JPS6242796A - Treatment of waste water and method for acclimatizing activated sludge - Google Patents

Treatment of waste water and method for acclimatizing activated sludge

Info

Publication number
JPS6242796A
JPS6242796A JP60178586A JP17858685A JPS6242796A JP S6242796 A JPS6242796 A JP S6242796A JP 60178586 A JP60178586 A JP 60178586A JP 17858685 A JP17858685 A JP 17858685A JP S6242796 A JPS6242796 A JP S6242796A
Authority
JP
Japan
Prior art keywords
orp
stage
activated sludge
wastewater
aeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60178586A
Other languages
Japanese (ja)
Other versions
JPH037436B2 (en
Inventor
Nobuo Okamura
岡村 宣夫
Atsushi Shoji
敦 庄司
Masahiro Fujii
正博 藤井
Toyoichi Yokomaku
豊一 横幕
Masaki Aizawa
藍沢 正樹
Asao Horiuchi
堀内 朝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Kankyo Engineering Co Ltd
Original Assignee
Nippon Steel Corp
Kankyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Kankyo Engineering Co Ltd filed Critical Nippon Steel Corp
Priority to JP60178586A priority Critical patent/JPS6242796A/en
Publication of JPS6242796A publication Critical patent/JPS6242796A/en
Publication of JPH037436B2 publication Critical patent/JPH037436B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To efficiently remove eutrophic materials from waste water contg. the eutrophic materials by controlling and administrating the oxidation reduction potential (ORP) of a biochemical reaction vessel in the stage of treating the above-mentioned waste water with a batch-wise activated sludge method. CONSTITUTION:One cycle of the process of removing the eutrophic materials consists of the following 5 stages. The waste water is fed into the biochemical reaction vessel where the activated sludge exists and the ORP is controlled and administered to an optional value of -200--300mV by mechanically stirring the waste water in the 1st stage. The ORP is maintained for the prescribed period at +100--120mV by removing BOD and phosphorus compd. from the waste water and aerating the water in the stage of oxidizing the ammonia compd. to nitrogen oxide in the 2nd stage. The waste water is mechanically stirred and a hydrogen donator is fed to the water to decrease the ORP down to -50--150mV in the stage for reducing the nitrogen oxide to N2 in the 3rd stage. Aeration is executed to decompose the excess hydrogen donator and the ORP is adjusted to +50-+150mV in the 4th stage. The activate sludge is settled and about >=80% supernatant is released in the 5th stage.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は排水より生物化学的酸素要求量によって標示
される汚濁物質(以下BOOと略記)、アンモニア化合
物、窒素化合物、リン化合物など海域、河川、湖沼の富
栄養化原因になっている物質を回分式活性汚泥処理法に
より除去する方法に関するものである。
[Detailed Description of the Invention] Industrial Application Field This invention is applicable to wastewater containing pollutants (hereinafter abbreviated as BOO) indicated by biochemical oxygen demand, ammonia compounds, nitrogen compounds, phosphorus compounds, etc. in sea areas, rivers, lakes and marshes. The present invention relates to a method for removing substances that cause eutrophication using a batch activated sludge treatment method.

また本発明は連続式活性汚泥処理の活性汚泥を、回分式
活性汚泥法により、前述の富栄養化物質が除去できるよ
うに酸化還元電位(ORP)管理制御により馴養する方
法に関するものである。
The present invention also relates to a method for acclimatizing activated sludge produced in a continuous activated sludge process by oxidation-reduction potential (ORP) management control so that the aforementioned eutrophic substances can be removed by a batch activated sludge process.

本発明は都市下水、団地下水、畜産、漁業、1業などの
加工産業排水など富栄養化物質を大量に含有する排水に
適用することができる。
The present invention can be applied to wastewater containing a large amount of eutrophic substances, such as urban sewage, underground water, and processing industrial wastewater from livestock, fishing, and other industries.

従来の技術 従来、回分式または連続式活性汚泥処理により、前述の
富栄養化物質を除去する方法が多く提案されている0例
えば、産業排水、都市下水などのBOOは、曝気槽のO
RPを指標にして曝気量を管理すると効率よく除去でき
ることが、特開昭55−84896及び特開昭54−2
2955、水処理技術vol 23、No、7. P5
5(+982)などによって明らかにされている。
Conventional technology Many methods have been proposed to remove the above-mentioned eutrophic substances by batch or continuous activated sludge treatment.For example, BOO from industrial wastewater, urban sewage, etc.
JP-A No. 55-84896 and JP-A No. 54-2 show that the amount of aeration can be efficiently removed by controlling the amount of aeration using RP as an index.
2955, Water Treatment Technology vol 23, No. 7. P5
5 (+982) etc.

また排水中のアンモニア化合物を生物化学的に除去する
方法は、まずアンモニア化合物を好気的生物化学的方法
により、硝酸化合物、亜硝酸化合物に硝化した後、これ
らの窒素酸化物を鎌気的生物化学的方法により、メタノ
ールなどの水素供与体を添加して窒素ガスに還元する方
法が普遍的である。アンモニア化合物を生物化学的方法
により除去する際にORPが関与していることは以下に
示す通りである。
In addition, the method for biochemically removing ammonia compounds from wastewater is to first nitrify the ammonia compounds into nitrate and nitrite compounds using an aerobic biochemical method, and then convert these nitrogen oxides into nitrates using an aerobic biochemical method. A common chemical method is to add a hydrogen donor such as methanol to reduce it to nitrogen gas. The involvement of ORP in removing ammonia compounds by biochemical methods is as shown below.

すなわち、アンモニア化合物が窒素酸化物に酸化される
過程において、ORPが関与していることは特開昭54
−152351によって、また窒素酸化物を窒素ガスに
還元する際に脱窒槽のORPを管理することが適切であ
ることが特公昭52−22918によってそれぞれ明ら
かにされている。
In other words, in the process of oxidizing ammonia compounds to nitrogen oxides, ORP is involved, as disclosed in JP-A-54.
-152351 and Japanese Patent Publication No. 52-22918 that it is appropriate to control the ORP of a denitrification tank when reducing nitrogen oxides to nitrogen gas.

排水中のリン化合物を除去する原理は十分に耐用されて
いないが、一般に次のようなことが通説になっている。
Although the principle of removing phosphorus compounds from wastewater is not well established, the following is generally accepted.

すなわち、活性汚泥を好気的環境と1気的環境に交互に
置くと、活性汚泥にストレスが生じ、好気的環境におい
て排水中のリン酸を細胞内に過剰に取り込み、ポリリン
酸の形態で貯蔵する0次に鎌気的環境に置かれた活性汚
泥は細胞内に貯蔵したポリリン酸を放出する。このよう
な条件を繰り返すと、活性汚泥は好気的環境において細
胞内にリンを取り込み、その結果生物化学的反応槽内の
排出リン濃度が低下する。このような活性汚泥の性質を
利用して排水中のリン化合物の除去が行われている。
In other words, if activated sludge is placed alternately in an aerobic environment and a mono-aerobic environment, stress will occur in the activated sludge, and in the aerobic environment, phosphoric acid in wastewater will be taken into cells excessively, and it will be converted into polyphosphoric acid. Activated sludge stored in a zero-order sickle environment releases polyphosphoric acid stored within the cells. When such conditions are repeated, activated sludge takes up phosphorus into cells in an aerobic environment, resulting in a decrease in the concentration of phosphorus discharged in the biochemical reactor. These properties of activated sludge are used to remove phosphorus compounds from wastewater.

排水中のROD 、アンモニア化合物、窒素酸化物、リ
ン化合物などの富栄養化物質を単独に生物化学的方法に
よって除去する方法は先に述べたようにほぼ確立した技
術と言える。しかし、回分式活性汚泥法により、BOD
 、アンモニア化合物、窒素酸化物、リン化合物などの
富栄養化物質をすべて除去することは、先に説明した公
知の方法の組み合わせのみでは困難である。
As mentioned above, the method of removing eutrophic substances such as ROD, ammonia compounds, nitrogen oxides, and phosphorus compounds from wastewater solely by biochemical methods can be said to be an almost established technology. However, with the batch activated sludge method, BOD
It is difficult to remove all eutrophic substances such as , ammonia compounds, nitrogen oxides, and phosphorus compounds using only the combination of the known methods described above.

すなわち回分式活性汚泥法は前述の富栄養化物質を一度
に除去することは困難であり、各富栄養化物質を逐次除
去するプロセスの組み合わせにしなければならない、こ
のため各工程の処理条件(例えば、ORP 、PH1溶
存#素濃度、処理時間など)および前工程の富栄養化物
質の残存量などが次の工程の富栄養化物質の除去性に及
ぼす影響を明確にする必要がある。特にリン化合物につ
いては除去条件が明確に提示されていない。
In other words, in the batch activated sludge method, it is difficult to remove the aforementioned eutrophic substances all at once, and it is necessary to combine processes that sequentially remove each eutrophic substance. , ORP, PH1 dissolved #element concentration, treatment time, etc.) and the residual amount of eutrophic substances from the previous step, etc., need to clarify the influence they have on the removability of eutrophic substances in the next step. In particular, removal conditions for phosphorus compounds are not clearly presented.

すなわち好気的環境あるいは嫌気的環境と言われている
が具体的な条件などが示されていない。
In other words, it is said to be an aerobic environment or an anaerobic environment, but no specific conditions are specified.

従って排水中の富栄養化物質のすべてが、公知の技術の
単なる組み合わせでは除去できないことは明白であり、
回分式活性汚泥法による富栄養化物質の除去技術は確立
されていないと言える。
It is therefore clear that all eutrophic substances in wastewater cannot be removed by a simple combination of known techniques;
It can be said that the technology for removing eutrophic substances using the batch activated sludge method has not been established.

発明が解決しようとする問題点 排水中のBOD 、アンモニア化合物、窒素酸化物、リ
ン化合物などの富栄養化物質を回分式活性汚泥法により
、効率的に除去する場合1次のような問題点がある。
Problems to be Solved by the Invention When eutrophicating substances such as BOD, ammonia compounds, nitrogen oxides, and phosphorus compounds in wastewater are efficiently removed by the batch activated sludge method, the following problems arise. be.

(1)各富栄養化物質を除去する順序が明確でない。(1) The order in which each eutrophic substance is removed is not clear.

(2)各富栄養化物質を除去するための条件、すなわち
好気的、嫌気的条件などが具体的に明示されていない。
(2) The conditions for removing each eutrophic substance, ie, aerobic and anaerobic conditions, are not specifically specified.

(3)排水中の各富栄養化物質を順次除去する場合、前
工程の後工程への影響が[すI確でない0例えば前工程
において残存した富栄養化物質の量、あるいはORP 
、溶存酸素濃度、 PHなどの処理条件が後工程の処理
性俺への影響が明らかにされていない。
(3) When each eutrophic substance in wastewater is removed sequentially, the influence of the previous process on the subsequent process is uncertain. For example, the amount of eutrophic substance remaining in the previous process or the ORP
It is not clear how processing conditions such as dissolved oxygen concentration, pH, etc. affect the processability of subsequent processes.

(4)回分式活性汚泥法により富栄養化物質を除去でき
る活性汚泥のgll性法明らかにされていない。すなわ
ち回分式活性汚泥法に用いる活性汚泥は、多くの場合連
続活性汚泥法の活性汚泥を種汚泥として用いているが、
前述の富栄養化物質、特にリン化合物を除去できるよう
な活性汚泥に馴養する方法が確立されていない。
(4) A method for gll-resistant activated sludge that can remove eutrophic substances using a batch activated sludge method has not been clarified. In other words, the activated sludge used in the batch activated sludge method is often the activated sludge of the continuous activated sludge method as the seed sludge.
A method for acclimating activated sludge that can remove the aforementioned eutrophic substances, especially phosphorus compounds, has not been established.

問題点を解決するための手段 本発明は第1の発明として排水中の富栄養化物質を回分
式活性汚泥法により、除去する方法に関するものであり
1本発明の特徴は次の通りである。
Means for Solving the Problems The present invention relates, as a first invention, to a method for removing eutrophic substances from wastewater by a batch activated sludge method.The features of the present invention are as follows.

(1)回分式活性汚泥の処理装置の生物化学的反応槽に
排水を注入して、活性汚泥により、富栄養化物質を除去
した処理水を放流するまでのプロセスが5段階の処理工
程より成り立っている。なお、本発明はこの5段階を1
サイクルとする。
(1) The process from injecting wastewater into the biochemical reaction tank of a batch-type activated sludge treatment equipment to discharging treated water from which eutrophic substances have been removed using activated sludge consists of a five-step treatment process. ing. Note that the present invention combines these five steps into one
Cycle.

(2)各段階の処理工程において、生物化学的反応槽の
酸化還元電位(ORP)を制御管理し、各富栄養化物質
を効率良く除去することができる。
(2) In each stage of the treatment process, the oxidation-reduction potential (ORP) of the biochemical reaction tank can be controlled and managed, and each eutrophication substance can be efficiently removed.

(3)1サイクルを5段階の処理工程に分ける別の効果
として、X!I!続活性汚泥処理の活性汚泥を用いて、
回分式活性汚泥法により、排水中の富栄養化物質を効率
よく除去することができる。なお本発明において使用す
る回分式活性汚泥処理装置の生物化学的反応槽(以下反
応槽と略記)は、散気装置1機械攪拌装置の他に、OR
P 、pH1溶存酸素濃度、温度などの測定センサーを
設置し、これらのセンサーは制御装置、記録装置に接続
し、反応槽内のこれらを制御、測定、記録、管理が可能
になっている。なお、活性汚泥処理に用いるORPセン
サーは金又は金合金と塩化銀/銀よりなる複合電極が最
も良く、他のセンサーはほとんど使用することができな
い。
(3) Another effect of dividing one cycle into five processing steps is X! I! Using activated sludge with subsequent activated sludge treatment,
The batch activated sludge method can efficiently remove eutrophic substances from wastewater. The biochemical reaction tank (hereinafter abbreviated as reaction tank) of the batch type activated sludge treatment equipment used in the present invention includes an aeration device 1, a mechanical stirring device, and an OR
Sensors for measuring P, pH1, dissolved oxygen concentration, temperature, etc. are installed, and these sensors are connected to a control device and a recording device, making it possible to control, measure, record, and manage these inside the reaction tank. It should be noted that the best ORP sensor used for activated sludge treatment is a composite electrode made of gold or gold alloy and silver chloride/silver, and other sensors can hardly be used.

次に本発明の富栄養化物質を除去する1サイクルにおけ
る各段階の機能、作用、特徴について説明する。第1段
階は活性汚泥が存在する反応槽に、EIOD 、アンモ
ニア化合物、窒素酸化物5 リン化合物などの富栄養化
物質を含む排水の所定量を攪拌しながら注入する。この
時反応槽のORPは徐々に低下し、最終的にはORPが
−200〜−300国Vまで低下し著しく嫌気状態にな
る。このような嫌気的環境を30分〜2時間維持すると
、活性汚泥中のリンが排水中に放出される。
Next, the functions, actions, and characteristics of each step in one cycle of removing eutrophic substances according to the present invention will be explained. In the first step, a predetermined amount of wastewater containing eutrophic substances such as EIOD, ammonia compounds, nitrogen oxides, and phosphorus compounds is injected into a reaction tank containing activated sludge while stirring. At this time, the ORP of the reaction tank gradually decreases, and eventually the ORP decreases to -200 to -300 V, resulting in a markedly anaerobic state. When such an anaerobic environment is maintained for 30 minutes to 2 hours, phosphorus in the activated sludge is released into the waste water.

例えば排水注入前の活性汚泥のリン化合物の含有量が3
〜5%(リンとして)、また排水中のリン化合物が4〜
6mg/g  (リンとして)であるものが、排水を注
入しORPを−200〜−300■Vの嫌気状態しこ0
.5〜2時間保持すると、活性汚泥中の1)ン化合物が
1〜2mg/g  (リンとして)に低下し、また反応
槽中のリン化合物の濃度が7〜9mg/9に増加する。
For example, the content of phosphorus compounds in activated sludge before wastewater injection is 3.
~5% (as phosphorus), and phosphorus compounds in wastewater are ~4%
6mg/g (as phosphorus) is injected with wastewater and the ORP is -200 to -300V in an anaerobic state.
.. When held for 5 to 2 hours, the concentration of 1) phosphorus compounds in the activated sludge decreases to 1 to 2 mg/g (as phosphorus), and the concentration of phosphorus compounds in the reaction tank increases to 7 to 9 mg/9.

このように第1段階はORPを低下させて活性汚泥に嫌
気的ストレスを芋えて、リン化合物を放出させる工程で
ある。なお、後工程における活性汚泥によるリン化合物
の取り込み能力、或いは排水のリン化合物の濃度によっ
てリン化合物の除去性が異なることが考えられるので、
この工程においてリン化合物を大量に放出させない方が
望ましい場合もあり、活性汚泥からのリン放出を抑制す
る目的で反応槽のORPを−100〜−300mV 、
好マシくは−200〜−250mV ニ制御管理するこ
とが!]!!ましい。
As described above, the first stage is a step in which ORP is lowered, anaerobic stress is applied to activated sludge, and phosphorus compounds are released. Note that the ability to remove phosphorus compounds may vary depending on the ability of the activated sludge to take up phosphorus compounds in the subsequent process or the concentration of phosphorus compounds in wastewater.
In some cases, it may be desirable not to release a large amount of phosphorus compounds in this process, and in order to suppress the release of phosphorus from activated sludge, the ORP of the reaction tank is set at -100 to -300 mV.
Better yet -200 to -250mV control! ]! ! Delicious.

第2段階はBollの除去、排水のリン化合物及び第1
段階において活性汚泥が放出したリン化合物を活性汚泥
に過剰に吸着させるのと、アンモニア化合物、有機アミ
ン化合物などを窒素酸化物に酸化する工程である。従っ
て、第2段階は好気的慶境に維持する必要があり、上記
作用をすべて行うのに適したORPは+100〜+12
0mV以上である。
The second stage is the removal of Boll, the phosphorus compounds in the wastewater and the
The process involves making the activated sludge adsorb excess phosphorus compounds released by the activated sludge in the step, and oxidizing ammonia compounds, organic amine compounds, etc. into nitrogen oxides. Therefore, the second stage must be maintained in an aerobic environment, and the ORP suitable for performing all the above actions is +100 to +12.
It is 0 mV or more.

反応槽の ORPを+100〜+ 120mV以上に制
御管理して、エアレーションを行うと、2時間ないし4
時間後ニハ、排水中c7) 100〜30(lsg/i
 )BODが10mg/i以下ニ、 マf=20〜50
mg/fj  (窒素トシて)のアンモニア性窒素及び
ケルダール性窒素が酸化されて、1〜2 I1g/ i
!以下にそれぞれ低下し、一方硝酸性及び亜硝酸性窒素
は20〜30厘g/i以上に増加する。
If the ORP of the reaction tank is controlled to +100 to +120 mV or more and aeration is performed, the reaction time will be 2 to 4 hours.
Niha after an hour, c7 during drainage) 100-30 (lsg/i
) BOD is less than 10 mg/i, Mf = 20 to 50
mg/fj (nitrogen) of ammoniacal nitrogen and Kjeldahl nitrogen are oxidized to 1-2 I1g/i
! while nitrate and nitrite nitrogen increase to 20-30 g/i or more.

反応槽の排水中のリン化合物は、第1段階において7〜
9I1g/9 (リンとして)が0.5mg/Q(リン
として)以下に低下し、また活性汚泥のリン濃度が3〜
5%に増加する。この場合活性汚泥にリン化合物を吸着
させるため、単に好気的環境と嫌気的環境に交互に変化
させストレスを与えるよりも、本発明のように嫌気的環
境の次の好気的環境において、活性汚泥に800成分の
分解あるいはアンモニア化合物などの酸化を行わせた方
が、活性汚泥へのリン化合物の取り込み量が著しく多ど
なる。これは活性汚泥が第1段階の嫌気的環境において
リン化合物を放出し、好気的環境においてリン化合物に
対して飢餓状態になっている所に、BOO成分の分解、
硝化反応などにより、栄養源としてリン化合物が必要と
なり、このため反動的に大量のリン化合物を取り込むも
のと思われる。
In the first stage, the phosphorus compounds in the waste water of the reaction tank are
9I1g/9 (as phosphorus) is reduced to 0.5mg/Q (as phosphorus) or less, and the phosphorus concentration of activated sludge is 3~
Increase to 5%. In this case, in order to adsorb phosphorus compounds to the activated sludge, rather than simply changing the aerobic environment and anaerobic environment alternately to apply stress, the activated sludge is activated in the aerobic environment following the anaerobic environment as in the present invention. When sludge is subjected to decomposition of 800 components or oxidation of ammonia compounds, etc., the amount of phosphorus compounds taken into activated sludge is significantly increased. This is because the activated sludge releases phosphorus compounds in the anaerobic environment in the first stage, and is starved for phosphorus compounds in the aerobic environment, which causes the decomposition of BOO components.
Phosphorus compounds are required as a nutrient source due to nitrification reactions, so it is thought that large amounts of phosphorus compounds are taken up in a reactionary manner.

第3段階は、硝酸性あるいは亜硝酸性の窒素酸化物を窒
素ガスに還元して除去する工程である。
The third stage is a step in which nitric acid or nitrite nitrogen oxides are reduced to nitrogen gas and removed.

この窒素酸化物を活性汚泥により還元するため、エアレ
ーションを停止して機械的攪拌を行う、この際に水素供
与体を必要とするが、この水素供与体は使用している排
水を反応槽に新たに注入するか、あるいはメタノール、
イソプロピルアルコール、糖蜜、米ヌカなどの有機物を
使用することもできる。
In order to reduce this nitrogen oxide with activated sludge, aeration is stopped and mechanical agitation is performed. At this time, a hydrogen donor is required, but this hydrogen donor is used to transfer the used wastewater to the reaction tank. or methanol,
Organic substances such as isopropyl alcohol, molasses, and rice bran can also be used.

この第3段階は第5段階で放論する処理水の窒素化合物
、リン化合物濃度に著しく影響するので1反応槽のOR
Pおよび窒素酸化物の濃度の管理が重要である。すなわ
ち水素供与体を添加して機械的攪拌を行うと反応槽のO
RPがO〜−30hVに低下する。特にORPが−25
0〜−300mVに低下すると活性汚泥よりリン化合物
の放出が起こり、反応槽中のリン化合物が高くなる。更
にもう一つの問題点としてこのような嫌気的環境にする
と、活性汚泥の嫌気分解が起こり1反応槽中のアンモニ
ア化合物、有機アミン化合物などの窒素濃度も高くなる
。このため場合によっては次の工程で更にリン化合物、
窒素化合物などの除去が必要となり、処理工程が非常に
複雑になる。
This third stage significantly affects the concentration of nitrogen compounds and phosphorus compounds in the treated water, which is discussed in the fifth stage, so the OR of one reaction tank is
Control of P and nitrogen oxide concentrations is important. In other words, when a hydrogen donor is added and mechanical stirring is performed, the O in the reaction tank is reduced.
RP drops to 0 to −30 hV. Especially ORP is -25
When the voltage decreases to 0 to -300 mV, phosphorus compounds are released from the activated sludge, and the phosphorus compounds in the reaction tank become high. Another problem is that when such an anaerobic environment is used, anaerobic decomposition of the activated sludge occurs and the nitrogen concentration of ammonia compounds, organic amine compounds, etc. in one reaction tank also increases. Therefore, in some cases, a phosphorus compound may be added in the next step.
Removal of nitrogen compounds, etc. is required, making the treatment process extremely complicated.

これらの問題点の発生を防止するために反応槽のORP
管理が重要である。すなわちORPと1反応槽内に残存
している窒;#耐化物の濃度と5活性汚泥のリン化合物
の放出、及び嫌気性分解性との間に相互関係があり、窒
素酸化物が0.2〜0.3mg/l(窒素として)以下
になると、ORPが−200〜−300mVになり、O
RPが−50〜−150mVの範囲においては、反応槽
内の窒素酸化物濃度が0.5〜1.0mg/Q  (窒
素として)に維持することができ、またこの程度の嫌気
的環境では活性汚泥よりのリン化合物の放出、及び活性
汚泥の嫌気性分解を抑制することができる。従って第3
段階においては反応槽のORPを−50〜−150mV
の範囲に制御管理する必要がある。しかし機械的攪拌の
みではORPをこの範囲に制御管理することは困難であ
り、 ORPが−50〜−150mV以下ニ低下シタラ
、ORP制御装置により反応槽のエアレージコンを行い
、ORPを−50〜−150mVの範囲に所定の時間維
持する。
In order to prevent these problems from occurring, ORP of the reaction tank is
Management is important. In other words, there is a correlation between ORP and nitrogen remaining in the reaction tank 1; concentration of chemical resistant substances and release of phosphorus compounds of activated sludge, and anaerobic decomposition; nitrogen oxides are 0.2 ~0.3 mg/l (as nitrogen) or less, ORP becomes -200 to -300 mV, and O
When RP is in the range of -50 to -150 mV, the nitrogen oxide concentration in the reaction tank can be maintained at 0.5 to 1.0 mg/Q (as nitrogen), and in an anaerobic environment of this level, the nitrogen oxide concentration can be maintained at 0.5 to 1.0 mg/Q (as nitrogen). Release of phosphorus compounds from sludge and anaerobic decomposition of activated sludge can be suppressed. Therefore, the third
In the step, the ORP of the reaction tank is -50 to -150 mV.
It is necessary to control and manage within the range of However, it is difficult to control and manage the ORP within this range with only mechanical stirring, and when the ORP drops below -50 to -150 mV, air conditioning of the reaction tank is performed using the ORP control device to keep the ORP at -50 to -150 mV. maintained within the range for a predetermined period of time.

第4段階は第3段階において用いた過剰の水素供与体を
除くために、エアレージコンを行い好気的環境を維持す
る。この第4段階におけるORP及び保持時間は、使用
する水素供与体の種類および第5段階において放流する
処理水の規制値によつ1  で異なる。すなわち第5段
階において放流する処理水の窒素規制値が非常に厳しい
場合、水素供与体にアンモニア化合物、有機アミン化合
物を含む排水を用いると、硝化脱窒処理を行ってから放
流しなければならない、このような場合、第5段階は排
水のアンモニア化合物、有機アミン化合物などを窒素酸
化物に酸化する必要があり、ORPを+ 50〜+ 1
50mV 、好tシ<ハ+100〜+150mV ニ維
持する必要がある。
In the fourth stage, in order to remove the excess hydrogen donor used in the third stage, air conditioning is performed to maintain an aerobic environment. The ORP and retention time in this fourth stage vary by 1 depending on the type of hydrogen donor used and the regulatory value of the treated water discharged in the fifth stage. In other words, if the nitrogen regulation value of the treated water to be discharged in the fifth stage is very strict, and if wastewater containing ammonia compounds and organic amine compounds is used as a hydrogen donor, it must be subjected to nitrification and denitrification before being discharged. In such a case, in the fifth stage, it is necessary to oxidize ammonia compounds, organic amine compounds, etc. in the wastewater to nitrogen oxides, and the ORP will be +50 to +1.
It is necessary to maintain 50 mV, preferably +100 to +150 mV.

一方、第5段階の処理水の窒素規制値が緩やかな、場合
、あるいは窒素を含まない水素供与体を用いた場合、過
剰の水素供与体又はBOD成分を除くのみでよいので、
ORPを+50〜+8hVに制御管理すればよい。
On the other hand, if the nitrogen regulation value of the treated water in the fifth stage is loose, or if a hydrogen donor that does not contain nitrogen is used, it is only necessary to remove the excess hydrogen donor or BOD component.
What is necessary is to control and manage ORP to +50 to +8 hV.

第5段階は、反応槽内のエアレージコン、機械的攪拌を
停止して活性汚泥を沈降させ、上澄水の約80%以上を
放流する。なお放流水の窒素規制値が厳しい場合には、
第4段階で生成した窒素酸化物を還元する必要があり、
水素供与体を添加すると短時間に二元が終了するが、水
素供与体を添加しなくても活性汚泥の静置沈降時間を長
くすると、ORPが低下し窒素酸化物を除去することが
できる。なお反応槽内のORPが一200mV以下の嫌
気性環境になると、活性汚泥内に取り込まれたリン化合
物が放出され、第5段階で放流する処理水のリン化合物
濃度が高くなることがあり、このため、第5段階のOR
Pは−50〜−150mVまでが限度でこの範囲に制御
管理する必要があり、処理水のリン化合物濃度を0.5
〜1.0−8/込(リンとして)以下にすることができ
る。
In the fifth stage, the air conditioner and mechanical stirring in the reaction tank are stopped, the activated sludge is allowed to settle, and about 80% or more of the supernatant water is discharged. In addition, if the nitrogen regulation value for effluent water is strict,
It is necessary to reduce the nitrogen oxides produced in the fourth stage,
When a hydrogen donor is added, the binary process is completed in a short time, but even if the hydrogen donor is not added, if the standing settling time of the activated sludge is prolonged, the ORP can be lowered and nitrogen oxides can be removed. Note that when the ORP in the reaction tank becomes an anaerobic environment of -200 mV or less, the phosphorus compounds taken into the activated sludge are released, and the concentration of phosphorus compounds in the treated water discharged in the fifth stage may increase. Therefore, the fifth stage OR
The limit for P is -50 to -150 mV, and it is necessary to control it within this range.
~1.0-8/inclusive (as phosphorus) or less.

この第5段階におけるORP制御管理はエアレージコン
で行うことができない。すなわちエアレージコンを行う
と、活性汚泥が沈降せず、処理水に流出する。このため
、ORP制u4管理は残存している窒素酸化物の濃度で
管理を行うのが良く、第5段階において、生物化学的反
応槽内の窒素酸化物を0.5〜1.Omg/i!  (
窒素として)に維持するとORPを−50〜−150+
*Vに保つことができる。窒素酸化物を0.5〜1.0
+eg/i  (窒素として)に保つためには第3段階
のORPを−50〜−150+sVに制御管理すると良
い。
ORP control management in this fifth stage cannot be performed by an air radio controller. That is, when air conditioning is performed, activated sludge does not settle and flows into the treated water. For this reason, it is best to manage the ORP u4 concentration based on the concentration of remaining nitrogen oxides, and in the fifth stage, the nitrogen oxides in the biochemical reaction tank should be controlled at 0.5 to 1. Omg/i! (
(as nitrogen) to reduce ORP from -50 to -150+
*Can be maintained at V. Nitrogen oxides from 0.5 to 1.0
In order to maintain +eg/i (as nitrogen), it is recommended to control and manage the ORP in the third stage to -50 to -150+sV.

なお第3段階において、水素供与体としてアンモニア化
合物を*機アミン化合物などを含む排水、例えば下水な
どを使用した場合、第4段階におイテ反応槽ノORPが
+100〜+ 120mV以上テすると、硝化反応が起
こり、窒素酸化物を形成する。この窒素酸化物が第5段
階で十分に除去されないと、次のサイクルの第1段階に
持ち込まれ次のサイクルの第1段階の窒素酸化物が0.
5mg/71以上存在すると、ORPが十分に低下せず
、活性汚泥からのリン化合物の放出が起こらない場合が
ある。これを防ぐためには第4段階のORPを+50〜
+ 80mVに制御管理して、窒素酸化物の生成を抑制
するか、あるいは第5段階において第4段階で生成した
窒素酸化物を0.5tag/Q以下にする必要がある。
In the third stage, if an ammonia compound is used as a hydrogen donor and wastewater containing amine compounds, such as sewage, is used, and if the ORP of the reaction tank is +100 to +120 mV or more in the fourth stage, nitrification will occur. A reaction takes place, forming nitrogen oxides. If this nitrogen oxide is not sufficiently removed in the fifth stage, it is carried into the first stage of the next cycle, and the nitrogen oxide in the first stage of the next cycle is reduced to 0.
If it is present in an amount of 5 mg/71 or more, the ORP may not be sufficiently reduced and the release of phosphorus compounds from activated sludge may not occur. To prevent this, increase the ORP of the 4th stage by +50~
It is necessary to control the voltage to +80 mV to suppress the production of nitrogen oxides, or to reduce the nitrogen oxides produced in the fourth stage to 0.5 tag/Q or less in the fifth stage.

次に本発明の第2の発明である回分式活性汚泥処理に適
した活性汚泥を連続活性汚泥処理の活性汚泥より馴養す
る方法について説明する。都市下水などの連続的活性汚
泥処理の活性汚泥を回分式活性汚泥法の活性汚泥に用い
ても、直ちに排水中のリン化合物を排水中から活性汚泥
内に過剰に取り込む機能がそなわっでおらず、また連続
活性汚泥処理の活性汚泥に前述のような機能を持たせる
馴養方法が明確にされていない、しかし連続活性汚泥処
理から採取した活性汚泥に先に説明した本発明の5段階
の処理方法を適用すると、2〜5日間の短期間で排水中
の富栄養化物質を回分式活性汚泥法により除去すること
ができる。
Next, a method of acclimating activated sludge suitable for batch activated sludge treatment to activated sludge for continuous activated sludge treatment, which is the second invention of the present invention, will be explained. Even if activated sludge from continuous activated sludge treatment such as municipal sewage is used as activated sludge for the batch activated sludge method, it does not have the ability to immediately incorporate excessive phosphorus compounds from wastewater into activated sludge. Furthermore, the acclimatization method for giving activated sludge from continuous activated sludge treatment the above-mentioned functions has not been clarified. When applied, eutrophic substances in wastewater can be removed in a short period of 2 to 5 days by a batch activated sludge method.

実施例1 本発明の回分式活性汚泥法に用いる活性汚泥の馴養方法
の実施例を示す、都市下水を連続的に活性汚泥処理を行
っている下水処理場の活性汚泥処理設備のエアレーショ
ンタンクより活性汚泥混合液(活性汚泥混合液2500
mg/ % )を20免採取し、これを回分式活性汚泥
処理実験装置の生物化学的反応槽(有効容積301)に
移し、活性汚泥の馴養を行った。
Example 1 This shows an example of the method for acclimatizing activated sludge used in the batch activated sludge method of the present invention. Sludge mixed liquid (activated sludge mixed liquid 2500
20 mg/%) was collected and transferred to a biochemical reaction tank (effective volume: 301) of a batch-type activated sludge treatment experimental device, and the activated sludge was acclimatized.

馴養方法は反応槽のエアレーション、機械的攪拌を停止
Fし、活性汚泥を静置沈降させ6に澄水の大部分を放流
した後、第1段階としてこれに約1時間かけ、表1に示
した性状を示す都市下水に機械的攪拌を行いながら注入
し、全体量を20Q、にする、さらに約30分間機械的
攪拌を行い、反応槽内のORPをエアレーションにより
一250mVに制御した。
The acclimatization method was as follows: aeration of the reaction tank and mechanical stirring were stopped, the activated sludge was left to settle, and most of the clear water was discharged into 6. This took about 1 hour as the first step, as shown in Table 1. The mixture was injected into urban sewage with mechanical stirring to bring the total volume to 20Q. Mechanical stirring was further performed for about 30 minutes, and the ORP in the reaction tank was controlled at -250 mV by aeration.

次に第2段階として機械的攪拌とエアレーションを行い
、反応槽内のORPを+100〜+120霧Vに4時間
30分維持した。
Next, as a second step, mechanical stirring and aeration were performed to maintain the ORP in the reaction tank at +100 to +120 fog V for 4 hours and 30 minutes.

第3段階はエアレーションを停止し、機械的攪拌のみを
行い、表1の都市下水約5込を30分間かかって注入し
、その後約2.5時間機械的撹拌を行う、tお反応槽内
のORPは一130mV以下になると、エアレーション
が断続的に行えるようにして、この範囲に管理制御した
In the third stage, aeration is stopped and only mechanical stirring is performed, and about 50% of the municipal sewage in Table 1 is injected over a period of 30 minutes, followed by mechanical stirring for about 2.5 hours. When the ORP became -130 mV or less, aeration was performed intermittently to control the ORP within this range.

第4段階はORPが+80mVになるようにエアレーシ
ョンと機械的攪拌を約1時間15分行った。
In the fourth stage, aeration and mechanical stirring were performed for about 1 hour and 15 minutes so that ORP was +80 mV.

第5段階はエアレーションと機械的攪拌を停止して、活
性汚泥の沈降を約45分間行い、その後上澄水を約45
分間かかって放流し、放流後約15分間静置した。
In the fifth stage, aeration and mechanical stirring are stopped, the activated sludge settles for about 45 minutes, and then the supernatant water is pumped for about 45 minutes.
It took a few minutes to drain the water, and after draining, it was allowed to stand still for about 15 minutes.

第1段階から第5段階が終γするまでの1サイクルが約
12時間である。このサイクルの実験を3〜5日間行う
と、放流水(処理水)の水質は表1に示しているように
、BO[]がl(lag/q以ド、全室J4mg/Q、
全リン0.4tag/Qとなり、都市下水中の富栄養化
物質を回分式活性汚泥法により除去できる活性汚泥の馴
養ができた。
One cycle from the first stage to the end of the fifth stage takes approximately 12 hours. When this cycle experiment is carried out for 3 to 5 days, the water quality of the effluent water (treated water) is as shown in Table 1.
Total phosphorus was 0.4 tag/Q, and activated sludge that can remove eutrophic substances from urban sewage by the batch activated sludge method was able to be acclimated.

表1.都市下水及び処理水の性状 実施例2 実施例1で馴養した活性汚泥を用いて、1日3サイクル
の処理実験を行った。その時間的配分は次の通りである
Table 1. Properties of urban sewage and treated water Example 2 Using the activated sludge acclimatized in Example 1, a treatment experiment was conducted for three cycles a day. The time allocation is as follows.

まず第1段階は、表1の都市下水を機械的攪拌を行いな
がら約1時間かかって注入し、全量を約20文とした。
First, in the first step, the urban sewage shown in Table 1 was injected over a period of about 1 hour while mechanically stirring, and the total amount was about 20 tons.

直ちに第2段階のエアレーションを約2時間行イORP
を+140mV ニ制御管理シタ。
Immediately perform the second stage of aeration for approximately 2 hours.
+140mV control management.

第3段階はエアレーションを停止して、機械的攪拌のみ
を行い、都市下水的5fLを約30分間で注入し、OR
Pを一150mVに制御管理した。この時間は約2時間
である。なおORPが一150mV以下になったらエア
レーションを断続的に行って、 ORP制御管理を行う
In the third stage, aeration is stopped, only mechanical agitation is performed, and 5fL of urban sewage water is injected in about 30 minutes, and OR
P was controlled at -150 mV. This time is about 2 hours. If ORP falls below -150mV, perform aeration intermittently and perform ORP control management.

第4段階はエアレーションを約30分行い、ORPを+
80翳りに制御管理する。
The fourth stage is aeration for about 30 minutes to increase ORP.
Control and manage over 80 degrees.

その後エアレーションと機械的攪拌を停止して、活性汚
泥の沈降を行い1次に約45分間で上澄水を放流した。
Thereafter, aeration and mechanical stirring were stopped, and the activated sludge was allowed to settle, and the supernatant water was discharged for about 45 minutes.

更に放流後約15分間静はした後、次のサイクルの都市
下水を注入する。このようにして、1日3サイクルで処
理した処理水の水質はBODが約3〜511g/q、ケ
ルダール窒素が5〜7邦/2、アンモニア性窒素が4〜
5mg/免、全リンが0.3tag/Qである。なお硝
酸性及び亜硝酸性窒素はいずれもl tag/ Ll以
下であった。
After the water has been discharged for about 15 minutes, the next cycle of municipal sewage is injected. In this way, the quality of the treated water treated three times a day has BOD of approximately 3 to 511 g/q, Kjeldahl nitrogen of 5 to 7 g/2, and ammonia nitrogen of 4 to 5 g/q.
5 mg/immune, total phosphorus is 0.3 tag/Q. Note that both nitrate and nitrite nitrogen were below l tag/Ll.

発明の詳細 な説明したように、本発明は回分式活性汚泥処理におい
て、反応槽に排水を注入して活性汚泥により、Boo、
アンモニア化合物、窒素酸化物、リン化合物などの富栄
養化物質を除去し、排水を放流するまでの工程を5段階
に分けることにより、富栄養化物質を効率よく除去する
ことができる。また本発明は連続活性汚泥処理の活性汚
泥を回分式活性汚泥処理法により処理馴養する極めて有
効な方法である。
DETAILED DESCRIPTION OF THE INVENTION As described in detail, the present invention provides a batch activated sludge treatment in which wastewater is injected into a reaction tank and activated sludge is used to treat Boo,
By dividing the process from removing eutrophic substances such as ammonia compounds, nitrogen oxides, and phosphorus compounds to discharging wastewater into five stages, eutrophic substances can be efficiently removed. Furthermore, the present invention is an extremely effective method for acclimating activated sludge from continuous activated sludge treatment using a batch activated sludge treatment method.

Claims (5)

【特許請求の範囲】[Claims] (1)生物化学的酸素要求量によって表示される汚濁物
質(BOD)、アンモニア化合物、窒素酸化物、リン化
合物などの富栄養化物質を含む排水を回分式活性汚泥法
により処理する際に、生物化学的反応槽の酸化還元電位
(ORP)を制御管理することにより、前記富栄養化物
質を除去することを特徴とする排水処理方法。
(1) When treating wastewater containing eutrophic substances such as pollutants (BOD), ammonia compounds, nitrogen oxides, and phosphorus compounds as indicated by biochemical oxygen demand using the batch activated sludge method, biological A wastewater treatment method, characterized in that the eutrophic substances are removed by controlling and managing the oxidation-reduction potential (ORP) of a chemical reaction tank.
(2)生物化学的反応槽に金若しくは金合金と塩化銀及
び銀よりなるORPセンサーを設置し富栄養化物質の除
去に適したORP値に管理制御することを特徴とする特
許請求の範囲第(1)項記載の排水処理方法。
(2) An ORP sensor made of gold or gold alloy, silver chloride, and silver is installed in a biochemical reaction tank, and the ORP value is controlled to be suitable for removing eutrophic substances. The wastewater treatment method described in (1).
(3)富栄養化物質を除去するプロセスの1サイクルが
次の5段階よりなることを特徴とする特許請求の範囲第
(1)又は(2)項記載の排水処理方法。 第1段階は、活性汚泥が存在する生物化学的反応槽に、
機械的攪拌を行いながら排水を注入し、ORPを−20
0〜−300mVの範囲の任意のORP値で制御管理す
る。 第2段階は、BOD、リン化合物の除去、及びアンモニ
ア化合物を窒素酸化物に酸化する工程でエアレーション
を行い、ORPを+100〜+120mV以上に所定の
時間維持する。 第3段階は、第2段階で生成した窒素酸化物を窒素ガス
に還元する工程で、機械攪拌を行い、水素供与体を所定
量注入し、ORPを−50〜−150mVまで低下させ
、この範囲でORP制御を所定時間行う。 第4段階はエアレーションを行い、過剰の水素供与体の
分解を主目的とし、ORPを+50〜+150mVの範
囲の任意の値で制御管理を行う。 第5段階はエアレーション、及び機械的攪拌を停止し、
活性汚泥を沈降させ、上澄の約80%以上を放流する。
(3) The wastewater treatment method according to claim (1) or (2), wherein one cycle of the process for removing eutrophic substances consists of the following five steps. The first step is to place activated sludge in a biochemical reactor.
Inject wastewater with mechanical stirring and reduce ORP to -20
It is controlled and managed using an arbitrary ORP value in the range of 0 to -300 mV. In the second stage, aeration is performed to remove BOD and phosphorus compounds, and to oxidize ammonia compounds to nitrogen oxides, and the ORP is maintained at +100 to +120 mV or higher for a predetermined period of time. The third stage is the process of reducing the nitrogen oxides produced in the second stage to nitrogen gas, where mechanical stirring is performed, a predetermined amount of hydrogen donor is injected, and the ORP is reduced to -50 to -150 mV. The ORP control is performed for a predetermined period of time. In the fourth stage, aeration is performed, with the main purpose of decomposing excess hydrogen donor, and ORP is controlled and managed at an arbitrary value in the range of +50 to +150 mV. The fifth stage is to stop aeration and mechanical stirring;
The activated sludge is allowed to settle and approximately 80% or more of the supernatant is discharged.
(4)第3段階における活性汚泥のリン化合物の放出を
防止するため、生物化学的反応槽のORPを−50〜−
150mVに管理して、槽内の窒素酸化物濃度を0.5
〜1.0mg/l(窒素として)に維持することを特徴
とする特許請求の範囲第(3)項記載の排水処理方法。
(4) In order to prevent the release of phosphorus compounds from activated sludge in the third stage, the ORP of the biochemical reaction tank is set to -50 to -
The nitrogen oxide concentration in the tank was controlled at 150 mV to 0.5
The wastewater treatment method according to claim 3, wherein the wastewater treatment method is maintained at 1.0 mg/l (in terms of nitrogen).
(5)連続活性汚泥処理の活性汚泥を、1サイクルが次
の5段階よりなる回分式活性汚泥法により、排水中の富
栄養化物質を除去できるように馴養することを特徴とす
る活性汚泥の馴養方法。 第1段階は、活性汚泥が存在する生物化学的反応槽に、
機械的攪拌を行いながら排水を注入し、ORPを−20
0〜−300mVの範囲の任意のORP値で制御管理す
る。 第2段階は、BOD、リン化合物の除去、及びアンモニ
ア化合物を窒素酸化物に酸化する工程でエアレーション
を行い、ORPを+100〜+120mV以上に所定の
時間維持する。 第3段階は、第2段階で生成した窒素酸化物を窒素ガス
に還元する工程で、機械攪拌を行い、水素供与体を所定
量注入し、ORPを−50〜−150mVまで低下させ
、この範囲でORP制御を所定時間行う。 第4段階はエアレーションを行い、過剰の水素供与体の
分解を主目的とし、ORPを+50〜+150mVの範
囲の任意の値で制御管理を行う。 第5段階はエアレーション、及び機械的攪拌を停止し、
活性汚泥を沈降させ、上澄の約80%以上を放流する。
(5) Activated sludge that is characterized in that activated sludge from continuous activated sludge treatment is acclimatized to remove eutrophic substances in wastewater by a batch activated sludge method in which one cycle consists of the following five steps. How to get used to it. The first step is to place activated sludge in a biochemical reactor.
Inject wastewater with mechanical stirring and reduce ORP to -20
It is controlled and managed using an arbitrary ORP value in the range of 0 to -300 mV. In the second stage, aeration is performed to remove BOD and phosphorus compounds, and to oxidize ammonia compounds to nitrogen oxides, and the ORP is maintained at +100 to +120 mV or higher for a predetermined period of time. The third stage is the process of reducing the nitrogen oxides produced in the second stage to nitrogen gas, using mechanical stirring and injecting a predetermined amount of hydrogen donor to reduce the ORP to -50 to -150 mV. The ORP control is performed for a predetermined period of time. In the fourth stage, aeration is performed, with the main purpose of decomposing excess hydrogen donor, and ORP is controlled and managed at an arbitrary value in the range of +50 to +150 mV. The fifth stage is to stop aeration and mechanical stirring;
The activated sludge is allowed to settle and approximately 80% or more of the supernatant is discharged.
JP60178586A 1985-08-15 1985-08-15 Treatment of waste water and method for acclimatizing activated sludge Granted JPS6242796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60178586A JPS6242796A (en) 1985-08-15 1985-08-15 Treatment of waste water and method for acclimatizing activated sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60178586A JPS6242796A (en) 1985-08-15 1985-08-15 Treatment of waste water and method for acclimatizing activated sludge

Publications (2)

Publication Number Publication Date
JPS6242796A true JPS6242796A (en) 1987-02-24
JPH037436B2 JPH037436B2 (en) 1991-02-01

Family

ID=16051061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60178586A Granted JPS6242796A (en) 1985-08-15 1985-08-15 Treatment of waste water and method for acclimatizing activated sludge

Country Status (1)

Country Link
JP (1) JPS6242796A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63283796A (en) * 1987-05-14 1988-11-21 Kajima Corp Sewage treatment
JP2008307459A (en) * 2007-06-13 2008-12-25 Shibaura Institute Of Technology Polluted seawater purification method by microorganism derived from seawater
CN106379999A (en) * 2016-09-23 2017-02-08 浙江水利水电学院 Three-dimensional purification method of eutrophic lake water

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523678A (en) * 1978-08-08 1980-02-20 Nec Corp Color pick up unit
JPS5564896A (en) * 1978-11-07 1980-05-15 Nippon Steel Corp Automatic control method for oxidation-reduction potential in aerobic active sludge treatment
JPS59115794A (en) * 1982-12-24 1984-07-04 Nippon Kokan Kk <Nkk> Treatment of organic sewage
JPS59115793A (en) * 1982-12-24 1984-07-04 Nippon Kokan Kk <Nkk> Treatment of organic sewage
JPS6115793A (en) * 1984-06-29 1986-01-23 Ebara Infilco Co Ltd Treatment of organic waste water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523678A (en) * 1978-08-08 1980-02-20 Nec Corp Color pick up unit
JPS5564896A (en) * 1978-11-07 1980-05-15 Nippon Steel Corp Automatic control method for oxidation-reduction potential in aerobic active sludge treatment
JPS59115794A (en) * 1982-12-24 1984-07-04 Nippon Kokan Kk <Nkk> Treatment of organic sewage
JPS59115793A (en) * 1982-12-24 1984-07-04 Nippon Kokan Kk <Nkk> Treatment of organic sewage
JPS6115793A (en) * 1984-06-29 1986-01-23 Ebara Infilco Co Ltd Treatment of organic waste water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63283796A (en) * 1987-05-14 1988-11-21 Kajima Corp Sewage treatment
JP2008307459A (en) * 2007-06-13 2008-12-25 Shibaura Institute Of Technology Polluted seawater purification method by microorganism derived from seawater
CN106379999A (en) * 2016-09-23 2017-02-08 浙江水利水电学院 Three-dimensional purification method of eutrophic lake water
CN106379999B (en) * 2016-09-23 2021-01-12 浙江水利水电学院 Stereo purification method for eutrophic lake water body

Also Published As

Publication number Publication date
JPH037436B2 (en) 1991-02-01

Similar Documents

Publication Publication Date Title
US5380438A (en) Treatment of wastewater through enhanced biological phosphorus removal
JP5100091B2 (en) Water treatment method
JP4649911B2 (en) Treatment of organic matter and nitrogen-containing wastewater
US11820688B2 (en) Water treatment method for simultaneous abatement of carbon, nitrogen and phosphorus, implemented in a sequencing batch moving bed biofilm reactor
CN111406036A (en) Method for treating nitrogen in wastewater by nitrosation organisms
JP6491056B2 (en) Nitrogen removal method and nitrogen removal apparatus
JP2003053384A (en) Method for removing nitrogen and phosphorus from waste water and facility therefor
KR100236650B1 (en) A plant for biologically denitrifying and removing phosphorus in sewage using denitrifying phosphorous removing bacteria
JPS6242796A (en) Treatment of waste water and method for acclimatizing activated sludge
JPS6254075B2 (en)
JP2019217481A (en) Water treatment method
JPH04151000A (en) Method and apparatus for simultaneous removal of nitrogen and phosphorus
JP3377346B2 (en) Organic wastewater treatment method and apparatus
KR20060081804A (en) Gradually operated sequencing batch reactor and method thereof
KR100470350B1 (en) Method for disposing of livestock waste water
JPS63126599A (en) Biochemical treatment of waste water
JP2750773B2 (en) Batch activated sludge treatment method
JP2720096B2 (en) Method for simultaneous removal of BOD, nitrogen compounds and phosphorus compounds in wastewater
JP6667030B2 (en) Water treatment method
KR950000212B1 (en) Waste water clarifier
JPH06182377A (en) Method for treating sewage
JPH09141294A (en) Biological nitrogen removing method
JP2678803B2 (en) Method for simultaneous removal of BOD, nitrogen compounds and phosphorus compounds in wastewater
JPH03229693A (en) Treatment of organic waste water
JPH0476757B2 (en)