JPS59115794A - Treatment of organic sewage - Google Patents

Treatment of organic sewage

Info

Publication number
JPS59115794A
JPS59115794A JP57225807A JP22580782A JPS59115794A JP S59115794 A JPS59115794 A JP S59115794A JP 57225807 A JP57225807 A JP 57225807A JP 22580782 A JP22580782 A JP 22580782A JP S59115794 A JPS59115794 A JP S59115794A
Authority
JP
Japan
Prior art keywords
aeration
sewage
bod
stopping
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57225807A
Other languages
Japanese (ja)
Inventor
Tatsuo Takechi
武智 辰夫
Yoshinari Fujisawa
能成 藤沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP57225807A priority Critical patent/JPS59115794A/en
Publication of JPS59115794A publication Critical patent/JPS59115794A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To remove efficiently BOD and nitrogen in org. sewage by subjecting successively and repeatedly the org. sewage to a stage for decreased aeration or stopping of aeration and a stage for repeating aeration and stopping of aeration or decreased aeration. CONSTITUTION:Org. sewage 1 is subjected to decreased aeration or stopping of aeration and is put in an anaerobic state to accelerate the denitrification reaction of the residual NO3-N in the previous treatment by the BOD of a high concn. in the sewage 1 in a batch type activated sludge treatment method which introduces the org. sewage 1 into an aeration tank 2, aerates the same by an aerator 3 and discharges the treated water 4 cleaned up by a biological reaction. The aerobic treatment by aeration and the anaerobic treatment by stopping of aeration or decreased aeration are then repeated by a desired number to remove BOD and to nitrate and denitrify the nitrogen component, whereafter the aeration is stopped and activated sludge is settled; at the same time, the supernatant liquid is discharged as treated water 4. The sewage 1 is thereafter put into the tank 2 and the above-mentioned process is successively repeated.

Description

【発明の詳細な説明】 本発明は、有機性汚水の生物学的処理方法の1つである
回分式の活性汚泥処理方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a batch activated sludge treatment method, which is one of the biological treatment methods for organic wastewater.

第1図は、従来の回分式活性汚泥法を示すフローシート
図である。この回分式活性汚泥方法は、まず有機性汚水
1を曝気槽2へ導入する1、曝気槽2では、曝気装置3
から酸素を含有する気体(一般的には空気)を送り込み
、@気華2内にある活性汚泥と有機性汚水1とを攪拌、
混合、接触させ、活性汚泥による汚水処理を行う。
FIG. 1 is a flow sheet diagram showing a conventional batch activated sludge method. In this batch activated sludge method, organic sewage 1 is first introduced into an aeration tank 2.
Oxygen-containing gas (generally air) is sent in from the pump to stir the activated sludge and organic sewage 1 in @Keika 2.
Mix and contact to perform sewage treatment using activated sludge.

一定時間の曝気処理を行った後、曝気を停止し、活性汚
泥混合液を静置させて活性汚泥を沈殿させる。しかる後
、沈殿上減水を処理水4として系外へ排出し、排出した
処理水−責にほぼ等しい址の有機性汚水ノを暖気槽2へ
導入して、再び曝気処理を開始する。これを運転タイム
チャートで示すと第2図(1)の如くになる。
After performing the aeration treatment for a certain period of time, the aeration is stopped and the activated sludge mixture is allowed to stand to settle the activated sludge. Thereafter, the reduced water due to precipitation is discharged to the outside of the system as treated water 4, and organic sewage approximately equal in volume to the discharged treated water is introduced into the warming tank 2 to start the aeration process again. This is shown in an operation time chart as shown in FIG. 2 (1).

このように、回分式活性汚泥法は、曝気槽2を沈殿槽と
しても使用し、曝気と沈殿の2つの機能を、暖気装置3
の稼動の有無によって使いわけ、有機性汚水1を間けつ
的に導入し、処理水4を間けつ的に排出する生物学的処
理方法の1つである。この生物学的処1甲において、処
理可能な汚濁物質としてBODおよび窒素等を挙げるこ
とができる。これらの生物処理における反応式は、下記
の通りである。
In this way, in the batch activated sludge method, the aeration tank 2 is also used as a sedimentation tank, and the two functions of aeration and sedimentation are performed by the heating device 3.
This is one of the biological treatment methods in which organic wastewater 1 is introduced intermittently and treated water 4 is discharged intermittently, depending on whether the system is in operation or not. In this biological treatment 1A, BOD, nitrogen, etc. can be mentioned as pollutants that can be treated. The reaction formula in these biological treatments is as follows.

[BODの除去反応〕 1 →x CO2+医y■■20  ・・・・・・・・・・
・・・(1)〔窒素の除去反応〕 NH4+202 →No  +HO+2H+ ・・・・・・・・(2)2 2NO3+1011 →N2↑+4 H2O+ 20H・・・・・・・・′(
3)なお汚水中の型巣は、NH4という形態のもののみ
ではな゛く、有機性窒素も存在するが、有機性窒素は、
微生物の脱アミン作用によってNH4+の形態へと転換
されることが多いため、汚水中の窒素の代表例としてN
H4を挙げて、上記反応式に示した。
[BOD removal reaction] 1 →x CO2 + doctor y■■20 ・・・・・・・・・・・・
...(1) [Nitrogen removal reaction] NH4+202 →No +HO+2H+ ......(2)2 2NO3+1011 →N2↑+4 H2O+ 20H......'(
3) The mold nests in wastewater are not only in the form of NH4, but also organic nitrogen.
As a typical example of nitrogen in wastewater, N
H4 is listed and shown in the reaction formula above.

BODの除去は(1)式に示したように、好気的反応で
ある。このため、充分な曝気反応条件を与えることによ
って進行する。これに対し、窒素の除去は(2)式に示
した好気的反応と(3)式に示した嫌気的反応とからな
る。このため、曝気反応条件を与えたのみでは窒素の除
去は行われず、充分曝気反応せしめても窒素は、硝酸性
窒素(No3−N)の形態で処理水中に残留する。
BOD removal is an aerobic reaction as shown in equation (1). Therefore, the reaction proceeds by providing sufficient aeration reaction conditions. On the other hand, nitrogen removal consists of an aerobic reaction shown in equation (2) and an anaerobic reaction shown in equation (3). Therefore, nitrogen is not removed only by providing aeration reaction conditions, and even if a sufficient aeration reaction is carried out, nitrogen remains in the treated water in the form of nitrate nitrogen (No3-N).

従来の回分式活性汚泥法では、曝気槽全体を有効に酸化
反応に用いるため、曝気槽全体が好気的となるような曝
気方法を用いていた。従って、従来の回分式活性汚泥法
では、BOD除去はpJ能であるが、窒素除去は、はと
んど不可能であった。
In the conventional batch activated sludge method, in order to effectively use the entire aeration tank for the oxidation reaction, an aeration method was used in which the entire aeration tank became aerobic. Therefore, in the conventional batch activated sludge method, BOD removal is pJ-capable, but nitrogen removal is almost impossible.

近年、暢気方法を改善することによって、回分式活性汚
泥法に脱窒イ)能を付−り、強化するという研背、がな
されている。この例を第2図(■)。
In recent years, efforts have been made to add and strengthen denitrification capabilities to the batch activated sludge process by improving the air flow process. An example of this is shown in Figure 2 (■).

ω0の運転タイムチャートで示す。(II) 、 (I
[lは曝包槽を好気的売ft (け′二気装眉゛ト動状
態)と媛気的条件(曝気装置停止状態)とを所望回数繰
り返1〜で運転し、好気条件における式(1) 、 (
2>の反応と嫌気的条件における式(3)の反応とを起
らしめるようにしたものである。
It is shown in the operation time chart of ω0. (II), (I
[L is to operate the aeration tank under aerobic conditions (with the two aerators in motion) and under aerobic conditions (with the aeration device stopped) for the desired number of times from 1 to Equation (1) in , (
2> reaction and the reaction of formula (3) under anaerobic conditions are caused.

しかし、このような近年の改良法においてもいくつかの
問題点があった。
However, these recent improved methods also have some problems.

その1つは、BOD除去が先に進行するため藤窒反応に
必要々BODが不足することである。すなわち式(1)
に示したBOD除去反応と、式(2)に示した硝化反応
と、式(3)に示した脱智反応の3つの反応における辻
度的、和的なバランスである。
One of them is that since BOD removal proceeds first, BOD is insufficient for the rattan reaction. That is, equation (1)
This is a harmonious and harmonious balance among the three reactions: the BOD removal reaction shown in equation (2), the nitrification reaction shown in equation (2), and the dehydration reaction shown in equation (3).

BOD除去反応と硝化反応とは、共に斡気的反応である
が、両者の反応速度は異り、前者の反応の方が迎い。こ
のため、BODとNH4+−Nとを含有した汚水をlI
:・;気処理した場名、BOD除去反応の方が進行は速
い。しかるに、第2図の(1) 、 (flDに示した
近年の改良法では、原汚水772人の直後から咥気を開
始するため、捷ず、BOD除去が711行し、硝化反応
は、遅れることになる。従って、硝化反応が不充分のた
めに貿索除去処理も不充分となってしまう。さらに、式
(3)に示した脱窒反応においては、還元剤としての有
機炭素源(式(3)中には水雰供力体としてHで示しで
ある)が必要であるが、メタノール等の有機物を外部か
ら添加するとと々く脱窒反応を起らしめるために11原
汚水に含まれる有機物成分、すなわち、BODを有効に
利用する必要がある。しかるに第2図のQl) 、 Q
IDに示した近年の改良法では、原汚水f;・人の直後
から曝気をB;1始し、BODの好気的除去処理が先行
する。このため、硝化反応が終了して、脱窒処理に入る
場合、脱窒反応に必要なりODが不足する。
Both the BOD removal reaction and the nitrification reaction are aerobic reactions, but their reaction rates are different, and the former reaction is faster. For this reason, wastewater containing BOD and NH4+-N is
:・;The BOD removal reaction progresses faster when air treated. However, in the recently improved method shown in (1) and (flD in Figure 2), aspiration starts immediately after 772 people of raw sewage, so BOD removal takes 711 lines without sloughing, and the nitrification reaction is delayed. Therefore, because the nitrification reaction is insufficient, the removal treatment is also insufficient.Furthermore, in the denitrification reaction shown in equation (3), an organic carbon source (equation (3) A water atmosphere donor (indicated by H) is required, but when organic substances such as methanol are added from the outside, denitrification reactions occur immediately, so 11. It is necessary to effectively utilize the organic matter component, that is, BOD.However, Ql) and Q in Figure 2
In the recent improved method shown in ID, aeration is started immediately after raw sewage (F;/person), and BOD is preceded by aerobic removal treatment. Therefore, when the nitrification reaction is completed and the denitrification process begins, the OD required for the denitrification reaction is insufficient.

他の問題点の1つけBODの針が律速因子となることで
ある。すなわち、式(2)の硝化反応の結果中じたNo
5−Nを式(3)の脱糖反応によって処理する切1合、
有わ゛モ炭素源としてのBODの弼が律速因子とならな
いように、多量に存在することが81寸しり1.その場
合にFi嫌気的条件とする必要がある。しかるに、図2
の(1) 、 (IIDに示した近年の改良法において
も、原汚水を導入した直後に1が気を行うため、この間
にBODが除去され、次の段階で嫌気的にして脱望反宅
、を起らしめんとしても、BODの邪が少く、律速因子
となってし捷う。
Another problem is that the single BOD needle becomes a rate-limiting factor. In other words, the No.
5-N is treated by the desugarization reaction of formula (3),
In order to prevent the presence of BOD as a carbon source from becoming a rate-determining factor, it is necessary to have a large amount of BOD.1. In that case, Fi anaerobic conditions must be applied. However, Figure 2
(1), (Even in the recent improved method shown in IID, since step 1 is carried out immediately after introducing the raw wastewater, BOD is removed during this time, and in the next step it is made anaerobic and de-removed. , even if it does not occur, the BOD is less harmful and becomes the rate-limiting factor.

本発明は、上記事情に鑑みてなされたもので、その目的
とするところは、回分式活性汚泥法において、BOD除
去と窒素除去とを効率よく行うことができる有イ:4へ
性汚水の処理方法を得んとするものである。
The present invention has been made in view of the above circumstances, and its purpose is to provide a method for efficiently removing BOD and nitrogen in a batch activated sludge method. I am trying to find a method.

すなわち本発明(づ、む気槽に入れだ有わ1′性汚水に
対し、低減[1−気又rlニレ−[−気イ・ξ゛1」−
する工程と、曝気と1′・1気44を市又は低減、 n
i%気とを糸・工・返す工程と、呼気(り’; 、+l
:、 L、て活V4汚泥を沈!!ケするとともに上?(
]水を排出する工程と、上澄水排出後の1む1気4Hl
!i内に有様・fil:汚水を入れる工程!とをli’
1次かi4返しておこなうことを特性(とする。
In other words, the present invention (1) reduces the amount of sewage put into the air tank [1-Kimata rl Elm-[-Ki・ξ゛1''
process, aeration and 1'/1 air 44 reduction, n
The process of threading, processing, and returning i% qi, and exhalation (ri'; , +l
:, L, sink the live V4 sludge! ! As well as above? (
] Process of discharging water and 1mm 1q 4Hl after discharging supernatant water
! Condition/fil: Process of putting sewage into i! and li'
The property (characteristic) is to perform the primary or i4 return.

以下本発明方法を第3じ(1に示す31J転タイムチヤ
ートの実施例にもとづいてZ゛1糾に昌′、明する。
The method of the present invention will be explained below based on the example of the 31J rotation time chart shown in Part 3 (1).

まず有わ・・性汚水(原水用1°i人@aぺ低減: l
!)4気状態又け+、+:、、l、気停止j:、状態と
して、嫌ケ状神におく。このことにより、後工程におい
て曝毎、−低加すV気(又は置部1停市)を糾1返ずこ
とによって生成、残留したNo3−Nをν+YBN島の
BODと枡触させ、嫌気状軒下で式(3)の脱望反応の
推進を図る。
First of all...Sewage (raw water for 1° i person @ ape reduction: l
! ) 4 Qi state change +, +:,, l, Qi stop j:, as a state, put it in a disgusting state. As a result, in the post-process, by returning -low V gas (or Okibe 1 stop city) at each exposure, the generated and residual No3-N is brought into contact with the BOD of the ν + YBN island, resulting in an anaerobic state. Under the eaves, we aim to promote the despondency reaction of formula (3).

また原汚水導入直後の嫌気条件下でBODが脱型反応に
用いられ、低減する。このた、め次工程で(((:、%
 %によるBOI)除去を行う際、その除去効率が高く
なる。仁の処理は例えば30〜240分程度とする。
In addition, BOD is used in the demolding reaction under anaerobic conditions immediately after the raw wastewater is introduced, and is reduced. For this reason, in the next step (((:, %
% of BOI), the removal efficiency is high. The processing time for the kernels is, for example, about 30 to 240 minutes.

次に、0シ1)気槽内の有rz件汚水に対し、曝気運転
と低減曝気又は曝気停+、I−を所望回数繰り返して、
好気的条件と呼気的条件とを形成する。好気状態と娃伏
状態とを繰り返す際、IIメ気時間を*ii<区切るの
が親御処理を行う上で有効である。
Next, 1) repeat the aeration operation and reduced aeration or aeration stop +, I- for the wastewater in the air tank as many times as desired,
Forming aerobic conditions and expiratory conditions. When repeating the aerobic state and the lying state, it is effective to divide the II time into *ii<< for parental processing.

これは曝気時間が長くなると、曝気処理の過程てBOD
が処理され脱窒用有様炭素源として利用されないためで
ある。通常1ザイクルにおけるw1グ時間は例えば3〜
22時間程度とする。1か、好気状態と嫌気状態とを繰
り返す操作は、近年の研究によればリン除去効果がある
と言われ、この点からも有効である。この繰り返しは、
例えば3〜10回程度おこなう。同一の曝気槽で好気状
態と嫌気状態とを形成きせるには、曝9(佳・1;置の
運転の作+(ill、作動停止−によるのが最も簡便で
ある。嫌気状態を形成、するには、必ずしも曝気装置を
完全停止1する必要はなく、酸素供給速度を酸素消費速
度に比べて相対的に小さくした低N、 n5r゛9(、
状態としてもよい。むしろ脱室反応の主体である汚泥と
水側にあるNo3−Nとのソ触効率を上ける点から、低
減11j、ii、気により、βシ1(気槽内を攪拌する
ことが好捷しい。ここで低減41il!、気の場合は、
槽内の溶存P累年を0.5 m9/を以下と低く保つ必
ツ゛コがある。一方好気状カ1゛では、(V“1内の溶
存1′1;素4÷か1. Om(?/を以上となるよう
1′¥4気するのがf(才しい。
This means that as the aeration time becomes longer, the BOD will increase during the aeration process.
This is because the carbon is processed and is not used as a source of carbon for denitrification. Normally, the w1g time in one cycle is, for example, 3~
It will take about 22 hours. According to recent research, the operation of repeating aerobic and anaerobic conditions is said to be effective in removing phosphorus, and is also effective from this point of view. This repetition is
For example, do this about 3 to 10 times. In order to form an aerobic state and an anaerobic state in the same aeration tank, it is most convenient to operate the aeration tank + (ill, stop the operation). In order to achieve this, it is not necessarily necessary to completely stop the aeration equipment1, but to use a low N, n5r゛9 (,
It may also be a state. Rather, from the point of view of increasing the catalytic efficiency between the sludge, which is the main body of the room removal reaction, and No3-N on the water side, it is preferable to reduce β1 (stirring the inside of the air tank) by reducing Yes. Here, reduce 41il!, in case of Ki,
It is necessary to keep the cumulative amount of dissolved P in the tank as low as 0.5 m9/or less. On the other hand, in the case of aerobic force 1, it is f(smart) to divide 1'\4 so that (dissolved 1'1 in V'1; elementary 4÷ or 1. Om(?/) becomes more than 1'\4.

とのように曝気−低沖嵯気(11・”I ”tイー’、
+l−,)とを所望回嘘I4□′/−υ返しプヒ後11
.)気停止して、活性汚泥を沈降させ、沈11′c分^
1′)シた上澄水を処理11】水として系外へ排出する
。このll?気停車停止時間filえば60〜120分
稈K(とする。
As in aeration - low offshore air (11."I"tee',
+l-,) and the desired number of lies I4 □'/-υ after puhi 11
.. ) The air was stopped and the activated sludge was allowed to settle for 11'c.
1') Treat the drained supernatant water and discharge it out of the system as water. This ll? The stopping time for the culm is 60 to 120 minutes.

次いでこの曝気処理後有拶、;(@−1汚水(1モ1水
)を流入して低減1jA気状態又は曝気停止状便となし
、卵うj1状態におく。
Then, after this aeration treatment, ; (@-1 sewage (1 mol 1 water) is flowed in to make it into a reduced 1jA air condition or aeration stop condition, and leave it in an egg molten state.

この処理において全■〆勿1時間は、曝気時間の合計に
対するBOD負荷が0.3kg・BOD/にl?・Δ4
L、SS /day以下、又全窒素負荷か0.1kg・
T−N/kg・MLS S/day以下と々るよう設定
すること−1)ipましい。
In this process, the BOD load for the total aeration time is 0.3 kg・BOD/l for the entire one hour period.・Δ4
L, SS /day or less, total nitrogen load or 0.1kg・
Setting it to be less than T-N/kg・MLS S/day-1) IP is preferable.

また全低減曝偲1時間(又は全呼気停止時間)は、その
時間の合計に対する全窒素負荷が0.4 kli’・T
 −N 7kg・MLSS/ day以下となるよう設
定することがツ!ましい。更に沈r主時間は、汚泥の沈
吟速度と、曝気オψ11の形状、処理水量との関連で決
定し、処毬水楚に4.+TLい沈殿上7fr水を得るに
十分外時間とする。また原水流入時間、処理水排水41
iljll←I、原水の発生状況、貯+8イ槽容E゛、
流入排出ポンプ容h:、その他の状況から総合的に決定
する。
In addition, for 1 hour of total reduced exposure (or total exhalation cessation time), the total nitrogen load for the total time is 0.4 kli'・T
-N It is possible to set it so that it is less than 7kg・MLSS/day! Delicious. Furthermore, the main settling time is determined in relation to the settling rate of the sludge, the shape of the aeration hole ψ11, and the amount of water to be treated. Allow enough outside time to obtain 7 fr water above +TL precipitation. Also, raw water inflow time, treated water discharge 41
iljll←I, raw water generation status, storage + 8 tank capacity E゛,
Inflow/discharge pump capacity h: Determine comprehensively from other circumstances.

次に、第3(財)に示したタイムチャートにもとづいて
本発明方法による有tl”: I’l’汚水処理を行っ
た実MO例につき説明する。
Next, an actual MO example in which sewage treatment was performed using the method of the present invention will be explained based on the time chart shown in the third article.

この実施例では、原汚水として給食センター排水を用い
た。その組成は第1表に示す辿りである。比較のための
従来方法として、第2図の(Ir)に示したタイムチャ
ートにもとづく回分式活性汚泥処理実酪も併せて行った
。曝気槽容部は100tとし、処理水量は20t/日と
しだ。処理が安定した時の++;4り槽内のMLSSば
、約2600I++り/lであった。
In this example, school lunch center wastewater was used as raw wastewater. Its composition is as shown in Table 1. As a conventional method for comparison, batch-type activated sludge treatment based on the time chart shown in (Ir) in FIG. 2 was also carried out. The aeration tank capacity is 100 tons, and the amount of treated water is 20 tons/day. When the treatment was stable, the MLSS in the four tanks was about 2600 I++/l.

本発明方法及び従来法でそれぞれ得られた処理水の水質
を第1表に示す。
Table 1 shows the quality of the treated water obtained by the method of the present invention and the conventional method.

?i’!: 1表に示す結果から、本発明方法では、従
来法に比して、BOD 11’ 素、リン共に含有量の
少い良好々処理水を得ることがわかった。
? i'! : From the results shown in Table 1, it was found that the method of the present invention yields treated water with a lower content of both BOD 11' element and phosphorus than the conventional method.

本発明方法+Cおけるリン除去行°、) 、<7.Hに
ついては、今のところ不明であるが、近年看われている
ように、汚泥がll′・気状態と好気状に1とに、縁り
返しさらされることによって、汚泥中に取り通すれたも
のと考えられる。
Phosphorus removal row in the method of the present invention +C°, ), <7. As for H, it is currently unknown, but as has been observed in recent years, it is possible for sludge to be absorbed into the sludge by being exposed to both ll' and aerobic conditions. It is thought that the

以上n?a明したように本発明によれシ1:、好う(状
態と嫌気状k(1とを有効に形成して脱ζ゛1処理を効
率よく行うようにしたので処v1!水の窒素含有部を少
くできると共に、BOD、リンの含有部も少なくできる
という3酌著々効果を不する。
More than n? As explained above, according to the present invention, the nitrogen content of the water can be effectively reduced by effectively forming the anaerobic state and the anaerobic state. In addition to being able to reduce the content of BOD and phosphorus, the three factors of reducing the content of BOD and phosphorus are significantly impaired.

4図面の筒部なハ11.明 汗71図(dl、回分式活性汚汁、装置青を示すフロー
シート図、第2図は、従来の回分式活性汚泥が、におけ
る運転タイムチャート図、第3.1¥1は、本発明方法
における回分式活性汚泥法の運転タイムチャート図であ
る。
4. Cylindrical part in drawing C11. Figure 71 (dl) is a flow sheet diagram showing batch type activated sludge, equipment blue, Figure 2 is an operation time chart diagram for conventional batch type activated sludge, and No. 3.1 ¥1 is the present invention. It is an operation time chart figure of the batch type activated sludge method in a method.

1・・・治P゛件汚水、2・・・曝気柁1.3・−曝気
!−1,2偽、4・・・処ヂ1゛水。
1... Treatment sewage, 2... Aeration 1.3 - Aeration! -1, 2 false, 4... place 1゛ water.

Claims (1)

【特許請求の範囲】[Claims] 曝気槽に入れた有機性汚水に対し低減曝気又は曝気停止
する工程と、曝気と曝気停止又は低減曝気とを繰返す工
程と、曝気停止して活性汚泥を沈殿するとともに上澄水
を排出する工程と、上澄水排出後の1暴気槽内に有機性
汚水を入れる工程とを順次繰返しておこ々うととを特徴
とする有機性汚水の処理方法、1
A step of reducing aeration or stopping aeration for organic wastewater placed in an aeration tank, a step of repeating aeration and stopping or reducing aeration, and a step of stopping aeration to precipitate activated sludge and discharge supernatant water, 1. A method for treating organic sewage characterized by sequentially repeating the step of pouring organic sewage into an aerated tank after discharging supernatant water, 1
JP57225807A 1982-12-24 1982-12-24 Treatment of organic sewage Pending JPS59115794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57225807A JPS59115794A (en) 1982-12-24 1982-12-24 Treatment of organic sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57225807A JPS59115794A (en) 1982-12-24 1982-12-24 Treatment of organic sewage

Publications (1)

Publication Number Publication Date
JPS59115794A true JPS59115794A (en) 1984-07-04

Family

ID=16835095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57225807A Pending JPS59115794A (en) 1982-12-24 1982-12-24 Treatment of organic sewage

Country Status (1)

Country Link
JP (1) JPS59115794A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150894A (en) * 1984-01-20 1985-08-08 Nishihara Environ Sanit Res Corp Batch treating apparatus of activated sludge
JPS61120696A (en) * 1984-11-15 1986-06-07 Unitika Ltd Treatment of waste water
JPS6242796A (en) * 1985-08-15 1987-02-24 Nippon Steel Corp Treatment of waste water and method for acclimatizing activated sludge
JPH01299696A (en) * 1988-05-30 1989-12-04 Inax Corp Sewage treatment
CN103864213A (en) * 2014-03-19 2014-06-18 甘肃金桥给水排水设计与工程(集团)有限公司 Built-in anoxic aerating filter
CN103991962A (en) * 2014-06-04 2014-08-20 上海理工大学 ICAST (Intermittent or Cyclic Activated Sludge Technology) treatment method for recycling wastewater on sites and self-control and monitoring device thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150894A (en) * 1984-01-20 1985-08-08 Nishihara Environ Sanit Res Corp Batch treating apparatus of activated sludge
JPH038839B2 (en) * 1984-01-20 1991-02-07 Nishihara Kankyo Eisei Kenkyusho Kk
JPS61120696A (en) * 1984-11-15 1986-06-07 Unitika Ltd Treatment of waste water
JPS6242796A (en) * 1985-08-15 1987-02-24 Nippon Steel Corp Treatment of waste water and method for acclimatizing activated sludge
JPH037436B2 (en) * 1985-08-15 1991-02-01 Shinnippon Seitetsu Kk
JPH01299696A (en) * 1988-05-30 1989-12-04 Inax Corp Sewage treatment
JPH0418919B2 (en) * 1988-05-30 1992-03-30 Inax Corp
CN103864213A (en) * 2014-03-19 2014-06-18 甘肃金桥给水排水设计与工程(集团)有限公司 Built-in anoxic aerating filter
CN103991962A (en) * 2014-06-04 2014-08-20 上海理工大学 ICAST (Intermittent or Cyclic Activated Sludge Technology) treatment method for recycling wastewater on sites and self-control and monitoring device thereof

Similar Documents

Publication Publication Date Title
JP2000015288A (en) Waste water treatment method and apparatus
JPS59115794A (en) Treatment of organic sewage
JPS58210897A (en) Biological dephosphorization method of waste water
JPS59115793A (en) Treatment of organic sewage
JPH0722757B2 (en) Biological removal method of nitrogen and phosphorus and its treatment device
JPS5830393A (en) Biological denitrifying and dephosphorizing method for sewage
JPS6222678B2 (en)
JPS62244496A (en) Treatment of waste water
JP2004105872A (en) Method of treating waste water
JPH05192687A (en) Batch type sewage treatment
JPH11216493A (en) Intermittent-aeration activated sludge treatment
JPS62152598A (en) Treatment of organic waste water
JPH06236B2 (en) Organic wastewater treatment method
JPH07115031B2 (en) Nitrification and denitrification method of organic wastewater
JPH06304589A (en) Treatment of return water
JP2002346585A (en) Wastewater treatment method
JPH06170390A (en) Control method in anaerobic and aerobic activated sludge method
JPS59109293A (en) Biological denitrification method of waste water
JPS6014997A (en) Treatment of organic filthy water
JP3340790B2 (en) Wastewater treatment method
JPS6358639B2 (en)
JPS61118194A (en) Biological treatment of waste water
JPH07204686A (en) Method and apparatus for nitration-denitrification using biological membrane
JPH08168793A (en) Treatment of sewage
JPH0763711B2 (en) Wastewater treatment method