し、BOD濃度550mg/l、窒素濃度 276mg
/l、リン濃度16.5mg/lに調整した以外は、実
施例7と同様に処理した。処理水の窒素濃度は171m
g/lで除去率38%、リン濃度13.8mg/lで1
6%除去であった。
[Comparative Example 3] Factory wastewater was diluted with ordinary water, and the BOD concentration was 550 mg / l and the nitrogen concentration was 276 mg.
/ L and the phosphorus concentration were adjusted to 16.5 mg / l in the same manner as in Example 7. Nitrogen concentration of treated water is 171m
g / l: 38% removal rate, phosphorus concentration: 13.8 mg / l
6% removal.

【0025】〔実施例9〕多段式の硝化液循環脱窒装置
を図3に示した。これは実施例5の装置をさらに連結し
た装置である。排水と凝縮水を混合した第一混合排水は
第一脱窒反応槽と第一硝化反応槽で生物処理され一次処
理水となる。さらに凝縮水を添加混合して第二混合排水
とし、第二脱窒反応槽と第二硝化反応槽で生物処理し、
二次処理水となる。その二次処理水を循環させ第二混合
排水と合流後再び第二脱窒反応に供給し、生物処理し
た。なお二次処理水の窒素濃度が規制値以下では循環し
ない。脱窒反応槽の脱窒菌や硝化反応槽の硝化菌はそれ
ぞれ実施例5と同様に馴養させて生物処理を行った。水
産加工排水に芋焼酎からの凝縮水を添加してBOD濃度
1400mg/l、窒素濃度351mg/l、リン濃度
25.6mg/lの混合排水を毎日0.9l供給し、生
物処理を行った。脱窒反応槽と硝化反応槽で生物処理さ
れた一次処理水は窒素濃度105mg/l、リン濃度1
4.7mg/lであった。この一次処理水にさらに前記
の凝縮水を添加混合してBOD濃度930mg/lに再
調整した第二混合排水を生物処理した。その結果、窒素
濃度9.0mg/lとリン濃度9.5mg/lの二次処
理水となり、それぞれ大きく除去することができた。
[Embodiment 9] Fig. 3 shows a multistage nitrification liquid circulation denitrification apparatus. This is a device obtained by further connecting the device of the fifth embodiment. The first mixed wastewater obtained by mixing the wastewater and the condensed water is subjected to biological treatment in the first denitrification reaction tank and the first nitrification reaction tank to become primary treated water. Further condensed water is added and mixed to form a second mixed wastewater, and biological treatment is performed in a second denitrification reaction tank and a second nitrification reaction tank,
It becomes secondary treated water. The secondary treatment water was circulated and, after merging with the second mixed wastewater, supplied again to the second denitrification reaction to carry out biological treatment. In addition, if the nitrogen concentration of the secondary treatment water is lower than the regulation value, it does not circulate. The denitrifying bacteria in the denitrification reaction tank and the nitrifying bacteria in the nitrification reaction tank were each acclimated and subjected to biological treatment in the same manner as in Example 5. Condensed water from sweet potato shochu was added to the marine processing wastewater, and 0.9 L of mixed wastewater having a BOD concentration of 1,400 mg / l, a nitrogen concentration of 351 mg / l, and a phosphorus concentration of 25.6 mg / l was supplied daily to carry out biological treatment. The primary treated water biologically treated in the denitrification reaction tank and nitrification reaction tank has a nitrogen concentration of 105 mg / l and a phosphorus concentration of 1
It was 4.7 mg / l. The above-mentioned condensed water was further added to and mixed with the primary treated water, and the second mixed wastewater whose BOD concentration was readjusted to 930 mg / l was biologically treated. As a result, it became secondary treatment water having a nitrogen concentration of 9.0 mg / l and a phosphorus concentration of 9.5 mg / l, and could be largely removed.

【0026】[0026]

【発明の効果】以上説明したように本発明は、従来の排
水処理施設から公共水域へ排出される高濃度の窒素やリ
ンなどを減少することができ、かつ産業廃棄物として海
洋投棄されていた酒類残さを有効活用することができ
た。本発明は、酒類残さを乾燥し濃縮して凝縮水を生成
し、得られた凝縮水と生物とを用いて、高濃度の窒素ま
たはリンを含む排水から窒素またはリンを減少・除去す
る方法であることが分かる。このことは、従来の排水処
理装置にこの方法を適用することで、窒素やリン除去の
高度処理が可能となる。この結果、赤潮やアオコなどの
発生を抑制でき、富栄養化対策や水質浄化で環境保全に
大きく貢献できることになる。本来除去すべきBODな
どを多く含有する凝縮水をさらに添加するという新しい
発想に基づく、高濃度の窒素またはリンを含む排水から
窒素またはリン成分を減少・除去する方法であることが
分かる。産業廃棄物として酒類残さは海洋投棄され大き
な環境問題を引き起こしている。例えば九州地区では4
6万トンありその処理に苦慮している。この酒類残さか
ら得られる凝縮水は36万トンであり、鹿児島県の畜産
排水量600万トン〜700万トンを処理することがで
きる。
As described above, the present invention can reduce high-concentration nitrogen and phosphorus discharged from a conventional wastewater treatment facility into public waters, and has been dumped into the ocean as industrial waste. The liquor residue was effectively used. The present invention provides a method of drying and concentrating liquor residue to produce condensed water, and using the obtained condensed water and organisms to reduce and remove nitrogen or phosphorus from wastewater containing high concentration of nitrogen or phosphorus. You can see that there is. This means that by applying this method to a conventional wastewater treatment apparatus, advanced treatment for removing nitrogen and phosphorus can be performed. As a result, the generation of red tide and blue water can be suppressed, and eutrophication measures and water purification can greatly contribute to environmental conservation. It can be seen that this is a method for reducing or removing nitrogen or phosphorus components from wastewater containing high concentrations of nitrogen or phosphorus based on a new idea of further adding condensed water containing a large amount of BOD or the like that should be removed. Alcoholic beverages as industrial waste are dumped in the ocean, causing serious environmental problems. For example, in the Kyushu district,
There are 60,000 tons, and we are having a hard time disposing of them. The condensed water obtained from the liquor residue is 360,000 tons, and can process 6 to 7 million tons of livestock wastewater in Kagoshima Prefecture.

【図面の簡単な説明】[Brief description of the drawings]

【図1】回分式活性汚泥法を用いた図である。FIG. 1 is a diagram using a batch activated sludge method.

【図2】硝化液循環脱窒法を用いた図である。FIG. 2 is a diagram using a nitrification liquid circulation denitrification method.

【図3】多段式硝化液循環脱窒法を用いた工程図であ
る。
FIG. 3 is a process diagram using a multi-stage nitrification liquid circulation denitrification method.

【符号の説明】[Explanation of symbols]

11 活性汚泥反応槽 12 散気菅 13 コンプレッサ 21 排水 22 凝縮水 23 混合排水 24 送液ポンプ 25 脱窒反応槽 26 保温水 27 脱窒処理水 28 硝化反応槽 29 硝化槽 30 pHコントローラ 31 セラミックヒータ 32 散気菅 33 コンプレッサ 34 循環硝化液 35 送液ポンプ 36 処理水 REFERENCE SIGNS LIST 11 activated sludge reaction tank 12 diffuser tube 13 compressor 21 drainage 22 condensed water 23 mixed drainage 24 liquid feed pump 25 denitrification reaction tank 26 warm water 27 denitrification treatment water 28 nitrification reaction tank 29 nitrification tank 30 pH controller 31 ceramic heater 32 Aeration tube 33 Compressor 34 Circulating nitrification liquid 35 Liquid pump 36 Treated water

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 3/34 101 B09B 3/00 303M Fターム(参考) 4D004 AA04 CA42 4D028 CB02 CC01 CD01 CD02 4D040 BB05 BB32 BB57 BB72 CC01 CC02 DD03 DD24 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 3/34 101 B09B 3/00 303M F-term (Reference) 4D004 AA04 CA42 4D028 CB02 CC01 CD01 CD02 4D040 BB05 BB32 BB57 BB72 CC01 CC02 DD03 DD24

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 酒類製造時に発生する残さから凝縮水を
生成し、これを生物と共存した排水に添加し、排水中の
窒素またはリンを除去する方法。
1. A method for producing condensed water from residues generated during the production of alcoholic beverages, adding the condensed water to wastewater coexisting with living organisms, and removing nitrogen or phosphorus in the wastewater.
【請求項2】焼酎製造時に発生する残さから凝縮水を生
成し、これを生物と共存した排水に添加し、排水中の窒
素またはリンを除去する方法。
2. A method for producing condensed water from residues generated during the production of shochu, adding the condensed water to wastewater coexisting with living organisms, and removing nitrogen or phosphorus in the wastewater.
【請求項3】活性汚泥反応槽の温度が5〜40℃、好ま
しくは20〜30℃であり、凝縮水を添加した混合排水
の有機物量はBOD容積負荷で0.1〜2.0g−BO
D/l・日、好ましくは0.3〜0.8g−BOD/l
・日であり、混合排水の窒素量は窒素容積負荷で0.0
1〜1.0g−N/l・日、好ましくは0.03〜0.
3g−N/l・日で、混合排水の活性汚泥反応槽内での
滞留時間が4〜48時間、好ましくは6〜24時間であ
り、反応後の沈降時間が2〜10時間、好ましくは4〜
8時間であり、活性汚泥反応槽のpHを5〜10、好まし
くは6.5〜8.5に調整、生物が微生物、好ましくは
活性汚泥を馴養したものである請求項1または請求項2
のいずれかの方法。
3. The temperature of the activated sludge reaction tank is 5 to 40 ° C., preferably 20 to 30 ° C., and the amount of organic matter in the mixed wastewater to which condensed water is added is 0.1 to 2.0 g-BO in volume load of BOD.
D / l · day, preferably 0.3-0.8 g-BOD / l
・ It is day, and the nitrogen amount of the mixed wastewater is 0.0
1 to 1.0 g-N / l.day, preferably 0.03 to 0.
At 3 g-N / l.day, the residence time of the mixed wastewater in the activated sludge reaction tank is 4 to 48 hours, preferably 6 to 24 hours, and the sedimentation time after the reaction is 2 to 10 hours, preferably 4 to 4 hours. ~
8 hours, the pH of the activated sludge reaction tank is adjusted to 5 to 10, preferably 6.5 to 8.5, and the organism is one that has acclimated microorganisms, preferably activated sludge.
Either way.
【請求項4】活性汚泥処理施設の後処理として、活性汚
泥を馴養したものを共存させた活性汚泥処理水に凝縮水
を添加することからなる活性汚泥処理水中の窒素または
リンを除去する方法。
4. A method for removing nitrogen or phosphorus in activated sludge treated water, which comprises adding condensed water to activated sludge treated water in which activated sludge is acclimated as post-treatment of the activated sludge treatment facility.
【請求項5】生物が微生物、好ましくはリン蓄積菌、硝
化菌または脱窒菌から選ばれた少なくとも一つを含むこ
とからなる請求項1または請求項2のいずれかの方法。
5. The method according to claim 1, wherein the organism contains at least one selected from the group consisting of microorganisms, preferably phosphorus-accumulating bacteria, nitrifying bacteria, or denitrifying bacteria.
【請求項6】脱窒反応槽および硝化反応槽の容量比が
1:1〜1:10である一定温度に保った硝化液循環脱
窒装置を用いて、凝縮水を添加した混合排水と硝化反応
槽からの循環硝化液とを混合し、これを脱窒反応槽に流
入し、リン蓄積菌を含む脱窒菌による脱窒反応をし、反
応後にBODが300mg/l以下、好ましくは150
mg/l以下である脱窒処理水を硝化反応槽に流入し、
pHを調整しながら硝化菌による硝化反応をし、反応後
の一部を処理水として放出すると共に残部を循環硝化液
とすることからなる排水中の窒素またはリンを除去する
方法。
6. A mixed effluent to which condensed water has been added and nitrification using a nitrification liquid circulating denitrification apparatus maintained at a constant temperature in which the volume ratio of the denitrification reaction tank and the nitrification reaction tank is 1: 1 to 1:10. The circulating nitrification solution from the reaction tank is mixed, and the mixture is flowed into a denitrification reaction tank, and subjected to a denitrification reaction by a denitrification bacterium containing a phosphorus-accumulating bacterium.
mg / l or less of denitrification-treated water flows into the nitrification reaction tank,
A method in which a nitrification reaction is performed by a nitrifying bacterium while adjusting the pH, and a part after the reaction is released as treated water, and the remaining part is made into a circulating nitrification liquid, thereby removing nitrogen or phosphorus in wastewater.
【請求項7】反応槽の温度が5〜40℃、好ましくは2
5〜37℃であり、排水に凝縮水を添加した混合排水と
硝化反応槽からの循環硝化液との容量比が1:1〜1:
20、好ましくは1:3〜1:5であり、脱窒反応槽で
の滞留時間が0.5〜24時間好ましくは1〜12時間
であり、硝化反応槽での滞留時間が1.5〜96時間、
好ましくは5〜36時間であり、硝化反応槽のpHを5
〜10、好ましくは7〜8.5に調整することからなる
請求項6に記載の排水中の窒素またはリンを除去する硝
化液循環脱窒方法。
7. A reaction vessel having a temperature of 5 to 40 ° C., preferably 2 to 40 ° C.
5 to 37 ° C., and the volume ratio between the mixed wastewater obtained by adding condensed water to the wastewater and the circulating nitrification liquid from the nitrification reaction tank is 1: 1 to 1:
20, preferably 1: 3 to 1: 5, the residence time in the denitrification reactor is 0.5 to 24 hours, preferably 1 to 12 hours, and the residence time in the nitrification reactor is 1.5 to 96 hours,
It is preferably 5-36 hours, and the pH of the nitrification reactor is 5
The nitrification liquor circulation and denitrification method for removing nitrogen or phosphorus in waste water according to claim 6, which is adjusted to 10 to 10, preferably 7 to 8.5.
【請求項8】硝化液循環脱窒装置を多段に連結してなる
請求項6または請求項7に記載の排水中の窒素またはリ
ンを除去する方法。
8. The method for removing nitrogen or phosphorus in waste water according to claim 6, wherein a nitrification liquid circulation denitrification device is connected in multiple stages.
JP2001035025A 2001-02-13 2001-02-13 How to remove nitrogen or phosphorus in wastewater Expired - Fee Related JP3797114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001035025A JP3797114B2 (en) 2001-02-13 2001-02-13 How to remove nitrogen or phosphorus in wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001035025A JP3797114B2 (en) 2001-02-13 2001-02-13 How to remove nitrogen or phosphorus in wastewater

Publications (2)

Publication Number Publication Date
JP2002233889A true JP2002233889A (en) 2002-08-20
JP3797114B2 JP3797114B2 (en) 2006-07-12

Family

ID=18898530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001035025A Expired - Fee Related JP3797114B2 (en) 2001-02-13 2001-02-13 How to remove nitrogen or phosphorus in wastewater

Country Status (1)

Country Link
JP (1) JP3797114B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006255598A (en) * 2005-03-17 2006-09-28 Nippon Steel Chem Co Ltd Biological nitrification denitrification treatment system and denitrification treatment method
JP2007296436A (en) * 2006-04-28 2007-11-15 Egs:Kk Treatment method of wastewater containing high-concentration organic matter
JP2012187488A (en) * 2011-03-10 2012-10-04 Kubota Corp Treatment apparatus and method for nitrogen-containing wastewater
JP2012206017A (en) * 2011-03-29 2012-10-25 Kubota Kankyo Service Kk Method and apparatus for treating wastewater
CN108611253A (en) * 2018-05-03 2018-10-02 天津亿利科能源科技发展股份有限公司 A kind of salt tolerant Black Liquor with Efficient Bacteria activated sludge prepares storage device and breeding method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006255598A (en) * 2005-03-17 2006-09-28 Nippon Steel Chem Co Ltd Biological nitrification denitrification treatment system and denitrification treatment method
JP4532315B2 (en) * 2005-03-17 2010-08-25 新日鐵化学株式会社 Biological nitrification denitrification treatment system and denitrification treatment method
JP2007296436A (en) * 2006-04-28 2007-11-15 Egs:Kk Treatment method of wastewater containing high-concentration organic matter
JP4648872B2 (en) * 2006-04-28 2011-03-09 株式会社 イージーエス Wastewater treatment method for wastewater containing high concentration organic matter
JP2012187488A (en) * 2011-03-10 2012-10-04 Kubota Corp Treatment apparatus and method for nitrogen-containing wastewater
JP2012206017A (en) * 2011-03-29 2012-10-25 Kubota Kankyo Service Kk Method and apparatus for treating wastewater
CN108611253A (en) * 2018-05-03 2018-10-02 天津亿利科能源科技发展股份有限公司 A kind of salt tolerant Black Liquor with Efficient Bacteria activated sludge prepares storage device and breeding method

Also Published As

Publication number Publication date
JP3797114B2 (en) 2006-07-12

Similar Documents

Publication Publication Date Title
Johns Developments in wastewater treatment in the meat processing industry: A review
US6126827A (en) High-strength septage biological treatment system
Jenicek et al. Factors affecting nitrogen removal by nitritation/denitritation
US4999111A (en) Process for treating wastewater
TWI586610B (en) Fluidized bed reactor for ammonia laden wastewater and method for treating ammonia laden wastewater
NL9101917A (en) METHOD FOR PURIFYING WASTE WATER, AND APPARATUS FOR USING THIS METHOD
Sylla Domestic wastewater treatment using vertical flow constructed wetlands planted with Arundo donax, and the intermittent sand filters impact
JP2010201423A (en) High-concentration culture method of denitrifying bacterium contained in activated sludge
US7404897B2 (en) Method for nitrogen removal and treatment of digester reject water in wastewater using bioaugmentation
KR100327151B1 (en) A Process for Treatment of Wastewater Using Intermittently Aerated Membrane Bioreactor
Bernat et al. The treatment of anaerobic digester supernatant by combined partial ammonium oxidation and denitrification
CN106219872B (en) The processing method and organic wastewater treating system of organic wastewater
CN112047468A (en) Biochemical treatment method of landfill leachate
JP3797114B2 (en) How to remove nitrogen or phosphorus in wastewater
Steinke et al. Full-scale experiences of nitrogen removal of fish-processing wastewater with flotation and anoxic-aerobic activated sludge system
JPH08281284A (en) Combined septic tank
Núnez et al. Evaluation of an anaerobic/aerobic system for carbon and nitrogen removal in slaughterhouse wastewater
CN114634244A (en) Methane fermentation coupling integrated denitrification system and process for livestock and poultry manure wastewater
CN108975607B (en) Method for coupling treatment of sludge digestion liquid and urban domestic sewage by using SNAD as core technology
Tabraiz et al. Effect of effluent and sludge recirculation ratios on integrated fixed films A2O system nutrients removal efficiency treating sewage
Hanafy et al. Upgrading conventional activated sludge system using bio-media: a case study of Zenin wastewater treatment plant, Egypt
JP7337560B2 (en) Organic wastewater treatment method
Nguyen et al. Constructed wetlands and oxidation pond systems
CN106587353A (en) System for treating high ammonia nitrogen and organic wastewater through immobilized microorganisms
Pellegrin et al. Sequenced aeration in a membrane bioreactor: specific nitrogen removal rates

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041202

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041202

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees