JPH06170390A - Control method in anaerobic and aerobic activated sludge method - Google Patents
Control method in anaerobic and aerobic activated sludge methodInfo
- Publication number
- JPH06170390A JPH06170390A JP4330837A JP33083792A JPH06170390A JP H06170390 A JPH06170390 A JP H06170390A JP 4330837 A JP4330837 A JP 4330837A JP 33083792 A JP33083792 A JP 33083792A JP H06170390 A JPH06170390 A JP H06170390A
- Authority
- JP
- Japan
- Prior art keywords
- nitrification
- tank
- anaerobic
- activated sludge
- carbonate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D20/0034—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
- F28D20/0043—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material specially adapted for long-term heat storage; Underground tanks; Floating reservoirs; Pools; Ponds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、嫌気好気活性汚泥法に
おいて、汚泥の硝化速度を速める運転方法に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operating method for increasing the nitrification rate of sludge in an anaerobic aerobic activated sludge method.
【0002】[0002]
【従来の技術】湖沼などの閉鎖性水域に処理水を放流す
る下水処理場では、水域の富栄養化防止の目的のため
に、窒素,リンを除去することが強く求められるように
なってきた。この状況に対応するために、従来の活性汚
泥法の変法である嫌気・好気活性汚泥法が注目されてい
る。2. Description of the Related Art In sewage treatment plants that discharge treated water into closed water bodies such as lakes and marshes, it has been strongly required to remove nitrogen and phosphorus for the purpose of preventing eutrophication of water bodies. . In order to deal with this situation, the anaerobic / aerobic activated sludge method, which is a modification of the conventional activated sludge method, has been attracting attention.
【0003】この方法は、図2で示すように、嫌気槽
1,硝化槽2,最終沈澱池3を有し、標準活性汚泥法の
生物反応槽である曝気槽(硝化槽)の前段1/3〜1/
2位の部分の曝気を止めて嫌気状態で運転することを特
徴としている。As shown in FIG. 2, this method has an anaerobic tank 1, a nitrification tank 2 and a final settling tank 3, and is a first stage 1 / a stage of an aeration tank (nitrification tank) which is a biological reaction tank of the standard activated sludge method. 3 to 1
It is characterized by stopping aeration of the second place and driving in an anaerobic state.
【0004】反応槽に流入した排水中の窒素成分は、曝
気を行っている硝化槽2で硝化細菌の働きにより酸化さ
れる。酸化された窒素の一部は再び硝化液循環ポンプ5
を通して嫌気槽1に戻され、この嫌気槽において嫌気状
態で脱窒菌の働きにより流入水の有機物を消費して窒素
ガスに還元され除去される。The nitrogen component in the waste water flowing into the reaction tank is oxidized by the action of nitrifying bacteria in the aeration nitrifying tank 2. Part of the oxidized nitrogen is again in the nitrification solution circulation pump 5
It is returned to the anaerobic tank 1 through the anaerobic tank 1, and in this anaerobic tank, the denitrifying bacteria act in an anaerobic state to consume the organic matter of the inflowing water and reduce it to nitrogen gas for removal.
【0005】また、リンは、嫌気槽でリンの放出を起こ
させ、好気槽で活性汚泥内に放出したリンを取り込むこ
とにより除去する。Phosphorus is removed by causing the release of phosphorus in the anaerobic tank and incorporating the released phosphorus in the activated sludge in the aerobic tank.
【0006】嫌気好気活性汚泥法は標準活性汚泥法で達
成されると同程度の有機物除去を行い、かつ標準活性汚
泥法よりも高い窒素除去を行う活性汚泥法の一変法であ
る。The anaerobic / aerobic activated sludge method is a modified method of the activated sludge method which removes organic substances to the same extent as achieved by the standard activated sludge method and also removes nitrogen more than the standard activated sludge method.
【0007】なお、図2において、6はブロアであり、
硝化槽2を曝気するための空気を送付する。7は返送汚
泥ポンプ、8は余剰汚泥引抜き用ポンプである。9はp
H計であり、硝化槽2のpHを検出し、この検出値に応
じてコントローラ10を制御してポンプ11を介しアル
カリ剤12を硝化槽2に投入する。In FIG. 2, 6 is a blower,
The air for aerating the nitrification tank 2 is sent. Reference numeral 7 is a return sludge pump, and 8 is a pump for extracting excess sludge. 9 is p
It is an H meter, detects the pH of the nitrification tank 2, and controls the controller 10 according to the detected value to feed the alkaline agent 12 into the nitrification tank 2 via the pump 11.
【0008】[0008]
【発明が解決しようとする課題】嫌気好気活性汚泥法に
よりより効率的な窒素除去を達成するためには、嫌気槽
における脱窒と好気槽における硝化を最適な運転条件に
保持することが重要である。特に、窒素除去は硝化工程
に影響を受けることが多く、良好な窒素除去を得るため
には、まず第一に硝化が良好に達成されることが必要で
ある。硝化は硝化細菌の活性が大きく影響しているが、
硝化細菌の増殖速度は水温の影響をうけ、低水温期には
硝化率が落ち、窒素除去が悪化することがよく見受けら
れる。そこで、低水温期においても硝化速度が落ちない
運転方法が必要になってくる。In order to achieve more efficient nitrogen removal by the anaerobic / aerobic activated sludge method, it is necessary to maintain denitrification in the anaerobic tank and nitrification in the aerobic tank under optimum operating conditions. is important. In particular, nitrogen removal is often affected by the nitrification process, and in order to obtain good nitrogen removal, it is first of all necessary to achieve good nitrification. Nitrification is greatly affected by the activity of nitrifying bacteria,
The growth rate of nitrifying bacteria is affected by the water temperature, and it is often observed that the nitrification rate decreases and nitrogen removal deteriorates in the low water temperature period. Therefore, it is necessary to have an operation method that does not reduce the nitrification rate even in the low water temperature period.
【0009】また、硝化反応は有機物除去反応に比べて
非常におそいため、嫌気好気活性汚泥法は標準活性汚泥
法よりも大きな反応槽が必要となる。そこで、硝化速度
を上げる工夫をしなければ反応槽を大きくすることにな
ってしまい、用地確保の難しい都市型処理場には、嫌気
好気活性汚泥法の採用が困難になっしまう。Since the nitrification reaction is much slower than the organic matter removal reaction, the anaerobic aerobic activated sludge method requires a larger reaction tank than the standard activated sludge method. Therefore, unless measures are taken to increase the nitrification rate, the reaction tank must be made larger, making it difficult to adopt the anaerobic aerobic activated sludge method in urban treatment plants where it is difficult to secure a site.
【0010】本発明は上記の点に鑑みてなされたもので
その目的は、汚泥の硝化速度を速めて反応槽の必要容積
を小さくできるこの種の制御方法を提供することにあ
る。The present invention has been made in view of the above points, and an object of the present invention is to provide a control method of this type which can increase the nitrification rate of sludge and reduce the required volume of the reaction tank.
【0011】[0011]
【課題を解決するための手段】本発明は、流入水を嫌気
槽を介して曝気を行っている硝化槽に導入し、最終沈澱
池を通して処理水として放出する嫌気好気活性汚泥法に
おいて、前記硝化槽のpH値に応じて炭酸塩または重炭
酸塩を硝化槽に添加することを特徴としている。The present invention relates to an anaerobic aerobic activated sludge method in which influent water is introduced into a nitrification tank that is aerated through an anaerobic tank and is discharged as treated water through a final settling tank. It is characterized in that a carbonate or a bicarbonate is added to the nitrification tank according to the pH value of the nitrification tank.
【0012】[0012]
【作用】硝化は硝化細菌の活性が大きく影響している
が、硝化細菌の増殖速度は水温の影響をうける。一方、
硝化速度はpHによっても影響され、一般に硝化反応の
進行とともにpHは下がり、同時に硝化反応は低下す
る。低水温期や高負荷時等に硝化反応が低下した場合、
これを硝化槽のpH値から検知し、炭酸塩又は重炭酸塩
を添加する。この添加により自栄養菌の増殖が高まり、
これによって硝化速度が速まる。[Function] Nitrification is greatly affected by the activity of nitrifying bacteria, and the growth rate of nitrifying bacteria is affected by water temperature. on the other hand,
The nitrification rate is also affected by pH, and generally the pH decreases with the progress of the nitrification reaction, and at the same time, the nitrification reaction decreases. When the nitrification reaction decreases during low water temperature or high load,
This is detected from the pH value of the nitrification tank, and carbonate or bicarbonate is added. This addition increases the growth of autotrophic bacteria,
This accelerates the nitrification rate.
【0013】従って窒素除去率が上昇して常に安定した
処理水が得られるとともに、硝化のための反応槽の容積
を小さくすることができる。Therefore, the nitrogen removal rate is increased, and stable treated water is always obtained, and the volume of the reaction tank for nitrification can be reduced.
【0014】[0014]
【実施例】以下、図面を参照しながら本発明の一実施例
を説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.
【0015】硝化反応に関係する微生物は亜硝酸菌と硝
酸菌という自栄養菌である。これらの硝化菌は無機の窒
素化合物を酸化することによって増殖のためのエネルギ
ーを獲得でき、無機性の炭素を細胞合成に利用する。The microorganisms involved in the nitrification reaction are autotrophic bacteria called nitrite bacteria and nitric acid bacteria. These nitrifying bacteria can acquire energy for growth by oxidizing inorganic nitrogen compounds, and utilize inorganic carbon for cell synthesis.
【0016】細胞合成を考慮した硝化反応式は以下のよ
うになる。The nitrification reaction formula in consideration of cell synthesis is as follows.
【0017】 NH4 ++1.86O2+1.98HCO3 -→0.021C5H7NO2+1.041H2O +0.98NO3 -+1.88H2CO3 [参考文献] 下水道実務講座7「高度処理と再利用」
栗林宗人編 山海堂 上記のことから考えて、炭酸塩を活性汚泥に添加するこ
とにより、自栄養菌の増殖が高まり、そのことにより硝
化速度が速まる可能性がある。The NH 4 + + 1.86O 2 + 1.98HCO 3 - → 0.021C 5 H 7 NO 2 + 1.041H 2 O + 0.98NO 3 - + 1.88H 2 CO 3 [ Ref] sewer Practical Course 7 "Advanced processing and reuse"
Mitsuto Kuribayashi ed. Sankaido Considering the above, the addition of carbonate to activated sludge increases the growth of autotrophic bacteria, which may accelerate the nitrification rate.
【0018】そこで、以下に示す実施例で検証を行っ
た。Therefore, verification was carried out in the following examples.
【0019】この検証に用いた装置は、図3のように4
lの反応槽に、ブロワ装置B、撹拌装置M、流入ポン
プ、排水ポンプPが装備されており、各々はシーケンス
コントローラにより自動で運転をしている。運転パター
ンは、原水投入15分、嫌気(撹拌)1時間、好気(曝
気)4時間、沈澱30分、排出15分(50%排出)の
計6時間を1サイクルとし、1日4サイクルの運転とし
た。投入原水は、肉エキス、ペプトン、酢酸ナトリウム
を主体とした人口下水を用いた。一方には1NのNaO
H(比較例)を、もう一方には1mol/lのNa2CO
3(実施例)を添加し汚泥を5日間馴養した。馴養終了
後この2種の汚泥を用いて、NO3 -Nの増加より硝化速
度を求め、比較を行った。The apparatus used for this verification is shown in FIG.
The 1-liter reaction tank is equipped with a blower device B, a stirring device M, an inflow pump, and a drainage pump P, and each is automatically operated by a sequence controller. The operation pattern is 15 minutes for raw water, 1 hour for anaerobic (stirring), 4 hours for aerobic (aeration), 30 minutes for precipitation, and 15 minutes for discharging (50% discharge) for a total of 6 hours. I decided to drive. The raw water used was artificial sewage composed mainly of meat extract, peptone, and sodium acetate. 1N NaO on one side
H (comparative example), and the other, 1 mol / l Na 2 CO
3 (Example) was added and the sludge was acclimated for 5 days. After acclimatization finished using the two sludges, NO 3 - seeking nitrification rate than the increase in N, it was compared.
【0020】その結果を表1,表2に示す。The results are shown in Tables 1 and 2.
【0021】[0021]
【表1】 [Table 1]
【0022】[0022]
【表2】 [Table 2]
【0023】表1,表2によれば、Na2CO3を添加し
た方がNaOHを添加した場合よりも硝化速度が1.4
倍速く、炭酸塩を添加することにより活性汚泥の硝化速
度が速くなることが理解できる。According to Tables 1 and 2, the addition of Na 2 CO 3 gives a nitrification rate of 1.4 compared to the case of adding NaOH.
It can be understood that the nitrification rate of the activated sludge becomes faster by adding the carbonate twice as fast.
【0024】そこでこの結果を利用して、例えば低水温
時あるいは高負荷時等に、硝化速度が低下して窒素除去
が悪化したとき、エアレーションタンク内に炭酸塩を投
入することにより、硝化速度が上昇し、常に安定した硝
化速度が得られ、窒素除去率を良好に保持することがで
きる。図1はこれを用いた制御の概念図である。図1に
おいて図2と同一部分は同一符号をもって示している。Therefore, by utilizing this result, when the nitrification rate is lowered and the nitrogen removal is deteriorated, for example, at low water temperature or high load, by introducing carbonate into the aeration tank, the nitrification rate is improved. As a result, the nitrification rate increases and a stable nitrification rate is always obtained, and the nitrogen removal rate can be kept excellent. FIG. 1 is a conceptual diagram of control using this. 1, the same parts as those in FIG. 2 are indicated by the same reference numerals.
【0025】図1において、pH計9の検出値により硝
化速度の低下を検知した場合は、ポンプ11を介して炭
酸塩20を硝化槽2に投入するものであり、その他の動
作は図2と同様である。図1の制御システムにより年間
を通じて安定して窒素除去を行うことができる。In FIG. 1, when a decrease in the nitrification rate is detected by the detection value of the pH meter 9, the carbonate 20 is put into the nitrification tank 2 via the pump 11, and the other operations are as shown in FIG. It is the same. The control system of FIG. 1 enables stable nitrogen removal throughout the year.
【0026】尚硝化槽2への添加は炭酸塩20に限らず
重炭酸塩でも良い。The addition to the nitrification tank 2 is not limited to the carbonate 20 and may be bicarbonate.
【0027】[0027]
【発明の効果】以上のように本発明によれば、嫌気好気
活性汚泥法において、炭酸塩あるいは重炭酸塩を硝化槽
に添加するようにしたので次のような優れた効果が得ら
れる。As described above, according to the present invention, since carbonate or bicarbonate is added to the nitrification tank in the anaerobic aerobic activated sludge method, the following excellent effects can be obtained.
【0028】(1)簡単な方法により、硝化速度を速め
ることができ、窒素除去率が上昇する。(1) The nitrification rate can be increased and the nitrogen removal rate can be increased by a simple method.
【0029】(2)常に安定した処理水が得られる。(2) Stable treated water is always obtained.
【0030】(3)硝化のための反応槽容積を小さくす
ることができる。(3) The reaction tank volume for nitrification can be reduced.
【図1】本発明の一実施例を示す構成図。FIG. 1 is a configuration diagram showing an embodiment of the present invention.
【図2】従来の嫌気好気活性汚泥処理装置の構成図。FIG. 2 is a configuration diagram of a conventional anaerobic aerobic activated sludge treatment device.
【図3】本発明に係る回分槽実験装置の構成図。FIG. 3 is a block diagram of a batch tank experimental apparatus according to the present invention.
1…嫌気槽 2…硝化槽 3…最終沈澱池 9…pH計 10…コントローラ 11…ポンプ 12…アルカリ剤 20…炭酸塩 1 ... Anaerobic tank 2 ... Nitrification tank 3 ... Final sedimentation tank 9 ... pH meter 10 ... Controller 11 ... Pump 12 ... Alkaline agent 20 ... Carbonate
Claims (1)
る硝化槽に導入し、最終沈澱池を通して処理水として放
出する嫌気好気活性汚泥法において、前記硝化槽のpH
値に応じて炭酸塩または重炭酸塩を硝化槽に添加するこ
とを特徴とする嫌気好気活性汚泥法におけるその制御方
法。1. The pH of the nitrification tank in the anaerobic aerobic activated sludge method, wherein inflowing water is introduced into a nitrification tank that is aerated through an anaerobic tank and is discharged as treated water through a final settling tank.
A method for controlling the anaerobic aerobic activated sludge method, which comprises adding a carbonate or a bicarbonate to a nitrification tank according to the value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4330837A JPH06170390A (en) | 1992-12-11 | 1992-12-11 | Control method in anaerobic and aerobic activated sludge method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4330837A JPH06170390A (en) | 1992-12-11 | 1992-12-11 | Control method in anaerobic and aerobic activated sludge method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06170390A true JPH06170390A (en) | 1994-06-21 |
Family
ID=18237094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4330837A Pending JPH06170390A (en) | 1992-12-11 | 1992-12-11 | Control method in anaerobic and aerobic activated sludge method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06170390A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2004074191A1 (en) * | 2003-02-21 | 2006-06-01 | 栗田工業株式会社 | Ammonia nitrogen-containing water treatment method |
WO2019192313A1 (en) * | 2018-04-04 | 2019-10-10 | 蓝星安迪苏南京有限公司 | Method and device for treating acrolein reactor wastewater |
CN115215437A (en) * | 2022-07-26 | 2022-10-21 | 浙江海拓环境技术有限公司 | Method for maintaining nitrification activity of sludge in biochemical treatment of electroplating wastewater and biochemical treatment system of electroplating wastewater |
-
1992
- 1992-12-11 JP JP4330837A patent/JPH06170390A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2004074191A1 (en) * | 2003-02-21 | 2006-06-01 | 栗田工業株式会社 | Ammonia nitrogen-containing water treatment method |
JP4735256B2 (en) * | 2003-02-21 | 2011-07-27 | 栗田工業株式会社 | Ammonia nitrogen-containing water treatment method |
WO2019192313A1 (en) * | 2018-04-04 | 2019-10-10 | 蓝星安迪苏南京有限公司 | Method and device for treating acrolein reactor wastewater |
US11358885B2 (en) | 2018-04-04 | 2022-06-14 | Bluestar Adisseo Nanjing Co., Ltd. | Method and device for treating acrolein reactor wastewater |
CN115215437A (en) * | 2022-07-26 | 2022-10-21 | 浙江海拓环境技术有限公司 | Method for maintaining nitrification activity of sludge in biochemical treatment of electroplating wastewater and biochemical treatment system of electroplating wastewater |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1309665C (en) | Nitrogen and phosphorus removing process | |
JPH1110191A (en) | Device for biologically removing phosphorus | |
JP4114128B2 (en) | Waste water purification apparatus and method | |
JP2005066381A (en) | Method and apparatus for treating organic waste water | |
JP5869208B2 (en) | Waste water treatment method and waste water treatment apparatus | |
CN109879422B (en) | Method for realizing short-cut nitrification and denitrification by utilizing high light intensity | |
KR100315874B1 (en) | Method and Apparatus of Biological Nitrogen Removal from the High Concentration Industrial Wastewater | |
JPH06170390A (en) | Control method in anaerobic and aerobic activated sludge method | |
JP2002172399A (en) | Denitrification treatment method | |
JP2001079593A (en) | Removing method of nitrogen in waste water | |
JP2841131B2 (en) | Activated sludge treatment method for sewage | |
KR100192144B1 (en) | Solid waste made land leachate treatment process | |
JP2946163B2 (en) | Wastewater treatment method | |
KR100438323B1 (en) | High intergated Biological Nutrient Removal System | |
JP2004105872A (en) | Method of treating waste water | |
JPS6222678B2 (en) | ||
JP2003010877A (en) | Activated sludge treatment method for sewage and its apparatus | |
JP2002059200A (en) | Method of treating sewage and sludge | |
JPH0483594A (en) | Biological treatment of organic sewage | |
JPH05192687A (en) | Batch type sewage treatment | |
KR100318367B1 (en) | Waste water treatment apparatus | |
KR100416693B1 (en) | Method for removing nutrients of domestic sewage using 2 step aeration and an apparatus used therefor | |
JPS60139396A (en) | Removal of phosphorous and nitrogen from bod- containing water | |
JP2540150B2 (en) | Biological denitrification equipment | |
JPH06170392A (en) | Control method in anaerobic and aerobic activated sludge method |