JPH0790231B2 - Control method for batch type waste water treatment equipment - Google Patents

Control method for batch type waste water treatment equipment

Info

Publication number
JPH0790231B2
JPH0790231B2 JP62062834A JP6283487A JPH0790231B2 JP H0790231 B2 JPH0790231 B2 JP H0790231B2 JP 62062834 A JP62062834 A JP 62062834A JP 6283487 A JP6283487 A JP 6283487A JP H0790231 B2 JPH0790231 B2 JP H0790231B2
Authority
JP
Japan
Prior art keywords
sludge
concentration
suspended solids
solids concentration
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62062834A
Other languages
Japanese (ja)
Other versions
JPS63229194A (en
Inventor
輝久 吉田
Original Assignee
日立機電工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立機電工業株式会社 filed Critical 日立機電工業株式会社
Priority to JP62062834A priority Critical patent/JPH0790231B2/en
Publication of JPS63229194A publication Critical patent/JPS63229194A/en
Publication of JPH0790231B2 publication Critical patent/JPH0790231B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は回分式活性汚泥を用いた排水処理装置の制御方
法に係り、特に安定した高い処理機能を保持する制御方
法に関するものである。
TECHNICAL FIELD The present invention relates to a control method for a wastewater treatment apparatus using batch type activated sludge, and more particularly to a control method for maintaining a stable and high treatment function.

〔従来技術〕[Prior art]

近年連続式の活性汚泥法に比較して、維持管理が容易
で、小規模の排水処理に適した回分式の活性汚泥法(例
えば、特開昭55−152594号公報参照)が用いられてい
る。
In recent years, a batch-type activated sludge method (for example, see JP-A-55-152594) is used, which is easier to maintain and is suitable for small-scale wastewater treatment compared to the continuous activated sludge method. .

この方法は単一の処理槽において、流入・曝気・沈澱放
流の各工程を1サイクルとして繰り返し運転する処理方
法であるが、安定した高い処理性能を保持するために
は、適切な汚泥の引き抜き制御を行う必要がある。
This method is a treatment method in which each process of inflow, aeration, and settling discharge is repeated in a single treatment tank as one cycle, but in order to maintain stable high treatment performance, appropriate sludge extraction control is required. Need to do.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、従来の回分式排水処理装置では、時間を
決めて1日1回、又は1サイクル毎に汚泥の引き抜きが
行うようにしているので、流入負荷変動に伴う汚泥生成
速度の変化に対応できず、そのため汚泥の処理機能の重
要な指標である汚泥混合液浮遊物(MLSS)濃度が汚泥の
引き抜きに伴って変動し、処理機能が悪化するという欠
点があった。
However, in the conventional batch type waste water treatment equipment, the sludge is drawn out once a day or every cycle for a certain period of time, so it is not possible to cope with changes in the sludge production rate due to changes in the inflow load. Therefore, the sludge mixture suspension (MLSS) concentration, which is an important indicator of sludge treatment function, fluctuates as the sludge is drawn out, and the treatment function deteriorates.

本発明は、汚泥混合液浮遊物(MLSS)濃度を適正値に保
つことにより安定した高い処理機能を保持する回分式排
水処理装置の制御方法を提供することを目的とする。
It is an object of the present invention to provide a control method for a batch type waste water treatment device that maintains a stable and high treatment function by keeping the sludge mixed liquid suspension (MLSS) concentration at an appropriate value.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため、本発明は、処理槽に排水を流
入して曝気処理し、汚泥を沈澱した後、上澄水を放流す
る回分式排水処理装置の制御方法であって、沈澱工程終
了時の汚泥界面よりも下方位置に設けた処理槽内の混合
液の浮遊物濃度を検出するセンサーにより、排水流入後
の高水位における撹拌状態時の混合液の浮遊物濃度(Cm
1)と沈澱工程終了時の沈澱汚泥の浮遊物濃度(Cm2)を
測定し、撹拌状態時の混合液の浮遊物濃度(Cm1)があ
らかじめ設定した上限浮遊物濃度(Cmax)より大きい場
合に、汚泥引き抜き後の高水位における撹拌状態時の混
合液の浮遊物濃度があらかじめ設定した下限浮遊物濃度
(Cmin)となる量の汚泥を、沈澱工程終了後に引き抜く
ことを要旨とする。
In order to achieve the above object, the present invention is a method for controlling a batch type waste water treatment apparatus in which waste water flows into a treatment tank for aeration treatment, sludge is precipitated, and then supernatant water is discharged. The sensor for detecting the suspended solids concentration of the mixed liquid in the treatment tank installed at the position below the sludge interface of the sludge at a high water level after the inflow of wastewater causes the suspended solids concentration (Cm
1 ) and the suspended solids concentration (Cm 2 ) of the settled sludge at the end of the precipitation process are measured, and the suspended solids concentration (Cm 1 ) of the mixed solution in the stirring state is larger than the preset upper limit suspended solids concentration (Cmax) In addition, the gist of the present invention is to withdraw the sludge in an amount such that the suspended solids concentration of the mixed liquid in the agitated state at a high water level after sludge withdrawal becomes a preset lower limit suspended solids concentration (Cmin) after the completion of the precipitation step.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づき説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明に用いる回分式排水処理装置を示したも
ので、1は排水を貯水した原水槽で、原水ポンプ3によ
り処理槽2に流入させる。処理槽2の排水面にはフロー
ト4上に曝気装置5を設け、この曝気装置5で空気を排
水内部に吹き込み、撹拌羽根で必要な撹拌を行う。
FIG. 1 shows a batch type waste water treatment apparatus used in the present invention. Reference numeral 1 denotes a raw water tank for storing waste water, which is made to flow into a processing tank 2 by a raw water pump 3. An aeration device 5 is provided on the float 4 on the drainage surface of the treatment tank 2, air is blown into the drainage by the aeration device 5, and necessary agitation is performed by a stirring blade.

フロート4には上澄水引抜管7を設けて、上澄水を引き
抜くとともに、アーム6を設けて水位に追従して揺動す
るようにする。これらの曝気を一般的なブロアーと散気
管で行うことも可能である。
The float 4 is provided with a supernatant water withdrawing pipe 7 for extracting the supernatant water, and with an arm 6 so as to follow the water level and swing. It is also possible to perform these aerations with a general blower and an air diffuser.

次に処理槽2の底部に近い位置で沈澱終了するときの汚
泥界面よりも下方に位置するようにMLSS濃度計9のセン
サー8を設ける。
Next, the sensor 8 of the MLSS concentration meter 9 is provided so as to be located below the sludge interface when the precipitation is completed at a position near the bottom of the treatment tank 2.

制御装置10は演算機能を有するもので、汚泥引抜ポンプ
11をON、OFFして汚泥の引き抜き制御を行う以外に、原
水の流入から処理水の放流までの1サイクル全体を制御
する。
The control device 10 has a calculation function, and is a sludge drawing pump.
In addition to turning sludge on and off to control sludge withdrawal, control the entire cycle from the inflow of raw water to the discharge of treated water.

第2図は本発明における運転スケジュールの例を示した
もので、原水を流入した後、連続曝気又は間欠曝気を行
って生物処理を行う。
FIG. 2 shows an example of the operation schedule in the present invention. After inflowing raw water, continuous aeration or intermittent aeration is performed to perform biological treatment.

原水の流入中は曝気を行ってよいが、バルキンクの抑
制、脱膣・脱リン効果を考慮すれば曝気を行わない方が
望ましい。また、曝気停止時は静置してもよいが、好ま
しくは嫌気撹拌を行う。第1図に示す回分式排水処理装
置においては、曝気装置の通気口の閉鎖等を行うことに
より、嫌気撹拌を行うことができるが、別に水中撹拌機
を設けて嫌気撹拌を行ってもよい。原水流入により高水
位(HWL)に達した後、曝気により槽内が十分に撹拌さ
れている状態で、第1回目のMLSS濃度Cm1を測定する。
嫌気撹拌により槽内が均一になっている場合は、曝気時
間帯でなく、嫌気撹拌時にCm1を測定してもよい。
Aeration may be carried out during the inflow of raw water, but it is preferable not to carry out aeration considering the effects of bulking suppression and vaginal and dephosphorization effects. Further, when aeration is stopped, it may be allowed to stand, but anaerobic stirring is preferably performed. In the batch-type waste water treatment device shown in FIG. 1, anaerobic stirring can be performed by closing the vent of the aeration device, but an anaerobic stirring may be performed by separately providing an underwater stirrer. After reaching the high water level (HWL) due to the inflow of raw water, the first MLSS concentration Cm 1 is measured while the tank is sufficiently agitated by aeration.
When the inside of the tank is uniform due to anaerobic stirring, Cm 1 may be measured during anaerobic stirring instead of during the aeration period.

物理処理の後、汚泥の沈澱を行い、沈澱終了時のMLSS濃
度Cm2を測定する。Cm2は沈澱汚泥、すなわち汚泥引き抜
き時は余剰汚泥の濃度の代表値として測定したものであ
るため、MLSS濃度計9のセンサー8は汚泥界面よりも下
方位置の汚泥引き抜き口の近傍に設置する必要がある。
After the physical treatment, sludge is precipitated, and the MLSS concentration Cm 2 at the end of precipitation is measured. Since Cm 2 is measured as a representative value of the concentration of the settled sludge, that is, the excess sludge concentration at the time of sludge removal, the sensor 8 of the MLSS concentration meter 9 must be installed near the sludge extraction port below the sludge interface. There is.

MLSS濃度計9によって濃度測定値Cm1,Cm2を測定した
後、 (1) Cm1があらかじめ設定した上限浮遊物濃度(Cma
x)よりも小さい場合(Cm1<Cmax) 汚泥の引き抜きは行わない。このときの槽内の上限浮遊
物濃度(Cmax)は、4,000mg/程度に設定することが適
切である。槽内のMLSS濃度が4,000mg/を越えても処理
機能とは問題ないが、汚泥の沈降性が悪化して、放流工
程において上澄水に汚泥が巻き込まれたり、汚泥を構成
する微生物の呼吸作用によって消費される酸素の割合が
多くなり、酸素供給の効率が悪くなるなどの問題が生じ
るためである。
After measuring the concentration measurement values Cm 1 and Cm 2 with the MLSS densitometer 9, (1) Cm 1 is a preset upper limit suspended matter concentration (Cma 1
x)) (Cm 1 <Cmax) Sludge is not extracted. At this time, it is appropriate to set the upper limit suspended matter concentration (Cmax) in the tank to about 4,000 mg /. Even if the MLSS concentration in the tank exceeds 4,000 mg /, there is no problem with the treatment function, but the sludge's sedimentation property deteriorates, the sludge is caught in the supernatant water in the discharge process, and the respiratory action of the microorganisms that make up the sludge. This is because there is a problem that the proportion of oxygen consumed is increased and the efficiency of oxygen supply is reduced.

(2) Cm1があらかじめ設定した上限浮遊物濃度(Cma
x)よりも大きい場合(Cm1≧Cmax) 汚泥の引き抜きを行う。汚泥の引き抜きは、第2図にお
いては放流工程に先立っているが、放流の時間帯であっ
ても、あるいは放流工程終了後であっても差し支えな
い。またこの時の汚泥引き抜き量(V)は引き抜き後の
高水位におけるMLSS濃度があらかじめ設定した下限浮遊
物濃度(Cmin)になるように設定する。
(2) Cm 1 is the preset upper limit suspended solids concentration (Cma
x)) (Cm 1 ≧ Cmax) Sludge is removed. Although the sludge is drawn out prior to the discharging step in FIG. 2, it does not matter if it is during the discharging time or after the discharging step. Further, the sludge withdrawal amount (V) at this time is set so that the MLSS concentration at the high water level after the withdrawal becomes the preset lower limit suspended solids concentration (Cmin).

すなわち、 (Ve×Cm1−V×Cm2)/Ve=Cmin ただし、Ve:高水位における有効容量 このときの槽内の下限浮遊物濃度(Cmin)は、1,500〜
2,000mg/程度に設定することが適切である。
That is, (Ve × Cm 1 −V × Cm 2 ) / Ve = Cmin, where Ve: effective volume at high water level The lower limit suspended solids concentration (Cmin) in the tank at this time is 1,500 to
It is appropriate to set it to about 2,000 mg /.

第1図に示した回分式排水処理装置において、汚泥を引
き抜く場合は、MLSS濃度計9からの濃度測定値Cm1,Cm2
が演算機能を有する制御装置10に入力され、予め入力し
ておいたVe,Cminの値をもとに、上記計算式によりVが
算出される。制御装置からの指令により、汚泥ポンプ11
が作動し、汚泥の引き抜きが開始される。汚泥引き抜き
配管に設けた積算流量計12によって引き抜き量が測定さ
れ、制御装置に入力される。引き抜き量が算出値Vにな
れば、制御装置からの指令で汚泥ポンプが停止される。
ただし、積算流出計12を設けず、汚泥引き抜きポンプの
引き抜き流量をもとに、制御装置内演算機で引き抜きに
必要な時間を計算させ、算出した時間が経過すれば、汚
泥引き抜きポンプを停止するように制御を行ってもよ
い。
In the batch type waste water treatment equipment shown in Fig. 1, when sludge is drawn out, the measured concentration values from the MLSS concentration meter 9 Cm 1 and Cm 2
Is input to the control device 10 having a calculation function, and V is calculated by the above calculation formula based on the values of Ve and Cmin input in advance. Sludge pump 11 according to a command from the controller
Is activated and sludge extraction is started. The withdrawal amount is measured by the integrated flow meter 12 provided in the sludge withdrawal pipe, and is input to the control device. When the withdrawal amount reaches the calculated value V, the sludge pump is stopped by a command from the control device.
However, the cumulative outflow meter 12 is not provided, and based on the drawing flow rate of the sludge drawing pump, the calculator in the control unit calculates the time required for drawing, and when the calculated time has elapsed, the sludge drawing pump is stopped. May be controlled as follows.

汚泥を引き抜いた後は、フロートに固定した上澄水の取
出口から上澄水引抜管を介して槽外に処理水が放出さ
れ、1サイクルの運転を終了する。
After the sludge is drawn out, the treated water is discharged from the supernatant water outlet fixed to the float to the outside of the tank through the supernatant water drawing pipe, and one cycle of operation is completed.

〔発明の効果〕〔The invention's effect〕

本発明によれば、沈澱工程終了時の汚泥界面よりも下方
位置に設けた処理槽内の混合液の浮遊物濃度を検出する
センサーにより、排水流入後の高水位における撹拌状態
時の混合液の浮遊物濃度と沈澱工程終了時の沈澱汚泥の
浮遊物濃度を測定し、この両測定値に基づいて汚泥引き
抜き時期と引き抜き量を制御することにより、処理槽内
の汚泥混合液浮遊物(MLSS)濃度を適正値に正確に保つ
ことができ、安定した高い処理機能を保持することがで
きる。
According to the present invention, the sensor for detecting the suspended matter concentration of the mixed liquid in the treatment tank provided below the sludge interface at the end of the precipitation step detects the mixed liquid in the agitated state at a high water level after the inflow of wastewater. The suspended solid concentration and the suspended sludge floating concentration at the end of the sedimentation process are measured, and the sludge withdrawal timing and withdrawal amount are controlled based on these both measured values, thus the suspended sludge mixture in the treatment tank (MLSS) The concentration can be accurately maintained at an appropriate value, and a stable and high processing function can be maintained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に用いる回分式排水処理装置を、第2図
は本発明の運転スケジュールを示す図である。 1は原水槽、2は処理槽、3は原水ポンプ、4はフロー
ト、5は曝気装置、6はアーム、7は上澄水引抜管、8
はセンサー、9はMLSS濃度計、10は制御装置、11は汚泥
引抜ポンプ、12は積算流量計。
FIG. 1 is a diagram showing a batch type waste water treatment device used in the present invention, and FIG. 2 is a diagram showing an operation schedule of the present invention. 1 is a raw water tank, 2 is a treatment tank, 3 is a raw water pump, 4 is a float, 5 is an aerator, 6 is an arm, 7 is a supernatant water drawing pipe, 8
Is a sensor, 9 is an MLSS concentration meter, 10 is a control device, 11 is a sludge drawing pump, and 12 is an integrated flow meter.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】処理槽に排水を流入して曝気処理し、汚れ
泥を沈澱した後、上澄水を放流する回分式排水処理装置
の制御方法であって、沈澱工程終了時の汚泥界面よりも
下方位置に設けた処理槽内の混合液の浮遊物濃度を検出
するセンサーにより、排水流入後の高水位における撹拌
状態時の混合液の浮遊物濃度(Cm1)と沈澱工程終了時
の沈澱汚泥の浮遊物濃度(Cm2)を測定し、撹拌状態時
の混合液の浮遊物濃度(Cm1)があらかじめ設定した上
限浮遊物濃度(Cmax)より大きい場合に、汚泥引き抜き
後の高水位における撹拌状態時の混合液の浮遊物濃度が
あらかじめ設定した下限浮遊物濃度(Cmin)となる量の
汚泥を、沈澱工程終了後に引き抜くことを特徴とする回
分式排水処理装置の制御方法。
1. A method for controlling a batch-type wastewater treatment apparatus in which wastewater flows into a treatment tank for aeration treatment to precipitate dirt mud, and then supernatant water is discharged, which is more preferable than the sludge interface at the end of the precipitation step. The sensor for detecting the suspended solids concentration of the mixed liquid in the treatment tank installed in the lower position, the suspended solids concentration (Cm 1 ) of the mixed liquid in the stirring state at the high water level after the inflow of wastewater and the settled sludge at the end of the precipitation The suspended solids concentration (Cm 2 ) of the mixture is measured, and when the suspended solids concentration (Cm 1 ) of the mixed solution during stirring is higher than the preset upper limit suspended solids concentration (Cmax), stirring at high water level after sludge withdrawal A method for controlling a batch-type wastewater treatment device, which comprises withdrawing an amount of sludge having a floating substance concentration of a mixed liquid in a state of a predetermined lower limit floating substance concentration (Cmin) after completion of a precipitation step.
JP62062834A 1987-03-18 1987-03-18 Control method for batch type waste water treatment equipment Expired - Lifetime JPH0790231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62062834A JPH0790231B2 (en) 1987-03-18 1987-03-18 Control method for batch type waste water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62062834A JPH0790231B2 (en) 1987-03-18 1987-03-18 Control method for batch type waste water treatment equipment

Publications (2)

Publication Number Publication Date
JPS63229194A JPS63229194A (en) 1988-09-26
JPH0790231B2 true JPH0790231B2 (en) 1995-10-04

Family

ID=13211741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62062834A Expired - Lifetime JPH0790231B2 (en) 1987-03-18 1987-03-18 Control method for batch type waste water treatment equipment

Country Status (1)

Country Link
JP (1) JPH0790231B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9085121B2 (en) 1999-05-13 2015-07-21 3M Innovative Properties Company Adhesive-backed articles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114014436B (en) * 2021-12-02 2023-05-26 成都天源水务有限责任公司 Mud discharging system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014993A (en) * 1983-07-04 1985-01-25 Nishihara Environ Sanit Res Corp Batch treating apparatus for activated sludge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9085121B2 (en) 1999-05-13 2015-07-21 3M Innovative Properties Company Adhesive-backed articles

Also Published As

Publication number Publication date
JPS63229194A (en) 1988-09-26

Similar Documents

Publication Publication Date Title
KR101231210B1 (en) Advanced wastewater treatment apparatus and method according to change of inflow rate in sbr
JPH0790231B2 (en) Control method for batch type waste water treatment equipment
JP3379199B2 (en) Operation control method of activated sludge circulation method
JPH09150181A (en) Sewage purifying device
JPH038839B2 (en)
KR100648982B1 (en) An aerating apparatus for sbr reacting chamber
JP2020018966A (en) Water treatment method and water treatment apparatus
JP2006007132A (en) Apparatus for treating sewage
JPS6384695A (en) Sewage treatment device
CN218665639U (en) Automatic sludge discharge device
JPH022479Y2 (en)
JP6243804B2 (en) Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
JPS58189097A (en) Method for controlling apparatus for batch-type activated sludge process
JPH10296251A (en) Method for regulating sludge in sewage treatment tank
CN218232040U (en) Coating wastewater treatment device
JP3118783B2 (en) Batch type wastewater treatment method and its treatment device
JPH0651195B2 (en) Control method for batch type waste water treatment equipment
CN219259799U (en) Multidimensional composite catalytic oxidation reaction and precipitation integrated equipment
JPS5936319Y2 (en) Batch type activated sludge treatment equipment
JP3542915B2 (en) Control method of treatment time in batch activated sludge process
JPS607832Y2 (en) Sewage treatment equipment
JP2971734B2 (en) Activated sludge equipment
JP3739203B2 (en) Waste water treatment apparatus and operation method thereof
JP2515254B2 (en) Automatic sludge concentration adjustment method and apparatus in sewage treatment tank
JPH0372997A (en) Water treatment device