JP2013017928A - Wastewater treatment method, and wastewater treatment apparatus - Google Patents

Wastewater treatment method, and wastewater treatment apparatus Download PDF

Info

Publication number
JP2013017928A
JP2013017928A JP2011151664A JP2011151664A JP2013017928A JP 2013017928 A JP2013017928 A JP 2013017928A JP 2011151664 A JP2011151664 A JP 2011151664A JP 2011151664 A JP2011151664 A JP 2011151664A JP 2013017928 A JP2013017928 A JP 2013017928A
Authority
JP
Japan
Prior art keywords
wastewater
treatment
activated sludge
concentration
anammox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011151664A
Other languages
Japanese (ja)
Other versions
JP5862082B2 (en
Inventor
Hiroshi Tanaka
浩 田中
Yuuko Yoshida
有子 吉田
Hiroshi Otsuka
洋 大塚
Masaharu Yamashita
雅治 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011151664A priority Critical patent/JP5862082B2/en
Publication of JP2013017928A publication Critical patent/JP2013017928A/en
Application granted granted Critical
Publication of JP5862082B2 publication Critical patent/JP5862082B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

PROBLEM TO BE SOLVED: To provide a wastewater treatment technology which can cope with a wide change of water quality, and can stably continue removal of ammonia nitrogen and organic matter.SOLUTION: When wastewater includes high-concentration organic matter, the organic matter concentration is reduced by methane fermentation, and anammox treatment or activated sludge treatment is performed thereon based on the ratio of COD to ammonia nitrogen. The wastewater is preliminarily diluted, as needed, to reduce Kjeldahl nitrogen, and drainage water after activated sludge treatment is refluxed and used as dilution water. The wastewater after anammox treatment is subjected to activated sludge treatment.

Description

本発明は、廃水を浄化するための廃水処理方法及び廃水処理装置に関し、特に、微生物の作用によって廃水に含まれるアンモニアの硝化及び脱窒を行う廃水処理の適用可能な水質範囲が広く、アンモニア態窒素及び有機物の除去効率が高い廃水処理方法及び廃水処理装置に関する。   The present invention relates to a wastewater treatment method and a wastewater treatment apparatus for purifying wastewater, and in particular, has a wide range of applicable water quality for wastewater treatment in which nitrification and denitrification of ammonia contained in wastewater is caused by the action of microorganisms. The present invention relates to a wastewater treatment method and a wastewater treatment apparatus with high nitrogen and organic substance removal efficiency.

微生物を用いた廃水処理においては、アンモニア態窒素の酸化(硝化)及び酸化態窒素(硝酸、亜硝酸)の脱窒を細菌によって進行させることによって、廃水に含まれるアンモニアを窒素ガスに変換することができる。この処理方法は、以下のように分類することができる。   In the treatment of wastewater using microorganisms, the ammonia contained in the wastewater is converted to nitrogen gas by the progress of oxidation (nitrification) of ammonia nitrogen and denitrification of the oxidized nitrogen (nitric acid, nitrous acid) by bacteria. Can do. This processing method can be classified as follows.

A)活性汚泥を用いて、硝化細菌によってアンモニアを酸化態窒素に変換し、メタノール等の有機物を電子供与体として用いて酸化態窒素を窒素ガスに変換する方法(例えば、下記特許文献1の活性汚泥変法参照)。   A) A method of converting ammonia into oxidized nitrogen by nitrifying bacteria using activated sludge, and converting oxidized nitrogen into nitrogen gas using an organic substance such as methanol as an electron donor (for example, the activity of Patent Document 1 below) See Sludge Modification).

B)硝化細菌によってアンモニアを酸化態窒素に変換した後、硫黄を酸化して酸化態窒素を還元する細菌群によって酸化態窒素を窒素ガスに変換する方法。   B) A method of converting oxidized nitrogen to nitrogen gas by a group of bacteria that convert ammonia to oxidized nitrogen by nitrifying bacteria and then oxidize sulfur to reduce oxidized nitrogen.

C)アンモニア酸化細菌によってアンモニアを亜硝酸態窒素に酸化(部分硝化)する工程と、脱窒細菌に属するアナモックス(ANAMMOX)細菌によってアンモニア態窒素及び亜硝酸態窒素から窒素ガスを生成する(NH++NO →N+2HO)工程とによってアンモニアを窒素ガスに変換する方法(下記特許文献2参照)。 C) Oxidation of ammonia to nitrite nitrogen by ammonia oxidizing bacteria (partial nitrification), and generation of nitrogen gas from ammonia nitrogen and nitrite nitrogen by anammox bacteria belonging to denitrifying bacteria (NH 4 (++ NO 2 → N 2 + 2H 2 O) step to convert ammonia into nitrogen gas (see Patent Document 2 below).

上記の処理方法のうちで、広く世界的に普及しているのはA)の処理方法であり、多くの経験に基づいて安定性の高い処方が確立されているが、この処理方法は、酸化態窒素の還元脱窒に有機物を必要とするので、有機物が少ない廃水には不向きである。又、実際の処理においては、概して、廃水に含まれる有機物のみでの稼動を可能とするために廃水を循環させて脱窒処理と硝化処理とを繰り返すように応用された形態で実施されている。しかし、この場合、酸化態窒素が必然的に残留するので、この濃度を低くするには廃水を循環させる割合を高める必要があり、処理の繰り返し度合が高くなるため、稼動費用がかさむ。又、循環による処理の繰り返しによって酸化態窒素の除去率は90%程度まで上げることが可能であるが、処理を完遂させる場合には、外部から廃水に有機物を添加する必要があり、供給する有機物の費用が生じる。   Among the above processing methods, the processing method of A) is widely spread worldwide, and a highly stable formulation has been established based on many experiences. Since organic matter is required for reductive denitrification of nitrogen, it is not suitable for wastewater with little organic matter. Further, in actual treatment, in general, in order to enable operation only with organic substances contained in wastewater, the wastewater is circulated and applied in a form applied to repeat denitrification treatment and nitrification treatment. . However, in this case, oxidized nitrogen inevitably remains. Therefore, in order to reduce this concentration, it is necessary to increase the ratio of circulating the wastewater, and the repetition rate of the treatment is increased, which increases the operating cost. Moreover, the removal rate of oxidized nitrogen can be increased to about 90% by repeating the treatment by circulation. However, when the treatment is completed, it is necessary to add organic matter to the waste water from the outside, and the organic matter to be supplied Costs.

上記B)の処理方法は、硫黄の添加を必須とするので、この薬剤使用による経費が必要となる。   Since the treatment method B) requires the addition of sulfur, the cost for using this chemical is required.

上記C)の処理方法は、経費のかかる薬剤や有機物を必要とせず、処理に必要な酸素供給量も処理開始時のアンモニア態窒素の半分を酸化する量であるので、稼動に要する消費エネルギー及び負荷が少ない。しかし、言い換えれば、廃水に含まれる有機物を処理することはできず、有機物濃度が高い廃水に適用すると他の細菌が増殖し易いため、増殖速度が極めて遅いアナモックス細菌が駆逐されて安定に処理ができなくなる。又、窒素の除去率は約90%以下で、残りの約10%は硝酸態窒素として廃水に残存する。   The treatment method of C) does not require expensive chemicals and organic substances, and the oxygen supply amount necessary for the treatment is an amount that oxidizes half of the ammonia nitrogen at the start of the treatment. There is little load. However, in other words, organic matter contained in wastewater cannot be treated, and when applied to wastewater with a high concentration of organic matter, other bacteria are likely to grow. become unable. The nitrogen removal rate is about 90% or less, and the remaining about 10% remains in the wastewater as nitrate nitrogen.

このようなことから、下記特許文献3では、廃水のアンモニア態窒素濃度に対する化学的酸素要求量の比率(COD/N)を求め、この値に応じて、活性汚泥処理の前にアナモックス細菌による脱窒処理を実施するか否かを決定する廃水処理方法が提案されている。   For this reason, in Patent Document 3 below, the ratio of chemical oxygen demand to the ammonia nitrogen concentration of wastewater (COD / N) is obtained, and in accordance with this value, desorption by anammox bacteria is performed before activated sludge treatment. A wastewater treatment method for determining whether or not to perform a nitriding treatment has been proposed.

特開平8−267087号公報JP-A-8-267087 特表2001−506535号公報Special table 2001-506535 gazette 特開2008−155085号公報JP 2008-155085 A

上記特許文献3の方法によれば、有機物質濃度の比率が高いCOD/N比が7.0以上の廃水は、直接活性汚泥処理によって処理され、有機物質濃度の比率が低いCOD/N比が0.3以下の廃水は、有機物を必要としないアナモックス処理を経た上で最終的に活性汚泥処理によって処理されるので、廃水の水質によって処理方法が選択され、両処理の適性に応じた処理が効率よく行われる。   According to the method of Patent Document 3, wastewater having a high COD / N ratio of 7.0 or more is treated directly by activated sludge treatment, and the COD / N ratio of low organic substance concentration is low. Waste water of 0.3 or less is finally treated by activated sludge treatment after anammox treatment that does not require organic matter, so the treatment method is selected according to the quality of the waste water, and treatment according to the suitability of both treatments It is done efficiently.

しかし、有機物濃度が極めて高い廃水の場合、COD/N比が7.0以上であっても、アンモニア濃度の高さによって微生物が廃水に接触する際の毒性が無視できないレベルになると、これを軽減して安定した処理を行うために廃水の希釈が必要となる。また、COD/N比が0.3以下であっても、有機物が高濃度であれば、他の細菌によって増殖速度の遅いアナモックス細菌が駆逐される恐れがあるため、廃水の希釈が必要となる。希釈水の導入に当たっては、微生物処理に適した水温に加温調整するためのエネルギー消費が増加する。   However, in the case of wastewater with extremely high organic matter concentration, even if the COD / N ratio is 7.0 or more, the toxicity when microorganisms come into contact with the wastewater becomes a level that cannot be ignored due to the high ammonia concentration. In order to perform stable treatment, it is necessary to dilute wastewater. In addition, even if the COD / N ratio is 0.3 or less, if the organic matter is at a high concentration, anammox bacteria having a slow growth rate may be driven out by other bacteria, so dilution of waste water is required. . In introducing diluted water, energy consumption for adjusting the temperature to a water temperature suitable for microbial treatment increases.

また、廃水の有機物は、活性汚泥処理によって二酸化炭素へ分解されるが、資源の有効活用や環境保護等の観点からも、更なる改善が望ましい。   In addition, organic matter in wastewater is decomposed into carbon dioxide by activated sludge treatment, but further improvement is desirable from the viewpoint of effective utilization of resources and environmental protection.

本発明は、費用のかかる薬剤や有機物の添加を用いずに、廃水中の有機物及びアンモニア態窒素を高い除去率で効率よく処理でき、幅広い水質に対応可能であり、高濃度の有機物を含む廃水処理を好適に処理できる廃水処理方法及び廃水処理装置を提供することを課題とする。   The present invention is capable of efficiently treating organic matter and ammonia nitrogen in wastewater with a high removal rate without using expensive chemicals and organic matter addition, and can cope with a wide range of water quality, and wastewater containing a high concentration of organic matter. It is an object of the present invention to provide a wastewater treatment method and a wastewater treatment apparatus capable of suitably treating the wastewater.

又、本発明は、廃水の水質変動に容易に対応でき、廃水のアンモニア態窒素及び有機物の除去処理を安定的に継続でき、高濃度で含まれる有機物の処理によってより有効利用可能な形態に転換できる廃水処理方法及び廃水処理装置を提供することを課題とする。   In addition, the present invention can easily cope with water quality fluctuations of wastewater, can stably remove wastewater ammonia nitrogen and organic matter, and can be converted to a more effective form by treatment of organic matter contained in high concentration. It is an object of the present invention to provide a wastewater treatment method and a wastewater treatment apparatus that can be used.

上記課題を解決するために、本発明者らは鋭意研究を重ねた結果、上記A)の活性汚泥処理とC)のアナモックス細菌を用いた処理との組み合わせに、更に、メタン生成細菌による処理を導入することによって、高濃度の有機物をメタンに変換してエネルギー源として利用可能に構成され、より広い範囲の水質に対応可能となると共に、廃水の水質変動にも幅広く対処でき、高い除去率で有機物及びアンモニア態窒素を廃水から除去できることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have conducted intensive research. As a result, the combination of A) activated sludge treatment and C) treatment with anammox bacteria, and further treatment with methanogenic bacteria. By introducing it, it can be used as an energy source by converting high-concentration organic matter into methane, and it can cope with a wider range of water quality, and can cope with a wide range of waste water quality fluctuations, with a high removal rate. It has been found that organic substances and ammonia nitrogen can be removed from wastewater, and the present invention has been completed.

本発明の一態様によれば、廃水処理方法は、廃水に含まれる有機物をメタン発酵して有機物濃度を減少させるメタン発酵処理と、廃水にアンモニア酸化細菌及びアナモックス細菌を作用させて廃水に含まれるアンモニア態窒素を窒素ガスに変換するアナモックス処理と、廃水に活性汚泥を作用させてアンモニア態窒素の硝化及び硝酸・亜硝酸態窒素の脱窒を行う活性汚泥処理とを有することを要旨とする。   According to one aspect of the present invention, a wastewater treatment method includes methane fermentation treatment in which organic matter contained in wastewater is subjected to methane fermentation to reduce the concentration of organic matter, and ammonia waste bacteria and anammox bacteria are allowed to act on the wastewater. The gist is to have an anammox treatment for converting ammonia nitrogen into nitrogen gas and an activated sludge treatment for nitrifying ammonia nitrogen and denitrifying nitric acid / nitrite nitrogen by causing activated sludge to act on wastewater.

また、本発明の一態様によれば、廃水処理装置は、廃水に含まれる有機物をメタン発酵するメタン生成菌を収容するメタン発酵処理槽と、廃水に含まれるアンモニア態窒素を窒素ガスに変換するアンモニア酸化細菌及びアナモックス細菌を収容するアナモックス処理槽と、廃水に含まれるアンモニア態窒素の硝化及び硝酸・亜硝酸態窒素の脱窒を行う活性汚泥を収容する活性汚泥処理槽とを有することを要旨とする。   Moreover, according to one aspect of the present invention, a wastewater treatment apparatus converts a methane fermentation treatment tank that contains a methane-producing bacterium that methane-ferments organic matter contained in wastewater, and ammonia nitrogen contained in the wastewater into nitrogen gas. It is summarized that it has an anammox treatment tank containing ammonia oxidizing bacteria and anammox bacteria, and an activated sludge treatment tank containing activated sludge that nitrifies ammonia nitrogen contained in wastewater and denitrifies nitrate and nitrite nitrogen. And

本発明によれば、メタン生成細菌を用いたメタン発酵処理を組み込むことによって、廃水に含まれる有機物の有効利用が可能となり、COD/N比に従ってアナモックス処理及び活性汚泥処理によって、廃水中の有機物及びアンモニアを効果的に分解処理できる。又、廃水に含まれる有機物濃度及びアンモニア濃度に応じて、活性汚泥処理法及びアナモックス細菌を用いた処理法から適切に処理法を選択・組み合わせて実施することにより、効率よく有機物及びアンモニア態窒素を除去でき、広範囲の有機物濃度及びアンモニア濃度で廃水処理が可能となる。従って、処理効率が良く適用性の高い廃水処理方法及び処理装置が提供される。又、細菌の性質に合った処理を適用できるので、微生物の増殖バランスを損なわずに処理を継続できる。費用のかさむ薬剤や補充物質等を外部から処理系に添加せずに実施可能であるので、処理コスト及びエネルギー消費の点でも有利であり、処理に要する設備の構造も簡易である。   According to the present invention, by incorporating a methane fermentation treatment using methanogenic bacteria, it becomes possible to effectively use organic matter contained in wastewater, and organic matter in wastewater and anammox treatment and activated sludge treatment according to the COD / N ratio Ammonia can be effectively decomposed. In addition, depending on the organic matter concentration and ammonia concentration contained in the wastewater, by appropriately selecting and combining the treatment method from the activated sludge treatment method and the treatment method using anammox bacteria, organic matter and ammonia nitrogen can be efficiently obtained. It can be removed and wastewater can be treated in a wide range of organic substance concentration and ammonia concentration. Therefore, a wastewater treatment method and a treatment apparatus with high treatment efficiency and high applicability are provided. In addition, since a treatment suitable for the nature of the bacteria can be applied, the treatment can be continued without impairing the growth balance of microorganisms. Since it can be carried out without adding expensive chemicals or supplements to the processing system from the outside, it is advantageous in terms of processing cost and energy consumption, and the structure of equipment required for processing is also simple.

本発明に係る廃水処理方法を示すフロー図である。It is a flowchart which shows the wastewater treatment method which concerns on this invention. 本発明に係る廃水処理装置の一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the waste water treatment apparatus which concerns on this invention.

活性汚泥を用いた処理方法(活性汚泥処理法)では、硝酸態窒素を窒素ガスに変換する脱窒細菌が有機物を資化するので、有機物が少ないと処理が進行せず、廃水のアンモニア濃度が高いほど多量の有機物が必要である。これに対し、アンモニア酸化細菌及びアナモックス(ANAMMOX)細菌を用いた処理方法(以下、アナモックス処理法と称する)では、アナモックス細菌は亜硝酸態窒素及びアンモニア態窒素から窒素ガスを生成する際に有機物を必要とせず、有機物濃度が高いと、これを資化する他の細菌が優先して増殖することによって、増殖の遅いアナモックス細菌が駆逐され易い。従って、アナモックス処理法では、廃水の有機物が相対的に少ないことが必要である。   In the treatment method using activated sludge (activated sludge treatment method), denitrifying bacteria that convert nitrate nitrogen to nitrogen gas assimilate organic matter, so if the amount of organic matter is small, the treatment does not proceed and the ammonia concentration in the wastewater The higher the amount, the more organic matter is required. In contrast, in a treatment method using ammonia-oxidizing bacteria and anammox bacteria (hereinafter referred to as anammox treatment method), anammox bacteria produce organic substances when generating nitrogen gas from nitrite nitrogen and ammonia nitrogen. If it is not necessary and the organic substance concentration is high, other bacteria that assimilate this preferentially proliferate, so that the slow-growing anammox bacteria are easily destroyed. Therefore, in the anammox treatment method, it is necessary that the organic matter in the wastewater is relatively small.

本願出願人は、廃水に含まれる有機物を吸着材に吸着させる吸着処理を利用して、アナモックス処理及び活性汚泥処理を組み合わせて好適に実施できることを見出し、前記特許文献3において提示している。吸着処理によって有機物が減少した廃水は、吸着材を除去した後にアンモニア酸化細菌及びアナモックス細菌を作用させてアナモックス処理を行い、有機物を吸着した吸着材は、アナモックス処理後の廃水と共に活性汚泥処理に投入する。これにより、アナモックス処理は有機物の少ない状態で好適に進行し、廃水に当初含まれていた有機物は活性汚泥処理において有効利用される。しかも、アナモックス処理後に残留する硝酸態窒素は活性汚泥処理で脱窒され、活性汚泥処理における有機物不足の解消も可能となるので、廃水の窒素除去率は更に向上する。又、吸着材として活性汚泥を用いることができるので、特別な設備や薬剤等を必要とせず、従来のアナモックス処理設備及び活性汚泥処理設備を用いて容易に実施できる。   The applicant of the present application has found that the anammox treatment and the activated sludge treatment can be suitably implemented by using an adsorption treatment in which an organic substance contained in wastewater is adsorbed by an adsorbent, and is presented in Patent Document 3. Wastewater with reduced organic matter due to adsorption treatment is treated with ammonia-oxidizing bacteria and anammox bacteria after removing the adsorbent, and then subjected to anammox treatment. The adsorbent that has adsorbed organic matter is put into activated sludge treatment together with wastewater after anammox treatment. To do. As a result, the anammox treatment suitably proceeds with a small amount of organic matter, and the organic matter initially contained in the wastewater is effectively used in the activated sludge treatment. In addition, the nitrate nitrogen remaining after the anammox treatment is denitrified by the activated sludge treatment, and it becomes possible to eliminate the shortage of organic matter in the activated sludge treatment, so that the nitrogen removal rate of the wastewater is further improved. Moreover, since activated sludge can be used as an adsorbent, it does not require special equipment or chemicals, and can be easily implemented using conventional anammox treatment equipment and activated sludge treatment equipment.

廃水のアンモニア濃度及び有機物濃度に応じてアナモックス処理又は活性汚泥処理を施す廃水処理は、廃水の水質に応じて処理を最適化することができる点で優れている。しかし、廃水中の有機物は、活性汚泥を用いた廃水処理において微生物に資化され、或いは、酸化分解されて二酸化炭素に変換される。この形態で高濃度の有機物の全量が二酸化炭素に変換されるのは、資源の有効利用や環境の観点では好ましくない。又、廃水の有機物濃度が更に高濃度であると、活性汚泥処理やアナモックス処理にとって適用が難しくなる。   The wastewater treatment in which anammox treatment or activated sludge treatment is performed according to the ammonia concentration and organic matter concentration of the wastewater is excellent in that the treatment can be optimized according to the quality of the wastewater. However, the organic matter in the wastewater is utilized by microorganisms in the wastewater treatment using activated sludge, or is oxidized and decomposed and converted to carbon dioxide. It is not preferable from the viewpoint of effective use of resources and the environment that the entire amount of the organic substance having a high concentration is converted into carbon dioxide in this form. Moreover, when the organic matter density | concentration of waste water is still higher concentration, application will become difficult for activated sludge treatment and anammox treatment.

本発明は、より高濃度の有機物を含む廃水に対応可能で、有機物を二酸化炭素以外の物質に変換して有効利用可能な廃水処理方法を提案する。高濃度の有機物を有効利用する方法として、メタン発酵が有望であるが、メタン生成菌は、アンモニアによって被毒するため、アンモニア濃度が高い廃水では良好に作用しない。従って、有機物濃度が高い廃水をメタン発酵する際に、アンモニア態窒素濃度(厳密には、生物反応によってアンモニアになるアミン等の有機窒素も含むケルダール態窒素(Kj-N)濃度)が高い場合には、廃水の希釈により、予め、アンモニア態窒素濃度を低下させる。この際、外部水を使用すると、生物反応に適した水温に加温するために無視できない量のエネルギーが必要となるので、後続の廃水処理で浄化された排水を還流使用することでエネルギーの節約が可能である。   The present invention proposes a wastewater treatment method that can deal with wastewater containing a higher concentration of organic matter and that can be effectively used by converting the organic matter to a substance other than carbon dioxide. Although methane fermentation is promising as a method for effectively using high-concentration organic matter, methanogenic bacteria are poisoned by ammonia, and therefore do not work well in wastewater with high ammonia concentration. Therefore, when methane fermentation of wastewater with a high organic matter concentration, ammonia nitrogen concentration (strictly, Kjeldahl nitrogen (Kj-N) concentration including organic nitrogen such as amine that becomes ammonia by biological reaction) is high. Reduces the ammonia nitrogen concentration in advance by dilution of wastewater. In this case, if external water is used, a non-negligible amount of energy is required to warm the water to a temperature suitable for biological reactions, so energy can be saved by recirculating wastewater that has been purified in subsequent wastewater treatment. Is possible.

つまり、本発明では、アナモックス処理及び活性汚泥処理を用いた廃水処理にメタン発酵処理を組み合わせて、有機物濃度が高い廃水に対しても適用可能に改良するものであり、その際に、メタン生成菌の被毒を防止するために、廃水のKj-N濃度に応じて廃水濃度を調整した上で、メタン発酵処理、活性汚泥処理又はアナモックス処理を施す。以下に詳細に説明する。   That is, in the present invention, methane fermentation treatment is combined with wastewater treatment using anammox treatment and activated sludge treatment, and is improved to be applicable to wastewater with a high organic matter concentration. In order to prevent the poisoning, the methane fermentation treatment, the activated sludge treatment or the anammox treatment is performed after adjusting the wastewater concentration according to the Kj-N concentration of the wastewater. This will be described in detail below.

廃水中の有機物量は、通常、COD(化学的酸素要求量)によって評価される。メタン発酵は、廃水の有機物の加水分解、酸生成を経て生成する酢酸、水素及び二酸化炭素からメタン及び二酸化炭素が生成する反応であり、有機物濃度が低いと、メタン発酵によって生成するメタンが水に殆ど溶解して回収が難しいので、効率的にメタンを回収できるCOD値が3000mg-COD/L以上の濃度において行うのが適切である。但し、アンモニアによる被毒を回避するために、廃水のKj-N濃度は800mg-N/L以下である必要がある。   The amount of organic matter in waste water is usually evaluated by COD (chemical oxygen demand). Methane fermentation is a reaction in which methane and carbon dioxide are produced from acetic acid, hydrogen, and carbon dioxide produced through hydrolysis and acid generation of wastewater. When the concentration of organic matter is low, methane produced by methane fermentation is converted into water. Since it is almost dissolved and difficult to recover, it is appropriate that the COD value at which methane can be recovered efficiently is 3000 mg-COD / L or more. However, in order to avoid poisoning with ammonia, the Kj-N concentration of the wastewater needs to be 800 mg-N / L or less.

また、活性汚泥処理法は、COD/N比[mg-COD/mg-N](廃水のアンモニア態窒素濃度[mg-N/L]に対する化学的酸素要求量[mg-O/L]の比率)が7.0以上となる有機物濃度の廃水への適用が好適であって、7.0未満であると反応が途中で停止し易い(参照:Water Research 39(2005), 3715-3726)。一方、アナモックス処理法では、アナモックス細菌がアンモニア及び亜硝酸から窒素ガスを生成する反応(NH +1.32NO +0.066HCO +0.13H→1.02N+0.26NO +0.066CH0.50.15+2.03HO、Appl. Microbiol. Biotechnol.(1998) 50, 589-596参照)において、1モルのアンモニア態窒素から0.066モルの菌体有機物CH0.50.15が合成される。この化学式に基づいてこの菌体有機物1モル当たりのCODを求めると、2.5×16=40gとなり、アンモニア態窒素1mgから合成される菌体有機物のCODは、0.066×40/14=0.19[mg-COD/mg-N]となる。これに関して、有機物を資化する一般的な活性汚泥の収率は0.6[mg-COD/mg-COD]程度であるので、アナモックス細菌とそれ以外の細菌の増殖が均衡する場合のCOD/N比をaとすると、0.6a=0.19となり、a=0.19/0.6≒0.3となる。従って、アナモックス処理法は、COD/N比が0.3[mg-COD/mg-N]以下の廃水への適用が適しており、0.3を超えると、アナモックス細菌以外の細菌の増殖頻度が高まる。 In addition, the activated sludge treatment method uses COD / N ratio [mg-COD / mg-N] (ratio of chemical oxygen demand [mg-O / L] to ammonia nitrogen concentration [mg-N / L] of wastewater. ) Is preferably applied to wastewater having an organic substance concentration of 7.0 or more, and if it is less than 7.0, the reaction is likely to stop midway (see: Water Research 39 (2005), 3715-3726). On the other hand, in the anammox treatment method, a reaction in which anammox bacteria produce nitrogen gas from ammonia and nitrous acid (NH 4 + + 1.32NO 2 + 0.066HCO 3 + 0.13H + → 1.02N 2 + 0.26NO 3 +0. 066CH 2 O 0.5 N 0.15 +2.03 H 2 O, see Appl. Microbiol. Biotechnol. (1998) 50, 589-596), from 1 mole ammonia nitrogen to 0.066 mole cell organic matter CH 2 O 0.5 N 0.15 is synthesized. Based on this chemical formula, the COD per mole of the cell organic matter is 2.5 × 16 = 40 g, and the COD of the cell organic matter synthesized from 1 mg of ammonia nitrogen is 0.066 × 40/14 = 0.19 [mg-COD / mg-N]. In this regard, since the yield of general activated sludge that assimilate organic matter is about 0.6 [mg-COD / mg-COD], COD / in the case where the growth of anammox bacteria and other bacteria is balanced. When the N ratio is a, 0.6a = 0.19, and a = 0.19 / 0.6≈0.3. Therefore, the anammox treatment method is suitable for wastewater having a COD / N ratio of 0.3 [mg-COD / mg-N] or less, and if it exceeds 0.3, the growth frequency of bacteria other than anammox bacteria Will increase.

故に、廃水のCOD値及びアンモニア濃度に基づいて、COD/N比が7以上又は0.3以下の場合は、各々、活性汚泥処理又はアナモックス処理に従って廃水処理を実施すればよい。そして、COD/N比が0.3を超え7未満である範囲については、吸着処理によって有機物を吸着除去してCOD/N比を0.3以下に減少することが可能であり、これによりアナモックス処理法を好適に適用できる。   Therefore, based on the COD value and ammonia concentration of wastewater, when the COD / N ratio is 7 or more or 0.3 or less, wastewater treatment may be carried out according to activated sludge treatment or anammox treatment, respectively. In the range where the COD / N ratio is more than 0.3 and less than 7, it is possible to reduce the COD / N ratio to 0.3 or less by adsorbing and removing organic substances by adsorption treatment. A treatment method can be suitably applied.

従って、本発明の廃水処理方法は、上記3つの処理法を好適に組み合わせて実施し、その流れは以下に説明するようになる。本発明に係る廃水処理方法の一実施形態を、図1を参照して説明する。   Therefore, the wastewater treatment method of the present invention is implemented by suitably combining the above three treatment methods, and the flow thereof will be described below. An embodiment of a wastewater treatment method according to the present invention will be described with reference to FIG.

先ず、図1のフロー図に示すように、廃水のKj-N濃度及び有機物濃度の指標であるCOD値を測定する(工程S1)。廃水のKj-N濃度(分析方法:JIS0102 44項参照)は、アンモニア態窒素濃度と有機窒素濃度との合計であり、廃水においては、通常、全窒素濃度の80〜100%程度の値となるので、全窒素濃度からの換算値を用いたり、或いは、予め、廃水のアンモニア態窒素とKj-N濃度との比率を調べて、アンモニア態窒素濃度からの換算値を用いても良い。   First, as shown in the flowchart of FIG. 1, the COD value, which is an index of wastewater Kj-N concentration and organic matter concentration, is measured (step S1). The Kj-N concentration of wastewater (analysis method: see JIS0102244) is the sum of ammonia nitrogen concentration and organic nitrogen concentration. In wastewater, it is usually about 80 to 100% of the total nitrogen concentration. Therefore, the converted value from the total nitrogen concentration may be used, or the ratio between the ammonia nitrogen and the Kj-N concentration of the wastewater may be examined in advance to use the converted value from the ammonia nitrogen concentration.

次に、廃水のKj-N濃度が800mg-N/L以下であるか比較する(工程S2)。工程S1において全窒素濃度やアンモニア濃度を測定した場合は、これらを代用して工程S2の比較を行っても良い。工程S2で800mg-N/Lを超える場合は、800mg-N/L以下となるように希釈する(工程S3)。過度に希釈するとメタン発酵処理の適用可能性がなくなるので、工程S3の希釈に使用する水量は、Kj-N濃度の要件を満たすための必要最少量であることが好ましい。後述する活性汚泥処理を経た排水を希釈水として使用することにより、水温調整用の加温に消費するエネルギーを削減できる。   Next, it is compared whether the Kj-N concentration of the wastewater is 800 mg-N / L or less (step S2). When the total nitrogen concentration or ammonia concentration is measured in step S1, these may be substituted and the comparison in step S2 may be performed. When it exceeds 800 mg-N / L in step S2, it is diluted to 800 mg-N / L or less (step S3). Since the applicability of the methane fermentation treatment is lost when it is excessively diluted, the amount of water used for the dilution in step S3 is preferably the minimum amount necessary to satisfy the requirement of the Kj-N concentration. By using the wastewater that has been subjected to the activated sludge treatment described later as dilution water, the energy consumed for heating for adjusting the water temperature can be reduced.

Kj-N濃度が800mg-N/L以下である廃水は、希釈せずに、COD値が3000mg-COD/L以上であるか調べ(工程S4)、COD値が3000mg-COD/L以上の廃水は、メタン発酵処理を行い(工程S5)、得られた廃水のCOD値及びアンモニア態窒素濃度を測定して(工程S6)、COD/N比の比較(工程S7)に進む。工程S5のメタン発酵によって、廃水の有機物濃度は、概して、1000mg-COD/L程度以下に低下するが、アンモニア態窒素は変化しないので、廃水のアンモニア態窒素濃度に大きな変動はない。   Waste water with a Kj-N concentration of 800 mg-N / L or less is not diluted and is checked for a COD value of 3000 mg-COD / L or more (step S4), and a wastewater with a COD value of 3000 mg-COD / L or more is checked. Performs methane fermentation treatment (step S5), measures the COD value and ammonia nitrogen concentration of the obtained waste water (step S6), and proceeds to the comparison of the COD / N ratio (step S7). By the methane fermentation in step S5, the organic matter concentration of the wastewater is generally reduced to about 1000 mg-COD / L or less, but the ammonia nitrogen does not change, so there is no great variation in the ammonia nitrogen concentration of the waste water.

廃水のCOD値が3000mg-COD/L未満である場合は、メタン発酵を行っても生成メタンが水に溶解して回収が難しいので、メタン発酵を行うことなく、COD/N比の比較(工程S7)に進む。   If the COD value of the wastewater is less than 3000 mg-COD / L, even if methane fermentation is performed, the generated methane dissolves in water and is difficult to recover. Therefore, the COD / N ratio comparison (process) Proceed to S7).

工程S7に至る廃水のCOD値は3000mg-COD/L未満であり、Kj-N濃度は800mg-N/L以下である。尚、ケルダール態窒素は、生物処理によって殆どがアンモニアに変換されるので、工程S7以後における廃水のCOD/N比は、Kj-N濃度に基づいてCOD/Kj-N比としてもよい(以下においては、単にCOD/N比と記載する)。   The COD value of the wastewater leading to step S7 is less than 3000 mg-COD / L, and the Kj-N concentration is 800 mg-N / L or less. Since Kjeldahl nitrogen is mostly converted to ammonia by biological treatment, the COD / N ratio of the wastewater after step S7 may be the COD / Kj-N ratio based on the Kj-N concentration (below) Is simply described as COD / N ratio).

廃水のアンモニア態窒素濃度及び有機物量の指標であるCOD値から、COD/N比[mg-COD/mg-N]を求め、COD/N比が7.0以上であるか否かを判断する(工程S7)。   The COD / N ratio [mg-COD / mg-N] is obtained from the ammonia nitrogen concentration of wastewater and the COD value that is an index of the amount of organic substances, and it is judged whether the COD / N ratio is 7.0 or more. (Step S7).

COD/N比が7.0以上の場合は、活性汚泥を用いた廃水処理(活性汚泥処理)を施す(工程S8)。COD/N比が7.0未満の場合、COD/N比が0.3以下か否かを判断し(工程S9)、0.3以下であれば、廃水はアナモックス細菌を用いた廃水処理(アナモックス処理)を施し(工程S10)、COD/N比が0.3を超える場合は、吸着処理(工程S11)を行った後にアナモックス処理を行う(工程S10)。一般的な廃水の水質では、COD/N比が0.3〜7の廃水は、1回の吸着処理によって0.3以下となるように有機物濃度を低下させることができるが、廃水の状況によっては、吸着処理(工程S11)後の廃水のアンモニア態窒素濃度及びCOD値を再度測定する工程(工程S12)と、COD/N比が0.3以下であるか否かを確認する工程(工程S13)とを必要に応じて実施でき、この結果に基づいて吸着処理を繰り返す必要性が決定される。   When the COD / N ratio is 7.0 or more, wastewater treatment (activated sludge treatment) using activated sludge is performed (step S8). If the COD / N ratio is less than 7.0, it is determined whether or not the COD / N ratio is 0.3 or less (step S9). If the COD / N ratio is 0.3 or less, the wastewater is treated with wastewater using anammox bacteria ( When the COD / N ratio exceeds 0.3, the anammox treatment is performed after the adsorption treatment (step S11) (step S10). In general wastewater quality, wastewater with a COD / N ratio of 0.3 to 7 can reduce the organic matter concentration so that it becomes 0.3 or less by one adsorption treatment. Includes a step of measuring again the ammonia nitrogen concentration and COD value of the wastewater after the adsorption treatment (step S11) (step S12), and a step of checking whether the COD / N ratio is 0.3 or less (step) S13) can be performed as necessary, and the necessity of repeating the adsorption process is determined based on the result.

尚、工程S7,S9及びS13におけるCOD/N比の判断基準値である7.0及び0.3は、廃水の水質条件や傾向によって変更が望ましい場合もある。例えば、廃水中の有機物に生物分解が難しいものが含まれる場合、工程S7、S9及びS13におけるCOD/N比の判断基準値を、各々、7.0及び0.3より大きく設定することになる。以下の説明では、判断基準値を7.0及び0.3として標準的に実施するものとして記載する。   In addition, 7.0 and 0.3 which are the judgment reference values of the COD / N ratio in steps S7, S9 and S13 may be desirably changed depending on the water quality condition and tendency of wastewater. For example, when the organic matter in the wastewater includes those that are difficult to biodegrade, the judgment reference values of the COD / N ratio in steps S7, S9, and S13 are set to be larger than 7.0 and 0.3, respectively. . In the following description, it will be described that the standard values for judgment are 7.0 and 0.3.

上述の廃水処理方法において、メタン発酵処理を経た廃水は、COD値が1000mg-COD/L以下に低下し、概して、COD/N比は容易に7.0未満となる。従って、メタン発酵処理を経た廃水は、アナモックス処理を経て活性汚泥処理へ投入する傾向が生じる。   In the wastewater treatment method described above, the wastewater that has undergone the methane fermentation treatment has a COD value that is reduced to 1000 mg-COD / L or less, and in general, the COD / N ratio is easily less than 7.0. Therefore, the waste water that has undergone the methane fermentation treatment tends to be input to the activated sludge treatment through the anammox treatment.

工程S11の吸着処理では、汚泥や粉末活性炭等のような有機物を物理的又は化学的に吸着可能な材料を吸着材として廃水に接触させて、廃水から有機物を吸着した後に吸着材を除去する。具体的には、必要に応じて廃水を攪拌して吸着材を均一に分散した後に、静置による沈降分離、遠心分離などによって吸着材を分離し、上澄みの固液分離や濾過等を利用して廃水から吸着材を除去する。吸着材として汚泥を用いる場合、工程S8の活性汚泥処理の後に回収される活性汚泥を利用することができ、吸着処理後の活性汚泥は、活性汚泥処理に戻すことによって、吸着した有機物を脱窒細菌の活動・増殖に有効利用でき、汚泥に含まれる少量のアンモニア態窒素の硝化及び脱窒も可能となる。吸着材として活性炭等の炭素材を用いた場合も、有機物を吸着した炭素材を活性汚泥に添加して使用することが可能であり、活性汚泥の吸着機能を増強するために組み合わせて用いてもよい。吸着処理において使用する吸着材の量は吸着能に応じて適宜設定され、炭素材を用いる場合、経験的に、活性汚泥乾燥質量1gに対し0.01〜1g程度の割合が好ましい。吸着処理によってCOD/N比が0.3〜7.0の廃水からCOD/N比が0.3以下の廃水が回収され、アナモックス処理が適用可能となる。   In the adsorption treatment of step S11, a material capable of physically or chemically adsorbing organic substances such as sludge and powdered activated carbon is brought into contact with wastewater as an adsorbent, and the adsorbent is removed after adsorbing organic substances from the wastewater. Specifically, if necessary, the waste water is agitated to uniformly disperse the adsorbent as necessary, and then the adsorbent is separated by settling separation by standing, centrifugation, etc., and solid-liquid separation or filtration of the supernatant is used. Remove the adsorbent from the wastewater. When using sludge as an adsorbent, the activated sludge recovered after the activated sludge treatment in step S8 can be used, and the activated sludge after the adsorption treatment is denitrified by returning to the activated sludge treatment. It can be used effectively for the activity and growth of bacteria, and nitrification and denitrification of a small amount of ammonia nitrogen contained in sludge is also possible. Even when a carbon material such as activated carbon is used as the adsorbent, it is possible to add carbon material adsorbing organic matter to the activated sludge and use it in combination to enhance the activated sludge adsorption function. Good. The amount of the adsorbent used in the adsorption treatment is appropriately set according to the adsorption capacity. When a carbon material is used, a ratio of about 0.01 to 1 g with respect to 1 g of the activated sludge dry mass is preferable. By the adsorption treatment, wastewater having a COD / N ratio of 0.3 or less is recovered from wastewater having a COD / N ratio of 0.3 to 7.0, and anammox treatment can be applied.

COD/N比が0.3以下の廃水は、工程S10のアナモックス処理によって部分硝化(亜硝酸化)・脱窒を進める。つまり、廃水にアンモニア酸化細菌及びアナモックス細菌を投入し、重炭酸塩の存在下で酸素を供給して、アンモニア態窒素の亜硝酸化及び窒素ガスへの変換を進行させる。この処理では、廃水に酸素が供給されると、アンモニア酸化細菌がアンモニアを亜硝酸態窒素に変換する反応(亜硝酸化、2NH +3O→2NO +4H+2HO)と、脱窒細菌であるアナモックス細菌がアンモニア及び亜硝酸から窒素ガスを生成する反応(NH +1.32NO +0.066HCO +0.13H→1.02N+0.26NO +0.066CH0.50.15+2.03HO)の2つの反応が進行し、条件設定によって1段階又は2段階で処理が行われる。アナモックス細菌は増殖速度が遅く、他の細菌の増殖が優位になると駆逐され易いので、処理を安定して行うためにアナモックス細菌の活性を安定化するような配慮が望ましい。アナモックス細菌を安定化するには、1)廃水のpHを7.2以下にすることによって、亜硝酸態窒素を硝酸化する硝化細菌の増殖を抑制してアナモックス細菌の駆逐を防止する方法、及び、2)アンモニア態窒素の亜硝酸化速度が律速になるように細菌の活性バランス又は酸素の供給を調整することによって亜硝酸態窒素の増加を防止し、アナモックス細菌が高濃度の亜硝酸態窒素によって被毒・不活性化するのを回避する方法などがある。方法2)は、部分硝化及び窒素ガスへの変換が同時並行で進行する。酸素の供給制御は重要であり、廃水を嫌気性条件下において廃水の溶存酸素濃度などを確認しながら酸素(空気)を供給することによって供給制御の精度が高まる。アナモックス処理後の廃水は、実質的にアンモニア態窒素を含まず、有機物は消費されず残留するので、COD/N比は7.0を超え、活性汚泥処理が可能となとなる。又、初期アンモニア態窒素の約10%に相当する硝酸態窒素が残留するが、有機物と共に活性汚泥処理を施せば窒素分は十分に除去できる。 Wastewater having a COD / N ratio of 0.3 or less undergoes partial nitrification (nitritation) and denitrification by the anammox treatment in step S10. That is, ammonia oxidizing bacteria and anammox bacteria are introduced into wastewater, oxygen is supplied in the presence of bicarbonate, and ammonia nitrogen is converted to nitritation and conversion to nitrogen gas. In this process, the oxygen to the waste water is supplied, the reaction of ammonia oxidizing bacteria to convert ammonia to nitrite nitrogen (nitrite reduction, 2NH 4 + + 3O 2 → 2NO 2 - + 4H + + 2H 2 O) and, de Reaction of nitromophilic anammox bacteria to generate nitrogen gas from ammonia and nitrous acid (NH 4 + + 1.32NO 2 + 0.066HCO 3 + 0.13H + → 1.02N 2 + 0.26NO 3 + 0.066CH 2 O 0.5 N 0.15 +2.03 H 2 O) proceeds, and the treatment is performed in one or two stages depending on the condition setting. Since anammox bacteria have a slow growth rate and are easily driven out when the growth of other bacteria becomes dominant, consideration should be given to stabilizing the activity of anammox bacteria for stable treatment. In order to stabilize anammox bacteria, 1) a method of preventing the destruction of anammox bacteria by suppressing the growth of nitrifying bacteria that nitrate nitrite nitrogen by reducing the pH of the wastewater to 7.2 or less, and 2) The increase in nitrite nitrogen is prevented by adjusting the activity balance of the bacteria or the supply of oxygen so that the nitritation rate of ammonia nitrogen is rate-limiting, and anammox bacteria have a high concentration of nitrite nitrogen. There is a method of avoiding poisoning and inactivation due to. In method 2), partial nitrification and conversion to nitrogen gas proceed simultaneously. Supply control of oxygen is important, and the accuracy of supply control is enhanced by supplying oxygen (air) while confirming the dissolved oxygen concentration of the wastewater under anaerobic conditions. Since the waste water after the anammox treatment does not substantially contain ammonia nitrogen and the organic matter is not consumed and remains, the COD / N ratio exceeds 7.0, and the activated sludge treatment becomes possible. Further, nitrate nitrogen corresponding to about 10% of the initial ammonia nitrogen remains, but the nitrogen content can be sufficiently removed by applying activated sludge treatment together with organic matter.

工程S8の活性汚泥処理は、廃水に活性汚泥を接触させて廃水中の硝酸態窒素の脱窒及びアンモニア態窒素の硝化を行う汚泥処理であり、廃水が連続的に処理される連続式でも個別に処理される回分式でも良い。活性汚泥処理において、酸化態窒素の脱窒工程は嫌気性条件下で進行し、アンモニア態窒素の硝化工程は好気性条件下で進行する。大容量の廃水を静置等によって酸素との接触面積が小さい状態におくことによって実質的に嫌気性条件に調整され、廃水に曝気等によって酸素を供給することによって好気性条件に調整される。脱窒工程では、脱窒細菌により硝酸が窒素ガスに変換されて除去され、好気性条件下の硝化工程では曝気によって有機物が酸化分解すると共に、硝化細菌によってアンモニアが硝酸に酸化される。硝化工程では、活性汚泥は、廃水中のリン酸態リンも取り込む。廃水がアンモニアを含んでいると、これらの工程を経た後の廃水には、初期アンモニア濃度に対応する硝酸が残留するが、硝化工程後の廃水の一部を脱窒工程へ還流して処理を繰り返し施すように構成することによって、処理系から排出される廃水の残留硝酸濃度は低下する。これにより、通常の活性汚泥処理では、初期アンモニア濃度の10%程度まで残留硝酸濃度を低下させることが可能であり、本発明においては、吸着処理に使用した活性汚泥を利用することによって更に減少させることも可能である。また、硝化工程後の廃水は、工程S3の希釈水として利用できる。   The activated sludge treatment in step S8 is a sludge treatment in which activated sludge is brought into contact with waste water to denitrify nitrate nitrogen and nitrify ammonia nitrogen in the waste water. A batch system may be used. In the activated sludge treatment, the denitrification process of oxidized nitrogen proceeds under anaerobic conditions, and the nitrification process of ammonia nitrogen proceeds under aerobic conditions. A large volume of wastewater is adjusted to an anaerobic condition by leaving the contact area with oxygen small by standing or the like, and adjusted to an aerobic condition by supplying oxygen to the wastewater by aeration or the like. In the denitrification process, nitric acid is converted to nitrogen gas by the denitrification bacteria and removed. In the nitrification process under aerobic conditions, organic substances are oxidized and decomposed by aeration, and ammonia is oxidized to nitric acid by the nitrification bacteria. In the nitrification process, activated sludge also takes in phosphate phosphorus in wastewater. If the wastewater contains ammonia, nitric acid corresponding to the initial ammonia concentration remains in the wastewater after these steps, but a part of the wastewater after the nitrification step is returned to the denitrification step for treatment. By being configured to be repeatedly applied, the residual nitric acid concentration of the wastewater discharged from the treatment system decreases. Thereby, in the normal activated sludge treatment, it is possible to reduce the residual nitric acid concentration to about 10% of the initial ammonia concentration. In the present invention, it is further reduced by using the activated sludge used for the adsorption treatment. It is also possible. Moreover, the waste water after a nitrification process can be utilized as dilution water of process S3.

図1の廃水処理は、例えば、図2に示すような廃水処理装置を用いて実施可能である。この廃水処理装置1は、回分式のメタン発酵処理槽2、吸着処理槽10及びアナモックス処理槽20と、連続式の活性汚泥処理槽30と、最終沈殿槽40とを備え、水質測定装置(図示省略)によって測定される廃水のKj-N濃度、及び、アンモニア態窒素濃度とCOD値とから求められるCOD/N比に応じて、切り換えバルブ3,11を切り替えることによって、メタン発酵処理槽2、吸着処理槽10、アナモックス処理槽20又は活性汚泥処理槽30の何れかに廃水を供給する。切り換えバルブ3,11が自動的に切り換えられるように、切り換えバルブ3,11として電磁バルブ等を用い、水質測定装置の測定値を用いてKj-N濃度及びCOD/N比に基づく制御信号を供給する演算処理装置を設けても良い。活性汚泥処理槽30は、脱窒処理を行う嫌気槽30aと、酸素を供給するための曝気装置31を備える硝化処理用の好気槽30bとに分画され、廃水を一定速度で連続的に嫌気槽30aに供給することによって連続的に処理されるが、これらの槽を回分式で使用しても、あるいは、嫌気処理及び好気処理の両方を段階的に行う単槽の回分式処理槽であってもよい。好気槽30bは好気条件であり、メタン発酵処理槽2、吸着処理槽10、アナモックス処理槽20、嫌気槽30a及び最終沈殿槽40は嫌気条件であるが、アナモックス処理槽20には、供給速度を制御可能な空気供給装置22が設けられ、空気の供給速度、つまり、酸素の供給速度を調節することによって、アンモニア酸化細菌によるアンモニアの亜硝酸への酸化速度が調節される。尚、この実施形態においては、吸着材として活性汚泥を使用し、吸着処理槽10で有機物を吸着した活性汚泥は、活性汚泥処理槽30に供給して脱窒・硝化を進行する活性汚泥として用いた後、最終沈殿槽40において廃水から分離して吸着処理槽10に還流し、吸着材として再度使用される。最終沈殿槽40の廃水は、外部へ放出されるが、一部は、切り換えバルブ42から還流させることにより、原廃水を希釈するための希釈水として利用できる。   The wastewater treatment in FIG. 1 can be performed using, for example, a wastewater treatment apparatus as shown in FIG. The wastewater treatment apparatus 1 includes a batch-type methane fermentation treatment tank 2, an adsorption treatment tank 10, an anammox treatment tank 20, a continuous activated sludge treatment tank 30, and a final sedimentation tank 40, and includes a water quality measuring device (illustrated). The methane fermentation treatment tank 2, by switching the switching valves 3 and 11 according to the Kj-N concentration of the wastewater measured by (omitted) and the COD / N ratio determined from the ammonia nitrogen concentration and the COD value, Waste water is supplied to any one of the adsorption treatment tank 10, the anammox treatment tank 20, and the activated sludge treatment tank 30. In order for the switching valves 3 and 11 to be switched automatically, an electromagnetic valve or the like is used as the switching valve 3 or 11, and a control signal based on the Kj-N concentration and the COD / N ratio is supplied using the measured value of the water quality measuring device. An arithmetic processing unit may be provided. The activated sludge treatment tank 30 is divided into an anaerobic tank 30a that performs denitrification treatment and an aerobic tank 30b for nitrification treatment that includes an aeration device 31 for supplying oxygen, and waste water is continuously fed at a constant rate. Although it is continuously processed by supplying it to the anaerobic tank 30a, even if these tanks are used in a batch system, or a single tank batch-type processing tank that performs both anaerobic processing and aerobic processing in stages. It may be. The aerobic tank 30b is an aerobic condition, and the methane fermentation treatment tank 2, the adsorption treatment tank 10, the anammox treatment tank 20, the anaerobic tank 30a, and the final sedimentation tank 40 are anaerobic conditions. An air supply device 22 capable of controlling the speed is provided, and the rate of oxidation of ammonia into nitrous acid by the ammonia-oxidizing bacteria is adjusted by adjusting the air supply rate, that is, the oxygen supply rate. In this embodiment, activated sludge is used as an adsorbent, and the activated sludge having adsorbed organic matter in the adsorption treatment tank 10 is supplied to the activated sludge treatment tank 30 and used as activated sludge that advances denitrification and nitrification. After that, it is separated from the waste water in the final sedimentation tank 40 and returned to the adsorption treatment tank 10 to be used again as an adsorbent. The waste water in the final sedimentation tank 40 is discharged to the outside, but a part of the waste water can be used as dilution water for diluting the raw waste water by refluxing from the switching valve 42.

図1の工程S1においてCOD値及びKj-N濃度を得ると、工程S3の希釈の要否が判明し、同時に、希釈する場合にKj-N濃度が800mg-N/L以下になる希釈倍率及び希釈後の廃水のKj-N濃度を算出でき、工程S4において工程S5のメタン発酵処理が選択されるか否かも予測される。更に、メタン発酵処理が選択されない場合のCOD/N比に基づく処理の選択も予測される。従って、測定値に基づいた計算に従って工程S2,S4,S7,S9の比較判断を全て行った上で、希釈を行う場合は切り換えバルブ42から切り換えバルブ11への配管を通じて最終沈殿槽40の排出水をポンプ43によって還流して廃水と共に送水することによって希釈し、希釈を行わない場合は、廃水のみを切り換えバルブ3,11から各部に供給すればよい。その結果、COD値が3000mg-COD/L以上、Kj-N濃度が800mg-N/L以下の廃水(又は希釈廃水)は、切り換えバルブ3から配管を通じてメタン発酵処理槽2に供給され、メタン発酵処理が施される。COD値が3000mg-COD/L未満、Kj-N濃度が800mg-N/L以下の廃水(又は希釈廃水)は、COD/N比に基づいて、吸着処理槽10、アナモックス処理槽20又は活性汚泥処理槽30の何れかに切り換えバルブ11を介して供給される。   When the COD value and the Kj-N concentration are obtained in step S1 of FIG. 1, the necessity of dilution in step S3 is found, and at the same time, the dilution ratio and the Kj-N concentration become 800 mg-N / L or less when diluting. The Kj-N concentration of the wastewater after dilution can be calculated, and it is also predicted whether or not the methane fermentation process in step S5 is selected in step S4. Furthermore, selection of a treatment based on the COD / N ratio when no methane fermentation treatment is selected is also predicted. Therefore, after all the comparison judgments of steps S2, S4, S7, and S9 are performed according to the calculation based on the measurement value, when dilution is performed, the drainage water of the final sedimentation tank 40 through the pipe from the switching valve 42 to the switching valve 11 Is diluted by feeding back with the waste water by the pump 43, and when dilution is not performed, only the waste water may be supplied from the switching valves 3 and 11 to each part. As a result, waste water (or diluted waste water) having a COD value of 3000 mg-COD / L or more and a Kj-N concentration of 800 mg-N / L or less is supplied from the switching valve 3 to the methane fermentation treatment tank 2 through the pipe, Processing is performed. Waste water (or diluted waste water) having a COD value of less than 3000 mg-COD / L and a Kj-N concentration of 800 mg-N / L or less is based on the COD / N ratio, the adsorption treatment tank 10, the anammox treatment tank 20, or activated sludge. It is supplied to one of the treatment tanks 30 via the switching valve 11.

メタン発酵処理槽2におけるメタン発酵は、メタン生成細菌を含む複数種の嫌気性微生物の代謝過程が関与する嫌気性反応で、自己造粒した嫌気性微生物担体等として入手される微生物を用いて実施可能である(例えば、UASBリアクター)。メタン発酵処理槽2に供給された廃水は、メタン生成細菌等の微生物Cを分散させて嫌気条件下でメタン発酵させる。反応の進行によりメタン及び二酸化炭素が発生するので、配管等(図示略)を用いて槽上部から適宜回収する。メタン発酵処理槽2は、必要に応じて廃水に微生物Cを分散させるための攪拌機5を有し、処理後の廃水から効率よく微生物Cを分離するための分離槽6が添設されている。ポンプ4によって分離槽6に送られる廃水は、静置して微生物Cを沈降分離させ、廃水はポンプ7によって切り換えバルブ11に送る。分離された微生物Cは、ポンプ8によってメタン発酵処理槽2に還流される。メタン発酵処理槽2の構成を、微生物Cを固定担持させた層に廃水を通過接触させて反応させるように変形すると、廃水と微生物Cとの分離が不要になるので、分離槽6を省略することができる。   Methane fermentation in the methane fermentation treatment tank 2 is an anaerobic reaction involving the metabolic processes of multiple types of anaerobic microorganisms including methanogenic bacteria, and is carried out using microorganisms obtained as a self-granulated anaerobic microorganism carrier. It is possible (eg UASB reactor). The wastewater supplied to the methane fermentation treatment tank 2 is subjected to methane fermentation under anaerobic conditions by dispersing microorganisms C such as methanogenic bacteria. Since methane and carbon dioxide are generated by the progress of the reaction, it is appropriately recovered from the upper part of the tank using piping or the like (not shown). The methane fermentation treatment tank 2 has a stirrer 5 for dispersing the microorganisms C in the wastewater as necessary, and a separation tank 6 for efficiently separating the microorganisms C from the treated wastewater is additionally provided. The waste water sent to the separation tank 6 by the pump 4 is allowed to stand to settle and separate the microorganisms C, and the waste water is sent to the switching valve 11 by the pump 7. The separated microorganism C is refluxed to the methane fermentation treatment tank 2 by the pump 8. If the structure of the methane fermentation treatment tank 2 is modified so that the wastewater is allowed to pass through and contacted with the layer on which the microorganism C is fixedly supported, the separation of the wastewater and the microorganism C becomes unnecessary, so the separation tank 6 is omitted. be able to.

メタン発酵を構成する微生物の代謝過程は、有機物(炭水化物、タンパク質、脂質)の加水分解、酸生成細菌による加水分解物(糖、アミノ酸、ペプチド)の発酵、絶対水素生成性酢酸生成細菌による発酵生成物(プロピオン酸、酪酸等の揮発性有機酸)から酢酸及び水素への変換、及び、メタン生成細菌による酢酸及び水素からメタン及び二酸化炭素への変換を経由する。これらのうち、最も律速となり易い反応は、揮発性有機酸から酢酸及び水素への変換であり、有機酸の蓄積によるpH低下等によって微生物に影響が生じないように、但し、過剰のアルカリによるpH上昇はメタン発酵を抑制することを考慮して、廃水がpH6.5〜8.2程度の範囲にあるように調整される。水温は、35〜65℃程度が適性であり、この範囲、好ましくは35〜55℃程度となるように必要に応じて加温する。メタン発酵処理における微生物は、硫化物及びリンを必須栄養素とし、微量金属としてCo,Ni,Zn等を要求するが、嫌気性処理における必要量は、好気性処理に比べて非常に小さい。これらは、廃水から供給される場合もあるが、不足する場合は必要に応じて補給すればよい。   The metabolic processes of microorganisms that constitute methane fermentation include hydrolysis of organic substances (carbohydrates, proteins, lipids), fermentation of hydrolysates (sugars, amino acids, peptides) by acid-producing bacteria, and fermentation by absolute hydrogen-producing acetic acid-producing bacteria. Through conversion of substances (volatile organic acids such as propionic acid and butyric acid) to acetic acid and hydrogen, and conversion of acetic acid and hydrogen to methane and carbon dioxide by methanogenic bacteria. Of these, the reaction that is most likely to be rate-limiting is the conversion of volatile organic acid to acetic acid and hydrogen, so that the microorganisms are not affected by a decrease in pH due to the accumulation of organic acid, etc. The rise is adjusted so that the wastewater is in the range of about pH 6.5 to 8.2 in consideration of suppressing methane fermentation. The water temperature is suitably about 35 to 65 ° C., and is heated as necessary so as to be within this range, preferably about 35 to 55 ° C. Microorganisms in methane fermentation treatment use sulfide and phosphorus as essential nutrients and require Co, Ni, Zn, etc. as trace metals, but the required amount in anaerobic treatment is very small compared to aerobic treatment. These may be supplied from waste water, but if insufficient, they may be replenished as necessary.

COD/N比が0.3を超える(7.0未満)廃水は、切り換えバルブ11から吸着処理槽10に供給され、必要に応じて付設される攪拌装置12を用いて、吸着材である活性汚泥A1を分散させ、廃水と活性汚泥とを十分に接触させて廃水の有機物を活性汚泥A1に吸着させる。この後、廃水を静置して活性汚泥A1を沈降分離し、廃水は、ポンプ等の送水手段13により配管を通じてアナモックス処理槽20へ送水する。有機物を吸着した活性汚泥A1(若干のアンモニアも含む)は、ポンプ等の供給手段14により配管を通して活性汚泥処理槽30の嫌気槽30aへ投入する。活性汚泥A1に含まれる有機物は、嫌気槽30aで脱窒細菌が酸化態窒素(亜硝酸及び硝酸)を窒素ガスに変換する反応に用いられる。   Wastewater having a COD / N ratio exceeding 0.3 (less than 7.0) is supplied from the switching valve 11 to the adsorption treatment tank 10 and is used as an adsorbent using an agitator 12 attached as necessary. Sludge A1 is disperse | distributed, waste water and activated sludge are fully contacted, and the organic matter of waste water is made to adsorb | suck to activated sludge A1. After that, the waste water is allowed to stand and the activated sludge A1 is settled and separated, and the waste water is supplied to the anammox treatment tank 20 through the pipe by the water supply means 13 such as a pump. The activated sludge A1 (including some ammonia) adsorbing organic substances is introduced into the anaerobic tank 30a of the activated sludge treatment tank 30 through a pipe by a supply means 14 such as a pump. The organic matter contained in the activated sludge A1 is used in a reaction in which denitrifying bacteria convert oxidized nitrogen (nitrous acid and nitric acid) into nitrogen gas in the anaerobic tank 30a.

COD/N比が0.3以下の廃水は、アナモックス処理槽20に供給され、必要に応じて付設される攪拌装置21を用いて、アンモニア細菌及びアナモックス細菌を含有する細菌剤Bを分散させ、空気供給装置22から供給される酸素によってアンモニア細菌による部分硝化を進行させる。この時、アナモックス細菌は、生じた亜硝酸態窒素とアンモニア態窒素とから窒素ガスを生成する。この処理によって、廃水中のアンモニアの約90%が窒素ガスに変換され、アンモニア態窒素濃度の約1/10は硝酸態窒素として残留する。処理後の廃水は、静置して細菌剤Bを沈降分離し、ポンプ等の送水手段23により配管を通して活性汚泥処理槽30の嫌気槽30aへ送水する。   Waste water having a COD / N ratio of 0.3 or less is supplied to the anammox treatment tank 20, and using a stirrer 21 attached as required, disperses the bacterial agent B containing ammonia bacteria and anammox bacteria, Partial nitrification by ammonia bacteria is advanced by oxygen supplied from the air supply device 22. At this time, the anammox bacteria produce nitrogen gas from the produced nitrite nitrogen and ammonia nitrogen. By this treatment, about 90% of the ammonia in the wastewater is converted into nitrogen gas, and about 1/10 of the ammonia nitrogen concentration remains as nitrate nitrogen. The treated waste water is allowed to stand to settle and separate the bacterial agent B, and is fed to the anaerobic tank 30a of the activated sludge treatment tank 30 through a pipe by a water feeding means 23 such as a pump.

COD/N比が7.0以上の廃水、又は、アナモックス処理後の廃水は、活性汚泥処理槽30に供給され、嫌気槽30aにおいて活性汚泥A2と接触する。この間、脱窒細菌は、有機物を摂取して廃水中の酸化態窒素(硝酸イオン、亜硝酸イオン)を窒素ガスに変換する。この後、廃水は好気槽30bに送られ、曝気装置31から供給される酸素によって、有機物が酸化分解され、且つ、硝化細菌によってアンモニア態窒素が硝化されて硝酸態窒素に変換される。活性汚泥処理槽30は、更に、好気槽30bの処理後の廃水の一部を配管を通して嫌気槽30aに還流させるために、ポンプ等の送水手段32を備えている。これにより、嫌気槽30aでの脱窒処理が廃水に繰り返し施されされるので、廃水の最終硝酸濃度が低下する。好気槽30aの廃水は、ポンプ等の送水手段33により配管を通して最終沈殿槽40へ送水する。   Waste water having a COD / N ratio of 7.0 or more or waste water after the anammox treatment is supplied to the activated sludge treatment tank 30 and contacts the activated sludge A2 in the anaerobic tank 30a. During this time, denitrifying bacteria ingest organic matter and convert oxidized nitrogen (nitrate ions and nitrite ions) in the wastewater into nitrogen gas. Thereafter, the wastewater is sent to the aerobic tank 30b, the organic matter is oxidatively decomposed by oxygen supplied from the aeration apparatus 31, and the ammonia nitrogen is nitrified by nitrifying bacteria to be converted into nitrate nitrogen. The activated sludge treatment tank 30 further includes water supply means 32 such as a pump in order to return a part of the waste water after the treatment in the aerobic tank 30b to the anaerobic tank 30a through the pipe. Thereby, since the denitrification process in the anaerobic tank 30a is repeatedly performed to wastewater, the final nitric acid concentration of wastewater falls. Wastewater from the aerobic tank 30a is sent to the final sedimentation tank 40 through a pipe by a water supply means 33 such as a pump.

最終沈殿槽40に供給される廃水は、静置して活性汚泥A3を沈降分離した後、放流される。希釈水として使用する時は、切り換えバルブ42からポンプ43によって還流する。分離した活性汚泥A3は、ポンプ等の供給手段41により配管を通して吸着処理槽10へ投入する。   The waste water supplied to the final sedimentation tank 40 is left still and discharged after the activated sludge A3 is settled and separated. When used as dilution water, it is refluxed by the pump 43 from the switching valve 42. The separated activated sludge A3 is put into the adsorption treatment tank 10 through a pipe by a supply means 41 such as a pump.

アンモニアを含む廃水や吸着処理後の吸着材は、活性汚泥処理を経ると、アンモニアから変換された酸化態窒素が残留する。これに対して、アナモックス処理を経た廃水は、実質的にアンモニア態窒素を含まず、有機物及び初期アンモニア態窒素の約10%に相当する硝酸態窒素は、活性汚泥処理に従って脱窒及び硝化を進行させることによって除去されるので、還流による処理の繰り返しは不要である。従って、アナモックス処理後の廃水については、工程S7でCOD/N比が7.0以上である廃水及び工程S11の吸着処理を経た吸着材とは区別して単独で活性汚泥処理すると、実質的に硝酸を含まない廃水として排出できる。   Waste water containing ammonia or adsorbent after adsorption treatment undergoes activated sludge treatment, and oxidized nitrogen converted from ammonia remains. In contrast, waste water that has undergone anammox treatment does not substantially contain ammonia nitrogen, and nitrate nitrogen corresponding to about 10% of organic matter and initial ammonia nitrogen undergoes denitrification and nitrification according to activated sludge treatment. Therefore, it is not necessary to repeat the treatment by refluxing. Therefore, the wastewater after the anammox treatment is substantially treated with nitric acid when treated with activated sludge separately from the wastewater having a COD / N ratio of 7.0 or more in step S7 and the adsorbent subjected to the adsorption treatment in step S11. It can be discharged as wastewater that does not contain water.

上述の吸着処理で使用する活性汚泥の細菌は、有機物を十分に摂取した後に好気槽において吸着した有機物を酸化し、これが繰り返されることによって細菌が増殖し環境に馴致して、活性汚泥の有機物蓄積能を向上させる。この結果、硝化工程を経ても活性汚泥に有機物が残留し得るようになり、脱窒工程及び硝化工程を繰り返す際に2回目の脱窒工程を有機物の供給なしで行うことが可能となる。従って、このような有機物蓄積能の高い活性汚泥が調製された場合には、図2の廃水処理装置の活性汚泥処理槽30に複数対の嫌気槽30a及び好気槽30bを設けることによって、アンモニアを含む廃水でも2番目の嫌気槽において残留硝酸態窒素が除去されるので、全てのCOD/N比の廃水に対応可能となり、十分に窒素を除去した廃水が得られる。又、吸着処理において多量の有機物を蓄積することによってリン蓄積細菌の活性も高まり、これが好気槽において廃水中のリン成分を効果的に取り込むので、廃水のリン除去率の向上にも有効である。   The activated sludge bacteria used in the above-described adsorption treatment oxidize the organic matter adsorbed in the aerobic tank after sufficiently ingesting the organic matter. By repeating this, the bacteria grow and adapt to the environment, and the activated sludge organic matter Improve storage capacity. As a result, the organic matter can remain in the activated sludge even after the nitrification step, and the second denitrification step can be performed without supplying the organic matter when the denitrification step and the nitrification step are repeated. Therefore, when such an activated sludge having a high organic matter accumulation capacity is prepared, ammonia is obtained by providing a plurality of pairs of anaerobic tanks 30a and aerobic tanks 30b in the activated sludge treatment tank 30 of the wastewater treatment apparatus of FIG. Since the residual nitrate nitrogen is removed in the second anaerobic tank even in the wastewater containing the wastewater, it becomes possible to deal with wastewater having all COD / N ratios, and wastewater from which nitrogen has been sufficiently removed can be obtained. In addition, accumulation of a large amount of organic matter in the adsorption treatment also increases the activity of phosphorus-accumulating bacteria, which effectively incorporates the phosphorus component in the wastewater in the aerobic tank, which is also effective in improving the phosphorus removal rate of the wastewater. .

図2の廃水処理装置と同等の廃水処理を複数の回分式処理槽を用いて連続的に実施する一例を以下に示す。この例では、廃水は、必要に応じて希釈した水質が、Kj-N濃度800mg-N/L以下、COD値3000mg-COD/L以上であり、メタン発酵後の廃水のCOD/N比が0.3以下となるものとして処理される。ここでは、6つの処理槽a〜fを用い、処理槽a,bはメタン発酵処理槽として、処理槽cはアナモックス処理槽として、処理槽d,eは活性汚泥処理槽として、処理槽fは分離槽として役割区分される。従って、処理槽c〜eには、空気(酸素)を供給する手段が付設される。   An example in which wastewater treatment equivalent to the wastewater treatment apparatus of FIG. 2 is continuously performed using a plurality of batch-type treatment tanks is shown below. In this example, the wastewater has a Kj-N concentration of 800 mg-N / L or less, a COD value of 3000 mg-COD / L or more, and the COD / N ratio of the wastewater after methane fermentation is 0. .3 or less. Here, six treatment tanks a to f are used, the treatment tanks a and b are methane fermentation treatment tanks, the treatment tank c is an anammox treatment tank, the treatment tanks d and e are activated sludge treatment tanks, and the treatment tank f is It is divided into roles as a separation tank. Therefore, means for supplying air (oxygen) is attached to the processing tanks c to e.

工程(a)は、処理槽aは、メタン発酵処理(約0.5〜2日)を開始した状態、処理槽bは原廃水を貯留する状態、処理槽cはアナモックス処理中、処理槽dは活性汚泥による硝化が終了した状態、処理槽eは活性汚泥による脱窒処理中の工程を示す。この後、(b)〜(i)の工程が続く。   In the step (a), the processing tank a is in a state in which a methane fermentation treatment (about 0.5 to 2 days) is started, the processing tank b is in a state in which raw waste water is stored, the processing tank c is in an anammox process, and the processing tank d Indicates a state in which nitrification by activated sludge has been completed, and treatment tank e indicates a process during denitrification treatment by activated sludge. Thereafter, steps (b) to (i) are continued.

工程(b)では、処理槽dの廃水の一部は、空の処理槽fに移して汚泥を沈降分離(約1時間)する。処理槽cではアナモックス処理が終了し、細菌剤を沈降分離する(約20分)。   In the step (b), a part of the waste water in the treatment tank d is transferred to an empty treatment tank f to settle and separate sludge (about 1 hour). In the treatment tank c, the anammox treatment is completed, and the bacterial agent is settled and separated (about 20 minutes).

工程(c)では、処理槽aはメタン発酵を終了し、細菌剤を沈降分離する(約20分)。処理槽eでは廃水を曝気して硝化処理を開始する。   In the step (c), the processing tank a finishes the methane fermentation and settles and separates the bacterial agent (about 20 minutes). In the treatment tank e, waste water is aerated and nitrification is started.

工程(d)では、処理槽fの上澄み廃水を排出し、汚泥を処理槽dに送る。処理槽cの上澄み廃水を処理槽dに送り、脱窒処理を開始する(約20分)。処理槽aの上澄み廃水を処理槽cに送り、処理槽cのアナモックス処理(約200分)を開始する。   In the step (d), the supernatant waste water of the processing tank f is discharged, and the sludge is sent to the processing tank d. The supernatant waste water of the processing tank c is sent to the processing tank d, and the denitrification process is started (about 20 minutes). The supernatant waste water of the processing tank a is sent to the processing tank c, and the anammox process (about 200 minutes) of the processing tank c is started.

工程(e)では、処理槽aの細菌剤を処理槽bに送り、メタン発酵処理(約0.5〜2日)を開始する。空になった処理槽aは、原廃水の貯留を開始する。   In the step (e), the bacterial agent in the processing tank a is sent to the processing tank b, and the methane fermentation process (about 0.5 to 2 days) is started. The processing tank a which has become empty starts to store raw wastewater.

工程(f)では、処理槽eの曝気を終了し、廃水の一部は、空の処理槽fに移して汚泥を沈降分離(約1時間)する。処理槽cではアナモックス処理が終了し、細菌剤を沈降分離する(約20分)。   In the step (f), the aeration of the treatment tank e is completed, and a part of the waste water is transferred to an empty treatment tank f to settle and separate sludge (about 1 hour). In the treatment tank c, the anammox treatment is completed, and the bacterial agent is settled and separated (about 20 minutes).

工程(g)では、処理槽bはメタン発酵を終了し、細菌剤を沈降分離する(約20分)。処理槽dでは廃水を曝気して硝化処理を開始する。   In the step (g), the treatment tank b finishes the methane fermentation and settles and separates the bacterial agent (about 20 minutes). In the treatment tank d, waste water is aerated and nitrification treatment is started.

工程(h)では、処理槽fの上澄み廃水を排出し、汚泥を処理槽eに送る。処理槽cの上澄み廃水を処理槽eに送り、脱窒処理を開始する(約20分)。処理槽bの上澄み廃水を処理槽cに送り、処理槽cのアナモックス処理(約200分)を開始する。   In the step (h), the supernatant waste water of the processing tank f is discharged, and the sludge is sent to the processing tank e. The supernatant waste water of the processing tank c is sent to the processing tank e, and the denitrification process is started (about 20 minutes). The supernatant waste water of the processing tank b is sent to the processing tank c, and the anammox process (about 200 minutes) of the processing tank c is started.

工程(i)では、処理槽bの細菌剤を処理槽aに送り、メタン発酵処理(約0.5〜2日)を開始する。空になった処理槽bは、原廃水の貯留を開始する。   In the step (i), the bacterial agent in the treatment tank b is sent to the treatment tank a, and the methane fermentation treatment (about 0.5 to 2 days) is started. The processing tank b that has become empty starts to store raw wastewater.

この後、工程(a)に戻って、工程(a)〜(i)が繰り返される。上記において、処理槽fは、必要に応じて吸着処理と兼用するように応用することもでき、例えば、上記工程(d)及び(h)を、各々、下記の工程(d1),(d2)、工程(h1),(h2)に変更することによって、処理槽a又はbの上澄み廃水を、処理槽cでアナモックス処理する前に、処理槽fで吸着処理することが可能である。   Thereafter, returning to the step (a), the steps (a) to (i) are repeated. In the above, the treatment tank f can be applied so as to be combined with the adsorption treatment as necessary. For example, the steps (d) and (h) are respectively performed as the following steps (d1) and (d2). By changing to steps (h1) and (h2), it is possible to adsorb the supernatant wastewater from the treatment tank a or b in the treatment tank f before the anammox treatment in the treatment tank c.

工程(d1)では、処理槽fの上澄み廃水を排出し、処理槽aの上澄み廃水を処理槽fに送り、吸着処理を開始する(約10〜20分)。   In the step (d1), the supernatant wastewater of the processing tank f is discharged, the supernatant wastewater of the processing tank a is sent to the processing tank f, and the adsorption process is started (about 10 to 20 minutes).

工程(d2)では、処理槽cの上澄み廃水を処理槽dに送り、処理槽fの上澄み廃水を処理槽cに送り、処理槽cのアナモックス処理(約200分)を開始する。処理槽fの汚泥を処理槽dに送り、脱窒処理を開始する(約20分)。   In the step (d2), the supernatant wastewater of the treatment tank c is sent to the treatment tank d, the supernatant wastewater of the treatment tank f is sent to the treatment tank c, and the anammox treatment (about 200 minutes) of the treatment tank c is started. The sludge in the processing tank f is sent to the processing tank d, and the denitrification process is started (about 20 minutes).

工程(h1)では、処理槽fの上澄み廃水を排出し、処理槽bの上澄み廃水を処理槽f荷送り、吸着処理を開始する(約10〜20分)。   In the step (h1), the supernatant wastewater of the processing tank f is discharged, the supernatant wastewater of the processing tank b is fed to the processing tank f, and the adsorption process is started (about 10 to 20 minutes).

工程(h2)では、処理槽cの上澄み廃水を処理槽eに送り、処理槽fの上澄み廃水を処理槽cに送り、処理槽cのアナモックス処理(約200分)を開始する。処理槽fの汚泥を処理槽eに送り、脱窒処理を開始する(約20分)。   In the step (h2), the supernatant wastewater of the treatment tank c is sent to the treatment tank e, the supernatant wastewater of the treatment tank f is sent to the treatment tank c, and the anammox treatment (about 200 minutes) of the treatment tank c is started. The sludge in the processing tank f is sent to the processing tank e, and the denitrification process is started (about 20 minutes).

このようにして、活性汚泥処理及びアナモックス処理によって対応が難しい高濃度の有機物を含む廃水についても好適に処理でき、廃水のCOD/N比に基づいて適正な廃水処理手順を選択して窒素成分及び有機物の除去率が高い廃水処理が実施される。   In this way, wastewater containing high-concentration organic matter that is difficult to handle by activated sludge treatment and anammox treatment can be suitably treated, and an appropriate wastewater treatment procedure can be selected based on the COD / N ratio of the wastewater to select nitrogen components and Wastewater treatment with high organic matter removal rate is implemented.

尚、前述したように、アナモックス細菌の活性は、系内の溶存酸素濃度及び亜硝酸濃度の影響を受けて活性低下又は被毒が起こるので、アナモックス処理を安定的に繰り返すには、廃水の亜硝酸濃度が20mg-N/L以下、好ましくは5mg-N/L以下、溶存酸素濃度が1mg-O/L以下、好ましくは0.5mg-O/L以下であるような条件で処理を進行することが重要である。このためには、アンモニア酸化細菌の処理速度(亜硝酸態窒素生成速度)が律速となるように条件を制御して、アンモニア酸化細菌が生成する亜硝酸態窒素が全てアナモックス細菌によって消費されるようにするとよい。これには、a)廃水(つまり、アンモニア酸化細菌)への酸素の供給を制御する、及び、b)系内のアンモニア酸化細菌の処理能力(亜硝酸態窒素生成能力)がアナモックス細菌の処理能力(亜硝酸取り込み能力)以下となるように細菌バランスを調節する、の2つが要素となり、亜硝酸態窒素生成速度が律速状態であるか否かは、廃水の溶存酸素濃度を測定して溶存酸素濃度が上昇するか否かによって判断できる。酸素の供給速度が小さい状態では、細菌バランスに関わらず、亜硝酸態窒素生成速度が律速となるが、系内のアンモニア酸化細菌の処理能力がアナモックス細菌の処理能力を超える細菌バランスでは、酸素供給の増加によってアナモックス細菌の処理能力を超える亜硝酸態窒素が生成すると、即座に亜硝酸態窒素濃度が上昇して被毒する。アンモニア酸化細菌の処理能力がアナモックス細菌の処理能力未満であれば、アナモックス細菌の処理能力を超える亜硝酸態窒素が生成する前に、廃水の溶存酸素濃度の上昇によって酸素の過剰供給を検知する構成が可能となる。被毒に関する安全性を考慮すると、アナモックス細菌の処理能力[mol-N/h]がアンモニア酸化細菌の亜硝酸態窒素生成能力[mol-N/h]の1.5倍以上であると好ましい。アンモニア酸化細菌の処理能力がアナモックス細菌の処理能力を超える細菌バランスの場合は、アナモックス細菌の処理能力に対して0.5当量以下となる酸素供給速度であることが望ましい。このようにすることにより、アナモックス細菌の不活性化を避けられので、細菌の養生等のための準備工程が不要になり、処理効率が向上する。又、アナモックス細菌の増殖・活動を安定して継続することができる。アナモックス処理における部分硝化・脱窒の反応は、重炭酸イオンを必要とするので、通常、炭酸水素ナトリウム等の重炭酸塩が添加される。重炭酸塩を構成する塩基は、重金属等の細菌の生育・増殖を阻害するもの以外であれば特に制限はない。添加量は、廃水のアンモニア濃度に応じて、アンモニア1モル当たり重炭酸塩0.1〜2モルとなる量を添加するのが好ましい。但し、空気中の炭酸ガスを利用することも可能であり、廃水のpHが高い場合、重炭酸塩は必ずしも用いなくてもよい。アンモニア酸化細菌及びアナモックス細菌は、予め細菌の培養を行ってを準備しても、市販のものを入手してもよい。各細菌の培養は、従来法に従って公知技術により適宜行うことができ、アンモニアを分解する既存の水処理プラントのスラッジから周知の方法により得られる。アンモニア酸化細菌については、例えば、B. Sorriano及びM. Walkerの文献(J. Applied Bacteriology, 31, 493-497(1968))を参照して単離でき、アナモックス細菌については、特表2001−506535号公報等を参照して用意でき、オランダ国バールンのCentraal Bureau voor Schimmelculturesにより登録番号94987(1987年12月12日)で寄託されるスラッジを利用できる。各培養細菌の菌体量及び活性は下記のようにして調べられ、これらから各細菌の処理能力が分かる。   As described above, the activity of anammox bacteria is affected by the dissolved oxygen concentration and nitrous acid concentration in the system, resulting in a decrease in activity or poisoning. The treatment proceeds under conditions such that the nitric acid concentration is 20 mg-N / L or less, preferably 5 mg-N / L or less, and the dissolved oxygen concentration is 1 mg-O / L or less, preferably 0.5 mg-O / L or less. This is very important. For this purpose, the nitrite nitrogen produced by the ammonia-oxidizing bacteria is all consumed by the anammox bacteria by controlling the conditions so that the treatment rate of the ammonia-oxidizing bacteria (nitrite-nitrogen production rate) is rate-limiting. It is good to. This includes: a) controlling the supply of oxygen to the wastewater (ie ammonia oxidizing bacteria), and b) the ability of ammonia oxidizing bacteria in the system (the ability to produce nitrite nitrogen) to be the ability of anammox bacteria. (Nitrite uptake capacity) The two factors of adjusting the bacterial balance to be below are factors, and whether the rate of nitrite nitrogen production is rate-limiting or not is determined by measuring the dissolved oxygen concentration of wastewater It can be judged by whether or not the concentration increases. When the oxygen supply rate is low, the nitrite nitrogen production rate is rate-limiting regardless of the bacterial balance, but in the bacterial balance where the processing capacity of ammonia oxidizing bacteria in the system exceeds the processing capacity of anammox bacteria, oxygen supply If nitrite nitrogen exceeds the processing capacity of anammox bacteria due to the increase in nitrite, the nitrite nitrogen concentration immediately rises and poisons. If the capacity of ammonia-oxidizing bacteria is less than the capacity of anammox bacteria, an excess supply of oxygen is detected by increasing the dissolved oxygen concentration of wastewater before nitrite nitrogen exceeding the capacity of anammox bacteria is generated. Is possible. Considering the safety regarding poisoning, it is preferable that the treatment capacity [mol-N / h] of the anammox bacteria is 1.5 times or more than the nitrite nitrogen production capacity [mol-N / h] of the ammonia oxidizing bacteria. In the case of a bacterial balance in which the treatment capacity of ammonia-oxidizing bacteria exceeds the treatment capacity of anammox bacteria, it is desirable that the oxygen supply rate be 0.5 equivalent or less with respect to the treatment capacity of anammox bacteria. By doing so, inactivation of the anammox bacteria can be avoided, so that a preparation step for curing the bacteria and the like is not required, and the processing efficiency is improved. In addition, the growth and activity of anammox bacteria can be stably continued. Since the reaction of partial nitrification and denitrification in the anammox treatment requires bicarbonate ions, a bicarbonate such as sodium bicarbonate is usually added. The base constituting the bicarbonate is not particularly limited as long as it does not inhibit the growth and proliferation of bacteria such as heavy metals. It is preferable to add an amount of 0.1 to 2 moles of bicarbonate per mole of ammonia, depending on the ammonia concentration of the wastewater. However, carbon dioxide in the air can be used, and bicarbonate is not necessarily used when the pH of the wastewater is high. Ammonia-oxidizing bacteria and anammox bacteria may be prepared by culturing bacteria in advance or commercially available. Culture of each bacterium can be appropriately performed by a known technique according to a conventional method, and can be obtained by a known method from sludge of an existing water treatment plant that decomposes ammonia. Ammonia-oxidizing bacteria can be isolated with reference to, for example, the literature of B. Sorriano and M. Walker (J. Applied Bacteriology, 31, 493-497 (1968)). The sludge deposited with the registration number 94987 (December 12, 1987) by the Centraal Bureau voor Schimmelcultures in Baarn, the Netherlands can be used. The amount and activity of each cultured bacterium are examined as follows, and the treatment ability of each bacterium can be understood from these.

(アンモニア酸化細菌)
菌体量: Wagner M., Rath G., Amann R., Koops H.-P. and Schleifer K.-H., "In situ identification of ammonia-oxidizing bacteria", Syst. Appl. Microbiol. 18(1995), p251-264.
活性: Grunditz C. and Dalhammar G., "Development of nitrification inhibition assays using pure cultures of nitrosomonas and nitrobacter", Water Research, Vol.35(2001), Issue 2, p433-440.
(アナモックス細菌)
菌体量: Schmid M. et al., "Candidatus "Scalindual brodae", sp. nov., Candidatus "Scalindua Wagneri", sp. nov., Two New Species of Anaerobic Ammonium Oxidizing Bacteria", Syst. Appl. Microbiol., 26(2003), No.4, p529-538.
活性: Sliekers A. et al., "Completely autotrophic nitrogen removal over nitrite in one single reactor", Water Research, Vol.36(2002), Issue 10, p2475-2482.
以下、実施例を参照して、本発明に係る廃水の処理について具体的に説明する。
(Ammonia-oxidizing bacteria)
Bacterial mass: Wagner M., Rath G., Amann R., Koops H.-P. and Schleifer K.-H., "In situ identification of ammonia-oxidizing bacteria", Syst. Appl. Microbiol. 18 (1995 ), p251-264.
Activity: Grunditz C. and Dalhammar G., "Development of nitrification inhibition assays using pure cultures of nitrosomonas and nitrobacter", Water Research, Vol.35 (2001), Issue 2, p433-440.
(Anamox bacteria)
Cell weight: Schmid M. et al., "Candidatus" Scalindual brodae ", sp. Nov., Candidatus" Scalindua Wagneri ", sp. Nov., Two New Species of Anaerobic Ammonium Oxidizing Bacteria", Syst. Appl. Microbiol. , 26 (2003), No. 4, p529-538.
Activity: Sliekers A. et al., "Completely autotrophic nitrogen removal over nitrite in one single reactor", Water Research, Vol. 36 (2002), Issue 10, p2475-2482.
Hereinafter, the treatment of wastewater according to the present invention will be specifically described with reference to Examples.

活性汚泥槽30を回分式単槽に変更したこと以外は図2と同様の構成の廃水処理装置を用いて、以下の廃水処理を行った。尚、アナモックス処理槽20には、廃水の溶存酸素濃度を測定する測定器が付設されている。   Except for changing the activated sludge tank 30 to a batch-type single tank, the following wastewater treatment was performed using a wastewater treatment apparatus having the same configuration as in FIG. The anammox treatment tank 20 is provided with a measuring device for measuring the dissolved oxygen concentration of the wastewater.

(実施例1)
メタン生成細菌を含むメタン発酵微生物剤(UASBリアクター用充填グラニュール)4kgを収容したメタン発酵処理槽2に、Kj-N濃度700mg-N/L(アンモニア濃度650mg-N/L)、硝酸・亜硝酸濃度0mg−N/L、COD値4000mg-COD/Lの原廃水8Lを投入し、35℃で攪拌して微生物剤を分散した後、嫌気性条件下で断続的に穏やかに攪拌しながら反応させたところ、廃水中から気泡が発生し出した。このガスを配管を通じて回収しながら48時間反応を継続し、微生物剤を沈降分離して上澄みの廃水のアンモニア濃度及びCOD値を測定したところ、アンモニア濃度620mg-N/L、COD値150mg-COD/Lであり、COD/N比は0.3以下となった。この上澄みの廃水8Lを、アンモニア酸化細菌及びアナモックス細菌を含む細菌剤2L(アンモニア酸化細菌の処理能力:アンモニア消費速度で12g-N/(L・d)、アナモックス細菌の処理能力:アンモニア消費速度で18g-N/(L・d))を収容するアナモックス処理槽20に投入した。反応中にメタン発酵処理槽2から回収したガスから、メタン約5gが得られた。
Example 1
A methane fermentation treatment tank 2 containing 4 kg of a methane fermentation microbial agent containing methane-producing bacteria (packed granules for UASB reactor) has a Kj-N concentration of 700 mg-N / L (ammonia concentration of 650 mg-N / L), nitric acid / suboxide. Add 8L of raw waste water with nitric acid concentration 0mg-N / L, COD value 4000mg-COD / L, and stir at 35 ° C to disperse the microbial agent, then react under intermittent anaerobic conditions with gentle stirring As a result, bubbles started to be generated from the wastewater. The reaction was continued for 48 hours while collecting this gas through a pipe, and the microbial agent was settled and separated to measure the ammonia concentration and COD value of the supernatant wastewater. The ammonia concentration was 620 mg-N / L, the COD value was 150 mg-COD / L, and the COD / N ratio was 0.3 or less. 8 L of the supernatant waste water is converted into 2 L of a bacterial agent containing ammonia-oxidizing bacteria and anammox bacteria (treatment capacity of ammonia-oxidizing bacteria: 12 g-N / (L · d) in terms of ammonia consumption rate, treatment capacity of anammox bacteria: in terms of ammonia consumption rate) The anammox treatment tank 20 containing 18 g-N / (L · d)) was charged. About 5 g of methane was obtained from the gas recovered from the methane fermentation tank 2 during the reaction.

アナモックス処理槽20の廃水に重炭酸ナトリウム500gを添加し、攪拌して細菌を分散させ、溶存酸素濃度測定器を作動させて溶存酸素濃度の測定を開始したところ、0.1mg-O/Lで一定していた。廃液のpH値は7.5であった。この後、曝気装置を作動させて酸素供給速度が0.2g-O/(L・d)となるように空気の吹き込み速度を調節して廃水の曝気を開始した。曝気開始によって溶存酸素濃度は僅かに増加したが、その後ほぼ一定であったので曝気を継続した。曝気を開始して15時間後、溶存酸素濃度が上昇し始めたので、酸素の供給を停止して廃水を静置した。菌体スラッジが槽の底部に沈降した後、上澄みの廃水の水質を測定したところ、アンモニア濃度は0.1mg-N/L、硝酸濃度は73mg-N/L、亜硝酸濃度は0mg-N/Lであった。COD値は20mg-COD/Lであり、COD/N比は200となった。又、pH値は7.0であった。この上澄みの廃水8Lは、活性汚泥(含水)42Lを収容する活性汚泥処理槽に排出した。活性汚泥処理槽の廃水の水質は、アンモニア濃度:26mg-N/L、硝酸濃度:18mg-N/L、亜硝酸濃度:0mg-N/Lとなった。又、COD値は53mg-COD/L、pH値は6.8となった。 When 500 g of sodium bicarbonate was added to the waste water of the anammox treatment tank 20 and stirred to disperse the bacteria, and the dissolved oxygen concentration measuring device was started to measure the dissolved oxygen concentration, 0.1 mg-O 2 / L It was constant. The pH value of the waste liquid was 7.5. Thereafter, the aeration apparatus was operated to adjust the air blowing rate so that the oxygen supply rate was 0.2 g-O 2 / (L · d), and aeration of the wastewater was started. The dissolved oxygen concentration slightly increased with the start of aeration, but since then it was almost constant, aeration was continued. 15 hours after the start of aeration, the dissolved oxygen concentration began to rise, so the supply of oxygen was stopped and the wastewater was allowed to stand. After the bacterial sludge settled at the bottom of the tank, the quality of the supernatant wastewater was measured. The ammonia concentration was 0.1 mg-N / L, the nitric acid concentration was 73 mg-N / L, and the nitrite concentration was 0 mg-N / L. L. The COD value was 20 mg-COD / L, and the COD / N ratio was 200. The pH value was 7.0. The supernatant waste water 8L was discharged into an activated sludge treatment tank containing activated sludge (containing water) 42L. The wastewater quality of the activated sludge treatment tank was ammonia concentration: 26 mg-N / L, nitric acid concentration: 18 mg-N / L, and nitrous acid concentration: 0 mg-N / L. The COD value was 53 mg-COD / L, and the pH value was 6.8.

活性汚泥処理槽の廃水を嫌気性条件にして、穏やかに攪拌しながら脱窒処理を6時間行った。この後、曝気装置を作動させて好気性条件にして硝化処理を5時間行い、廃水8L(全量の20容積%)を活性汚泥処理槽から最終沈澱槽40へ排出し、活性汚泥を沈降分離した。上澄みの水質を測定したところ、アンモニア濃度は5.3mg-N/L、硝酸濃度は15mg-N/L、亜硝酸濃度は0.1mg-N/Lであった。又、COD値は5mg-COD/Lであり、pH値は6.8であった。   The waste water in the activated sludge treatment tank was anaerobic, and denitrification was performed for 6 hours with gentle stirring. Thereafter, the aeration apparatus is operated to perform a nitrification treatment under an aerobic condition for 5 hours, 8 L of waste water (20% by volume of the total amount) is discharged from the activated sludge treatment tank to the final sedimentation tank 40, and the activated sludge is settled and separated. . When the water quality of the supernatant was measured, the ammonia concentration was 5.3 mg-N / L, the nitric acid concentration was 15 mg-N / L, and the nitrous acid concentration was 0.1 mg-N / L. The COD value was 5 mg-COD / L, and the pH value was 6.8.

(実施例2)
新たな廃水の水質を測定したところ、Kj-N濃度2400mg-N/L(アンモニア濃度2200mg-N/L)、硝酸・亜硝酸濃度0mg−N/L、COD値5000mg-COD/Lであったので、Kj-N濃度が800mg-N/L以下を満たすように3倍に希釈した。この希釈原廃水8Lを、実施例1の処理後のメタン発酵処理槽2に投入し、実施例1と同様にして反応させた。この結果、上澄み廃水は、アンモニア濃度760mg-N/L、COD値50mg-COD/Lであり、COD/N比は0.3以下となった。反応中に配管から回収したガスから、メタン約3gが得られた。上澄みの廃水8Lは、実施例1と同様にしてアナモックス処理槽20に投入した。
(Example 2)
When the quality of the new wastewater was measured, it was Kj-N concentration 2400 mg-N / L (ammonia concentration 2200 mg-N / L), nitric acid / nitrite concentration 0 mg-N / L, and COD value 5000 mg-COD / L. Therefore, the Kj-N concentration was diluted 3 times so as to satisfy 800 mg-N / L or less. 8 L of this diluted raw wastewater was put into the methane fermentation treatment tank 2 after the treatment in Example 1, and reacted in the same manner as in Example 1. As a result, the supernatant wastewater had an ammonia concentration of 760 mg-N / L, a COD value of 50 mg-COD / L, and the COD / N ratio was 0.3 or less. About 3 g of methane was obtained from the gas recovered from the piping during the reaction. The supernatant waste water 8L was put into the anammox treatment tank 20 in the same manner as in Example 1.

アナモックス処理槽20の廃水は、実施例1と同様にして酸素供給速度が0.2g-O/(L・d)となるように曝気し、曝気を開始して15時間後、溶存酸素濃度が0.1mg-O/Lから上昇し始めたので、酸素の供給を停止して廃水を静置した。上澄み廃水のアンモニア濃度は0.1mg-N/L、硝酸濃度は73mg-N/L、亜硝酸濃度は0mg-N/Lであった。COD値は30mg-COD/Lであり、COD/N比は300となった。又、pH値は7.0であった。この上澄みの廃水8Lは、活性汚泥(含水)42Lを収容する活性汚泥処理槽に排出した。活性汚泥処理槽の廃水の水質は、アンモニア濃度:0mg-N/L、硝酸濃度:52mg-N/L、亜硝酸濃度:0mg-N/Lとなった。又、COD値は48mg-COD/L、pH値は6.8となった。 The waste water in the anammox treatment tank 20 was aerated in the same manner as in Example 1 so that the oxygen supply rate was 0.2 g-O 2 / (L · d), and 15 hours after the start of aeration, the dissolved oxygen concentration Started to rise from 0.1 mg-O 2 / L, the supply of oxygen was stopped and the wastewater was allowed to stand. The ammonia concentration of the supernatant wastewater was 0.1 mg-N / L, the nitric acid concentration was 73 mg-N / L, and the nitrous acid concentration was 0 mg-N / L. The COD value was 30 mg-COD / L, and the COD / N ratio was 300. The pH value was 7.0. The supernatant waste water 8L was discharged into an activated sludge treatment tank containing activated sludge (containing water) 42L. The wastewater quality of the activated sludge treatment tank was ammonia concentration: 0 mg-N / L, nitric acid concentration: 52 mg-N / L, and nitrous acid concentration: 0 mg-N / L. The COD value was 48 mg-COD / L, and the pH value was 6.8.

活性汚泥処理槽の廃水を嫌気性条件にして、穏やかに攪拌しながら脱窒処理を6時間行った。この後、曝気装置を作動させて好気性条件にして硝化処理を5時間行い、廃水8L(全量の20容積%)を活性汚泥処理槽から最終沈澱槽40へ排出し、活性汚泥を沈降分離した。上澄みの水質を測定したところ、アンモニア濃度は0.1mg-N/L、硝酸濃度は1.2mg-N/L、亜硝酸濃度は0.1mg-N/Lであった。又、COD値は15mg-COD/Lであり、pH値は6.8であった。   The waste water in the activated sludge treatment tank was anaerobic, and denitrification was performed for 6 hours with gentle stirring. Thereafter, the aeration apparatus is operated to perform a nitrification treatment under an aerobic condition for 5 hours, 8 L of waste water (20% by volume of the total amount) is discharged from the activated sludge treatment tank to the final sedimentation tank 40, and the activated sludge is settled and separated. . When the water quality of the supernatant was measured, the ammonia concentration was 0.1 mg-N / L, the nitric acid concentration was 1.2 mg-N / L, and the nitrous acid concentration was 0.1 mg-N / L. The COD value was 15 mg-COD / L, and the pH value was 6.8.

(比較例)
実施例2で用いた新たな廃水8Lを、希釈することなくメタン発酵処理槽2に投入し、同様にして反応を行ったところ、反応開始から2時間後に廃水における気泡の発生が殆ど見られなくなった。回収ガスから得られたメタンは約0.2gであった。また、上澄み廃水液の水質を測定したところ、アンモニア濃度:1800mg-N/L、硝酸濃度:0mg−N/L、亜硝酸濃度:0mg−N/Lであった。COD値は4000mg-COD/L(COD/N比:2.2)となり、pH値は9.1であった。これは、メタン発酵微生物剤の細菌が被毒していることを示している。
(Comparative example)
When 8 L of new waste water used in Example 2 was added to the methane fermentation treatment tank 2 without dilution and reacted in the same manner, almost no bubbles were generated in the waste water after 2 hours from the start of the reaction. It was. The amount of methane obtained from the recovered gas was about 0.2 g. Moreover, when the water quality of the supernatant wastewater solution was measured, the ammonia concentration was 1800 mg-N / L, the nitric acid concentration was 0 mg-N / L, and the nitrous acid concentration was 0 mg-N / L. The COD value was 4000 mg-COD / L (COD / N ratio: 2.2), and the pH value was 9.1. This indicates that the bacteria of the methane fermentation microbial agent are poisoned.

有機物や高額な薬剤の添加が不要で、高い浄化率で効率よく処理できる廃水処理装置が提供され、高濃度の有機物を含む廃水処理を好適に処理でき、幅広い水質に対応可能な廃水処理が実施可能となる。廃水の水質変動に容易に対応でき、安定的に浄化処理を継続可能な廃水処理方法及び廃水処理装置が提供される。   Waste water treatment equipment that can efficiently treat with high purification rate without the need to add organic matter or expensive chemicals is provided, waste water treatment containing high concentration organic matter can be suitably treated, and waste water treatment that supports a wide range of water quality is implemented It becomes possible. Disclosed are a wastewater treatment method and a wastewater treatment apparatus that can easily cope with fluctuations in the quality of wastewater and can stably perform purification treatment.

2:メタン発酵処理槽、10:吸着処理槽、20:アナモックス処理槽
30:活性汚泥処理槽、40:最終沈澱槽
2: methane fermentation treatment tank, 10: adsorption treatment tank, 20: anammox treatment tank, 30: activated sludge treatment tank, 40: final precipitation tank

Claims (15)

廃水に含まれる有機物をメタン発酵して有機物濃度を減少させるメタン発酵処理と、
廃水にアンモニア酸化細菌及びアナモックス細菌を作用させて廃水に含まれるアンモニア態窒素を窒素ガスに変換するアナモックス処理と、
廃水に活性汚泥を作用させてアンモニア態窒素の硝化及び硝酸・亜硝酸態窒素の脱窒を行う活性汚泥処理とを有する廃水処理方法。
Methane fermentation treatment to reduce the organic matter concentration by methane fermentation of organic matter contained in wastewater,
An anammox treatment in which ammonia-oxidizing bacteria and anammox bacteria are allowed to act on wastewater to convert ammonia nitrogen contained in the wastewater into nitrogen gas;
A wastewater treatment method comprising activated sludge treatment in which activated sludge is allowed to act on wastewater to nitrify ammonia nitrogen and denitrify nitric acid / nitrite nitrogen.
前記メタン発酵処理は、有機物濃度が化学的酸素要求量換算で3000mg-COD/L以上で、ケルダール態窒素濃度が800mg-N/L以下の廃水に適用される請求項1に記載の廃水処理方法。   The waste water treatment method according to claim 1, wherein the methane fermentation treatment is applied to waste water having an organic substance concentration of 3000 mg-COD / L or more in terms of chemical oxygen demand and a Kjeldahl nitrogen concentration of 800 mg-N / L or less. . 前記アナモックス処理は、アンモニア態窒素濃度に対する化学的酸素要求量の比であるCOD/N比[mg-COD/mg-N]が0.3以下で、ケルダール態窒素濃度が800mg-N/L以下の廃水に適用され、前記活性汚泥処理は、COD/N比が7.0以上で、ケルダール態窒素濃度が800mg-N/L以下の廃水に適用される請求項1又は2に記載の廃水処理方法。   In the anammox treatment, the COD / N ratio [mg-COD / mg-N], which is the ratio of the chemical oxygen demand to the ammonia nitrogen concentration, is 0.3 or less, and the Kjeldahl nitrogen concentration is 800 mg-N / L or less. The wastewater treatment according to claim 1 or 2, wherein the activated sludge treatment is applied to wastewater having a COD / N ratio of 7.0 or more and a Kjeldahl nitrogen concentration of 800 mg-N / L or less. Method. 廃水のケルダール態窒素濃度に基づいて、廃水を希釈してケルダール態窒素濃度を800mg-N/L以下に調整する希釈処理を有する請求項1〜3の何れかに記載の廃水処理方法。   The wastewater treatment method according to any one of claims 1 to 3, further comprising a dilution treatment for adjusting the Kjeldahl nitrogen concentration to 800 mg-N / L or less by diluting the wastewater based on the Kjeldahl nitrogen concentration of the wastewater. 廃水のケルダール態窒素濃度が800mg-N/Lを超える時に、廃水に予め前記希釈処理を施し、廃水の有機物濃度に基づいて前記メタン発酵処理、前記アナモックス処理及び前記活性汚泥処理の何れかを施す請求項4に記載の廃水処理方法。   When the Kjeldahl nitrogen concentration of the wastewater exceeds 800 mg-N / L, the wastewater is subjected to the dilution treatment in advance, and any one of the methane fermentation treatment, the anammox treatment, and the activated sludge treatment is performed based on the organic matter concentration of the wastewater. The wastewater treatment method according to claim 4. 前記希釈処理において使用される希釈水は、前記活性汚泥処理後の廃水である請求項4又は5に記載の廃水処理方法。   The wastewater treatment method according to claim 4 or 5, wherein the dilution water used in the dilution treatment is wastewater after the activated sludge treatment. COD/N比が0.3を超え7.0未満の廃水に、有機物を吸着可能な吸着材を作用させて廃水の有機物濃度を減少させる吸着処理を有する請求項1〜6の何れかに記載の廃水処理方法。   The wastewater having a COD / N ratio exceeding 0.3 and less than 7.0 has an adsorption treatment for reducing the organic matter concentration of the wastewater by causing an adsorbent capable of adsorbing the organic matter to act. Wastewater treatment method. 前記アナモックス処理を施した後の廃水に前記活性汚泥処理を施す請求項1〜7の何れかに記載の廃水処理方法。   The wastewater treatment method according to any one of claims 1 to 7, wherein the activated sludge treatment is performed on the wastewater after the anammox treatment. 廃水に含まれる有機物をメタン発酵するメタン生成菌を収容するメタン発酵処理槽と、
廃水に含まれるアンモニア態窒素を窒素ガスに変換するアンモニア酸化細菌及びアナモックス細菌を収容するアナモックス処理槽と、
廃水に含まれるアンモニア態窒素の硝化及び硝酸・亜硝酸態窒素の脱窒を行う活性汚泥を収容する活性汚泥処理槽とを有する廃水処理装置。
A methane fermentation treatment tank containing methanogens for methane fermentation of organic matter contained in waste water;
An anammox treatment tank containing ammonia oxidizing bacteria and anammox bacteria that convert ammonia nitrogen contained in wastewater into nitrogen gas;
A wastewater treatment apparatus comprising an activated sludge treatment tank containing activated sludge for nitrifying ammonia nitrogen contained in wastewater and denitrifying nitric acid / nitrite nitrogen.
ケルダール態窒素濃度が800mg-N/Lを超える廃水を希釈してケルダール態窒素濃度を800mg-N/L以下に調整する希釈処理手段を有する請求項9に記載の廃水処理装置。   The wastewater treatment apparatus according to claim 9, further comprising dilution treatment means for diluting wastewater having a Kjeldahl nitrogen concentration exceeding 800 mg-N / L to adjust the Kjeldahl nitrogen concentration to 800 mg-N / L or less. 廃水の水質に基づいて、前記メタン発酵処理槽、前記アナモックス処理槽及び前記活性汚泥処理槽の何れかに廃水の供給を切換える切換え手段を有するを施す請求項9又は10に記載の廃水処理装置。   The wastewater treatment apparatus according to claim 9 or 10, further comprising a switching means for switching the supply of wastewater to any one of the methane fermentation treatment tank, the anammox treatment tank, and the activated sludge treatment tank based on the quality of the wastewater. 前記希釈処理手段は、前記活性汚泥処理槽から排出される廃水を希釈水として供給する請求項10又は11に記載の廃水処理装置。   The waste water treatment apparatus according to claim 10 or 11, wherein the dilution processing means supplies waste water discharged from the activated sludge treatment tank as dilution water. 更に、廃水に含まれる有機物を吸着して廃水の有機物濃度を減少可能な吸着材を収容する吸着処理槽を有する請求項9〜12の何れかに記載の廃水処理装置。   Furthermore, the wastewater treatment apparatus in any one of Claims 9-12 which has an adsorption treatment tank which accommodates the adsorbent which can adsorb | suck the organic substance contained in wastewater and can reduce the organic matter density | concentration of wastewater. 前記吸着材は、活性汚泥又は活性炭を含む請求項13に記載の廃水処理装置。   The waste water treatment apparatus according to claim 13, wherein the adsorbent includes activated sludge or activated carbon. 前記アナモックス処理槽から排出される廃水を前記活性汚泥処理槽へ供給する送水手段を有する請求項9〜14の何れかに記載の廃水処理装置。   The wastewater treatment apparatus according to any one of claims 9 to 14, further comprising water supply means for supplying wastewater discharged from the anammox treatment tank to the activated sludge treatment tank.
JP2011151664A 2011-07-08 2011-07-08 Waste water treatment method and waste water treatment apparatus Expired - Fee Related JP5862082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011151664A JP5862082B2 (en) 2011-07-08 2011-07-08 Waste water treatment method and waste water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011151664A JP5862082B2 (en) 2011-07-08 2011-07-08 Waste water treatment method and waste water treatment apparatus

Publications (2)

Publication Number Publication Date
JP2013017928A true JP2013017928A (en) 2013-01-31
JP5862082B2 JP5862082B2 (en) 2016-02-16

Family

ID=47689925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011151664A Expired - Fee Related JP5862082B2 (en) 2011-07-08 2011-07-08 Waste water treatment method and waste water treatment apparatus

Country Status (1)

Country Link
JP (1) JP5862082B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103241916A (en) * 2013-05-12 2013-08-14 北京工业大学 Method for realizing maximal accumulation of nitrite in sludge fermentation coupling denitrification process
CN103288213A (en) * 2013-06-08 2013-09-11 中国环境科学研究院 Whole-process autotrophic nitrogen removal method and device
CN103708626A (en) * 2013-12-25 2014-04-09 嘉兴学院 Method for treating solid-waste anaerobic fermentation biogas slurry
CN103739086A (en) * 2013-12-28 2014-04-23 北京工业大学 Method for generating and utilizing N2O in partial nitrifying process of sludge digestion solution
CN104609660A (en) * 2015-01-15 2015-05-13 同济大学 Efficient, energy-saving and consumption-reducing sewage treatment method for resource recovery
CN104909424A (en) * 2015-05-25 2015-09-16 常州大学 Method for treatment of high concentration ammonia nitrogen in monosodium glutamate wastewater
CN105668810A (en) * 2016-04-20 2016-06-15 南京大学 Environment-friendly compounded denitrification agent and denitrification method
JP2016107233A (en) * 2014-12-09 2016-06-20 株式会社クラレ Garbage treatment method
JP2016131974A (en) * 2015-01-15 2016-07-25 黎明興技術顧問股▲分▼有限公司 Waste water treatment system
JP2017018861A (en) * 2015-07-07 2017-01-26 水ing株式会社 Method for removing nitrogen and nitrogen removal device
CN107827318A (en) * 2017-11-29 2018-03-23 北京城市排水集团有限责任公司 For middle and advanced stage percolate carbon and nitrogen removal device and its processing method
CN108439595A (en) * 2018-04-04 2018-08-24 北京工业大学 The denitrifying methods of foul water fraction short distance nitration-Anammox/ are realized using sludge fermentation object
CN111099743A (en) * 2018-10-26 2020-05-05 中国石油化工股份有限公司 Composition for enhancing denitrification and denitrification of wastewater and denitrification method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000233198A (en) * 1999-02-10 2000-08-29 Kurita Water Ind Ltd Treatment of organic waste water
JP2001506535A (en) * 1996-08-23 2001-05-22 テクニシエ ウニベルジテイト デルフト Method of treating wastewater containing ammonia
JP2002273476A (en) * 2001-03-19 2002-09-24 Ngk Insulators Ltd Treatment of waste water containing high-concentration nitrogen
JP2005305410A (en) * 2004-03-25 2005-11-04 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for removing nitrogen
JP2008155085A (en) * 2006-12-21 2008-07-10 Ihi Corp Waste water treatment method and apparatus
JP2009101296A (en) * 2007-10-23 2009-05-14 Asahi Breweries Ltd Treatment method and apparatus for food production wastewater
JP2009214007A (en) * 2008-03-10 2009-09-24 Ihi Corp Activated sludge treating method for wastewater and activated sludge treatment apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001506535A (en) * 1996-08-23 2001-05-22 テクニシエ ウニベルジテイト デルフト Method of treating wastewater containing ammonia
JP2000233198A (en) * 1999-02-10 2000-08-29 Kurita Water Ind Ltd Treatment of organic waste water
JP2002273476A (en) * 2001-03-19 2002-09-24 Ngk Insulators Ltd Treatment of waste water containing high-concentration nitrogen
JP2005305410A (en) * 2004-03-25 2005-11-04 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for removing nitrogen
JP2008155085A (en) * 2006-12-21 2008-07-10 Ihi Corp Waste water treatment method and apparatus
JP2009101296A (en) * 2007-10-23 2009-05-14 Asahi Breweries Ltd Treatment method and apparatus for food production wastewater
JP2009214007A (en) * 2008-03-10 2009-09-24 Ihi Corp Activated sludge treating method for wastewater and activated sludge treatment apparatus

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103241916A (en) * 2013-05-12 2013-08-14 北京工业大学 Method for realizing maximal accumulation of nitrite in sludge fermentation coupling denitrification process
CN103288213A (en) * 2013-06-08 2013-09-11 中国环境科学研究院 Whole-process autotrophic nitrogen removal method and device
CN103708626A (en) * 2013-12-25 2014-04-09 嘉兴学院 Method for treating solid-waste anaerobic fermentation biogas slurry
CN103739086B (en) * 2013-12-28 2016-01-20 北京工业大学 One realizes N in sludge-digestion liquid short distance nitration process 2o produces and the method utilized
CN103739086A (en) * 2013-12-28 2014-04-23 北京工业大学 Method for generating and utilizing N2O in partial nitrifying process of sludge digestion solution
JP2016107233A (en) * 2014-12-09 2016-06-20 株式会社クラレ Garbage treatment method
CN104609660A (en) * 2015-01-15 2015-05-13 同济大学 Efficient, energy-saving and consumption-reducing sewage treatment method for resource recovery
JP2016131974A (en) * 2015-01-15 2016-07-25 黎明興技術顧問股▲分▼有限公司 Waste water treatment system
CN104909424A (en) * 2015-05-25 2015-09-16 常州大学 Method for treatment of high concentration ammonia nitrogen in monosodium glutamate wastewater
JP2017018861A (en) * 2015-07-07 2017-01-26 水ing株式会社 Method for removing nitrogen and nitrogen removal device
CN105668810A (en) * 2016-04-20 2016-06-15 南京大学 Environment-friendly compounded denitrification agent and denitrification method
CN107827318A (en) * 2017-11-29 2018-03-23 北京城市排水集团有限责任公司 For middle and advanced stage percolate carbon and nitrogen removal device and its processing method
CN107827318B (en) * 2017-11-29 2023-08-15 北京城市排水集团有限责任公司 Carbon and nitrogen removal device for middle and late landfill leachate and treatment method thereof
CN108439595A (en) * 2018-04-04 2018-08-24 北京工业大学 The denitrifying methods of foul water fraction short distance nitration-Anammox/ are realized using sludge fermentation object
CN108439595B (en) * 2018-04-04 2021-01-05 北京工业大学 Method for realizing partial shortcut nitrification-Anammox/denitrification of sewage by utilizing sludge fermentation product
CN111099743A (en) * 2018-10-26 2020-05-05 中国石油化工股份有限公司 Composition for enhancing denitrification and denitrification of wastewater and denitrification method thereof
CN111099743B (en) * 2018-10-26 2022-06-07 中国石油化工股份有限公司 Composition for enhancing denitrification and denitrification of wastewater and denitrification method thereof

Also Published As

Publication number Publication date
JP5862082B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
JP5862082B2 (en) Waste water treatment method and waste water treatment apparatus
Cui et al. Advanced nitrogen removal from low C/N municipal wastewater by combining partial nitrification-anammox and endogenous partial denitrification-anammox (PN/A-EPD/A) process in a single-stage reactor
JP3776315B2 (en) Method for treating wastewater containing ammonia
Qin et al. Aerobic granulation for organic carbon and nitrogen removal in alternating aerobic–anaerobic sequencing batch reactor
JP3821011B2 (en) Wastewater treatment method and treatment apparatus
JP4496735B2 (en) Biological treatment of BOD and nitrogen-containing wastewater
US20140374344A1 (en) Method for treating wastewater containing ammonia nitrogen
CN110683643B (en) Enrichment method of anaerobic ammonium oxidation bacteria
JP5814768B2 (en) Nitrogen-containing organic wastewater treatment system and treatment method
US20160207807A1 (en) Wastewater treatment system
CN113087134A (en) Device and method for quickly realizing integration of partial shortcut nitrification/anaerobic ammonia oxidation by adding hydroxylamine and combining with low sludge age control
JP4835536B2 (en) Removal of organic substances and nitrogen from liquid to be treated
JP4957229B2 (en) Waste water treatment method and waste water treatment apparatus
CN113226996A (en) Water treatment process for simultaneous carbon, nitrogen and phosphorus reduction in a sequencing batch moving bed biofilm reactor
JP2008155086A (en) Waste water treatment method and apparatus and microbial agent for waste water treatment
JP5858763B2 (en) Nitrogen-containing organic wastewater treatment system and treatment method
JP5055670B2 (en) Denitrification method and denitrification apparatus
JP6535125B1 (en) Water treatment method
EP1630139A1 (en) Process for the biological denitrification of ammonium containing wastewater
JP2017018861A (en) Method for removing nitrogen and nitrogen removal device
JP5536894B2 (en) Digestion method of excess sludge by lack of normal time
CN110759607B (en) Process for removing total nitrogen from printing and dyeing wastewater
JP2003039092A (en) Biological denitrification treatment method
JP2003024982A (en) Biological denitrification method and biological denitrification apparatus
WO2019244964A1 (en) Water treatment method and water treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151214

R151 Written notification of patent or utility model registration

Ref document number: 5862082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees