JP3797114B2 - How to remove nitrogen or phosphorus in wastewater - Google Patents

How to remove nitrogen or phosphorus in wastewater Download PDF

Info

Publication number
JP3797114B2
JP3797114B2 JP2001035025A JP2001035025A JP3797114B2 JP 3797114 B2 JP3797114 B2 JP 3797114B2 JP 2001035025 A JP2001035025 A JP 2001035025A JP 2001035025 A JP2001035025 A JP 2001035025A JP 3797114 B2 JP3797114 B2 JP 3797114B2
Authority
JP
Japan
Prior art keywords
reaction tank
nitrogen
phosphorus
nitrification
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001035025A
Other languages
Japanese (ja)
Other versions
JP2002233889A (en
Inventor
孝善 新村
和枝 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagoshima-Ken Kagoshima-Shi Kagoshima-Ken
Original Assignee
Kagoshima-Ken Kagoshima-Shi Kagoshima-Ken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagoshima-Ken Kagoshima-Shi Kagoshima-Ken filed Critical Kagoshima-Ken Kagoshima-Shi Kagoshima-Ken
Priority to JP2001035025A priority Critical patent/JP3797114B2/en
Publication of JP2002233889A publication Critical patent/JP2002233889A/en
Application granted granted Critical
Publication of JP3797114B2 publication Critical patent/JP3797114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【0001】
【発明が属する技術分野】
生活排水、工場排水、畜産排水等の窒素またはリン成分を多く含む排水を生物処理して窒素またはリン除去の利用方法に関するものである。
【0002】
【従来の技術】
排水処理施設では主に微生物を利用して汚染源となる有機物を除去している。しかし排水中に窒素やリンなどの栄養塩類が多く含まれると、その栄養成分が残ったまま公共水域へ排出され、湖沼や閉鎖性海域等での富栄養化が大きな環境問題となっている。これらの対策としては薬剤が使用され、窒素除去にはメタノールが、リン除去にはアルミニウム・鉄系凝集剤が使用されているのは刊行物や文献等で公知である。
一方、酒類製造時に発生する残さは、肥料や飼料としての利用が検討されているが、その大部分は産業廃棄物として海洋投棄などの処理がなされて環境問題を引き起こしている。
【0003】
【発明が解決しようとする課題】
解決しようとする問題点は、従来の排水処理施設から公共水域へ排出される高濃度の窒素やリンなどを減少すること、並びに産業廃棄物として酒類残さを有効活用することなどの点である。
【0004】
【課題を解決するための手段】
本発明は、酒類残さを乾燥し濃縮して凝縮水を生成し、得られた凝縮水と生物とを用いて、高濃度の窒素またはリンを含む排水から窒素またはリンを減少・除去する方法である。本来除去すべきBODなどを多く含有する凝縮水をさらに添加するという新しい発想に基づく、高濃度の窒素またはリンを含む排水から窒素またはリンを減少・除去する方法である。すなわち、
【0005】
酒類製造時に発生する残さから凝縮水を生成し、これを生物と共存した排水に添加し、排水中の窒素またはリンを除去する方法であり、焼酎製造時に発生する残さから凝縮水を生成し、これを生物と共存した排水に添加し、排水中の窒素またはリンを除去する方法とすることも好ましい。共存させる生物が微生物、好ましくは活性汚泥を馴養したものである。あるいは生物が微生物、好ましくはリン蓄積菌、硝化菌または脱窒菌から選ばれた少なくとも一つを含むことからなるこれらの方法であってもよい。
【0006】
活性汚泥処理施設に直接的に凝縮水を添加する方法であっても、また活性汚泥処理施設の後処理として活性汚泥を馴養したものを共存させた活性汚泥処理水に凝縮水を添加する方法であってもよい。この方法において、保温温度が5〜40℃、好ましくは20〜30℃であり、凝縮水を添加した混合排水の有機物量はBOD容積負荷で0.1〜2.0g−BOD/l・日、好ましくは0.3〜0.8g−BOD/l・日であり、混合排水の窒素量は窒素容積負荷が0.03〜1.0g−N/l・日、好ましくは0.1〜0.3g−N/l・日で、混合排水の活性汚泥反応槽での滞留時間が4〜48時間、好ましくは6〜24時間であり、反応後の沈降時間が2〜10時間、好ましくは4〜8時間であり、活性汚泥反応槽のpHを5〜10、好ましくは6.5〜8.5に調整することからなるこれらの排水中の窒素またはリンを除去する方法はより好ましい。
【0007】
さらに、排水処理施設の前処理として、脱窒反応槽および硝化反応槽の容量比が1:1〜1:10である一定温度に保った硝化液循環脱窒装置を用いて、凝縮水を添加した混合排水と硝化反応槽からの循環硝化液とを混合し、これをリン蓄積菌を含む脱窒反応槽に流入し、脱窒菌による脱窒反応をし、反応後にBODが150mg/l以下である脱窒処理水を硝化反応槽に流入し、pHを調整しながら硝化菌による硝化反応をし、反応後の一部を処理水として放出すると共に残部を循環硝化液とすることからなる排水中の窒素またはリンを除去する方法でもよい。
【0008】
この方法において、反応温度が5〜40℃、好ましくは25〜37℃であり、凝縮水を添加した混合排水の有機物量はBOD容積負荷で0.1〜2.0g−BOD/l・日、好ましくは0.3〜0.8g−BOD/l・日であり、混合排水の窒素量は窒素容積負荷が0.01〜1.0g−N/l・日、好ましくは0.03〜0.3g−N/l・日で、凝縮水を添加した混合排水と硝化反応槽からの循環硝化液との容量比が1:1〜1:20、好ましくは1:3〜1:5であり、脱窒反応槽での滞留時間が0.5〜24時間、好ましくは1〜12時間であり、硝化反応槽内での滞留時間が1.5〜96時間、好ましくは5〜36時間であり、硝化反応槽のpHを5〜10、好ましくは6.5〜8.5に調整することからなるこれらの排水中の窒素またはリンを除去する方法はより好ましい。BODが300mg/l以上になると硝化菌は優占種となりがたい。
【0009】
酒類製造時に発生する残さを乾燥機・濃縮機を用いて乾燥し濃縮する。そのとき蒸発気体を凝縮することにより凝縮水を得る。
排水処理施設から公共水域へ排出される窒素やリン濃度が排水基準値を超えると、希釈するか再度排水処理施設に戻していた。高濃度の排水を硝化液循環脱窒装置で処理した一次処理水が基準に達しない場合は、さらに同型の硝化液循環脱窒装置を連結して多段式にした装置を用いて処理した二次処理水の窒素やリン濃度を基準値以下に減少・除去することができる。
【0010】
酒類として、清酒、ビール、リキュール、雑酒、焼酎などが挙げられる。焼酎として、芋焼酎、麦焼酎、米焼酎、ごま焼酎、ひえ焼酎、とうもろこし焼酎、黒糖焼酎などが挙げられる。
乾燥機として、蒸気薄膜間接乾燥機、減圧乾燥機、真空乾燥機、ドラムドライヤ、スプレードライヤ、赤外線乾燥機、熱風乾燥機、定温乾燥機、送風乾燥機などが挙げられる。濃縮機として、減圧濃縮機、減圧蒸留濃縮機などが挙げられる。
【0011】
得られた凝縮水は、有機性炭素(TOC)、酢酸、エタノールを主に含む水溶液であり、pHとして3〜5の値を示し、化学的酸素消費量(COD)は1000〜9000mg/l、生物学的酸素消費量(BOD)は3000〜25000mg/lである。無機性炭素(IC)、全窒素(TN)、全リン(TP)などは極めて少ない。
生物は、ほてい、葦、芦、微生物、細菌、活性汚泥などであり、微生物として、リン蓄積菌、硝化菌または脱窒菌、あるいは活性汚泥から選ばれた少なくとも一つを含むものが好ましい。
排水は、生活排水、工場排水、農業排水、畜産排水、メタン発酵処理排水などをいい、高濃度の窒素またはリン成分を含有する排水処理施設からの処理水を含む。また、排水は廃水も含むものとする。
【0012】
【発明の実施の形態】
窒素やリンなどの栄養塩類を多く含む排水において、凝縮水をさらに添加混合して生物処理で窒素やリンを効率的に除去できることを実現した。
以下、本発明方法を実施例により説明するが、本発明は以下の実施例に限定されるものではない。
【0013】
【実施例】
〔実施例1〕
蒸気薄膜間接乾燥機(装置:サイクロンドライヤー、(株)オカドラ製造)を用いて芋焼酎残さ100kgを90℃で乾燥した。このとき発生する蒸気を20℃で凝縮し、収集し、いわゆる凝縮水を82l得た。液体クロマトグラフ、ガスクロマトグラフ、窒素・リン分析装置、全炭素・全窒素分析装置を用いて、JIS K 102に準拠して、得られた凝縮水を分析した。その結果を表1に示した。
【0014】
〔実施例2〕
減圧濃縮機を用いて缶内圧力450mmHg,品温70℃で麦焼酎残さ50kgを濃縮した。このとき発生する蒸気を20℃で凝縮し、収集し、いわゆる凝縮水を35l得た。液体クロマトグラフ、ガスクロマトグラフ、窒素・リン分析装置、全炭素・全窒素分析装置を用いて、JIS K 0102に準拠して、得られた凝縮水を分析した。その結果を表1に示した。
【0015】
【表1】

Figure 0003797114
【0016】
〔実施例3〕
食肉工場から採取した活性汚泥2.0lをアクリル製の回分式活性汚泥反応槽3.0lに入れた。実施例1で得た芋焼酎残さからの凝縮水3.0lを7倍に希釈し、これをメタン発酵排水と混合した。この混合排水BOD濃度1300mg/lに調整した。これを反応槽に0.3l入れ、7日間馴養した。次に窒素濃度234mg/l、リン濃度17.1mg/l含有の上記混合排水を毎日1.0l供給し、16時間通気させ生物処理した。8時間静置沈降後、上澄液1.0lを排出させ、また新たに混合排水を1.0l投入して生物処理を7日間行った。
その結果、混合排水は窒素49mg/lとリン濃度4.0mg/lの処理水となり、窒素・リンそれぞれ79%、77%除去できた。
【0017】
〔比較例1〕
BOD濃度を同一とし,窒素濃度1170mg/lリン濃度85mg/lの、凝縮水未添加の排水を調整した。この排水を毎日1.0lずつ投入して16時間通気させ生物処理した。8時間静置沈降後、その上澄液1.0lを排出させ、また新たに排水を1.0l投入して生物処理を7日間行った。その結果、窒素・リンはそれぞれ11%、5%除去できた。
【0018】
〔実施例4〕
実施例1で得た芋焼酎残さからの凝縮水2.0lを9倍に希釈し、これとメタン発酵排水と混合してBOD濃度1100mg/lに調整した以外は、実施例3と同様な処理をした。窒素濃度117mg/l、リン濃度8.5mg/lの混合排水を生物処理した結果、処理水の窒素濃度22mg/l、リン濃度0.8mg/lとなり、それぞれ除去率81%、91%とさらに高い効率で除去されている。
【0019】
〔実施例5〕
硝化液循環脱窒装置は、脱窒反応槽と硝化反応槽を連結した装置であり、これを図2に示す。脱窒反応槽は図2に示した容積0.45l、高さ55cmの塔型リアクターである。実施例2で得た麦焼酎残さからの凝縮水を添加した混合排水をタイマー制御した送液ポンプで脱窒反応槽へ供給した。この槽の温度を保温水で35〜37℃に保った。し尿処理場の活性汚泥を投入して、脱窒菌を3週間馴養した。
硝化反応槽は、硝化菌を固定させるため固定材としてその材質がポリプロピレンとポリスチレン製からなる径10mm、長さ15mmの網目構造円筒体(頭髪用カール)を用いた浸水ろ床型硝化反応槽で、空隙率90%・反応容積1.35lである。し尿処理場の活性汚泥2.5lを硝化槽2.5lに投入し、硝化菌を3週間馴養した。なお、硝化反応槽内温度はセラミックヒータで28〜30℃に保温し、5%炭酸水素ナトリウム溶液または1規定塩酸溶液を使用してpHを7.4〜8.0にコントロールした。硝化反応槽の溶存酸素は2mg/l以上にコントロールした。
上記の麦凝縮水とメタン発酵排水を混合した、BOD濃度2080mg/lの混合排水を毎日0.9l硝化液循環脱窒装置に供給した。脱窒反応槽と硝化反応槽で処理したのち循環硝化液として4.5l/日(容量比1:5)循環し、混合排水と合流させて再び脱窒反応槽へ供給して生物処理を行い、窒素とリンの除去率を求めた。その結果、窒素除去率80%、リン除去率46%であった。
【0020】
〔実施例6〕
実施例2で得た麦焼酎残さからの凝縮水を畜産排水(窒素濃度2650mg/l)に添加混合し、BOD濃度1680mg/l、窒素濃度530mg/l、リン濃度16mg/lの混合排水に調整した。この調整した混合排水を、毎日0.9lずつ脱窒反応槽に供給し、次に、脱窒反応槽から硝化反応槽に送り、その処理水のうち循環硝化液として3.6l/日(容量比1:4)循環させ、混合排水と合流後再び脱窒反応に供給し、生物処理を行って窒素とリンの除去試験を行った。
処理水の窒素濃度は132mg/lで除去率75%、リン濃度9.2mg/l、除去率43%であった。
【0021】
〔実施例7〕
実施例6と同一の混合排水を調整した。この調整した混合排水を、毎日0.9lずつ脱窒反応槽に供給し、次に、脱窒反応槽から硝化反応槽に送り、その処理水のうち循環硝化液として14.4l/日(容量比1:16)循環させ、混合排水と合流後再び脱窒反応に供給し生物処理を行った。その結果、処理水の窒素除去率65%、リン除去率30%であった。
【0022】
〔比較例2〕
畜産排水を普通の水で希釈し、BOD濃度750mg/l、窒素濃度 530mg/l、リン濃度16mg/lに調整した以外は、実施例6と同様に処理した。処理水の窒素濃度は408mg/lで除去率23%、その他は硝酸性窒素として多く処理水中に残存した。また、リン濃度14.2mg/lでリン除去率11%であった。この結果,凝縮水未添加は1/3の低い除去であった。
【0023】
〔実施例8〕
麦焼酎残さを間接乾燥機で乾燥して得られた凝縮水を用いた。この凝縮水と工場排水を混合し、BOD濃度1500mg/l、窒素濃度を170mg/l、リン濃度17.1mg/lを含む混合排水を調整した。毎日1.0lずつ混合試料を回分式活性汚泥反応槽に投入して16時間通気させ生物処理したのち、8時間静置沈降後その上澄液1.0l排出させ,また新たに混合排水を1.0l投入して生物処理を7日間行った。7日目の処理水の結果は、窒素濃度25.5mg/lで除去率は85%、リン濃度4.0mg/lで除去率は77%を示した。
【0024】
〔比較例3〕
工場排水を普通の水で希釈し、BOD濃度550mg/l、窒素濃度 276mg/l、リン濃度16.5mg/lに調整した以外は、実施例7と同様に処理した。処理水の窒素濃度は171mg/lで除去率38%、リン濃度13.8mg/lで16%除去であった。
【0025】
〔実施例9〕
多段式の硝化液循環脱窒装置を図3に示した。これは実施例5の装置をさらに連結した装置である。排水と凝縮水を混合した第一混合排水は第一脱窒反応槽と第一硝化反応槽で生物処理され一次処理水となる。さらに凝縮水を添加混合して第二混合排水とし、第二脱窒反応槽と第二硝化反応槽で生物処理し、二次処理水となる。その二次処理水を循環させ第二混合排水と合流後再び第二脱窒反応に供給し、生物処理した。なお二次処理水の窒素濃度が規制値以下では循環しない。脱窒反応槽の脱窒菌や硝化反応槽の硝化菌はそれぞれ実施例5と同様に馴養させて生物処理を行った。水産加工排水に芋焼酎からの凝縮水を添加してBOD濃度1400mg/l、窒素濃度351mg/l、リン濃度25.6mg/lの混合排水を毎日0.9l供給し、生物処理を行った。脱窒反応槽と硝化反応槽で生物処理された一次処理水は窒素濃度105mg/l、リン濃度14.7mg/lであった。この一次処理水にさらに前記の凝縮水を添加混合してBOD濃度930mg/lに再調整した第二混合排水を生物処理した。その結果、窒素濃度9.0mg/lとリン濃度9.5mg/lの二次処理水となり、それぞれ大きく除去することができた。
【0026】
【発明の効果】
以上説明したように本発明は、従来の排水処理施設から公共水域へ排出される高濃度の窒素やリンなどを減少することができ、かつ産業廃棄物として海洋投棄されていた酒類残さを有効活用することができた。
本発明は、酒類残さを乾燥し濃縮して凝縮水を生成し、得られた凝縮水と生物とを用いて、高濃度の窒素またはリンを含む排水から窒素またはリンを減少・除去する方法であることが分かる。このことは、従来の排水処理装置にこの方法を適用することで、窒素やリン除去の高度処理が可能となる。この結果、赤潮やアオコなどの発生を抑制でき、富栄養化対策や水質浄化で環境保全に大きく貢献できることになる。
本来除去すべきBODなどを多く含有する凝縮水をさらに添加するという新しい発想に基づく、高濃度の窒素またはリンを含む排水から窒素またはリン成分を減少・除去する方法であることが分かる。
産業廃棄物として酒類残さは海洋投棄され大きな環境問題を引き起こしている。例えば九州地区では46万トンありその処理に苦慮している。この酒類残さから得られる凝縮水は36万トンであり、鹿児島県の畜産排水量600万トン〜700万トンを処理することができる。
【図面の簡単な説明】
【図1】回分式活性汚泥法を用いた図である。
【図2】硝化液循環脱窒法を用いた図である。
【図3】多段式硝化液循環脱窒法を用いた工程図である。
【符号の説明】
11 活性汚泥反応槽
12 散気菅
13 コンプレッサ
21 排水
22 凝縮水
23 混合排水
24 送液ポンプ
25 脱窒反応槽
26 保温水
27 脱窒処理水
28 硝化反応槽
29 硝化槽
30 pHコントローラ
31 セラミックヒータ
32 散気菅
33 コンプレッサ
34 循環硝化液
35 送液ポンプ
36 処理水[0001]
[Technical field to which the invention belongs]
The present invention relates to a method for removing nitrogen or phosphorus by biologically treating wastewater containing a large amount of nitrogen or phosphorus components such as domestic wastewater, factory wastewater, and livestock wastewater.
[0002]
[Prior art]
Wastewater treatment facilities mainly remove microorganisms that are a source of pollution using microorganisms. However, if a lot of nutrient salts such as nitrogen and phosphorus are contained in the wastewater, the nutrient components are discharged to the public water area, and eutrophication in lakes and closed waters is a big environmental problem. It is known in publications and literatures that chemicals are used as countermeasures against these, methanol is used for removing nitrogen, and aluminum / iron-based flocculants are used for removing phosphorus.
On the other hand, the residue generated during the production of alcoholic beverages has been studied for use as fertilizer and feed, but most of them are treated as industrial waste such as ocean dumping, causing environmental problems.
[0003]
[Problems to be solved by the invention]
Problems to be solved include reducing the high concentration of nitrogen, phosphorus, etc. discharged from the conventional wastewater treatment facility to the public water area, and effectively utilizing the liquor residue as industrial waste.
[0004]
[Means for Solving the Problems]
The present invention is a method for reducing and removing nitrogen or phosphorus from waste water containing high concentration of nitrogen or phosphorus using the condensed water and organisms obtained by drying and concentrating alcoholic beverage residues to produce condensed water. is there. This is a method for reducing or removing nitrogen or phosphorus from wastewater containing high concentration of nitrogen or phosphorus based on the new idea of adding further condensed water containing a large amount of BOD or the like that should be removed. That is,
[0005]
It is a method of generating condensed water from the residue generated during liquor production, adding this to wastewater coexisting with living organisms, removing nitrogen or phosphorus in the wastewater, generating condensed water from the residue generated during shochu production, It is also preferable to add this to wastewater coexisting with living organisms to remove nitrogen or phosphorus in the wastewater. The organism to be coexisted is one adapted to microorganisms, preferably activated sludge. Alternatively, it may be those methods in which the organism comprises at least one selected from microorganisms, preferably phosphorus accumulating bacteria, nitrifying bacteria or denitrifying bacteria.
[0006]
Even if it is a method of adding condensed water directly to the activated sludge treatment facility, it is also a method of adding condensed water to the activated sludge treated water coexisting with the activated sludge acclimatized as a post treatment of the activated sludge treatment facility. There may be. In this method, the heat retention temperature is 5 to 40 ° C., preferably 20 to 30 ° C., and the amount of organic matter in the mixed waste water to which condensed water is added is 0.1 to 2.0 g-BOD / l · day at a BOD volume load, Preferably, the amount of nitrogen in the mixed waste water is 0.03 to 1.0 g-N / l · day, preferably 0.1 to 0. The residence time of the mixed waste water in the activated sludge reaction tank is 4 to 48 hours, preferably 6 to 24 hours, and the settling time after the reaction is 2 to 10 hours, preferably 4 to A method of removing nitrogen or phosphorus in these wastewaters, which is 8 hours and consists of adjusting the pH of the activated sludge reaction tank to 5 to 10, preferably 6.5 to 8.5, is more preferable.
[0007]
Further, as a pretreatment of the wastewater treatment facility, condensed water is added using a nitrification liquid circulation denitrification apparatus maintained at a constant temperature in which the volume ratio of the denitrification reaction tank and the nitrification reaction tank is 1: 1 to 1:10. The mixed waste water and the circulating nitrification solution from the nitrification reaction tank are mixed, and this is introduced into the denitrification reaction tank containing phosphorus accumulating bacteria, and denitrification reaction is performed by the denitrification bacteria. After the reaction, the BOD is 150 mg / l or less. In the wastewater consisting of flowing a certain denitrification water into the nitrification reaction tank, performing a nitrification reaction with nitrifying bacteria while adjusting the pH, releasing a part of the reaction as treated water and using the remainder as a circulating nitrification liquid The method of removing nitrogen or phosphorus may be used.
[0008]
In this method, the reaction temperature is 5 to 40 ° C., preferably 25 to 37 ° C., and the amount of organic matter in the mixed waste water to which condensed water is added is 0.1 to 2.0 g-BOD / l · day at a BOD volume load, Preferably, the amount of nitrogen in the mixed waste water is 0.01 to 1.0 g-N / l · day, preferably 0.03 to 0.003. 3 g-N / l · day, the volume ratio of the mixed waste water added with condensed water and the circulating nitrification liquid from the nitrification reaction tank is 1: 1 to 1:20, preferably 1: 3 to 1: 5, The residence time in the denitrification reaction tank is 0.5 to 24 hours, preferably 1 to 12 hours, the residence time in the nitrification reaction tank is 1.5 to 96 hours, preferably 5 to 36 hours, Nitrogen in these wastewaters comprising adjusting the pH of the nitrification reactor to 5-10, preferably 6.5-8.5. Or a method of removing phosphorus more preferred. When the BOD is 300 mg / l or more, nitrifying bacteria are difficult to become dominant species.
[0009]
The residue generated during the production of alcoholic beverages is dried and concentrated using a dryer / concentrator. At that time, condensed water is obtained by condensing the evaporated gas.
When the concentration of nitrogen and phosphorus discharged from the wastewater treatment facility to the public water area exceeded the wastewater standard value, it was diluted or returned to the wastewater treatment facility again. If the primary treated water obtained by treating high-concentration wastewater with a nitrifying solution circulation denitrification device does not reach the standard, a secondary treated with a multistage system connected to the same type of nitrifying solution circulation denitrification device The nitrogen and phosphorus concentration of treated water can be reduced or removed below the standard value.
[0010]
Examples of liquors include sake, beer, liqueur, miscellaneous sake, and shochu. Examples of shochu include shochu shochu, wheat shochu, rice shochu, sesame shochu, hie shochu, corn shochu, and brown sugar shochu.
Examples of the dryer include a vapor thin film indirect dryer, a vacuum dryer, a vacuum dryer, a drum dryer, a spray dryer, an infrared dryer, a hot air dryer, a constant temperature dryer, and a blower dryer. Examples of the concentrator include a vacuum concentrator and a vacuum distillation concentrator.
[0011]
The obtained condensed water is an aqueous solution mainly containing organic carbon (TOC), acetic acid, and ethanol, showing a value of 3 to 5 as pH, and a chemical oxygen consumption (COD) of 1000 to 9000 mg / l, Biological oxygen consumption (BOD) is 3000-25000 mg / l. There is very little inorganic carbon (IC), total nitrogen (TN), total phosphorus (TP), and the like.
The living organisms are mostly cocoons, cocoons, microorganisms, bacteria, activated sludge, and the like, and preferably include at least one selected from phosphorus accumulating bacteria, nitrifying bacteria or denitrifying bacteria, or activated sludge as microorganisms.
Wastewater refers to domestic wastewater, factory wastewater, agricultural wastewater, livestock wastewater, methane fermentation treatment wastewater, and the like, and includes treated water from wastewater treatment facilities containing high-concentration nitrogen or phosphorus components. In addition, wastewater includes wastewater.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In wastewater that contains a lot of nutrients such as nitrogen and phosphorus, it was possible to remove nitrogen and phosphorus efficiently by biological treatment by further adding and mixing condensed water.
Examples Hereinafter, the method of the present invention will be described with reference to examples, but the present invention is not limited to the following examples.
[0013]
【Example】
[Example 1]
Using a steam thin film indirect dryer (apparatus: cyclone dryer, manufactured by Okadora Co., Ltd.), 100 kg of the residue of the shochu liquor was dried at 90 ° C. The steam generated at this time was condensed at 20 ° C. and collected to obtain 82 l of so-called condensed water. The obtained condensed water was analyzed using a liquid chromatograph, a gas chromatograph, a nitrogen / phosphorus analyzer, and a total carbon / total nitrogen analyzer in accordance with JIS K102. The results are shown in Table 1.
[0014]
[Example 2]
Using a vacuum concentrator, 50 kg of barley shochu residue was concentrated at an internal pressure of 450 mmHg and a product temperature of 70 ° C. The vapor generated at this time was condensed at 20 ° C. and collected to obtain 35 l of so-called condensed water. The obtained condensed water was analyzed in accordance with JIS K 0102 using a liquid chromatograph, a gas chromatograph, a nitrogen / phosphorus analyzer, and a total carbon / total nitrogen analyzer. The results are shown in Table 1.
[0015]
[Table 1]
Figure 0003797114
[0016]
Example 3
2.0 l of activated sludge collected from a meat factory was placed in 3.0 l of an acrylic batch activated sludge reaction tank. Condensed water (3.0 l) from the residue of the shochu shochu obtained in Example 1 was diluted 7 times and mixed with methane fermentation waste water. This mixed wastewater BOD concentration was adjusted to 1300 mg / l. 0.3 l of this was put into a reaction vessel and conditioned for 7 days. Next, 1.0 l of the above mixed wastewater containing nitrogen concentration of 234 mg / l and phosphorus concentration of 17.1 mg / l was supplied daily and aerated for 16 hours for biological treatment. After standing still for 8 hours, 1.0 l of the supernatant was discharged, and 1.0 l of mixed waste water was newly added to perform biological treatment for 7 days.
As a result, the mixed waste water became treated water having a nitrogen concentration of 49 mg / l and a phosphorus concentration of 4.0 mg / l, and 79% and 77% of nitrogen and phosphorus could be removed, respectively.
[0017]
[Comparative Example 1]
The BOD concentration was made the same, and the waste water without the condensed water addition with the nitrogen concentration of 1170 mg / l and the phosphorus concentration of 85 mg / l was prepared. This waste water was added 1.0 l every day and aerated for 16 hours for biological treatment. After settling for 8 hours, 1.0 l of the supernatant was discharged, and 1.0 l of waste water was newly added to perform biological treatment for 7 days. As a result, nitrogen and phosphorus could be removed by 11% and 5%, respectively.
[0018]
Example 4
The same treatment as in Example 3 except that 2.0 liters of condensed water from the residue of potato shochu obtained in Example 1 was diluted 9 times and mixed with methane fermentation waste water to adjust the BOD concentration to 1100 mg / l. Did. As a result of biological treatment of the mixed wastewater having a nitrogen concentration of 117 mg / l and a phosphorus concentration of 8.5 mg / l, the treated water has a nitrogen concentration of 22 mg / l and a phosphorus concentration of 0.8 mg / l, and the removal rates are 81% and 91%, respectively. It is removed with high efficiency.
[0019]
Example 5
The nitrification liquid circulation denitrification apparatus is an apparatus in which a denitrification reaction tank and a nitrification reaction tank are connected, and this is shown in FIG. The denitrification reaction tank is a tower reactor having a volume of 0.45 l and a height of 55 cm shown in FIG. The mixed waste water to which the condensed water from the barley shochu residue obtained in Example 2 was added was supplied to the denitrification reaction tank by a timer-controlled liquid feed pump. The temperature of this tank was kept at 35-37 ° C. with warm water. Activated sludge from the human waste treatment plant was added and the denitrifying bacteria were acclimatized for 3 weeks.
The nitrification reaction tank is a submerged filter bed type nitrification reaction tank using a mesh structure cylinder (hair curl) made of polypropylene and polystyrene and having a diameter of 10 mm and a length of 15 mm as a fixing material for fixing nitrifying bacteria. The porosity is 90% and the reaction volume is 1.35 l. 2.5 l of activated sludge from the human waste treatment plant was put into 2.5 l of the nitrification tank, and the nitrifying bacteria were acclimatized for 3 weeks. The temperature in the nitrification reaction tank was kept at 28-30 ° C. with a ceramic heater, and the pH was controlled at 7.4-8.0 using 5% sodium hydrogen carbonate solution or 1N hydrochloric acid solution. The dissolved oxygen in the nitrification reactor was controlled to 2 mg / l or more.
A mixed effluent having a BOD concentration of 2080 mg / l, which is a mixture of the above-mentioned wheat condensed water and methane fermentation effluent, was supplied daily to a 0.9 liter nitrification liquid circulation denitrifier. After treatment in the denitrification reaction tank and nitrification reaction tank, it is circulated as a circulating nitrification solution at 4.5 l / day (volume ratio 1: 5), combined with the mixed waste water, and supplied again to the denitrification reaction tank for biological treatment. Nitrogen and phosphorus removal rates were determined. As a result, the nitrogen removal rate was 80% and the phosphorus removal rate was 46%.
[0020]
Example 6
Condensed water from the barley shochu residue obtained in Example 2 was added and mixed with livestock wastewater (nitrogen concentration 2650 mg / l) to prepare a mixed wastewater having a BOD concentration of 1680 mg / l, nitrogen concentration of 530 mg / l and phosphorus concentration of 16 mg / l. did. This adjusted mixed waste water is supplied to the denitrification reaction tank every day by 0.9 l, then sent from the denitrification reaction tank to the nitrification reaction tank, and 3.6 l / day (capacity) as a circulating nitrification liquid in the treated water. The ratio 1: 4) was circulated, combined with the mixed waste water, and then supplied again to the denitrification reaction, and biological treatment was performed to perform a nitrogen and phosphorus removal test.
The nitrogen concentration of the treated water was 132 mg / l, the removal rate was 75%, the phosphorus concentration was 9.2 mg / l, and the removal rate was 43%.
[0021]
Example 7
The same mixed waste water as in Example 6 was prepared. This adjusted mixed waste water is supplied to the denitrification reaction tank 0.9 l every day, then sent from the denitrification reaction tank to the nitrification reaction tank, and 14.4 l / day (capacity) as a circulating nitrification liquid in the treated water. Ratio 1:16) was circulated, combined with the mixed waste water, and again supplied to the denitrification reaction for biological treatment. As a result, the nitrogen removal rate of treated water was 65% and the phosphorus removal rate was 30%.
[0022]
[Comparative Example 2]
Livestock wastewater was treated in the same manner as in Example 6 except that it was diluted with ordinary water and adjusted to a BOD concentration of 750 mg / l, a nitrogen concentration of 530 mg / l, and a phosphorus concentration of 16 mg / l. The nitrogen concentration in the treated water was 408 mg / l, the removal rate was 23%, and the rest remained as nitrate nitrogen in the treated water. The phosphorus removal rate was 11% at a phosphorus concentration of 14.2 mg / l. As a result, no addition of condensed water was as low as 1/3.
[0023]
Example 8
The condensed water obtained by drying the barley shochu residue with an indirect dryer was used. This condensed water and factory waste water were mixed to prepare a mixed waste water containing a BOD concentration of 1500 mg / l, a nitrogen concentration of 170 mg / l, and a phosphorus concentration of 17.1 mg / l. Each day, 1.0 l of the mixed sample is put into a batch activated sludge reaction vessel, aerated for 16 hours and biologically treated. After settling for 8 hours, 1.0 l of the supernatant liquid is discharged, and another 1 Biological treatment was carried out for 7 days by adding 0.0 l. As a result of the treated water on the seventh day, the removal rate was 85% at a nitrogen concentration of 25.5 mg / l, and the removal rate was 77% at a phosphorus concentration of 4.0 mg / l.
[0024]
[Comparative Example 3]
The treatment was performed in the same manner as in Example 7 except that the industrial waste water was diluted with ordinary water and adjusted to a BOD concentration of 550 mg / l, a nitrogen concentration of 276 mg / l, and a phosphorus concentration of 16.5 mg / l. The nitrogen concentration of the treated water was 171 mg / l, the removal rate was 38%, and the phosphorus concentration was 13.8 mg / l, 16% removal.
[0025]
Example 9
A multi-stage nitrifying liquid circulation denitrification apparatus is shown in FIG. This is a device obtained by further connecting the devices of Example 5. The first mixed wastewater mixed with the wastewater and the condensed water is biologically treated in the first denitrification reaction tank and the first nitrification reaction tank to become primary treated water. Further, condensed water is added and mixed to form a second mixed waste water, which is biologically treated in the second denitrification reaction tank and the second nitrification reaction tank, and becomes secondary treated water. The secondary treated water was circulated, joined with the second mixed waste water, and then supplied again to the second denitrification reaction for biological treatment. In addition, it does not circulate when the nitrogen concentration of the secondary treatment water is below the regulation value. The denitrification bacteria in the denitrification reaction tank and the nitrification bacteria in the nitrification reaction tank were each acclimatized in the same manner as in Example 5 to perform biological treatment. Condensed water from shochu shochu was added to fishery processing wastewater, and 0.9 l of mixed wastewater with a BOD concentration of 1400 mg / l, nitrogen concentration of 351 mg / l and phosphorus concentration of 25.6 mg / l was supplied daily for biological treatment. The primary treated water biologically treated in the denitrification reaction tank and the nitrification reaction tank had a nitrogen concentration of 105 mg / l and a phosphorus concentration of 14.7 mg / l. The above-mentioned condensed water was further added to and mixed with this primary treated water, and the second mixed wastewater readjusted to a BOD concentration of 930 mg / l was biologically treated. As a result, secondary treated water having a nitrogen concentration of 9.0 mg / l and a phosphorus concentration of 9.5 mg / l was obtained, and each could be removed largely.
[0026]
【The invention's effect】
As described above, the present invention can reduce high-concentration nitrogen, phosphorus, etc. discharged from a conventional wastewater treatment facility to public water areas, and can effectively utilize the residue of alcoholic beverages that have been dumped into the ocean as industrial waste. We were able to.
The present invention is a method for reducing and removing nitrogen or phosphorus from waste water containing high concentration of nitrogen or phosphorus using the condensed water and organisms obtained by drying and concentrating alcoholic beverage residues to produce condensed water. I understand that there is. This means that by applying this method to a conventional wastewater treatment apparatus, advanced treatment for removing nitrogen and phosphorus becomes possible. As a result, the occurrence of red tides and sea cucumbers can be suppressed, and eutrophication measures and water purification can greatly contribute to environmental conservation.
It can be seen that this is a method of reducing or removing nitrogen or phosphorus components from wastewater containing high concentration of nitrogen or phosphorus based on the new idea of further adding condensed water containing a large amount of BOD or the like that should be originally removed.
Alcoholic beverage residues are dumped into the ocean as industrial waste, causing great environmental problems. For example, there are 460,000 tons in the Kyushu area, and they are struggling to process it. Condensed water obtained from this liquor residue is 360,000 tons, and can handle 6 million to 7 million tons of livestock wastewater in Kagoshima Prefecture.
[Brief description of the drawings]
FIG. 1 is a diagram using a batch activated sludge method.
FIG. 2 is a diagram using a nitrification liquid circulation denitrification method.
FIG. 3 is a process diagram using a multi-stage nitrifying liquid circulation denitrification method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Activated sludge reaction tank 12 Aeration tank 13 Compressor 21 Drainage 22 Condensed water 23 Mixed drainage 24 Liquid feed pump 25 Denitrification reaction tank 26 Heat retention water 27 Denitrification treatment water 28 Nitrification reaction tank 29 Nitrification tank 30 pH controller 31 Ceramic heater 32 Air diffuser 33 Compressor 34 Circulating nitrification liquid 35 Liquid feed pump 36 Treated water

Claims (8)

酒類製造時に発生する残さから凝縮水を生成し、これを生物と共存した排水に添加し、排水中の窒素およびリンを除去する方法。A method in which condensed water is generated from the residue generated during the production of alcoholic beverages, and this is added to wastewater coexisting with living organisms to remove nitrogen and phosphorus in the wastewater. 焼酎製造時に発生する残さから凝縮水を生成し、これを生物と共存した排水に添加し、排水中の窒素およびリンを除去する方法。A method in which condensed water is generated from the residue generated during the production of shochu and added to wastewater that coexists with living organisms to remove nitrogen and phosphorus in the wastewater. 活性汚泥反応槽の温度が5〜40℃、凝縮水を添加した混合排水の有機物量はBOD容積負荷で0.1〜2.0g−BOD/l・日、混合排水の窒素量は窒素容積負荷で0.01〜1.0g−N/l・日、混合排水の活性汚泥反応槽内での滞留時間が4〜48時間、反応後の沈降時間が2〜10時間、活性汚泥反応槽のpHを5〜10、生物が微生物を馴養したものである請求項1または請求項2のいずれかの方法。The temperature of the activated sludge reaction tank is 5 to 40 ° C, the amount of organic matter in the mixed waste water to which condensed water is added is 0.1 to 2.0 g-BOD / l · day in BOD volume load, and the amount of nitrogen in the mixed waste water is nitrogen volume load 0.01 to 1.0 g-N / l · day, residence time of the mixed wastewater in the activated sludge reaction tank is 4 to 48 hours, settling time after the reaction is 2 to 10 hours, pH of the activated sludge reaction tank The method according to claim 1 or 2, wherein the organism is adapted to microorganisms. 活性汚泥処理施設の後処理として、活性汚泥を投入して馴養した微生物を共存させた活性汚泥処理水に酒類製造時に発生する残さからの凝縮水を添加することからなる活性汚泥処理水中の窒素およびリンを除去する方法。Nitrogen in the activated sludge treated water consisting of adding condensed water from the residue generated at the time of liquor production to the activated sludge treated water in which activated sludge is introduced and coexisting with microorganisms acclimatized as post-treatment of the activated sludge treatment facility How to remove phosphorus. 生物が微生物でリン蓄積菌、硝化菌および脱窒菌から選ばれた少なくとも一つを含むことからなる請求項1または請求項2のいずれかの方法。The method according to claim 1 or 2, wherein the organism is a microorganism and contains at least one selected from phosphorus accumulating bacteria, nitrifying bacteria and denitrifying bacteria. 脱窒反応槽および硝化反応槽の容量比が1:1〜1:10である一定温度に保った硝化液循環脱窒装置を用いて、酒類製造時に発生する残さからの凝縮水を添加した混合排水と硝化反応槽からの循環硝化液とを混合し、これを脱窒反応槽に流入し、リン蓄積菌を含む脱窒菌による脱窒反応をし、反応後にBODが300mg/l以下である脱窒処理水を硝化反応槽に流入し、pHを調整しながら硝化菌による硝化反応をし、反応後の一部を処理水として放出すると共に残部を循環硝化液とすることからなる排水中の窒素およびリンを除去する方法。Mixing by adding condensed water from the residue generated during liquor production using a nitrification liquid circulation denitrification apparatus maintained at a constant temperature in which the volume ratio of the denitrification reaction tank and the nitrification reaction tank is 1: 1 to 1:10 The waste water and the circulating nitrification solution from the nitrification reaction tank are mixed and flowed into the denitrification reaction tank. The denitrification reaction is carried out by the denitrification bacteria containing phosphorus accumulating bacteria, and the BOD is 300 mg / l or less after the reaction. Nitrogen in the wastewater consisting of nitrification water flowing into the nitrification reactor, adjusting the pH and performing nitrification reaction with nitrifying bacteria, releasing part of the reaction as treated water and the remainder as circulating nitrification liquid And how to remove phosphorus. 反応槽の温度が5〜40℃、排水に酒類製造時に発生する残さからの凝縮水を添加した混合排水と硝化反応槽からの循環硝化液との容量比が1:1〜1:20、脱窒反応槽での滞留時間が0.5〜24時間、硝化反応槽での滞留時間が1.5〜96時間であり、硝化反応槽のpHを5〜10に調整することからなる請求項6に記載の排水中の窒素およびリンを除去する硝化液循環脱窒方法。The temperature ratio of the reaction tank is 5 to 40 ° C., and the volume ratio of the mixed waste water to which the condensed water from the residue generated during the production of liquor is added to the waste water and the circulating nitrification liquid from the nitrification reaction tank is 1: 1 to 1:20. The residence time in the nitrogen reaction tank is 0.5 to 24 hours, the residence time in the nitrification reaction tank is 1.5 to 96 hours, and the pH of the nitrification reaction tank is adjusted to 5 to 10. The nitrification liquid circulation denitrification method which removes nitrogen and phosphorus in waste water as described in 1. 硝化液循環脱窒装置を多段に連結してなる請求項6または請求項7に記載の排水中の窒素およびリンを除去する方法。The method for removing nitrogen and phosphorus in waste water according to claim 6 or 7, wherein the nitrification liquid circulation denitrification apparatus is connected in multiple stages.
JP2001035025A 2001-02-13 2001-02-13 How to remove nitrogen or phosphorus in wastewater Expired - Fee Related JP3797114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001035025A JP3797114B2 (en) 2001-02-13 2001-02-13 How to remove nitrogen or phosphorus in wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001035025A JP3797114B2 (en) 2001-02-13 2001-02-13 How to remove nitrogen or phosphorus in wastewater

Publications (2)

Publication Number Publication Date
JP2002233889A JP2002233889A (en) 2002-08-20
JP3797114B2 true JP3797114B2 (en) 2006-07-12

Family

ID=18898530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001035025A Expired - Fee Related JP3797114B2 (en) 2001-02-13 2001-02-13 How to remove nitrogen or phosphorus in wastewater

Country Status (1)

Country Link
JP (1) JP3797114B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4532315B2 (en) * 2005-03-17 2010-08-25 新日鐵化学株式会社 Biological nitrification denitrification treatment system and denitrification treatment method
JP4648872B2 (en) * 2006-04-28 2011-03-09 株式会社 イージーエス Wastewater treatment method for wastewater containing high concentration organic matter
JP5818465B2 (en) * 2011-03-10 2015-11-18 株式会社クボタ Nitrogen-containing wastewater treatment apparatus and method
JP2012206017A (en) * 2011-03-29 2012-10-25 Kubota Kankyo Service Kk Method and apparatus for treating wastewater
CN108611253A (en) * 2018-05-03 2018-10-02 天津亿利科能源科技发展股份有限公司 A kind of salt tolerant Black Liquor with Efficient Bacteria activated sludge prepares storage device and breeding method

Also Published As

Publication number Publication date
JP2002233889A (en) 2002-08-20

Similar Documents

Publication Publication Date Title
US6126827A (en) High-strength septage biological treatment system
TWI586610B (en) Fluidized bed reactor for ammonia laden wastewater and method for treating ammonia laden wastewater
NL9101917A (en) METHOD FOR PURIFYING WASTE WATER, AND APPARATUS FOR USING THIS METHOD
WO2003093178A1 (en) Organic slurry treatment process
CN101993175B (en) Nitrosification treatment method of ammonia nitrogen in high-concentration ammonia nitrogen wastewater
CN102976543A (en) Garbage leachate disposal method and system
CN110467259A (en) A kind of preparation method and application of biomass reverse nitrification solid-state carbon source
JP4902471B2 (en) Ammonia removing apparatus and organic waste processing apparatus and processing method using the same
KR100327151B1 (en) A Process for Treatment of Wastewater Using Intermittently Aerated Membrane Bioreactor
JP3797114B2 (en) How to remove nitrogen or phosphorus in wastewater
JP2004097856A (en) Equipment and method for waste liquid treatment
Hidalgo et al. Adding sustainability to the beverage industry through nature-based wastewater treatment
CN112047468A (en) Biochemical treatment method of landfill leachate
US8298416B2 (en) Apparatus for deodorizing sewage treatment plant sludge by using native microorganisms
CN110615579A (en) Method for treating biogas slurry generated after anaerobic digestion of organic matters
CN114634244A (en) Methane fermentation coupling integrated denitrification system and process for livestock and poultry manure wastewater
CN101125767A (en) Method for treatment of livestock excrements using thermophilic aerobic fermentation, lime solidification and separation by reverse osmosis membrane
JP2001252686A (en) Anaerobic treatment method for organic waste water
Borja et al. Influence of the organic volumetric loading rate on soluble chemical oxygen demand removal in a down‐flow fixed‐bed reactor treating abattoir wastewater
EP1914205B1 (en) Method for the fermentation of high calorific and nutrient rich substances
JP2003300035A (en) Methane fermentation treatment system and denitrification method of its digested liquid
JP3937625B2 (en) Biological treatment method for organic waste
CN220502805U (en) Fungus charcoal coupling enhancement type salt-containing domestic sewage treatment system
CN220665115U (en) Fermentation liquid nitrogen phosphorus remove device
JP2007283195A (en) Method and apparatus for treating lees of japanese wine or like

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041202

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041202

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees