JPH06170392A - Control method in anaerobic and aerobic activated sludge method - Google Patents

Control method in anaerobic and aerobic activated sludge method

Info

Publication number
JPH06170392A
JPH06170392A JP33083892A JP33083892A JPH06170392A JP H06170392 A JPH06170392 A JP H06170392A JP 33083892 A JP33083892 A JP 33083892A JP 33083892 A JP33083892 A JP 33083892A JP H06170392 A JPH06170392 A JP H06170392A
Authority
JP
Japan
Prior art keywords
nitrification
tank
anaerobic
activated sludge
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33083892A
Other languages
Japanese (ja)
Inventor
Takahiro Konishi
隆裕 小西
Miyoko Kusumi
美代子 久住
Masahide Ichikawa
雅英 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP33083892A priority Critical patent/JPH06170392A/en
Publication of JPH06170392A publication Critical patent/JPH06170392A/en
Pending legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To provide a control method accelerating the nitrification speed of sludge to reduce the necessary volume of a reaction tank in an anaerobic and aerobic activated sludge method introducing flowing water in a nitrification tank where aeration is performed through an anaerobic tank to discharge the same as treated water through a final sedimentation basin. CONSTITUTION:A pH meter 9 and a water temp. meter 20 are provided to a nitrification tank 2 and the nitrification speed corresponding to water temp. is calculated by a nitrification speed operation part 21. A pH value is set corresponding to the calculated nitrification speed by a pH setting part 22 and carbonate 13 is injected into the nitrification tank 2 through a pump 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、嫌気好気活性汚泥法に
おいて硝化速度を速める制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control method for increasing the nitrification rate in an anaerobic aerobic activated sludge method.

【0002】[0002]

【従来の技術】近年閉鎖性水域の富栄養化防止の目的か
ら、窒素及びリンを除去することが求められるようにな
った。また、今後窒素・リンに関する規制は増々重要に
なってくると考えられ、これらを除去できる高度処理プ
ロセスを採用する処理施設が増加してきている。
2. Description of the Related Art In recent years, it has been required to remove nitrogen and phosphorus for the purpose of preventing eutrophication in closed water areas. Moreover, it is considered that regulations on nitrogen and phosphorus will become more and more important in the future, and the number of treatment facilities adopting advanced treatment processes capable of removing them is increasing.

【0003】従来の標準活性汚泥法の変法で、窒素・リ
ンの除去が可能な嫌気・好気活性汚泥法が現在注目され
ている。これは、生物反応槽が溶存酸素(DO)の存在
しない嫌気槽と存在する好気槽に仕切られる。嫌気槽に
は最初沈澱池流出水を導き活性汚泥からのリンの放出と
脱窒菌による脱窒を行い、それに続く好気槽ではDOの
存在下で活性汚泥に嫌気槽で放出した以上のリンを吸収
させると共に、有機物の酸化分解及び硝化菌によるアン
モニアの硝化を行う。
An anaerobic / aerobic activated sludge method capable of removing nitrogen / phosphorus, which is a modification of the conventional standard activated sludge method, is currently receiving attention. This divides the biological reaction tank into an anaerobic tank in which dissolved oxygen (DO) does not exist and an aerobic tank in which it exists. First, the effluent of the sedimentation basin is introduced into the anaerobic tank to release phosphorus from the activated sludge and denitrification by denitrifying bacteria. In addition to absorption, oxidative decomposition of organic substances and nitrification of ammonia by nitrifying bacteria are performed.

【0004】嫌気・好気活性汚泥法は、標準活性法で達
成されると同程度の有機物除去を行い、かつ標準活性汚
泥法よりも高い窒素・リンの除去を行う方法である。
The anaerobic / aerobic activated sludge method is a method of removing organic substances to the same degree as that achieved by the standard activated method, and removing nitrogen / phosphorus higher than that of the standard activated sludge method.

【0005】図2は嫌気好気活性汚泥法を実施するため
の装置構成を示している。図2において1は嫌気槽、2
は硝化槽、3は最終沈澱池であり、標準活性汚泥法の生
物反応槽である曝気槽(硝化槽)の前段1/3〜1/2
位の部分の曝気を止めて嫌気状態で運転する。
FIG. 2 shows an apparatus configuration for carrying out the anaerobic aerobic activated sludge method. In FIG. 2, 1 is an anaerobic tank, 2
Is a nitrification tank, 3 is a final settling tank, and is 1/3 to 1/2 in front of the aeration tank (nitrification tank) which is a biological reaction tank of the standard activated sludge method.
Stop aeration in the lower part and drive in an anaerobic state.

【0006】反応槽に流入した排水中の窒素成分は、曝
気を行っている硝化槽2で硝化細菌の働きにより酸化さ
れる。酸化された窒素の一部は再び硝化液循環ポンプ5
を通して嫌気槽1に戻され、この嫌気槽において嫌気状
態で脱窒菌の働きにより流入水の有機物を消費して窒素
ガスに還元され除去される。
The nitrogen component in the waste water flowing into the reaction tank is oxidized by the action of nitrifying bacteria in the aeration nitrifying tank 2. Part of the oxidized nitrogen is again in the nitrification solution circulation pump 5
It is returned to the anaerobic tank 1 through the anaerobic tank 1, and in this anaerobic tank, the denitrifying bacteria act in an anaerobic state to consume the organic matter of the inflowing water and reduce it to nitrogen gas for removal.

【0007】なお、図2において、6はブロアであり、
硝化槽2を曝気するめための空気を送付する。7は返送
汚泥ポンプ、8は余剰汚泥引抜き用ポンプである。9は
pH計であり、硝化槽2のpHを検出し、この検出値に
応じてコントローラ10を制御してポンプ11を介しア
ルカリ剤12を硝化槽2に投入する。
In FIG. 2, 6 is a blower,
The air for aerating the nitrification tank 2 is sent. Reference numeral 7 is a return sludge pump, and 8 is a pump for extracting excess sludge. Reference numeral 9 denotes a pH meter, which detects the pH of the nitrification tank 2 and controls the controller 10 according to the detected value to feed the alkaline agent 12 into the nitrification tank 2 via the pump 11.

【0008】[0008]

【発明が解決しようとする課題】嫌気好気活性汚泥法に
より効率的な窒素除去を達成するためには、嫌気槽にお
ける脱窒と好気槽における硝化を最適な運転条件に保持
することが重要である。特に、窒素除去は硝化工程に影
響をうけることが多く、良好な窒素除去を得るために
は、まず第一に硝化が良好に達成されることが必要であ
る。硝化は硝化細菌の活性が大きく影響しているが、硝
化細菌の増殖速度はpH、水温の影響をうけ、低水温期
には硝化率が落ち、窒素除去が悪化することがよく見受
けられる。そこで、低水温期においても硝化速度が落ち
ない運転方法が必要になってくる。
In order to achieve efficient nitrogen removal by the anaerobic aerobic activated sludge method, it is important to maintain denitrification in the anaerobic tank and nitrification in the aerobic tank under optimum operating conditions. Is. In particular, nitrogen removal often affects the nitrification process, and in order to obtain good nitrogen removal, it is first of all necessary to achieve good nitrification. Nitrification is greatly affected by the activity of nitrifying bacteria, but the growth rate of nitrifying bacteria is affected by pH and water temperature, and it is often observed that the nitrification rate decreases and nitrogen removal deteriorates in the low water temperature period. Therefore, it is necessary to have an operation method that does not reduce the nitrification rate even in the low water temperature period.

【0009】また、硝化反応は有機物除去反応に比べて
非常におそいため、嫌気好気活性汚泥法は標準活性汚泥
法よりも大きな反応槽が必要となる。そこで、硝化速度
を上げる工夫をしなければ反応槽を大きくすることにな
ってしまい、用地確保の難しい都市型処理場には、嫌気
好気汚泥法の採用が困難になってしまう。
Since the nitrification reaction is much slower than the organic matter removal reaction, the anaerobic aerobic activated sludge method requires a larger reaction tank than the standard activated sludge method. Therefore, unless measures are taken to increase the nitrification rate, the reaction tank would have to be made larger, making it difficult to adopt the anaerobic and aerobic sludge method in urban treatment plants where it is difficult to secure a site.

【0010】以下に硝化のための硝化槽の容量の計算方
法を示す。
The method of calculating the capacity of the nitrification tank for nitrification is shown below.

【0011】流入 T−N(総窒素) CN mg/l 流入量 Qm3/d ここで硝化の反応速度KNInflow TN (total nitrogen) C N mg / l Inflow Qm 3 / d where nitrification reaction rate K N

【0012】[0012]

【数1】 [Equation 1]

【0013】(ただしTは水温°C)とし、反応槽汚泥
濃度MLSSをM(g/l)とすると、硝化槽の容積V
N
(Where T is water temperature ° C) and the reaction tank sludge concentration MLSS is M (g / l), the nitrification tank volume V
N is

【0014】[0014]

【数2】 [Equation 2]

【0015】となる。[0015]

【0016】したがって、硝化槽容積は硝化速度に逆比
例することになる。硝化速度水温が低下すると速度は著
しく下がるため、硝化槽容積は低水温時を基準に計算さ
れる。
Therefore, the nitrification tank volume is inversely proportional to the nitrification rate. Nitrification rate When the water temperature decreases, the rate decreases significantly, so the nitrification tank volume is calculated based on the low water temperature.

【0017】今水温を13°Cとすると、KN=0.6
7(mgN/g.MLSS.h)となり、流入のCN
25(mg/l)MLSSを3(g/l)として硝化槽
の滞留時間tは
If the water temperature is now 13 ° C., K N = 0.6
7 (mgN / g.MLSS.h), the inflow C N was 25 (mg / l) MLSS was 3 (g / l), and the residence time t in the nitrification tank was

【0018】[0018]

【数3】 [Equation 3]

【0019】となる。It becomes

【0020】このように嫌気好気活性汚泥法では、硝化
槽と脱窒槽(嫌気槽)を合わせると標準活性汚泥法の曝
気槽の2〜3倍程度の容積を必要とする。このため、設
置スペースに余裕のない都市では、その効果が認められ
ているにもかかわらず導入例が少ない。硝化反応槽を小
さくするためには、MLSSを大きくすることも効果的
であるが、最終沈澱池3でSS成分が流出しやすくなる
ため、3g/l程度が限度と言われている。
As described above, in the anaerobic aerobic activated sludge method, when the nitrification tank and the denitrification tank (anaerobic tank) are combined, the volume required is about 2 to 3 times that of the aeration tank in the standard activated sludge method. For this reason, in cities where there is not enough installation space, there are few examples of introduction even though the effect is recognized. Increasing the MLSS is also effective for making the nitrification reaction tank smaller, but it is said that the SS component is likely to flow out in the final settling tank 3, so that the limit is about 3 g / l.

【0021】本発明は上記の点に鑑みてなされたもので
その目的は、硝化反応の効率を高めて反応槽の必要容積
を小さくできるこの種の制御方法を提供することにあ
る。
The present invention has been made in view of the above points, and an object thereof is to provide a control method of this type which can increase the efficiency of the nitrification reaction and reduce the required volume of the reaction tank.

【0022】[0022]

【課題を解決するための手段】本発明は、(1)流入水
を嫌気槽を介して曝気を行っている硝化槽に導入し、最
終沈澱池を通して処理水として放出する嫌気好気汚泥活
性法において、前記硝化槽に水温計とpH計を設け、硝
化槽の水温低下に応じて設定pH値を高くして運転する
とともに炭酸塩を硝化槽に添加することを特徴とし、
(2)前記pH制御は硝化反応開始と同時に行うことを
特徴としている。
The present invention provides (1) an anaerobic aerobic sludge activation method in which inflow water is introduced into a nitrification tank which is aerated through an anaerobic tank and is discharged as treated water through a final settling tank. In the above, the water temperature meter and the pH meter are provided in the nitrification tank, and the set pH value is increased according to the decrease in the water temperature of the nitrification tank to operate, and carbonate is added to the nitrification tank,
(2) The pH control is characterized in that it is carried out simultaneously with the start of the nitrification reaction.

【0023】[0023]

【作用】硝化は硝化細菌の活性が大きく影響している
が、硝化細菌の増殖速度は水温の影響を受ける。低水温
期や高負荷時に硝化反応が低下した場合、設定pH値を
高くするとともに炭酸塩を添加する。この添加により硝
化菌の増殖が高まり、これによって硝化速度が速まる。
[Function] Nitrification is greatly affected by the activity of nitrifying bacteria, but the growth rate of nitrifying bacteria is affected by water temperature. If the nitrification reaction decreases during low water temperature periods or high loads, increase the set pH value and add carbonate. This addition increases the growth of nitrifying bacteria, which accelerates the nitrification rate.

【0024】従って窒素除去率が上昇して常に安定した
処理水が得られるとともに、硝化のための反応槽の容積
を小さくすることができる。
Therefore, the nitrogen removal rate is increased and stable treated water is always obtained, and the volume of the reaction tank for nitrification can be reduced.

【0025】[0025]

【実施例】以下、図面を参照しながら本発明の一実施例
を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0026】硝化を引き起こす硝化菌は独立栄養菌であ
る。硝化菌は無機の窒素化合物を酸化することによって
増殖のためのエネルギーを獲得し、無機性の炭素を細胞
合成に利用する。これらは以下の様に表される。
The nitrifying bacteria that cause nitrification are autotrophic bacteria. Nitrifying bacteria acquire energy for growth by oxidizing inorganic nitrogen compounds and utilize inorganic carbon for cell synthesis. These are represented as follows.

【0027】 NH4+1.86O2+1.98HCO3 -→0.021C57NO2+1.041 H2O+0.98NO3 -+1.88H2CO3 〔参考文献〕下水道実務講座7「高度処理と再利用」
栗林宗人編 山海堂 上記のことから考えて、炭酸塩を活性汚泥に添加するこ
とにより、自栄養菌の増殖が高まり、そのことにより硝
化速度が速まる可能性がある。
NH 4 + 1.86O 2 + 1.98HCO 3 → 0.021C 5 H 7 NO 2 +1.041 H 2 O + 0.98NO 3 + 1.88H 2 CO 3 [Reference] Sewerage Practice Course 7 “Advanced Treatment And reuse "
Mitsuto Kuribayashi ed. Sankaido Considering the above, the addition of carbonate to activated sludge increases the growth of autotrophic bacteria, which may accelerate the nitrification rate.

【0028】そこで、以下に示す実施例で検証を行っ
た。
Therefore, verification was carried out in the following examples.

【0029】この検証に用いた装置は、図3のように4
lの反応槽にブロワ装置(B)、攪拌装置(M)、流入
ポンプ、排水ポンプ(P)が装備されており、各々はシ
ーケンスコントローラにより自動で運転をしている。運
転パターンは、原水投入15分、嫌気(攪拌)1時間、
好気(曝気)4時間、沈澱30分、排出15分(50%
排出)の計6時間を1サイクルとし、1日4サイクルの
運転とした。投入原水は、肉エキス、ペプトン、酢酸ナ
トリウムを主体とした人工下水を用いた。一方には1N
のNaOH(比較例)を、もう一方には1mol/lの
Na2CO3(実施例)を添加し汚泥を5日間馴養した。
馴養終了後この2種の汚泥を用いて、NO3 -Nの増加よ
り硝化速度を求め、比較を行った。
The apparatus used for this verification is as shown in FIG.
The 1-liter reaction tank is equipped with a blower device (B), a stirring device (M), an inflow pump, and a drainage pump (P), and each is automatically operated by a sequence controller. Operation pattern is 15 minutes of raw water input, 1 hour of anaerobic (stirring),
Aerobic (aeration) 4 hours, precipitation 30 minutes, discharge 15 minutes (50%
Emission) for a total of 6 hours was set as one cycle, and operation was performed for four cycles per day. As the input raw water, artificial sewage mainly containing meat extract, peptone and sodium acetate was used. 1N for one
Of NaOH (comparative example) and 1 mol / l of Na 2 CO 3 (example) were added to the other, and the sludge was acclimated for 5 days.
After acclimatization finished using the two sludges, NO 3 - seeking nitrification rate than the increase in N, it was compared.

【0030】その結果を表1,表2に示す。The results are shown in Tables 1 and 2.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】表1、表2によれば、Na2CO3を添加し
た方がNaOHを添加した場合よりも硝化速度が1.4
倍速く、炭酸塩を添加することにより活性汚泥の硝化速
度が速くなることが理解できる。
According to Tables 1 and 2, the addition of Na 2 CO 3 gives a nitrification rate of 1.4 compared to the case of adding NaOH.
It can be understood that the nitrification rate of the activated sludge becomes faster by adding the carbonate twice as fast.

【0034】そこでこの結果を利用して、例えば低水温
時あるいは高負荷時等に、硝化速度が低下して窒素除去
が悪化したとき、エアレーションタンク内に炭酸塩を投
入することにより、硝化速度が上昇し、常に安定した硝
化速度が得られ、窒素除去率を良好に保持することがで
きる。図1は本発明の制御方法を実施するための装置構
成の一例を示したもので、図2で示す従来のものと同一
部分、もしくは相当する部分に同一符号を付してその説
明を省略する。
Therefore, using this result, when the nitrification rate is lowered and the nitrogen removal is deteriorated, for example, at low water temperature or high load, the nitrification rate can be improved by introducing carbonate into the aeration tank. As a result, the nitrification rate increases and a stable nitrification rate is always obtained, and the nitrogen removal rate can be kept excellent. FIG. 1 shows an example of an apparatus configuration for carrying out the control method of the present invention. The same parts as or corresponding parts to those of the conventional device shown in FIG. .

【0035】20は水温計であり、pH計9と共に硝化
槽2の上流部分に設置される。21は硝化速度演算部で
あり、水温計20によって検出された水温に応じた硝化
速度が演算される。その際、水温と硝化速度の関係を予
め測定しておき、効率のよい硝化率が維持されるように
出力される。22は硝化速度演算部21で求められた硝
化速度に応じてpH値を設定するpH設定部である。
Reference numeral 20 is a water thermometer, which is installed together with the pH meter 9 in the upstream portion of the nitrification tank 2. Reference numeral 21 denotes a nitrification rate calculation unit, which calculates a nitrification rate according to the water temperature detected by the water temperature gauge 20. At that time, the relationship between the water temperature and the nitrification rate is measured in advance, and output is performed so that an efficient nitrification rate is maintained. Reference numeral 22 denotes a pH setting unit that sets a pH value according to the nitrification rate calculated by the nitrification rate calculation unit 21.

【0036】次に実験例について説明する。Next, an experimental example will be described.

【0037】前記(1)式で示されるように硝化速度は
水温に大きく影響される。したがって、一般には硝化槽
の大きさは最低水温時、例えば13°C時の硝化速度で
決めることになる。最低水温13°Cから16°Cにな
ったと仮定すると、(1)式からKN=1.06(mg
N/g.MLSS.h)となり、硝化槽2における必要
滞留時間は、13°C時では9.93時間であったもの
が、16°Cでは7.87時間となる。
As shown in the equation (1), the nitrification rate is greatly affected by the water temperature. Therefore, the size of the nitrification tank is generally determined by the nitrification rate at the minimum water temperature, for example, 13 ° C. Assuming that the minimum water temperature has changed from 13 ° C to 16 ° C, K N = 1.06 (mg
N / g. MLSS. h), the required residence time in the nitrification tank 2 was 9.93 hours at 13 ° C, but was 7.87 hours at 16 ° C.

【0038】一方、硝化速度はpHによっても影響され
るが、一般に硝化反応の進行とともにpHは下がり、同
時に硝化速度は低下する。そこでpHが著しく低下した
とき、pH6付近を目安として炭酸塩13を注入する制
御が行われる。
On the other hand, the nitrification rate is also influenced by the pH, but generally the pH decreases with the progress of the nitrification reaction, and at the same time, the nitrification rate decreases. Therefore, when the pH is remarkably lowered, the carbonate 13 is controlled to be injected around pH 6 as a guide.

【0039】本発明は、これらのpHによる硝化速度の
変化に着目し、硝化槽のpHを高くすることで硝化速度
を上げ、低水温時における必要反応槽容積を減らそうと
する意図でpH7以上に設定したときにおける硝化速度
の変化を以下のように調べた。
In the present invention, paying attention to the change in nitrification rate depending on the pH, the nitrification rate is increased by increasing the pH of the nitrification tank to reduce the required reaction tank volume at low water temperature. The change in nitrification rate when set to was examined as follows.

【0040】硝化が起きている活性汚泥にNH4C1を
15mg/lになるようにして11のフラスコに投入
し、曝気を行ってアンモニア性窒素の経時変化を測定し
た。そして、pHはpH計とコントローラを使用し、設
定値以下になると1規定の水酸化ナトリウム溶液を注入
した。設定値は7.4,7.9,8.4の3段階で、そ
れぞれの平均pHは7.5,8.0,8.5で何れも±
0.1の変動幅で制御した。その結果、水温13°Cで
硝化速度はそれぞれ0.71,0.96,1.06(m
gN/g.MLSS.h)が得られた。
NH 4 C1 was added to the activated sludge in which nitrification had occurred at a concentration of 15 mg / l in 11 flasks, and aeration was carried out to measure the change with time of ammoniacal nitrogen. Then, using a pH meter and a controller, when the pH was less than a set value, 1N sodium hydroxide solution was injected. The set values are three levels of 7.4, 7.9, and 8.4, and the average pH of each is 7.5, 8.0, and 8.5.
The fluctuation range was 0.1. As a result, the nitrification rate was 0.71, 0.96, 1.06 (m
gN / g. MLSS. h) was obtained.

【0041】このことから硝化速度が(1)式に従う場
合は、水温16°C以下になるとコントローラ10はポ
ンプ11を介して炭酸塩13の注入を開始し、水温の低
下とともに、設定pHを上げ、13°Cまで低下したと
きpHを8.5にすると硝化槽2での必要滞留時間は
7.87時間あればよいことになる。
From this, when the nitrification rate complies with the equation (1), the controller 10 starts the injection of the carbonate 13 via the pump 11 when the water temperature becomes 16 ° C. or lower, and the set pH is raised with the decrease of the water temperature. , When the pH is lowered to 13 ° C and the pH is adjusted to 8.5, the required residence time in the nitrification tank 2 is 7.87 hours.

【0042】ここで、水温変化による硝化速度を示す式
は予めその対象とする活性汚泥で測定しておき、(1)
式の定数項を変えることにより作成する。
Here, the equation showing the nitrification rate due to the change in water temperature is measured in advance with the target activated sludge, and (1)
It is created by changing the constant term of the expression.

【0043】尚硝化槽2への添加は炭酸塩13に限らず
重炭酸塩でも良い。
The addition to the nitrification tank 2 is not limited to the carbonate 13 and may be bicarbonate.

【0044】[0044]

【発明の効果】以上のように本発明によれば、水温低下
や窒素負荷が高くなった場合、pHを高くして運転する
とともに炭酸塩を硝化槽に添加するようにしたので、次
のような優れた効果が得られる。
As described above, according to the present invention, when the water temperature is lowered or the nitrogen load is increased, the pH is increased and the carbonate is added to the nitrification tank. The excellent effect is obtained.

【0045】(1)高い硝化速度が得られ硝化率がアッ
プし、その結果として窒素除去率が上昇する。
(1) A high nitrification rate is obtained, the nitrification rate is increased, and as a result, the nitrogen removal rate is increased.

【0046】(2)硝化速度が大きくなることにより、
硝化槽の容積を小さくすることができ、省スペース化に
役立つ。
(2) As the nitrification rate increases,
The volume of the nitrification tank can be reduced, which helps save space.

【0047】(3)水温や負荷の変動に対して、硝化速
度の低下を起こしたとしても、もともとの硝化速度が大
きいため、処理に障害が起こる程度までは低下せず、処
理は安定する。
(3) Even if the nitrification rate is lowered with respect to changes in water temperature and load, the nitrification rate is originally high, so that it does not decrease to the extent that the treatment is impaired, and the treatment is stable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成図。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】従来の嫌気好気活性汚泥処理装置の構成図。FIG. 2 is a configuration diagram of a conventional anaerobic aerobic activated sludge treatment device.

【図3】本発明に係る回分槽実験装置の構成図。FIG. 3 is a block diagram of a batch tank experimental apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1…嫌気槽 2…硝化槽 3…最終沈殿池 9…pH計 10…コントローラ 11…ポンプ 12…アルカリ剤 13…炭酸塩 20…水温計 21…硝化速度演算部 22…pH設定部 1 ... Anaerobic tank 2 ... Nitrification tank 3 ... Final settling tank 9 ... pH meter 10 ... Controller 11 ... Pump 12 ... Alkaline agent 13 ... Carbonate 20 ... Water thermometer 21 ... Nitrification rate calculation unit 22 ... pH setting unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 流入水を嫌気槽を介して曝気を行ってい
る硝化槽に導入し、最終沈殿池を通して処理水として放
出する嫌気好気活性汚泥法において、前記硝化槽に水温
計とpH計を設け、硝化槽の水温低下に応じて設定pH
値を高くして運転するとともに炭酸塩を硝化槽に添加す
ることを特徴とする嫌気好気活性汚泥法におけるその制
御方法。
1. In an anaerobic aerobic activated sludge method in which inflowing water is introduced into a nitrification tank that is aerated through an anaerobic tank and is discharged as treated water through a final settling tank, a water temperature meter and a pH meter are provided in the nitrification tank. The pH is set according to the decrease in water temperature in the nitrification tank.
A method for controlling the anaerobic aerobic activated sludge process, which is characterized by adding a carbonate to a nitrification tank while operating at a high value.
【請求項2】 pH制御は硝化反応開始と同時に行うこ
とを特徴とする請求項1に記載の嫌気好気活性汚泥法に
おけるその制御方法。
2. The method for controlling the anaerobic aerobic activated sludge method according to claim 1, wherein the pH control is performed simultaneously with the start of the nitrification reaction.
JP33083892A 1992-12-11 1992-12-11 Control method in anaerobic and aerobic activated sludge method Pending JPH06170392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33083892A JPH06170392A (en) 1992-12-11 1992-12-11 Control method in anaerobic and aerobic activated sludge method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33083892A JPH06170392A (en) 1992-12-11 1992-12-11 Control method in anaerobic and aerobic activated sludge method

Publications (1)

Publication Number Publication Date
JPH06170392A true JPH06170392A (en) 1994-06-21

Family

ID=18237105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33083892A Pending JPH06170392A (en) 1992-12-11 1992-12-11 Control method in anaerobic and aerobic activated sludge method

Country Status (1)

Country Link
JP (1) JPH06170392A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007044661A (en) * 2005-08-12 2007-02-22 Fuji Electric Holdings Co Ltd Methane fermentation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007044661A (en) * 2005-08-12 2007-02-22 Fuji Electric Holdings Co Ltd Methane fermentation method

Similar Documents

Publication Publication Date Title
CN113087134A (en) Device and method for quickly realizing integration of partial shortcut nitrification/anaerobic ammonia oxidation by adding hydroxylamine and combining with low sludge age control
CN107487838B (en) Method and device for realizing efficient phosphorus removal of low-temperature sewage by domesticating special sludge structure through SBR (sequencing batch reactor)
CN103833134B (en) Method for achieving short-cut denitrification by continuous flow sewage treatment system
KR20180117340A (en) The Sewage Disposal Systems
JP4114128B2 (en) Waste water purification apparatus and method
CN109879422B (en) Method for realizing short-cut nitrification and denitrification by utilizing high light intensity
JPH1043788A (en) Control method for biological water treating device
JPH07299495A (en) Nitrification accelerating method for activated sludge circulation modulating method and method for predicting nitrification rate
JP3379199B2 (en) Operation control method of activated sludge circulation method
JPH0724492A (en) Method for controlling operation of activated sludge circulation change method
JPH0716595A (en) Operation control method in modified method for circulating active sludge
JP3483081B2 (en) Organic wastewater treatment method and treatment device
JPH06170392A (en) Control method in anaerobic and aerobic activated sludge method
JPH07148496A (en) Method for controlling operation of modified process for circulation of activated sludge
JPH05154496A (en) Controlling method for operation in anaerobic and aerobic activated sludge treating equipment
JP2946163B2 (en) Wastewater treatment method
JPS6154296A (en) Treatment of sewage
JPH06170390A (en) Control method in anaerobic and aerobic activated sludge method
JPH05192688A (en) Anaerobic-aerobic activated sludge treating device using buffer tank
JP3303475B2 (en) Operation control method of activated sludge circulation method
JP2987103B2 (en) Intermittent aeration
JP3279008B2 (en) Control method of intermittent aeration type activated sludge method
JPS602917B2 (en) Biological treatment method for wastewater
JP3634403B2 (en) Denitrification and dephosphorization methods in oxidation ditch
Janssen Operating experiences on two full-scale plants, retrofitted for biological phosphorus removal