JPH038839B2 - - Google Patents

Info

Publication number
JPH038839B2
JPH038839B2 JP59007250A JP725084A JPH038839B2 JP H038839 B2 JPH038839 B2 JP H038839B2 JP 59007250 A JP59007250 A JP 59007250A JP 725084 A JP725084 A JP 725084A JP H038839 B2 JPH038839 B2 JP H038839B2
Authority
JP
Japan
Prior art keywords
aeration
stirring
treatment
tank
activated sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59007250A
Other languages
Japanese (ja)
Other versions
JPS60150894A (en
Inventor
Yoichi Hamamoto
Kaoru Watabe
Shinichi Tabata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHIHARA KANKYO EISEI KENKYUSHO KK
Original Assignee
NISHIHARA KANKYO EISEI KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHIHARA KANKYO EISEI KENKYUSHO KK filed Critical NISHIHARA KANKYO EISEI KENKYUSHO KK
Priority to JP59007250A priority Critical patent/JPS60150894A/en
Priority to GB8500246A priority patent/GB2155003B/en
Priority to NL8500123A priority patent/NL8500123A/en
Priority to FR8500708A priority patent/FR2558460B1/en
Priority to DK026485A priority patent/DK168431B1/en
Priority to NO850218A priority patent/NO162337C/en
Priority to CA000472426A priority patent/CA1244562A/en
Priority to US06/692,839 priority patent/US4655925A/en
Priority to DE19853501585 priority patent/DE3501585A1/en
Priority to SE8500245A priority patent/SE456990B/en
Priority to AU37799/85A priority patent/AU575111B2/en
Priority to KR1019850000289A priority patent/KR920002816B1/en
Priority to PH31744A priority patent/PH21085A/en
Publication of JPS60150894A publication Critical patent/JPS60150894A/en
Publication of JPH038839B2 publication Critical patent/JPH038839B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、単一に処理槽内で攪拌・曝気・沈
殿・排出のの各工程を繰返すことにより、汚水を
処理するバツチ式活性汚泥処理方法に係り、特
に、攪拌・曝気を所定回数、所定時間づつ交互に
繰返した後に沈殿・排出を行い、汚水処理を効果
的に行うバツチ式活性汚泥処理方法に関する。 近年、生活排水処理の主流を占めている活性汚
泥処理法の中で、第1図に示すように、汚水を受
け入れる単の処理槽1内で、曝気・沈殿・放流の
各工程を1サイクルとして処理を行うバツチ式活
性汚泥処理方法が注目されている。 第2図は第1図に示した従来のバツチ式活性汚
泥処理方法により処理工程のタイムチヤートを示
すもので、この例では1サイクルをを6時間とし
た場合を示す。 従来の活性汚泥処理は、上記処理槽1内に処理
すべき汚水が一度に投入され、該槽内に収容され
た汚水中に散気管2から空気を吹き込む曝気工程
によつて始められる。 この曝気工程が約3時間にわたつて行われた
後、空気の吹き込みが停止され、この時点から約
1時間の沈殿工程の後、約2時間の放流工程に入
り、デカンタ3から上澄液の排出が行われる。こ
の約6時間の1サイクルが1日繰り返される。 しかし、このような従来の処理工程では、一般
的な長時間活性汚泥法や標準活性汚泥法よりも脱
窒、脱リンの除去率は高いが、それでも共に除去
率約60%程度しか達成できなかつた。 即ち、上記従来の処理工程では、最初に曝気工
程が設定され、流入汚水中の有機物の酸化が終了
した後にアンモニア正窒素の消化が行われるの
で、次に設ける攪拌工程では脱窒反応に必要な有
機物が不測し、このため、最初の曝気工程で生成
された硝酸性窒素の攪拌工程で脱窒が不充分とな
つて、上記サイクル中における全体的な窒素の除
去率が著しく低下する。 また、上述の如く曝気工程を攪拌工程よりも先
に設定すると、硝化反応を完了するまでに長い曝
気時間を必要とする。 更に換言詳述すると、上述の如く、攪拌工程の
先に設定した場合の曝気工程では、先ず流入汚水
の有機物の酸化が終了し、次いでアンモニア性窒
素の硝化が行われるため、最初の曝気工程でアン
モニア性窒素の硝化まで行わせるためには長い曝
気時間が必要となり、また、次工程となる曝気工
程では更に長い時間を要する。 即ち、上記曝気工程で硝化された硝酸性窒素を
脱窒せるための有機物が槽内で不足するため、硝
酸性窒素が脱窒されず、有機物が流入するまでず
つと残存するので、完全に脱窒するまでには相当
に長い時間を要し、更にリンを溶出させるために
は、これ以上に長い時間を必要とする。 また、上記リンの溶出も不十分であり、この理
由を以下に述べる。 即ち、上述の如く攪拌工程の先に設定した曝気
工程では、先ず流入水中の有機物の酸化が行わ
れ、これが終了した後にアンモニア性窒素の硝化
が行われるので、次の攪拌工程で活性汚泥中のリ
ンを溶出させるために必要な有機物が少なくな
る。このため、上記曝気工程に続く次の攪拌工程
では流入水中の有機物を利用した活性汚泥中のリ
ンの溶出が不十分となり、これに起因して次の曝
気工程での活性汚泥によるリンの過剰摂取も不十
分となり、その結果全体的なリンの除去率が著し
く低下する。 また、上記従来の汚水処理方法では、処理槽
(曝気槽)内に汚水を一度に投入するので、該処
理槽以外に大容量の汚水貯留槽を必要とし、この
ため、上記処理槽も大容量のものとしなければな
らず、設備費も大きく嵩んで不経済であると共
に、1サイクルの処理時間も長くなる。 このように、従来の汚水処理方法では、脱窒、
脱リンの処理効率が非常に悪く、かつ、設備の点
でも大規模となり頗る不経済であるなど多くの問
題点があつた。 この発明は上記事情に鑑みてなされたもので、
処理すべき汚水を単一処理槽内に連続流入させな
がら、該槽内で脱窒および脱リンを従来に比して
著しく短い時間で頗る効率的に行うことができ、
しかも、上位単一処理槽以外の大容量貯留槽等を
不要化できて頗る経済的なバツチ式活性汚泥処理
方法を提供することを目的とする。 この発明に係るバツチ式活性汚泥処理方法は、
槽内を汚水の流入部と主処理部とに区分するバツ
フルを有し、該バツフルの下部に上記流入部と上
記主処理部の相互を連通する開口部が設けられた
単一の処理槽内における上記流入部に汚水を連続
流入させながら、上記主処理部の活性汚泥を先ず
攪拌する攪拌工程と、、この攪拌工程の後に槽内
液を上記主処理部で曝気する曝気工程と、これら
の攪拌・曝気工程を所定時間ごとに所定回数繰返
す攪拌・曝気繰返工程と、この攪拌・曝気繰返工
程の後に曝気混合液の汚泥を沈殿させる沈殿工程
と、この沈殿工程後に上澄液を排出する排出工程
とを1サイクルとして繰返し行うようにしたもの
である。 この発明のバツチ式活性汚泥処理方法では、単
一処理槽内の流入部に汚水を連続流入させなが
ら、上記処理槽内の主処理部で先ず活性汚泥の攪
拌が行われ、該攪拌後に槽内液の曝気が行われ、
次いで、上記攪拌と曝気が所定時間ごとに所定回
数繰り返された後、その曝気混合液の汚泥が沈殿
され、該沈殿後に槽内の上澄液が排出されるとい
う処理工程を1サイクルとして繰返し行う。 ここで、上記処理槽内の流入部に連続流入する
汚水は、バツフルによつて上記主処理部に直接流
入するのを阻止される。 即ち、上記流入部の下方には既に滞留している
汚水があり、この滞留汚水が上記流入部への連続
流入汚水によつて上記バツフルの下部開口から上
記主処理部に押し出され、これによつて、上記流
入部と上記主処理部の水位が上昇する。この時、
上記曝気工程中に流入した汚水が既に滞留してい
る汚水に混じり、その滞留汚水が上述の如く主処
理部に押し出されるが、この押出量は、滞留汚水
量に比してかなり少ない。しかも、上記曝気工程
は後述する理由によつて上記攪拌工程よりも著し
く短い時間で済むので、上述の如く処理槽内の流
入部に汚水を連続流入させても、上記曝気工程を
含む処理サイクルに支障を来す虞れは全くない。 そして、上述の如く、まず、槽内活性汚泥の攪
拌工程を曝気工程の先で行うで、流入水中の有機
物を利用して残存硝酸性窒素の脱窒が頗る効率的
に行われると共に、次の曝気工程での脱窒に消費
された分だけ酸化すべき有機物が少なくなる。こ
のため、曝気工程の先に設けられた攪拌工程で脱
窒が進めば進む程、流入した有機物が有効利用さ
れ、次の曝気工程で酸化される有機物量は少なく
なり、その結果、曝気時間を攪拌時間に比して短
くしても硝化反応は十分に満足される。また、上
述の如く曝気工程の先に攪拌工程があることによ
り、流入水中の有機物を利用して活性汚泥中のリ
ンの溶出が促進されるので、次の曝気工程では短
い曝気時間でも活性汚泥中にリンを十分に過剰摂
取させることができ、このため、そのリン過剰摂
取状態の活性汚泥を槽外に引き出すことにより、
脱リン効果も著しく向上する。 また、上述の如く処理槽の流入部に汚水を連続
流入させることにより、上記処理槽以外の貯留槽
を不要化したり、該貯留槽を使用する場合であつ
ても、該貯留槽は容積が著しく小さいもので済
む。 更には、上記処理槽内のバツフルによつて新た
な流入汚水、特に沈殿・放流工程中に流入する汚
水の短絡放流が未然に防止される。 以下、この発明の一実施例を図面に基づいて説
明する。 第3図において、単一の処理槽1の底部には、
曝気工程で汚水に曝気ブロア4からの空気を吹き
込むための散気装置5が配置されている。 この散気装置5は、攪拌工程と、これに続く曝
気工程との両工程を曝気ブロア4の切換制御のみ
で行えるように、この実施例では、例えばジエツ
ト式散気装置が用いられ、空気供給管6および水
供給管7が接続されている。 尚、この実施例に何ら限定されることなく、攪
拌工程のみを行う独立した攪拌手段を設けてもよ
い。また、処理槽1内には汚水中のDOを測定す
るるDOセンサ8が設けられ、この測定値に基づ
いてDO計9、コンピユータ10によつて曝気ブ
ロア4の回転数を制御する。 沈殿工程に続く排出工程時に上澄液を排出する
ためのデカンタ3は、軸パイプ11を軸心として
回動可能に連結された排出パイプ12と、この排
出パイプ12の自由端に取付けられ、溢流口13
aが開口された溢流管13と、スカムバツフルを
兼ねたフロート14とで構成されている。 従つて、溢流管13が水面部にある状態では、
処理槽1内の上澄液は溢流口13aより溢流管1
3内に流入し、軸パイプ11を経て外部に放流さ
れる。また、図示しない回動手段によつて溢流管
13が液面より高い位置となるように回動された
状態では、処理槽1内の液体の排出は行われな
い。 また、上記処理槽1内には、該槽内を汚水の流
入部1aと主処理部1bとに区分するバツフル1
5が垂直に配置され、該バツフル15の下部には
上記流入部1aと上記主処理部1b円連通する開
口部1cが設けられている。 かかるバツフル15は、新たな流入汚水、特に
沈殿・放流工程に流入する汚水が短絡放流される
のを防止するためのものである。 従つて、この発明における処理槽1内には、そ
の流入部1aに処理すべき汚水が連続流入され
る。 このような汚水の連続流入状態において、ま
ず、上記主処理部1bで活性汚泥の攪拌工程が行
われ、該攪拌工程の後に槽内液を上記主処理部1
bで曝気する曝気工程が行われると共に、これら
の攪拌・曝気工程を所定時間ごとに繰返す攪拌・
曝気繰返工程と、この攪拌・曝気繰返工程の後に
上澄液を排出する排出工程とを1サイクルとして
繰返し行う。 更に、処理槽1内の余剰汚泥は適当な時期に引
抜パイプ16を通して引き抜かれる。 第4図に1サイクルを6時間として場合のタイ
ムチヤートを示す。 この例では、45分の攪拌工程、15分の曝気工程
を4回繰返した後、沈殿・排出を行う。その実験
結果は次表に示すように、従来の処理法より、脱
窒、脱リンの除去率が極めて効果的に行われ、共
に90%以上の除去率が得られた。
This invention relates to a batch activated sludge treatment method for treating wastewater by repeating the steps of stirring, aeration, settling, and discharging in a single treatment tank, and in particular, stirring and aeration are repeated a predetermined number of times and a predetermined number of times. The present invention relates to a batch type activated sludge treatment method for effectively treating sewage by performing sedimentation and discharge after alternating cycles. Among the activated sludge treatment methods that have become mainstream in domestic wastewater treatment in recent years, as shown in Figure 1, each process of aeration, precipitation, and discharge is treated as one cycle in a single treatment tank 1 that receives wastewater. Batch-type activated sludge treatment methods are attracting attention. FIG. 2 shows a time chart of the treatment process according to the conventional batch type activated sludge treatment method shown in FIG. 1, and in this example, one cycle is set to 6 hours. Conventional activated sludge treatment begins with an aeration process in which sewage to be treated is charged into the treatment tank 1 at once and air is blown into the sewage contained in the tank from an aeration pipe 2. After this aeration process was carried out for about 3 hours, the air blowing was stopped, and from this point on, after the precipitation process for about 1 hour, the discharge process began for about 2 hours, and the supernatant liquid was discharged from the decanter 3. Evacuation takes place. This cycle of approximately 6 hours is repeated throughout the day. However, although these conventional treatment processes have higher removal rates for denitrification and dephosphorization than the general long-term activated sludge process or standard activated sludge process, they still only achieve a removal rate of about 60% for both. Ta. In other words, in the conventional treatment process described above, an aeration process is set first, and after the oxidation of organic matter in the inflowing wastewater is completed, the digestion of ammonia positive nitrogen is performed, so the stirring process that is provided next performs the aeration process, which is necessary for the denitrification reaction. The organic matter is inadvertently present, resulting in insufficient denitrification in the agitation step of the nitrate nitrogen produced in the initial aeration step, significantly reducing the overall nitrogen removal rate during the cycle. Furthermore, if the aeration step is set before the stirring step as described above, a long aeration time is required to complete the nitrification reaction. To explain in more detail, as mentioned above, in the aeration step that is set before the stirring step, the oxidation of organic matter in the inflowing sewage is completed first, and then the nitrification of ammonia nitrogen is carried out, so the first aeration step A long aeration time is required to nitrify ammonia nitrogen, and an even longer time is required in the next aeration step. In other words, since there is not enough organic matter in the tank to denitrify the nitrate nitrogen that has been nitrified in the aeration process, the nitrate nitrogen is not denitrified and remains until the organic matter flows in, resulting in complete denitrification. It takes a considerable amount of time to nitrate, and an even longer time is required to elute phosphorus. Furthermore, the elution of phosphorus was also insufficient, and the reason for this will be described below. In other words, in the aeration step that is set before the stirring step as mentioned above, the organic matter in the inflow water is oxidized first, and after this is completed, the ammonia nitrogen is nitrified, so in the next stirring step, the organic matter in the activated sludge is oxidized. Less organic matter is needed to elute the phosphorus. For this reason, in the next agitation step following the aeration step, the elution of phosphorus from the activated sludge using organic matter in the inflow water is insufficient, resulting in excessive phosphorus intake by the activated sludge in the next aeration step. is also insufficient, resulting in a significant reduction in the overall phosphorus removal rate. In addition, in the conventional sewage treatment method described above, sewage is charged into the treatment tank (aeration tank) at once, so a large capacity sewage storage tank is required in addition to the treatment tank. Therefore, the equipment cost increases greatly, which is uneconomical, and the processing time for one cycle also increases. In this way, conventional wastewater treatment methods do not require denitrification,
There were many problems such as the dephosphorization treatment efficiency was very low and the equipment was large-scale and extremely uneconomical. This invention was made in view of the above circumstances,
While the wastewater to be treated is continuously flowed into a single treatment tank, denitrification and dephosphorization can be carried out extremely efficiently in a significantly shorter time than in the past,
Moreover, it is an object of the present invention to provide a highly economical batch type activated sludge treatment method that eliminates the need for large-capacity storage tanks other than the upper single treatment tank. The batch activated sludge treatment method according to this invention includes:
A single treatment tank having a buttful that divides the inside of the tank into an inflow part and a main treatment part for sewage, and an opening provided at the bottom of the buttfull to communicate between the inflow part and the main treatment part. a stirring step in which the activated sludge in the main treatment section is first stirred while sewage is continuously flowing into the inflow section; an aeration step in which the liquid in the tank is aerated in the main treatment section after this stirring step; A stirring/aeration process in which the stirring/aeration process is repeated a predetermined number of times at a predetermined time interval, a precipitation process in which the sludge of the aerated mixture is precipitated after the stirring/aeration process, and a supernatant liquid is discharged after this precipitation process. This discharge process is repeated as one cycle. In the batch type activated sludge treatment method of the present invention, the activated sludge is first stirred in the main treatment section of the treatment tank while sewage is continuously introduced into the inflow section of the single treatment tank, and after the stirring, the activated sludge is stirred inside the tank. The liquid is aerated,
Next, after the above-mentioned stirring and aeration are repeated a predetermined number of times at predetermined intervals, the sludge of the aerated mixture is precipitated, and after the precipitation, the supernatant liquid in the tank is discharged. The treatment process is repeated as one cycle. . Here, the wastewater that continuously flows into the inflow section in the treatment tank is prevented from directly flowing into the main treatment section by the baffle. That is, there is sewage that has already accumulated below the inflow section, and this stagnant sewage is pushed out from the lower opening of the buffer to the main treatment section by the continuous flow of sewage into the inflow section. As a result, the water levels in the inflow section and the main treatment section rise. At this time,
The sewage that has flowed in during the aeration process is mixed with the sewage that has already accumulated, and the sewage that has accumulated is pushed out to the main treatment section as described above, but the amount of this extrusion is quite small compared to the amount of sewage that has accumulated. Moreover, the aeration process requires significantly less time than the stirring process for reasons explained later, so even if wastewater is continuously introduced into the inflow section of the treatment tank as described above, the treatment cycle including the aeration process is There is no risk of any problem. As mentioned above, the stirring process of the activated sludge in the tank is performed before the aeration process, so that the residual nitrate nitrogen is denitrified very efficiently using the organic matter in the inflow water, and the next process is carried out efficiently. The amount of organic matter to be oxidized decreases by the amount consumed for denitrification in the aeration process. For this reason, the more denitrification progresses in the stirring process that precedes the aeration process, the more effectively the inflowing organic matter is used, and the less organic matter is oxidized in the next aeration process, which reduces the aeration time. Even if the stirring time is shorter than the stirring time, the nitrification reaction is sufficiently satisfied. In addition, as mentioned above, by having a stirring process before the aeration process, the elution of phosphorus from the activated sludge is promoted using organic matter in the inflow water. Therefore, by drawing out the activated sludge with excessive phosphorus intake to the outside of the tank,
The dephosphorization effect is also significantly improved. In addition, by continuously flowing wastewater into the inlet of the treatment tank as described above, it is possible to eliminate the need for a storage tank other than the treatment tank, or even when such a storage tank is used, the volume of the storage tank is extremely large. You can get away with something small. Furthermore, the buffling in the treatment tank prevents short-circuit discharge of new inflowing sewage, especially sewage flowing in during the sedimentation/discharge process. Hereinafter, one embodiment of the present invention will be described based on the drawings. In FIG. 3, at the bottom of the single treatment tank 1,
An aeration device 5 is arranged to blow air from an aeration blower 4 into wastewater during the aeration process. This aeration device 5 uses, for example, a jet type aeration device in this embodiment, so that both the stirring step and the subsequent aeration step can be performed only by switching control of the aeration blower 4. A pipe 6 and a water supply pipe 7 are connected. Note that, without being limited to this embodiment, an independent stirring means for performing only the stirring step may be provided. Furthermore, a DO sensor 8 for measuring DO in wastewater is provided in the treatment tank 1, and based on this measured value, the rotation speed of the aeration blower 4 is controlled by a DO meter 9 and a computer 10. The decanter 3 for discharging the supernatant during the discharge process following the precipitation process includes a discharge pipe 12 rotatably connected to the shaft pipe 11, and a discharge pipe 12 attached to the free end of the discharge pipe 12 to prevent overflow. Outlet 13
It consists of an overflow pipe 13 with an opening a and a float 14 which also serves as a scum baffle. Therefore, when the overflow pipe 13 is at the water surface,
The supernatant liquid in the treatment tank 1 flows into the overflow pipe 1 from the overflow port 13a.
3 and is discharged to the outside through the shaft pipe 11. Further, in a state where the overflow pipe 13 is rotated by a rotation means (not shown) so as to be at a position higher than the liquid level, the liquid in the processing tank 1 is not discharged. Further, inside the treatment tank 1, there is a bath 1 that divides the inside of the tank into an inflow section 1a of sewage and a main treatment section 1b.
5 is arranged vertically, and an opening 1c is provided at the bottom of the baffle 15, which communicates circularly with the inflow section 1a and the main processing section 1b. The baffle 15 is for preventing new inflow sewage, especially sewage flowing into the sedimentation/discharge process, from being short-circuited and discharged. Therefore, in the treatment tank 1 according to the present invention, wastewater to be treated continuously flows into the inflow portion 1a. In such a continuous inflow state of sewage, first, the activated sludge is stirred in the main processing section 1b, and after the stirring step, the liquid in the tank is transferred to the main processing section 1.
In step b, an aeration process is carried out, and at the same time, a stirring and aeration process is carried out in which these stirring and aeration processes are repeated at predetermined intervals.
The aeration process and the discharge process of discharging the supernatant liquid after the stirring/aeration process are repeated as one cycle. Furthermore, excess sludge in the treatment tank 1 is drawn out through the drawing pipe 16 at an appropriate time. FIG. 4 shows a time chart when one cycle is 6 hours. In this example, a 45-minute stirring process and a 15-minute aeration process are repeated four times, followed by precipitation and discharge. As shown in the table below, the experimental results showed that the removal rate of denitrification and dephosphorization was extremely effective compared to the conventional treatment method, with both removal rates of over 90% being achieved.

【表】 尚、上記各工程の所定回数、所定時間の繰返サ
イクルは、例えば、図示しないカウンター等の制
御手段により電気的に制御されている。また、攪
拌・曝気工程の繰返し回数、時間等は第4図の実
施例に何ら限定されるものでなく、汚水の性状に
対応して定められる。 以上の構成によれば、処理槽1内で攪拌・曝気
工程を所定回数、所定時間ずつ交互に繰返した
後、沈殿・排出することにより、上述のように、
脱窒、脱リン効果が飛躍的に向上する。 また、曝気工程での溶存酸素濃度(以下DOと
いう)は、高すぎても次の攪拌工程でDOが低下
するのに長時間を要するために、効率的に脱窒、
脱リンを行えば、逆に、DOが低すぎても、汚水
中のアンモニア性窒素が硝酸化しないために、窒
素除去率が低下するので、汚水中のDOを適切に
例えば2.0mg/に制御することが不可欠であつ
た。 この点、この発明では、DOセンサ8、DO計
9等を設け、曝気ブロア4の回転数を制御し、処
理槽1内のDOを常に最適に維持できるので、極
めて効果的な処理が行える。 更に、上記散気装置5としては、第3図に示す
ようにジエツト式散気装置を用いると、曝気ブロ
ア4を開閉するだけで、攪拌・曝気の両工程を同
一の散気装置5によつて行え、攪拌工程を別途設
ける必要もなく、コストの低減化が図れる。 尚、この発明のバツチ式活性汚泥処理方法を一
般の連続式活性汚泥処理装置の曝気に適用し、曝
気槽の攪拌・曝気を所定時間ごとに繰返すように
運転してもよい。 以上のように、この発明によれば、折重すべき
汚水を単一処理槽内に連続流入させながら、該槽
内の活性汚泥を先ず攪拌してから曝気するので、
汚水を流入直後に曝気する従来法の場合にように
BOD除去が先行して硝化反応が律速するような
ことがなく、脱窒促進が行われる。 即ち、バツチ式活性汚泥処理サイクルの繰返し
工程において、前回のサイクル工程で残存した硝
酸性窒素は、次のサイクルの始めの攪拌工程で流
入する流入水中の有機物を利用して速やかに脱窒
が行われる。 このように、槽内活性汚泥の攪拌工程を曝気工
程の先にした本発明では、曝気工程の後に攪拌工
程を設定した場合に比し脱窒効率が著しく向上す
る。 また、上述の如く曝気工程を攪拌工程よりも先
に行うと、硝化反応を完了するまでに長い曝気時
間を必要とするが、本発明では短い曝気時間で十
分な硝化反応が得られる。 即ち、この発明では、先る槽内活性汚泥の攪拌
を行うので、流入水中の有機物を利用して残存硝
酸性窒素の脱窒が行われ、もつて、次の曝気工程
では脱窒に消費された分だけ酸化すべき有機物が
少なくなる。このため、先に設けた攪拌工程で脱
窒が進めば進む程、流入した有機物が有効利用さ
れるので、次の曝気工程で酸化される有機物量は
少なくなり、その結果、曝気時間を攪拌時間に比
し短くても償還反応は十分に満足できる。 また、脱リンに関しても上記脱窒の場合と同様
に、まず攪拌工程を設けることにより、流入水中
の有機物を利用して活性汚泥中のリンを十分に溶
出させ、次に曝気工程を設けることで、活性汚泥
中に過剰摂取させることにより、脱リン効果も一
層向上する。 要するにこの発明では、上述のごとく曝気工程
の先に攪拌工程があるので、流入水中の有機物を
利用した活性汚泥中のリンの溶出が十分に行われ
るため、次に設けた曝気工程では短い曝気時間で
も活性汚泥名にリンを十分に過剰摂取させること
ができ、このため、この十分にリンを過剰摂取し
た活性汚泥を槽外に引き出すことにより、脱リン
効果も顕著なものとなる。 このように、本発明では先ず槽内活性汚泥を攪
拌することにより、次工程での曝気時間を攪拌時
間に比し短くすることができ、さらに、攪拌と曝
気を何回も繰り返すことにより、脱窒、脱リン効
果を従来法に比べ増加させることができる。 即ち、上述のごとく曝気時間を攪拌時間に比し
大幅に短くできるので、1サイクルの処理時間を
短くできるし、標準的にはこのサイクルを1日4
回も繰り返すことができ、このため、脱窒、脱リ
ン効果を従来法に比べ大幅に増加させることがで
きる。 また、本発明では汚水を連続流入させるので、
上記貯留槽は不要または容積を大幅に小さくでき
るという効果がある。
[Table] Note that the repetition cycle of each of the above steps for a predetermined number of times and for a predetermined time is electrically controlled, for example, by a control means such as a counter (not shown). Further, the number of repetitions, time, etc. of the stirring/aeration process are not limited to the embodiment shown in FIG. 4, but are determined depending on the properties of the wastewater. According to the above configuration, the stirring and aeration steps are alternately repeated a predetermined number of times and for a predetermined time in the treatment tank 1, and then sedimentation and discharge are performed, as described above.
Denitrification and dephosphorization effects are dramatically improved. In addition, even if the dissolved oxygen concentration (hereinafter referred to as DO) in the aeration process is too high, it will take a long time for the DO to decrease in the next stirring process, so denitrification and
Conversely, if dephosphorization is performed, even if the DO is too low, the ammonia nitrogen in the wastewater will not be nitrified, so the nitrogen removal rate will decrease, so the DO in the wastewater should be appropriately controlled to, for example, 2.0mg/ It was essential to do so. In this regard, in the present invention, a DO sensor 8, a DO meter 9, etc. are provided to control the rotational speed of the aeration blower 4, and the DO in the treatment tank 1 can always be maintained at an optimum level, so that extremely effective treatment can be performed. Furthermore, if a jet type aeration device is used as the aeration device 5 as shown in FIG. 3, both stirring and aeration processes can be performed by the same aeration device 5 by simply opening and closing the aeration blower 4. There is no need to provide a separate stirring step, and costs can be reduced. Incidentally, the batch type activated sludge treatment method of the present invention may be applied to the aeration of a general continuous type activated sludge treatment apparatus, and the operation may be performed so that stirring and aeration of the aeration tank are repeated at predetermined intervals. As described above, according to the present invention, while the wastewater to be folded is continuously flowed into a single treatment tank, the activated sludge in the tank is first stirred and then aerated.
As in the case of the conventional method of aerating wastewater immediately after inflow,
BOD removal precedes the nitrification reaction, which does not become rate-limiting, and denitrification is promoted. In other words, in the repeated process of the batch activated sludge treatment cycle, the nitrate nitrogen remaining from the previous cycle process is quickly denitrified using organic matter in the influent water during the stirring process at the beginning of the next cycle. be exposed. As described above, in the present invention in which the stirring step of activated sludge in the tank is performed before the aeration step, the denitrification efficiency is significantly improved compared to the case where the stirring step is set after the aeration step. Further, if the aeration step is performed before the stirring step as described above, a long aeration time is required to complete the nitrification reaction, but in the present invention, a sufficient nitrification reaction can be obtained with a short aeration time. That is, in this invention, since the activated sludge in the tank is first stirred, residual nitrate nitrogen is denitrified using organic matter in the inflow water, and the remaining nitrate nitrogen is consumed in the next aeration process. Therefore, there are fewer organic substances to oxidize. Therefore, the more denitrification progresses in the previous stirring step, the more effectively the inflowing organic matter is utilized, and the less organic matter is oxidized in the next aeration step, resulting in the aeration time being longer than the stirring time. Even though the period is shorter than that of the previous period, the redemption response is sufficiently satisfactory. In addition, regarding dephosphorization, as in the case of denitrification, first a stirring step is provided to sufficiently elute phosphorus from the activated sludge using organic matter in the inflow water, and then an aeration step is provided. , the dephosphorization effect is further improved by ingesting it in excess into activated sludge. In short, in this invention, as mentioned above, there is a stirring process before the aeration process, so phosphorus in the activated sludge is sufficiently eluted using organic matter in the inflow water, so the aeration process that follows takes a short aeration time. However, it is possible to make the activated sludge contain a sufficient amount of phosphorus, and by drawing this activated sludge that has taken in too much phosphorus out of the tank, the dephosphorization effect becomes significant. In this way, in the present invention, by first stirring the activated sludge in the tank, the aeration time in the next step can be shortened compared to the stirring time, and furthermore, by repeating stirring and aeration many times, desorption can be achieved. Nitrogen and dephosphorization effects can be increased compared to conventional methods. That is, as mentioned above, the aeration time can be significantly shortened compared to the stirring time, so the processing time for one cycle can be shortened, and this cycle is typically repeated 4 times a day.
This process can be repeated several times, and therefore the denitrification and dephosphorization effects can be greatly increased compared to conventional methods. In addition, since the present invention allows wastewater to continuously flow in,
The above-mentioned storage tank is advantageous in that it is unnecessary or its volume can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のバツチ式活性汚泥処理装置を示
す概略的な縦断面図、第2図は第1図のバツチ式
活性汚泥処理装置による処理工程のタイムチヤー
ト図、第3図はこの発明の一実施例を適用したバ
ツチ式活性汚泥処理装置の概略的な縦断面図、第
4図はその処理工程のタイムチヤート図である。 1…処理槽、1a…流入部、1b…主処理部、
1c…開口部、3…デカンタ、4…曝気ブロア、
5…散気装置、8…DOセンサ、9…DP計、10
…コンピユータ、15…バツフル。
FIG. 1 is a schematic vertical cross-sectional view showing a conventional batch type activated sludge treatment apparatus, FIG. 2 is a time chart of the treatment process by the batch type activated sludge treatment apparatus shown in FIG. FIG. 4 is a schematic longitudinal sectional view of a batch type activated sludge treatment apparatus to which an embodiment is applied, and a time chart of the treatment process. 1... Processing tank, 1a... Inflow section, 1b... Main processing section,
1c...opening, 3...decanter, 4...aeration blower,
5... Diffuser, 8... DO sensor, 9... DP meter, 10
...Computer, 15...Batsuful.

Claims (1)

【特許請求の範囲】 1 単一の処理槽内で攪拌・曝気・沈殿・排出の
各工程を繰返して汚水を処理するバツチ式活性汚
泥処理方法において、槽内を汚水の流入部と主処
理部とに区分するバツフルを有し、該バツフルの
下部に上記流入部と上記主処理部の相互を連通す
る開口部が設けられた上記処理槽内における上記
流入部に汚水を連続流入させながら、上記主処理
部の活性汚泥を先ず攪拌する攪拌工程と、この攪
拌工程の後に槽内液を上記主処理部で曝気する曝
気工程と、これらの攪拌・曝気工程を所定時間ご
とに所定回数繰返す攪拌・曝気繰返工程と、この
攪拌・曝気繰返工程の後に曝気混合液の汚水を沈
殿させる沈殿工程と、この沈殿工程後に上澄液を
排出する排出工程とを1サイクルとして繰返し行
うことを特徴とするバツチ式活性汚泥処理方法。 2 上記曝気工程において、上記処理槽内の溶存
酸素濃を測定するDOセンサと、このDOセンサ
の測定値に基づいて上記溶存酸素濃度を所定濃度
に制御すべく曝気量を自動制御する曝気量自動制
御手段とを備えたことを特徴とする特許請求の範
囲第1項記載のバツチ式活性汚泥処理方法。
[Claims] 1. In a batch activated sludge treatment method in which sewage is treated by repeating the steps of stirring, aeration, precipitation, and discharge in a single treatment tank, the inside of the tank is divided into a sewage inflow section and a main treatment section. The treatment tank has a buttful that is divided into two parts, and an opening that communicates between the inflow part and the main treatment part is provided in the lower part of the treatment tank. There is a stirring process in which the activated sludge in the main treatment section is first stirred, an aeration process in which the liquid in the tank is aerated in the main treatment part after this stirring process, and a stirring and aeration process in which these stirring and aeration processes are repeated a predetermined number of times at predetermined intervals. It is characterized by repeating the aeration process, the precipitation process of precipitating the sewage of the aerated mixture after the stirring/aeration process, and the discharge process of discharging the supernatant liquid after the precipitation process, as one cycle. Batch-type activated sludge treatment method. 2. In the aeration step, a DO sensor measures the dissolved oxygen concentration in the treatment tank, and an aeration amount automatic control device automatically controls the aeration amount to control the dissolved oxygen concentration to a predetermined concentration based on the measured value of the DO sensor. The batch type activated sludge treatment method according to claim 1, further comprising a control means.
JP59007250A 1984-01-20 1984-01-20 Batch treating apparatus of activated sludge Granted JPS60150894A (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP59007250A JPS60150894A (en) 1984-01-20 1984-01-20 Batch treating apparatus of activated sludge
GB8500246A GB2155003B (en) 1984-01-20 1985-01-04 Activated sludge method
NL8500123A NL8500123A (en) 1984-01-20 1985-01-18 METHOD FOR PURIFYING WATER ACCORDING TO THE ACTIVATED SWALLOW METHOD.
FR8500708A FR2558460B1 (en) 1984-01-20 1985-01-18 METHOD OF USING AN ACTIVATED SLUDGE CONTAINING AEROBIC BACTERIA TO REMOVE NITROGEN AND PHOSPHORUS FROM WASTE WATER
DK026485A DK168431B1 (en) 1984-01-20 1985-01-18 Process for removal of nitrogen and phosphorus from wastewater by activated sludge
NO850218A NO162337C (en) 1984-01-20 1985-01-18 PROCEDURE FOR NITROGEN REMOVAL AND WASTE PHOSPHORUS.
CA000472426A CA1244562A (en) 1984-01-20 1985-01-18 Activated sludge method
US06/692,839 US4655925A (en) 1984-01-20 1985-01-18 Activated sludge method
DE19853501585 DE3501585A1 (en) 1984-01-20 1985-01-18 ANIMATED SLUDGE PROCEDURE
SE8500245A SE456990B (en) 1984-01-20 1985-01-18 PROCEDURE FOR REMOVAL OF NITROGEN AND PHOSPHOROUS FROM WASTE WATER BY APPLICATION OF ACTIVE SLAY
AU37799/85A AU575111B2 (en) 1984-01-20 1985-01-18 Repeated anaerobic and aerobic water treatment with activated sludge
KR1019850000289A KR920002816B1 (en) 1984-01-20 1985-01-18 Activated sludge method
PH31744A PH21085A (en) 1984-01-20 1985-01-21 Activated sludge method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59007250A JPS60150894A (en) 1984-01-20 1984-01-20 Batch treating apparatus of activated sludge

Publications (2)

Publication Number Publication Date
JPS60150894A JPS60150894A (en) 1985-08-08
JPH038839B2 true JPH038839B2 (en) 1991-02-07

Family

ID=11660775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59007250A Granted JPS60150894A (en) 1984-01-20 1984-01-20 Batch treating apparatus of activated sludge

Country Status (2)

Country Link
JP (1) JPS60150894A (en)
PH (1) PH21085A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713357B2 (en) * 1983-06-09 1995-02-15 ダブリュ・アール・グレイス・アンド・カンパニー・コネテイカット Method for producing sheet-like products based on cellulosic fibers

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232895A (en) * 1987-03-20 1988-09-28 Hitachi Kiden Kogyo Ltd Treatment of waste water
JPS63283796A (en) * 1987-05-14 1988-11-21 Kajima Corp Sewage treatment
JPH01299696A (en) * 1988-05-30 1989-12-04 Inax Corp Sewage treatment
KR100424999B1 (en) * 2002-03-19 2004-03-27 주식회사 한스환경엔지니어링 Controlling system and method of sequencing batch reactor
FR2889180B1 (en) * 2005-08-01 2008-04-04 Suez Environnement Sa PROCESS AND PLANT FOR TREATING NITROGEN CONCENTRATE EFFLUENTS IN A FRACTIONAL CYCLE SEQUENTIAL BIOLOGICAL REACTOR
US7678988B2 (en) 2006-12-05 2010-03-16 Kawai Musical Instruments Mfg. Co., Ltd. Musical tone apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597093B2 (en) * 1976-02-06 1984-02-16 積水化学工業株式会社 Manufacturing method of electrophotographic recording material
JPS59115793A (en) * 1982-12-24 1984-07-04 Nippon Kokan Kk <Nkk> Treatment of organic sewage
JPS59115794A (en) * 1982-12-24 1984-07-04 Nippon Kokan Kk <Nkk> Treatment of organic sewage

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597093U (en) * 1982-07-07 1984-01-18 株式会社西原環境衛生研究所 Batch type activated sludge treatment equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597093B2 (en) * 1976-02-06 1984-02-16 積水化学工業株式会社 Manufacturing method of electrophotographic recording material
JPS59115793A (en) * 1982-12-24 1984-07-04 Nippon Kokan Kk <Nkk> Treatment of organic sewage
JPS59115794A (en) * 1982-12-24 1984-07-04 Nippon Kokan Kk <Nkk> Treatment of organic sewage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713357B2 (en) * 1983-06-09 1995-02-15 ダブリュ・アール・グレイス・アンド・カンパニー・コネテイカット Method for producing sheet-like products based on cellulosic fibers

Also Published As

Publication number Publication date
PH21085A (en) 1987-07-16
JPS60150894A (en) 1985-08-08

Similar Documents

Publication Publication Date Title
JPH038839B2 (en)
JP4114128B2 (en) Waste water purification apparatus and method
JP3379199B2 (en) Operation control method of activated sludge circulation method
JP2841131B2 (en) Activated sludge treatment method for sewage
JP2000093992A (en) Wastewater treatment system
JPS6335317B2 (en)
JPS6115793A (en) Treatment of organic waste water
JP2587726B2 (en) Sewage treatment method
JP3388963B2 (en) Control method of intermittent aeration type activated sludge method
JP3260558B2 (en) Control method of intermittent aeration type activated sludge method
KR20010094152A (en) Sequencing Batch Reactor controlled by Oxidation-Reduction Potential
JP2938375B2 (en) Method and apparatus for preventing excessive aeration of oxidation ditch
JPH05192687A (en) Batch type sewage treatment
JPH05277488A (en) Fouled water treatment reactor of double cylinder type
JPH1177079A (en) Control of intermittent aeration type activated sludge
JPH07116684A (en) Controlling method for intermittent aeration type activated sludge method
KR100582988B1 (en) Advanced sewage water treatment apparatus use of oxidation ditch
JP3644757B2 (en) Control method of intermittent aeration activated sludge process
JP3738377B2 (en) Wastewater treatment method
JP3542915B2 (en) Control method of treatment time in batch activated sludge process
JPH0117438B2 (en)
JP2000107786A (en) Control method for intermittent aeration activated sludge process
JPH0790231B2 (en) Control method for batch type waste water treatment equipment
JPH10128378A (en) Method for controlling intermittent aeration type activated sludge method
JPH07116693A (en) Controlling method for operation of activated sludge-circulating variation

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term