JP2008155085A - Waste water treatment method and apparatus - Google Patents

Waste water treatment method and apparatus Download PDF

Info

Publication number
JP2008155085A
JP2008155085A JP2006344197A JP2006344197A JP2008155085A JP 2008155085 A JP2008155085 A JP 2008155085A JP 2006344197 A JP2006344197 A JP 2006344197A JP 2006344197 A JP2006344197 A JP 2006344197A JP 2008155085 A JP2008155085 A JP 2008155085A
Authority
JP
Japan
Prior art keywords
treatment
wastewater
activated sludge
anammox
cod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006344197A
Other languages
Japanese (ja)
Other versions
JP4957229B2 (en
Inventor
Hiroshi Tanaka
浩 田中
Sakae Fukunaga
栄 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2006344197A priority Critical patent/JP4957229B2/en
Publication of JP2008155085A publication Critical patent/JP2008155085A/en
Application granted granted Critical
Publication of JP4957229B2 publication Critical patent/JP4957229B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste water treatment technology which can cope with a wide change of water quality, and can stably continue removal of ammonia nitrogen and organic matter. <P>SOLUTION: Waste water which has been subjected to adsorption treatment using an adsorbent is subjected to anammox treatment and activated sludge treatment. A ratio of chemical oxygen demand to ammonia nitrogen concentration in the waste water (a COD/N ratio [mg-COD/mg-N]) is obtained. Waste water with a COD/N ratio of ≥7.0 is subjected to the activated sludge treatment (S3). Waste water with a COD/N ratio of ≤0.3 is subjected to the anammox treatment (S5) using ammonia-oxidizing bacteria and anammox bacteria. Waste water with a COD/N ratio of >0.3 and <7.0 is subjected to the adsorption treatment (S6) where the adsorbent capable of adsorbing the organic matter is applied, and then to the anammox treatment (S5). The waste water after the anammox treatment is subjected to the activated sludge treatment (S3). After the activated sludge recovered from the waste water after the activated sludge treatment is used as the adsorbent, the activated sludge can be introduced to the activated sludge treatment. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、廃水を浄化するための廃水処理方法及び廃水処理装置に関し、特に、微生物の作用によって廃水に含まれるアンモニアの硝化及び脱窒を行う廃水処理の適用可能な水質範囲が広く、アンモニア態窒素及び有機物の除去効率が高い廃水処理方法及び廃水処理装置に関する。   The present invention relates to a wastewater treatment method and a wastewater treatment apparatus for purifying wastewater, and in particular, has a wide range of applicable water quality for wastewater treatment in which nitrification and denitrification of ammonia contained in wastewater is caused by the action of microorganisms. The present invention relates to a wastewater treatment method and a wastewater treatment apparatus with high nitrogen and organic substance removal efficiency.

微生物を用いた廃水処理においては、アンモニア態窒素の酸化(硝化)及び酸化態窒素(硝酸、亜硝酸)の脱窒を細菌によって進行させることによって、廃水に含まれるアンモニアを窒素ガスに変換することができる。この処理方法は、以下のように分類することができる。   In the treatment of wastewater using microorganisms, the ammonia contained in the wastewater is converted to nitrogen gas by the progress of oxidation (nitrification) of ammonia nitrogen and denitrification of the oxidized nitrogen (nitric acid, nitrous acid) by bacteria. Can do. This processing method can be classified as follows.

A)活性汚泥を用いて、硝化細菌によってアンモニアを酸化態窒素に変換し、メタノール等の有機物を電子供与体として用いて酸化態窒素を窒素ガスに変換する方法(例えば、下記特許文献1の活性汚泥変法参照)。   A) A method of converting ammonia into oxidized nitrogen by nitrifying bacteria using activated sludge, and converting oxidized nitrogen into nitrogen gas using an organic substance such as methanol as an electron donor (for example, the activity of Patent Document 1 below) See Sludge Modification).

B)硝化細菌によってアンモニアを酸化態窒素に変換した後、硫黄を酸化して酸化態窒素を還元する細菌群によって酸化態窒素を窒素ガスに変換する方法。   B) A method of converting oxidized nitrogen to nitrogen gas by a group of bacteria that convert ammonia to oxidized nitrogen by nitrifying bacteria and then oxidize sulfur to reduce oxidized nitrogen.

C)アンモニア酸化細菌によってアンモニアを亜硝酸態窒素に酸化(部分硝化)する工程と、脱窒細菌に属するアナモックス(ANAMMOX)細菌によってアンモニア態窒素及び亜硝酸態窒素から窒素ガスを生成する(NH +NO →N+2HO)工程とによってアンモニアを窒素ガスに変換する方法(下記特許文献2参照)。
特開平8−267087号公報 特表2001−506535
C) Oxidation of ammonia to nitrite nitrogen by ammonia oxidizing bacteria (partial nitrification), and generation of nitrogen gas from ammonia nitrogen and nitrite nitrogen by anammox bacteria belonging to denitrifying bacteria (NH 4 + + NO 2 → N 2 + 2H 2 O) step to convert ammonia into nitrogen gas (see Patent Document 2 below).
JP-A-8-267087 Special table 2001-506535

上記の処理方法のうちで、広く世界的に普及しているのはA)の処理方法であり、多くの経験に基づいて安定性の高い処方が確立されているが、この処理方法は、酸化態窒素の還元脱窒に有機物を必要とするので、有機物が少ない廃水には不向きである。又、実際の処理においては、概して、廃水に含まれる有機物のみでの稼動を可能とするために廃水を循環させて脱窒処理と硝化処理とを繰り返すように応用された形態で実施されている。しかし、この場合、酸化態窒素が必然的に残留するので、この濃度を低くするには廃水を循環させる割合を高める必要があり、処理の繰り返し度合が高くなるため、稼動費用がかさむ。又、循環による処理の繰り返しによって酸化態窒素の除去率は90%程度まで上げることが可能であるが、処理を完遂させる場合には、外部から廃水に有機物を添加する必要があり、供給する有機物の費用が生じる。   Among the above processing methods, the processing method of A) is widely spread worldwide, and a highly stable formulation has been established based on many experiences. Since organic matter is required for reductive denitrification of nitrogen, it is not suitable for wastewater with little organic matter. Further, in actual treatment, in general, in order to enable operation only with organic substances contained in wastewater, the wastewater is circulated and applied in a form applied to repeat denitrification treatment and nitrification treatment. . However, in this case, oxidized nitrogen inevitably remains. Therefore, in order to reduce this concentration, it is necessary to increase the ratio of circulating the wastewater, and the repetition rate of the treatment is increased, which increases the operating cost. Moreover, the removal rate of oxidized nitrogen can be increased to about 90% by repeating the treatment by circulation. However, when the treatment is completed, it is necessary to add organic matter to the waste water from the outside, and the organic matter to be supplied Costs.

上記B)の処理方法は、硫黄の添加を必須とするので、この薬剤使用による経費が必要となる。   Since the treatment method B) requires the addition of sulfur, the cost for using this chemical is required.

上記C)の処理方法は、経費のかかる薬剤や有機物を必要とせず、処理に必要な酸素供給量も処理開始時のアンモニア態窒素の半分を酸化する量であるので、稼動に要する消費エネルギー及び負荷が少ない。しかし、言い換えれば、廃水に含まれる有機物を処理することはできず、有機物濃度が高い廃水に適用すると他の細菌が増殖し易いため、増殖速度が極めて遅いアナモックス細菌が駆逐されて安定に処理ができなくなる。又、窒素の除去率は約90%以下で、残りの約10%は硝酸態窒素として廃水に残存する。   The treatment method of C) does not require expensive chemicals and organic substances, and the oxygen supply amount necessary for the treatment is an amount that oxidizes half of the ammonia nitrogen at the start of the treatment. There is little load. However, in other words, organic matter contained in wastewater cannot be treated, and when applied to wastewater with a high concentration of organic matter, other bacteria are likely to grow. become unable. The nitrogen removal rate is about 90% or less, and the remaining about 10% remains in the wastewater as nitrate nitrogen.

本発明は、費用のかかる薬剤や有機物の添加を用いずに、廃水中の有機物及びアンモニア態窒素を高い除去率で効率よく処理でき、幅広い水質について廃水処理を可能にする廃水処理方法及び廃水処理装置を提供することを課題とする。   The present invention is a wastewater treatment method and wastewater treatment capable of efficiently treating organic matter and ammonia nitrogen in wastewater with a high removal rate without using expensive chemicals and organic matter addition, and enabling wastewater treatment for a wide range of water quality. It is an object to provide an apparatus.

又、本発明は、廃水の幅広い水質変動にも容易に対応でき、廃水のアンモニア態窒素及び有機物の除去処理を安定的に継続できる廃水処理方法及び廃水処理装置を提供することを課題とする。   Another object of the present invention is to provide a wastewater treatment method and a wastewater treatment apparatus that can easily cope with a wide range of water quality fluctuations of wastewater and can stably continue the removal treatment of ammonia nitrogen and organic matter in the wastewater.

上記課題を解決するために、本発明者らは鋭意研究を重ねた結果、上記A)の活性汚泥処理とC)のアナモックス細菌を用いた処理とを適切に組み合わせることによって、廃水の水質変動にも幅広く対応でき、高い除去率で有機物及びアンモニア態窒素を廃水から除去できることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have conducted intensive research. As a result, by appropriately combining the activated sludge treatment in A) and the treatment using anammox bacteria in C), the water quality of the wastewater can be changed. In addition, the present inventors have found that organic substances and ammonia nitrogen can be removed from wastewater with a high removal rate, and the present invention has been completed.

本発明の一態様によれば、廃水処理方法は、有機物を吸着可能な吸着材を廃水に作用させて前記廃水に含まれる有機物を吸着材に吸着させる吸着処理を行い、前記吸着処理後の廃水から吸着材を除去してアンモニア酸化細菌及びアナモックス細菌を作用させるアナモックス処理を行い、前記アナモックス処理後の廃水からアンモニア酸化細菌及びアナモックス細菌を除去して前記吸着処理後の吸着材と共に活性汚泥処理を行うことを要旨とする。   According to one aspect of the present invention, a wastewater treatment method performs an adsorption treatment in which an adsorbent capable of adsorbing organic matter is allowed to act on wastewater to adsorb the organic matter contained in the wastewater to the adsorbent, and the wastewater after the adsorption treatment The adsorbent is removed from the anammox treatment by causing ammonia oxidizing bacteria and anammox bacteria to act, and the ammonia oxidizing bacteria and anammox bacteria are removed from the waste water after the anammox treatment, and the activated sludge is treated together with the adsorbent after the adsorption treatment. The gist is to do.

又、本発明の他の態様によれば、廃水処理方法は、廃水のアンモニア態窒素濃度に対する化学的酸素要求量の比であるCOD/N比[mg-COD/mg-N]を求め、COD/N比が7.0以上の廃水には活性汚泥処理を施し、COD/N比が0.3以下の廃水には、アンモニア酸化細菌及びアナモックス細菌を用いたアナモックス処理を施し、COD/N比が0.3を超え7.0未満の廃水には、有機物を吸着可能な吸着材を作用させる吸着処理を施した後に前記アナモックス処理を施すことを要旨とする。   According to another aspect of the present invention, a wastewater treatment method obtains a COD / N ratio [mg-COD / mg-N] which is a ratio of chemical oxygen demand to ammonia nitrogen concentration of wastewater, and COD Wastewater with a / N ratio of 7.0 or higher is subjected to activated sludge treatment, and wastewater with a COD / N ratio of 0.3 or lower is subjected to anammox treatment using ammonia-oxidizing bacteria and anammox bacteria. The gist of the present invention is to apply the anammox treatment to the wastewater having a ratio of more than 0.3 and less than 7.0, after performing an adsorption treatment to act an adsorbent capable of adsorbing organic matter.

又、本発明の他の態様によれば、廃水処理方法は、廃水のアンモニア態窒素濃度に対する化学的酸素要求量の比であるCOD/N比[mg-COD/mg-N]を求め、COD/N比が0.3以下の廃水には、アンモニア酸化細菌及びアナモックス細菌を用いたアナモックス処理を施し、COD/N比が0.3を超え7.0未満の廃水には、有機物を吸着可能な吸着材を作用させる吸着処理を施した後に前記アナモックス処理を施し、前記アナモックス処理を施した後の廃水に活性汚泥処理を施すことを要旨とする。   According to another aspect of the present invention, a wastewater treatment method obtains a COD / N ratio [mg-COD / mg-N] which is a ratio of chemical oxygen demand to ammonia nitrogen concentration of wastewater, and COD Wastewater with a / N ratio of 0.3 or less is subjected to anammox treatment using ammonia-oxidizing bacteria and anammox bacteria, and organic substances can be adsorbed to wastewater with a COD / N ratio of more than 0.3 and less than 7.0 The gist is that the anammox treatment is performed after the adsorption treatment that causes the adsorbent to act, and the activated sludge treatment is performed on the waste water after the anammox treatment.

上記廃水処理方法において、前記活性汚泥処理後の廃水から回収される活性汚泥を、吸着処理における吸着材として用い、吸着処理後の有機物を吸着した活性汚泥を活性汚泥処理に導入するように構成することができる。   In the wastewater treatment method, the activated sludge recovered from the wastewater after the activated sludge treatment is used as an adsorbent in the adsorption treatment, and the activated sludge that has adsorbed the organic matter after the adsorption treatment is introduced into the activated sludge treatment. be able to.

上記活性汚泥処理は、嫌気性条件下の第1の脱窒処理工程と、好気性条件下の第1の硝化処理工程と、前記第1の硝化処理工程後に行われる第2の脱窒処理と、前記第2の脱窒処理後に行われる第2の硝化処理工程とを有するように構成できる。   The activated sludge treatment includes a first denitrification treatment step under an anaerobic condition, a first nitrification treatment step under an aerobic condition, and a second denitrification treatment performed after the first nitrification treatment step. And a second nitrification treatment step performed after the second denitrification treatment.

更に、本発明の一態様によれば、廃水処理装置は、廃水中の有機物を吸着可能な吸着材を収容するための吸着処理槽と、廃水中のアンモニア態窒素の部分硝化及び脱窒を行うアンモニア酸化細菌及びアナモックス細菌を収容するためのアナモックス処理槽と、廃水中のアンモニア態窒素を硝化及び脱窒する活性汚泥を収容するための活性汚泥処理槽と、前記吸着処理槽から前記アナモックス処理槽へ廃水を供給するための送水手段と、前記アナモックス処理槽から前記活性汚泥処理槽へ廃水を供給するための送水手段と、前記吸着処理槽から前記活性汚泥処理槽へ前記吸着材を供給するための供給手段とを有することを要旨とする。   Furthermore, according to one aspect of the present invention, a wastewater treatment apparatus performs an adsorption treatment tank for containing an adsorbent capable of adsorbing organic matter in wastewater, and partial nitrification and denitrification of ammonia nitrogen in wastewater. An anammox treatment tank for containing ammonia oxidizing bacteria and anammox bacteria, an activated sludge treatment tank for containing activated sludge for nitrifying and denitrifying ammonia nitrogen in wastewater, and the anammox treatment tank from the adsorption treatment tank Water supply means for supplying wastewater to the water, water supply means for supplying wastewater from the anammox treatment tank to the activated sludge treatment tank, and for supplying the adsorbent from the adsorption treatment tank to the activated sludge treatment tank And a supply means.

又、本発明の他の態様によれば、廃水処理装置は、廃水中の有機物を吸着可能な吸着材を収容するための吸着処理槽と、廃水中のアンモニア態窒素の部分硝化及び脱窒を行うアンモニア酸化細菌及びアナモックス細菌を収容するためのアナモックス処理槽と、廃水中のアンモニア態窒素を硝化及び脱窒する活性汚泥とを収容するための活性汚泥処理槽と、廃水のアンモニア態窒素濃度に対する化学的酸素要求量の比であるCOD/N比[mg-COD/mg-N]に従って、廃水の供給を、COD/N比が7.0以上の廃水は前記活性汚泥処理槽に供給し、COD/N比が0.3以下の廃水は前記アナモックス処理槽に供給し、COD/N比が0.3を超え7.0未満の廃水は前記吸着処理槽に供給するように切り換えるための切り換え手段と、前記吸着処理槽から前記アナモックス処理槽へ廃水を供給するための送水手段とを有することを要旨とする。   According to another aspect of the present invention, a wastewater treatment apparatus includes an adsorption treatment tank for containing an adsorbent capable of adsorbing organic matter in wastewater, and partial nitrification and denitrification of ammonia nitrogen in wastewater. An anammox treatment tank for containing ammonia oxidizing bacteria and anammox bacteria to be performed, an activated sludge treatment tank for containing activated sludge for nitrifying and denitrifying ammonia nitrogen in wastewater, and the concentration of ammonia nitrogen in wastewater According to the COD / N ratio [mg-COD / mg-N], which is the ratio of chemical oxygen demand, waste water having a COD / N ratio of 7.0 or more is supplied to the activated sludge treatment tank, Switching to switch waste water having a COD / N ratio of 0.3 or less to the anammox treatment tank, and waste water having a COD / N ratio of more than 0.3 and less than 7.0 to the adsorption treatment tank Means and said adsorption And summarized in that and a water supply means for supplying waste water from physical tank to the anammox process tank.

又、本発明の他の態様によれば、廃水処理装置は、廃水中の有機物を吸着可能な吸着材を収容するための吸着処理槽と、廃水中のアンモニア態窒素の部分硝化及び脱窒を行うアンモニア酸化細菌及びアナモックス細菌を収容するためのアナモックス処理槽と、廃水中のアンモニア態窒素を硝化及び脱窒する活性汚泥とを収容するための活性汚泥処理槽と、廃水のアンモニア態窒素濃度に対する化学的酸素要求量の比であるCOD/N比[mg-COD/mg-N]に従って、廃水の供給を、COD/N比が0.3以下の廃水は前記アナモックス処理槽に供給し、COD/N比が0.3を超え7.0未満の廃水は前記吸着処理槽に供給するように切り換えるための切り換え手段と、前記吸着処理槽から前記アナモックス処理槽へ廃水を供給するための送水手段と、前記アナモックス処理槽から前記活性汚泥処理槽へ廃水を供給するための送水手段とを有することを要旨とする。   According to another aspect of the present invention, a wastewater treatment apparatus includes an adsorption treatment tank for containing an adsorbent capable of adsorbing organic matter in wastewater, and partial nitrification and denitrification of ammonia nitrogen in wastewater. An anammox treatment tank for containing ammonia oxidizing bacteria and anammox bacteria to be performed, an activated sludge treatment tank for containing activated sludge for nitrifying and denitrifying ammonia nitrogen in wastewater, and the concentration of ammonia nitrogen in wastewater In accordance with the COD / N ratio [mg-COD / mg-N], which is the ratio of chemical oxygen demand, wastewater is supplied to the anammox treatment tank, and wastewater having a COD / N ratio of 0.3 or less is supplied to the COD. A switching means for switching so that waste water having an / N ratio of more than 0.3 and less than 7.0 is supplied to the adsorption treatment tank, and a water supply hand for supplying waste water from the adsorption treatment tank to the anammox treatment tank When, and summarized in that and a water supply means for supplying waste water to the bioreactor tank from the anammox process tank.

本発明によれば、吸着処理を行うことによって、廃水中の有機物を効果的に活性汚泥処理に利用することができる。又、廃水に含まれる有機物濃度及びアンモニア濃度に応じて、活性汚泥処理法及びアナモックス細菌を用いた処理法から適切に処理法を選択・組み合わせて実施することにより効率よく有機物及びアンモニア態窒素を除去でき、広範囲の有機物濃度及びアンモニア濃度で廃水処理が可能となる。従って、処理効率が良く適用性の高い廃水処理方法及び処理装置が提供される。又、細菌の性質に合った処理を適用できるので、微生物の増殖バランスを損なわずに処理を継続できる。有機物や費用のかさむ薬剤等を外部から処理系に添加せずに実施可能であるので、処理コストの点でも有利であり、処理に要する設備の構造も簡易である。   According to the present invention, by performing the adsorption treatment, the organic matter in the wastewater can be effectively used for the activated sludge treatment. In addition, depending on the organic matter concentration and ammonia concentration contained in the wastewater, organic matter and ammonia nitrogen can be efficiently removed by selecting and combining the appropriate treatment methods from the activated sludge treatment method and the treatment method using anammox bacteria. It is possible to treat wastewater with a wide range of organic substance concentrations and ammonia concentrations. Therefore, a wastewater treatment method and a treatment apparatus with high treatment efficiency and high applicability are provided. In addition, since a treatment suitable for the nature of the bacteria can be applied, the treatment can be continued without impairing the growth balance of microorganisms. Since it can be carried out without adding organic substances or expensive chemicals to the processing system from the outside, it is advantageous in terms of processing cost and the structure of equipment required for processing is simple.

廃水処理において、廃水中の有機物は、微生物の養分となって微生物の活動及び増殖バランスに影響を与えるので、処理方法のタイプに応じて廃水の有機物濃度を考慮する必要がある。具体的には、前述の活性汚泥を用いたA)の処理方法(活性汚泥処理法)では、硝酸態窒素を窒素ガスに変換する脱窒細菌が有機物を資化するので、有機物が少ないと処理が進行せず、廃水のアンモニア濃度が高いほど多量の有機物が必要である。これに対し、アンモニア酸化細菌及びアナモックス(ANAMMOX)細菌を用いたC)の処理方法(以下、アナモックス処理法と称する)では、アナモックス細菌は亜硝酸態窒素及びアンモニア態窒素から窒素ガスを生成する際に有機物を必要とせず、有機物濃度が高いと、これを資化する他の細菌が優先して増殖することによって、増殖の遅いアナモックス細菌が駆逐され易い。従って、アナモックス処理法では、廃水の有機物が相対的に少ないことが必要である。   In wastewater treatment, organic matter in wastewater becomes nutrients for microorganisms and affects the activity and growth balance of microorganisms. Therefore, it is necessary to consider the concentration of organic matter in wastewater according to the type of treatment method. Specifically, in the treatment method A) using activated sludge described above (activated sludge treatment method), denitrifying bacteria that convert nitrate nitrogen to nitrogen gas assimilate the organic matter, so that treatment is performed when there is little organic matter. The higher the ammonia concentration in the wastewater, the more organic matter is required. On the other hand, in the treatment method C) using ammonia oxidizing bacteria and anammox bacteria (hereinafter referred to as anammox treatment method), anammox bacteria produce nitrogen gas from nitrite nitrogen and ammonia nitrogen. If organic matter is not required and the concentration of organic matter is high, other bacteria that assimilate this preferentially proliferate, so that slow-growing anammox bacteria are easily removed. Therefore, in the anammox treatment method, it is necessary that the organic matter in the wastewater is relatively small.

本願発明者は、有機物を吸着可能な吸着材を廃水に作用させて廃水に含まれる有機物を吸着材に吸着させる吸着処理を利用することによって、アナモックス処理及び活性汚泥処理を組み合わせて好適に実施できることを見出した。つまり、吸着処理によって有機物が減少した廃水は、吸着材を除去した後にアンモニア酸化細菌及びアナモックス細菌を作用させてアナモックス処理を行い、有機物を吸着した吸着材は、アナモックス処理後の廃水と共に活性汚泥処理に投入する。これにより、アナモックス処理は有機物の少ない状態で好適に進行し、廃水に当初含まれていた有機物は活性汚泥処理において有効利用される。しかも、アナモックス処理後に残留する硝酸態窒素は活性汚泥処理で脱窒され、活性汚泥処理における有機物不足の解消も可能となるので、廃水の窒素除去率は更に向上する。又、吸着材として活性汚泥を用いることができるので、特別な設備や薬剤等を必要とせず、従来のアナモックス処理設備及び活性汚泥処理設備を用いて容易に実施できる。   The inventor of the present application can suitably carry out a combination of anammox treatment and activated sludge treatment by using an adsorption treatment in which an adsorbent capable of adsorbing organic matter is allowed to act on wastewater and the organic matter contained in the wastewater is adsorbed on the adsorbent I found. In other words, wastewater whose organic matter has been reduced by adsorption treatment is subjected to anammox treatment by allowing ammonia oxidizing bacteria and anammox bacteria to act after removing the adsorbent, and the adsorbent adsorbing organic matter is treated with activated sludge together with the wastewater after anammox treatment. In As a result, the anammox treatment suitably proceeds with a small amount of organic matter, and the organic matter initially contained in the wastewater is effectively used in the activated sludge treatment. In addition, the nitrate nitrogen remaining after the anammox treatment is denitrified by the activated sludge treatment, and it becomes possible to eliminate the shortage of organic matter in the activated sludge treatment, so that the nitrogen removal rate of the wastewater is further improved. Moreover, since activated sludge can be used as an adsorbent, it does not require special equipment or chemicals, and can be easily implemented using conventional anammox treatment equipment and activated sludge treatment equipment.

上述の廃水処理方法は、廃水の水質に応じて吸着処理及び/又はアナモックス処理を省略するように変更することによって、更に効率的に行うことが可能となる。具体的には、廃水の有機物量及びアンモニア態窒素濃度を測定し、この測定値に基づいて吸着処理及びアナモックス処理の省略の可否を判断して最適な処理手順を選択することにより、吸着処理及びアナモックス処理が常に有効に利用されるので、操作効率が向上する。以下、水質に応じて処理手順を選択する廃水処理方法について詳細に説明する。   The above-described wastewater treatment method can be performed more efficiently by changing so as to omit the adsorption treatment and / or the anammox treatment according to the quality of the wastewater. Specifically, the organic matter amount and ammonia nitrogen concentration of the wastewater are measured, and based on this measurement value, it is determined whether the adsorption treatment and the anammox treatment can be omitted, and the optimum treatment procedure is selected. Since the anammox process is always used effectively, the operation efficiency is improved. Hereinafter, a wastewater treatment method for selecting a treatment procedure according to water quality will be described in detail.

廃水中の有機物量は、通常、COD(化学的酸素要求量)によって評価され、上記A)及びC)の処理方法におけるCOD及びアンモニア濃度に関する適性範囲を調査したところ、A)の活性汚泥処理法では、COD/N比[mg-COD/mg-N](廃水のアンモニア態窒素濃度[mg-N/L]に対する化学的酸素要求量[mg-O/L]の比率)が7.0以上の廃水への適用が好適であって、7.0未満であると反応が途中で停止し易いことが判明した(参照:Water Research 39(2005), 3715-3726)。   The amount of organic matter in wastewater is usually evaluated by COD (chemical oxygen demand), and when the appropriate range regarding COD and ammonia concentration in the treatment methods of A) and C) is investigated, the activated sludge treatment method of A) COD / N ratio [mg-COD / mg-N] (ratio of chemical oxygen demand [mg-O / L] to ammonia nitrogen concentration [mg-N / L] of wastewater) is 7.0 or more It was found that the reaction was easily applied to wastewater, and the reaction was likely to stop midway when it was less than 7.0 (Reference: Water Research 39 (2005), 3715-3726).

一方、上記C)のアナモックス処理法では、アナモックス細菌がアンモニア及び亜硝酸から窒素ガスを生成する反応(NH +1.32NO +0.066HCO +0.13H→1.02N+0.26NO +0.066CH0.50.15+2.03HO、Appl. Microbiol. Biotechnol.(1998) 50, 589-596参照)において、1モルのアンモニア態窒素から0.066モルの菌体有機物CH0.50.15が合成される。この化学式に基づいてこの菌体有機物1モル当たりのCODを求めると、2.5×16=40gとなり、アンモニア態窒素1mgから合成される菌体有機物のCODは、0.066×40/14=0.19[mg-COD/mg-N]となる。これに対し、有機物を資化する一般的な活性汚泥の収率は0.6[mg-COD/mg-COD]程度であるので、アナモックス細菌とそれ以外の細菌の増殖が均衡する場合のCOD/N比をaとすると、0.6a=0.19となり、a=0.19/0.6≒0.3となる。従って、C)のアナモックス処理法は、COD/N比が0.3[mg-COD/mg-N]以下の廃水への適用が適しており、0.3を超えると、アナモックス細菌以外の細菌の増殖頻度が高まる。 On the other hand, in the anammox treatment method of C) above, a reaction in which anammox bacteria generate nitrogen gas from ammonia and nitrous acid (NH 4 + + 1.32NO 2 + 0.066HCO 3 + 0.13H + → 1.02N 2 + 0.26NO) 3 -... + 0.066CH 2 O 0.5 N 0.15 + 2.03H 2 O, Appl Microbiol Biotechnol (1998) 50, in the reference 589-596), from 1 mole of ammonia nitrogen 0.066 moles of Fungus organic matter CH 2 O 0.5 N 0.15 is synthesized. Based on this chemical formula, the COD per mole of the cell organic matter is 2.5 × 16 = 40 g, and the COD of the cell organic matter synthesized from 1 mg of ammonia nitrogen is 0.066 × 40/14 = 0.19 [mg-COD / mg-N]. On the other hand, since the yield of general activated sludge that assimilate organic matter is about 0.6 [mg-COD / mg-COD], COD when the growth of anammox bacteria and other bacteria is balanced. When the / N ratio is a, 0.6a = 0.19, and a = 0.19 / 0.6≈0.3. Therefore, the anammox treatment method of C) is suitable for application to wastewater having a COD / N ratio of 0.3 [mg-COD / mg-N] or less. Increases the frequency of growth.

従って、廃水のCOD値及びアンモニア濃度を測定して、COD/N比が7以上又は0.3以下の場合については、各々、上記A)又はC)の処理法に従って廃水処理を実施すればよい。これに対し、COD/N比が0.3を超え7未満である範囲については、このままでは何れの処理方法も適用できないが、吸着処理によって有機物を吸着除去してCOD/N比を0.3以下に減少することが可能であり、これにより上記C)のアナモックス処理法を好適に適用できる。この廃水処理方法の一実施形態を図1を参照して説明する。   Therefore, when the COD value and ammonia concentration of the wastewater are measured and the COD / N ratio is 7 or more or 0.3 or less, the wastewater treatment may be carried out according to the treatment method of A) or C), respectively. . On the other hand, for the range in which the COD / N ratio is more than 0.3 and less than 7, any treatment method cannot be applied as it is, but the organic matter is removed by adsorption by the adsorption treatment so that the COD / N ratio is 0.3. The anammox treatment method of C) can be suitably applied. One embodiment of this wastewater treatment method will be described with reference to FIG.

先ず、図1のフロー図に示すように、廃水のアンモニア態窒素濃度及び有機物量の指標であるCOD値を測定し、測定値に基づいて、アンモニア態窒素当たりのCODの比率:COD/N比[mg-COD/mg-N]を求める(工程S1)。COD/N比が7.0以上であるか否かを判断し(工程S2)、7.0以上の場合は、処理方法A)に従って活性汚泥を用いた廃水処理(活性汚泥処理)を施す(工程S3)。COD/N比が7.0未満の場合、COD/N比が0.3以下か否かを判断し(工程S4)、0.3以下であれば、廃水は処理方法C)に従ってアナモックス細菌を用いた廃水処理(アナモックス処理)を施し(工程S5)、COD/N比が0.3を超える場合は、以下の吸着処理(工程S6)を行った後にC)のアナモックス処理を行う(工程S5)。一般的な廃水の水質では、COD/N比が0.3〜7の廃水は、1回の吸着処理によって0.3以下となるように有機物濃度を低下させることができるが、廃水の状況によっては、吸着処理(工程S6)後の廃水のアンモニア態窒素濃度及びCOD値を再度測定する工程(工程S7)と、COD/N比が0.3以下であるか否かを確認する工程(工程S8)とを必要に応じて実施でき、この結果に基づいて吸着処理を繰り返す必要性が決定される。   First, as shown in the flow chart of FIG. 1, the COD value, which is an index of the ammonia nitrogen concentration and the amount of organic substances in wastewater, is measured. Based on the measured value, the ratio of COD per ammonia nitrogen: COD / N ratio [Mg-COD / mg-N] is determined (step S1). It is determined whether or not the COD / N ratio is 7.0 or more (step S2). If 7.0 or more, wastewater treatment (activated sludge treatment) using activated sludge is performed according to treatment method A) ( Step S3). When the COD / N ratio is less than 7.0, it is determined whether the COD / N ratio is 0.3 or less (step S4). If the COD / N ratio is 0.3 or less, the wastewater is treated with anammox bacteria according to the treatment method C). When the used wastewater treatment (anammox treatment) is performed (step S5) and the COD / N ratio exceeds 0.3, the following adsorption treatment (step S6) is performed and then the anammox treatment of C) is performed (step S5). ). In general wastewater quality, wastewater with a COD / N ratio of 0.3 to 7 can reduce the organic matter concentration so that it becomes 0.3 or less by one adsorption treatment. Includes a step of measuring again the ammonia nitrogen concentration and COD value of the wastewater after the adsorption treatment (step S6) (step S7) and a step of checking whether the COD / N ratio is 0.3 or less (step) S8) can be performed as necessary, and the necessity of repeating the adsorption process is determined based on the result.

尚、工程S2,S4及びS8におけるCOD/N比の判断基準値である7.0及び0.3は、廃水の水質条件や傾向によって変更が望ましい場合もある。例えば、廃水中の有機物に生物分解が難しいものが含まれる場合、工程S2、S4及びS8におけるCOD/N比の判断基準値を、各々、7.0及び0.3より大きく設定することになる。以下の説明では、判断基準値を7.0及び0.3として標準的に実施するものとして記載する。   In addition, 7.0 and 0.3 which are the judgment reference values of the COD / N ratio in the steps S2, S4 and S8 may be desirably changed depending on the water quality condition and tendency of the waste water. For example, when the organic matter in the wastewater contains materials that are difficult to biodegrade, the judgment reference values for the COD / N ratio in steps S2, S4, and S8 are set to be larger than 7.0 and 0.3, respectively. . In the following description, it will be described that the standard values for judgment are 7.0 and 0.3.

工程S6の吸着処理では、汚泥や粉末活性炭等のような有機物を物理的又は化学的に吸着可能な材料を吸着材として廃水に接触させて、廃水から有機物を吸着した後に吸着材を除去する。具体的には、必要に応じて廃水を攪拌して吸着材を均一に分散した後に、静置による沈降分離、遠心分離などによって吸着材を分離し、上澄みの固液分離や濾過等を利用して廃水から吸着材を除去する。吸着材として汚泥を用いる場合、工程S3の活性汚泥処理の後に回収される活性汚泥を利用することができ、吸着処理後の活性汚泥は、活性汚泥処理に戻すことによって、吸着した有機物を脱窒細菌の活動・増殖に有効利用でき、汚泥に含まれる少量のアンモニア態窒素の硝化及び脱窒も可能となる。吸着材として活性炭等の炭素材を用いた場合も、有機物を吸着した炭素材を活性汚泥に添加して使用することが可能であり、活性汚泥の吸着機能を増強するために組み合わせて用いてもよい。吸着処理において使用する吸着材の量は吸着能に応じて適宜設定され、炭素材を用いる場合、経験的に、活性汚泥乾燥質量1gに対し0.01〜1g程度の割合が好ましい。吸着処理によってCOD/N比が0.3〜7.0の廃水からCOD/N比が0.3以下の廃水が回収され、アナモックス処理が適用可能となる。   In the adsorption treatment of step S6, a material capable of physically or chemically adsorbing organic substances such as sludge and powdered activated carbon is brought into contact with the wastewater as an adsorbent, and the adsorbent is removed after adsorbing the organic substance from the wastewater. Specifically, if necessary, the waste water is agitated to uniformly disperse the adsorbent as necessary, and then the adsorbent is separated by settling separation by standing, centrifugation, etc., and solid-liquid separation or filtration of the supernatant is used. Remove the adsorbent from the wastewater. When sludge is used as the adsorbent, the activated sludge recovered after the activated sludge treatment in step S3 can be used, and the activated sludge after the adsorption treatment is denitrified by returning it to the activated sludge treatment. It can be used effectively for the activity and growth of bacteria, and nitrification and denitrification of a small amount of ammonia nitrogen contained in sludge is also possible. Even when a carbon material such as activated carbon is used as the adsorbent, it is possible to add carbon material adsorbing organic matter to the activated sludge and use it in combination to enhance the activated sludge adsorption function. Good. The amount of the adsorbent used in the adsorption treatment is appropriately set according to the adsorption capacity. When a carbon material is used, a ratio of about 0.01 to 1 g with respect to 1 g of the activated sludge dry mass is preferable. By the adsorption treatment, wastewater having a COD / N ratio of 0.3 or less is recovered from wastewater having a COD / N ratio of 0.3 to 7.0, and anammox treatment can be applied.

COD/N比が0.3以下の廃水は、工程S5のアナモックス処理によって部分硝化(亜硝酸化)・脱窒を進める。つまり、廃水にアンモニア酸化細菌及びアナモックス細菌を投入し、重炭酸塩の存在下で酸素を供給して、アンモニア態窒素の亜硝酸化及び窒素ガスへの変換を進行させる。この処理では、廃水に酸素が供給されると、アンモニア酸化細菌がアンモニアを亜硝酸態窒素に変換する反応(亜硝酸化、2NH +3O→2NO +4H+2HO)と、脱窒細菌であるアナモックス細菌がアンモニア及び亜硝酸から窒素ガスを生成する反応(NH +1.32NO +0.066HCO +0.13H→1.02N+0.26NO +0.066CH0.50.15+2.03HO)の2つの反応が進行し、条件設定によって1段階又は2段階で処理が行われる。アナモックス細菌は増殖速度が遅く、他の細菌の増殖が優位になると駆逐され易いので、処理を安定して行うためにアナモックス細菌の活性を安定化するような工夫が望ましい。アナモックス細菌を安定化するには、1)廃水のpHを7.2以下にすることによって、亜硝酸態窒素を硝酸化する硝化細菌の増殖を抑制してアナモックス細菌の駆逐を防止する方法、及び、2)アンモニア態窒素の亜硝酸化速度が律速になるように細菌の活性バランス又は酸素の供給を調整することによって亜硝酸態窒素の増加を防止し、アナモックス細菌が高濃度の亜硝酸態窒素によって被毒・不活性化するのを回避する方法などがある。方法2)は、部分硝化及び窒素ガスへの変換が同時並行で進行する。酸素の供給制御は重要であり、廃水を嫌気性条件下において廃水の溶存酸素濃度などを確認しながら酸素(空気)を供給することによって供給制御の精度が高まる。アナモックス処理後の廃水は、実質的にアンモニア態窒素を含まず、有機物が残留するので、COD/N比は7.0を超え、活性汚泥処理が可能となとなる。又、初期アンモニア態窒素の約10%に相当する硝酸態窒素が残留するが、有機物と共に活性汚泥処理を施せば窒素分は十分に除去できる。 Wastewater having a COD / N ratio of 0.3 or less undergoes partial nitrification (nitritation) and denitrification by the anammox treatment in step S5. That is, ammonia oxidizing bacteria and anammox bacteria are introduced into wastewater, oxygen is supplied in the presence of bicarbonate, and ammonia nitrogen is converted to nitritation and conversion to nitrogen gas. In this process, the oxygen to the waste water is supplied, the reaction of ammonia oxidizing bacteria to convert ammonia to nitrite nitrogen (nitrite reduction, 2NH 4 + + 3O 2 → 2NO 2 - + 4H + + 2H 2 O) and, de Reaction of nitromophilic anammox bacteria to generate nitrogen gas from ammonia and nitrous acid (NH 4 + + 1.32NO 2 + 0.066HCO 3 + 0.13H + → 1.02N 2 + 0.26NO 3 + 0.066CH 2 O 0.5 N 0.15 +2.03 H 2 O) proceeds, and the treatment is performed in one or two stages depending on the condition setting. Since anammox bacteria have a slow growth rate and are easily driven out when the growth of other bacteria becomes dominant, a contrivance to stabilize the activity of anammox bacteria is desirable for stable treatment. In order to stabilize anammox bacteria, 1) a method of preventing the destruction of anammox bacteria by suppressing the growth of nitrifying bacteria that nitrate nitrite nitrogen by reducing the pH of the wastewater to 7.2 or less, and 2) By adjusting the bacterial activity balance or oxygen supply so that the nitritation rate of ammonia nitrogen becomes rate-limiting, the increase of nitrite nitrogen is prevented, and anammox bacteria have a high concentration of nitrite nitrogen There is a method of avoiding poisoning and inactivation due to. In method 2), partial nitrification and conversion to nitrogen gas proceed simultaneously. Supply control of oxygen is important, and the accuracy of supply control is enhanced by supplying oxygen (air) while confirming the dissolved oxygen concentration of the wastewater under anaerobic conditions. Since the waste water after the anammox treatment does not substantially contain ammonia nitrogen and organic matter remains, the COD / N ratio exceeds 7.0, and the activated sludge treatment becomes possible. Further, nitrate nitrogen corresponding to about 10% of the initial ammonia nitrogen remains, but the nitrogen content can be sufficiently removed by applying activated sludge treatment together with organic matter.

工程S3の活性汚泥処理は、廃水に活性汚泥を接触させて廃水中の硝酸態窒素の脱窒及びアンモニア態窒素の硝化を行う汚泥処理であり、廃水が連続的に処理される連続式でも個別に処理される回分式でも良い。活性汚泥処理において、酸化態窒素の脱窒工程は嫌気性条件下で進行し、アンモニア態窒素の硝化(硝酸化)工程は好気性条件下で進行する。大容量の廃水を静置等によって酸素との接触面積が小さい状態におくことによって実質的に嫌気性条件に調整され、廃水に曝気等によって酸素を供給することによって好気性条件に調整される。脱窒工程においては、脱窒細菌により硝酸が窒素ガスに変換されて除去され、硝化工程では曝気によって有機物が酸化分解すると共に、硝化細菌によってアンモニアが硝酸に酸化される。好気性条件下の硝化工程では、活性汚泥は、廃水中のリン酸態リンも取り込む。廃水がアンモニアを含んでいると、これらの工程を経た後の廃水には、初期アンモニア濃度に対応する硝酸が残留するが、硝化工程後の廃水の一部を脱窒工程へ還流して処理を繰り返し施すように構成することによって、処理系から排出される廃水の残留硝酸濃度は低下する。これにより、通常の活性汚泥処理では、初期アンモニア濃度の10%程度まで残留硝酸濃度を低下させることが可能であり、本発明においては、吸着処理に使用した活性汚泥を利用することによって更に減少させることも可能である(詳細は後述する)。   The activated sludge treatment in step S3 is a sludge treatment in which the activated sludge is brought into contact with the waste water to denitrify nitrate nitrogen and nitrify ammonia nitrogen in the waste water. A batch system may be used. In the activated sludge treatment, the denitrification process of oxidized nitrogen proceeds under anaerobic conditions, and the nitrification (nitrification) process of ammonia nitrogen proceeds under aerobic conditions. A large volume of wastewater is adjusted to an anaerobic condition by leaving the contact area with oxygen small by standing or the like, and adjusted to an aerobic condition by supplying oxygen to the wastewater by aeration or the like. In the denitrification process, nitric acid is converted to nitrogen gas by the denitrification bacteria and removed. In the nitrification process, organic substances are oxidized and decomposed by aeration, and ammonia is oxidized to nitric acid by the nitrification bacteria. In the nitrification process under aerobic conditions, the activated sludge also takes in phosphate phosphorus in the wastewater. If the wastewater contains ammonia, nitric acid corresponding to the initial ammonia concentration remains in the wastewater after these steps, but a part of the wastewater after the nitrification step is returned to the denitrification step for treatment. By being configured to be repeatedly applied, the residual nitric acid concentration of the wastewater discharged from the treatment system decreases. Thereby, in the normal activated sludge treatment, it is possible to reduce the residual nitric acid concentration to about 10% of the initial ammonia concentration. In the present invention, it is further reduced by using the activated sludge used for the adsorption treatment. It is also possible (details will be described later).

図1の廃水処理は、例えば、図2に示すような廃水処理装置によって実施できる。この廃水処理装置は、回分式の吸着処理槽10及びアナモックス処理槽20と、連続式の活性汚泥処理槽30と、最終沈殿槽40とを備え、水質測定装置(図示省略)によって測定される廃水のアンモニア態窒素濃度及びCOD値から求められるCOD/N比に応じて切り換えバルブ11を切り替えることによって、廃水は、吸着処理槽10、アナモックス処理槽20又は活性汚泥処理槽30の何れかに供給される。切り換えバルブ11が自動的に切り換えられるように、切り換えバルブ11として電磁バルブ等を用い、水質測定装置の測定値を用いてCOD/N比に基づく制御信号を供給する演算処理装置を設けても良い。活性汚泥処理槽30は、脱窒処理を行う嫌気槽30aと、酸素を供給するための曝気装置31を備える硝化処理用の好気槽30bとに分画され、廃水を一定速度で連続的に嫌気槽30aに供給することによって連続的に処理されるが、これらの槽を回分式で使用しても、あるいは、嫌気処理及び好気処理の両方を行う単槽の回分式処理槽であってもよい。好気槽30bは好気条件であり、吸着処理槽10、アナモックス処理槽20、嫌気槽30a及び最終沈殿槽40は嫌気条件であるが、アナモックス処理槽20には、供給速度を制御可能な空気供給装置22が設けられ、空気の供給速度、つまり、酸素の供給速度を調節することによって、アンモニア酸化細菌によるアンモニアの亜硝酸への酸化速度が調節される。尚、この実施形態においては、吸着材として活性汚泥を使用し、吸着処理槽10で有機物を吸着した活性汚泥は、活性汚泥処理槽30に供給して脱窒・硝化を進行する活性汚泥として用いた後、最終沈殿槽40において廃水から分離して吸着処理槽10に還流し、吸着材として再度使用される。   The wastewater treatment in FIG. 1 can be performed by, for example, a wastewater treatment apparatus as shown in FIG. This wastewater treatment apparatus includes a batch-type adsorption treatment tank 10 and an anammox treatment tank 20, a continuous activated sludge treatment tank 30, and a final sedimentation tank 40, and is measured by a water quality measuring device (not shown). By switching the switching valve 11 according to the COD / N ratio determined from the ammonia nitrogen concentration and the COD value, waste water is supplied to any of the adsorption treatment tank 10, the anammox treatment tank 20, or the activated sludge treatment tank 30. The An arithmetic processing device that uses an electromagnetic valve or the like as the switching valve 11 and supplies a control signal based on the COD / N ratio using the measured value of the water quality measuring device may be provided so that the switching valve 11 is automatically switched. . The activated sludge treatment tank 30 is divided into an anaerobic tank 30a that performs denitrification treatment and an aerobic tank 30b for nitrification treatment that includes an aeration device 31 for supplying oxygen, and waste water is continuously fed at a constant rate. It is processed continuously by supplying it to the anaerobic tank 30a, but even if these tanks are used in a batch system, it is a single batch processing tank that performs both anaerobic processing and aerobic processing. Also good. The aerobic tank 30b is an aerobic condition, and the adsorption treatment tank 10, the anammox treatment tank 20, the anaerobic tank 30a, and the final sedimentation tank 40 are anaerobic conditions. A supply device 22 is provided to adjust the rate of oxidation of ammonia into nitrous acid by ammonia-oxidizing bacteria by adjusting the air supply rate, that is, the oxygen supply rate. In this embodiment, activated sludge is used as an adsorbent, and the activated sludge having adsorbed organic matter in the adsorption treatment tank 10 is supplied to the activated sludge treatment tank 30 and used as activated sludge that advances denitrification and nitrification. After that, it is separated from the waste water in the final sedimentation tank 40 and returned to the adsorption treatment tank 10 to be used again as an adsorbent.

前述の工程S4でCOD/N比が0.3を超える(7.0未満)廃水は、吸着処理槽10に供給され、必要に応じて付設される攪拌装置12を用いて、吸着材である活性汚泥A1を分散させ、廃水と活性汚泥とを十分に接触させて廃水の有機物を活性汚泥A1に吸着させる。この後、廃水を静置して活性汚泥A1を沈降分離し、廃水は、ポンプ等の送水手段13により配管を通じてアナモックス処理槽20へ送水する。有機物を吸着した活性汚泥A1(若干のアンモニアも含む)は、ポンプ等の供給手段14により配管を通して活性汚泥処理槽30の嫌気槽30aへ投入する。活性汚泥A1に含まれる有機物は、嫌気槽30aで脱窒細菌が酸化態窒素(亜硝酸及び硝酸)を窒素ガスに変換する反応に用いられる。   Waste water having a COD / N ratio exceeding 0.3 (less than 7.0) in the above-described step S4 is supplied to the adsorption treatment tank 10 and is an adsorbent using a stirring device 12 attached as necessary. The activated sludge A1 is dispersed, and the wastewater and activated sludge are sufficiently brought into contact with each other to adsorb organic matter in the wastewater onto the activated sludge A1. After that, the waste water is allowed to stand and the activated sludge A1 is settled and separated, and the waste water is supplied to the anammox treatment tank 20 through the pipe by the water supply means 13 such as a pump. The activated sludge A1 (including some ammonia) adsorbing organic substances is introduced into the anaerobic tank 30a of the activated sludge treatment tank 30 through a pipe by a supply means 14 such as a pump. The organic matter contained in the activated sludge A1 is used in a reaction in which denitrifying bacteria convert oxidized nitrogen (nitrous acid and nitric acid) into nitrogen gas in the anaerobic tank 30a.

アナモックス処理槽20に供給される廃水は、必要に応じて付設される攪拌装置21を用いて、アンモニア細菌及びアナモックス細菌を含有する細菌剤Bを分散させ、空気供給装置22から供給される酸素によってアンモニア細菌による部分硝化を進行させる。この時、アナモックス細菌は、生じた亜硝酸態窒素とアンモニア態窒素とから窒素ガスを生成する。この処理によって、廃水中のアンモニアの約90%が窒素ガスに変換され、アンモニア態窒素濃度の約1/10は硝酸態窒素として残留する。処理後の廃水は、静置して細菌剤Bを沈降分離し、ポンプ等の送水手段23により配管を通して活性汚泥処理槽30の嫌気槽30aへ送水する。   The wastewater supplied to the anammox treatment tank 20 is dispersed by the bacterial agent B containing ammonia bacteria and anammox bacteria using a stirrer 21 attached as necessary, and is supplied by oxygen supplied from the air supply device 22. Advance partial nitrification by ammonia bacteria. At this time, the anammox bacteria produce nitrogen gas from the produced nitrite nitrogen and ammonia nitrogen. By this treatment, about 90% of the ammonia in the wastewater is converted into nitrogen gas, and about 1/10 of the ammonia nitrogen concentration remains as nitrate nitrogen. The treated waste water is allowed to stand to settle and separate the bacterial agent B, and is fed to the anaerobic tank 30a of the activated sludge treatment tank 30 through a pipe by a water feeding means 23 such as a pump.

活性汚泥処理槽30に供給される廃水は、嫌気槽30aにおいて活性汚泥A2と接触させる。この間、脱窒細菌は、有機物を摂取して廃水中の酸化態窒素(硝酸イオン、亜硝酸イオン)を窒素ガスに変換する。この後、廃水は好気槽30bに送られ、曝気装置31から供給される酸素によって、有機物が酸化分解され、且つ、硝化細菌によってアンモニア態窒素が硝化されて硝酸態窒素に変換される。活性汚泥処理槽30は、更に、好気槽30bの処理後の廃水の一部を配管を通して嫌気槽30aに還流させるために、ポンプ等の送水手段32を備えている。これにより、嫌気槽30aでの脱窒処理が廃水に繰り返し施されされるので、廃水の最終硝酸濃度が低下する。好気槽30aの廃水は、ポンプ等の送水手段33により配管を通して最終沈殿槽40へ送水する。   The wastewater supplied to the activated sludge treatment tank 30 is brought into contact with the activated sludge A2 in the anaerobic tank 30a. During this time, denitrifying bacteria ingest organic matter and convert oxidized nitrogen (nitrate ions and nitrite ions) in the wastewater into nitrogen gas. Thereafter, the wastewater is sent to the aerobic tank 30b, the organic matter is oxidatively decomposed by oxygen supplied from the aeration apparatus 31, and the ammonia nitrogen is nitrified by nitrifying bacteria to be converted into nitrate nitrogen. The activated sludge treatment tank 30 further includes water supply means 32 such as a pump in order to return a part of the waste water after the treatment in the aerobic tank 30b to the anaerobic tank 30a through the pipe. Thereby, since the denitrification process in the anaerobic tank 30a is repeatedly performed to wastewater, the final nitric acid concentration of wastewater falls. Wastewater from the aerobic tank 30a is sent to the final sedimentation tank 40 through a pipe by a water supply means 33 such as a pump.

最終沈殿槽40に供給される廃水は、静置して活性汚泥A3を沈降分離した後、放流される。分離した活性汚泥A3は、ポンプ等の供給手段41により配管を通して吸着処理槽10へ投入する。   The waste water supplied to the final sedimentation tank 40 is left still and discharged after the activated sludge A3 is settled and separated. The separated activated sludge A3 is put into the adsorption treatment tank 10 through a pipe by a supply means 41 such as a pump.

図1において、工程S3の活性汚泥処理の対象は、COD/N比が7.0以上の廃水、工程S5のアナモックス処理を経た廃水、及び、工程S6の吸着処理で使用した汚泥等の吸着材である。アナモックス処理を経た廃水は、実質的にアンモニア態窒素を含まず、有機物と初期アンモニア態窒素の約10%に相当する硝酸態窒素とを含有する。従って、活性汚泥処理に従って脱窒及び硝化を進行させると、硝酸及び有機物が除去される。これに対し、COD/N比が7.0以上の廃水及び吸着処理後の廃水から分離される吸着材は、活性汚泥処理によって有機物は分解除去されるが、アンモニアは酸化態窒素に変換されて残留する。これらを勘案すると、活性汚泥処理は、廃水が効率的に処理されるように変更が可能である。   In FIG. 1, the target of the activated sludge treatment in step S3 is waste water having a COD / N ratio of 7.0 or more, waste water that has undergone anammox treatment in step S5, and an adsorbent such as sludge used in the adsorption treatment in step S6. It is. Waste water that has undergone the anammox treatment is substantially free of ammonia nitrogen and contains organic matter and nitrate nitrogen corresponding to about 10% of the initial ammonia nitrogen. Therefore, when denitrification and nitrification are advanced according to the activated sludge treatment, nitric acid and organic substances are removed. On the other hand, the adsorbent separated from the wastewater having a COD / N ratio of 7.0 or more and the wastewater after the adsorption treatment is decomposed and removed by the activated sludge treatment, but the ammonia is converted into oxidized nitrogen. Remains. Considering these, the activated sludge treatment can be changed so that the wastewater is treated efficiently.

例えば、アンモニアを実質的に含まないアナモックス処理後の廃水は、活性汚泥処理によって窒素成分及び有機物が実質的に完全に除去されるので、還流による処理の繰り返しは不要である。従って、アナモックス処理後の廃水については、工程S2でCOD/N比が7.0以上である廃水及び工程S6の吸着処理を経た吸着材とは区別して単独で活性汚泥処理すると、実質的に硝酸を含まない廃水として排出できる。   For example, the waste water after the anammox treatment that does not substantially contain ammonia substantially completely removes nitrogen components and organic substances by the activated sludge treatment, so that it is not necessary to repeat the treatment by reflux. Therefore, the wastewater after the anammox treatment is substantially treated with nitric acid by treating activated sludge separately from the wastewater having a COD / N ratio of 7.0 or more in step S2 and the adsorbent subjected to the adsorption treatment in step S6. It can be discharged as wastewater that does not contain water.

また、図2の廃水処理装置をCOD/N比が7.0未満の低有機物廃水専用の処理装置として用いた場合、活性汚泥処理槽30において処理されるアンモニア態窒素は、吸着処理後の汚泥に含まれる若干のアンモニアのみであるので、好気槽30bから嫌気槽30aへの還流を行わない場合でも最終沈殿槽40の廃水の残留硝酸濃度はかなり低くなる。従って、好気槽30bから嫌気槽30aへ還流する割合を低下させたり還流を省略することが可能であり、処理効率が向上する。或いは、硝化工程の後に脱窒工程を行うように嫌気槽30aを好気槽30bの後に配置したり、好気槽30bの後に更に嫌気槽(又は、嫌気槽及び好気槽の双方)を追加して、アナモックス処理後の廃水を有機物源として脱窒工程に供給することも可能である。また、COD/N比が7.0以上の高有機物廃水専用の活性汚泥処理装置を併設すると、供給手段14,41及び配管を変更することによって、吸着処理槽10で用いる活性汚泥を高有機物廃水用の活性汚泥処理装置との間で収受するように応用することができ、低有機物廃水の処理においては、廃水の窒素成分を実質的に完全に除去することができる。これらを勘案すると、有機物及び窒素について高い除去率を実現可能な構成の一つとして、低有機物廃水を供給する図2の構成の廃水処理装置Iと、高有機物廃水を供給する活性汚泥処理装置IIとを併設して、図2の吸着処理槽10で使用する活性汚泥を、活性汚泥処理装置IIとの間でやり取りし、活性汚泥処理装置IIからの排出水を図2のアナモックス処理槽20からの排出水と共に活性汚泥処理槽30に供給するように構成するものがある。つまり、廃水のCOD/N比の高低によってアナモックス処理又は活性汚泥処理の何れかを施した後に、両処理の排出水を纏めて第2の活性汚泥処理に導入することによって、残留硝酸態窒素が除去される。   In addition, when the wastewater treatment apparatus of FIG. 2 is used as a treatment apparatus dedicated to low organic wastewater having a COD / N ratio of less than 7.0, the ammonia nitrogen treated in the activated sludge treatment tank 30 is sludge after adsorption treatment. Therefore, even if the reflux from the aerobic tank 30b to the anaerobic tank 30a is not performed, the residual nitric acid concentration in the final sedimentation tank 40 becomes considerably low. Therefore, it is possible to reduce the rate of reflux from the aerobic tank 30b to the anaerobic tank 30a or to omit the reflux, thereby improving the processing efficiency. Alternatively, the anaerobic tank 30a is arranged after the aerobic tank 30b so that the denitrification process is performed after the nitrification process, or an anaerobic tank (or both an anaerobic tank and an aerobic tank) is added after the aerobic tank 30b. And it is also possible to supply the waste water after an anammox process to a denitrification process as an organic matter source. In addition, when an activated sludge treatment apparatus dedicated to high organic wastewater with a COD / N ratio of 7.0 or more is installed, the activated sludge used in the adsorption treatment tank 10 is changed to high organic wastewater by changing the supply means 14 and 41 and the piping. In the treatment of low organic wastewater, the nitrogen component of wastewater can be substantially completely removed. Considering these, as one of the configurations capable of realizing a high removal rate for organic matter and nitrogen, the wastewater treatment device I of the configuration of FIG. 2 that supplies low organic wastewater and the activated sludge treatment device II that supplies high organic wastewater 2 is exchanged between the activated sludge used in the adsorption treatment tank 10 of FIG. 2 with the activated sludge treatment apparatus II, and the discharged water from the activated sludge treatment apparatus II is transferred from the anammox treatment tank 20 of FIG. Is configured to be supplied to the activated sludge treatment tank 30 together with the discharged water. In other words, after performing either anammox treatment or activated sludge treatment depending on the COD / N ratio of wastewater, the waste water from both treatments is collected and introduced into the second activated sludge treatment, whereby residual nitrate nitrogen is reduced. Removed.

上述の吸着処理で使用する活性汚泥において、活性汚泥の細菌は、有機物を十分に摂取した後に好気槽において吸着した有機物を酸化し、これが繰り返されることによって細菌が増殖し環境に馴致して、活性汚泥の有機物蓄積能を向上させる。この結果、硝化工程を経ても活性汚泥に有機物が残留し得るようになり、脱窒工程及び硝化工程を繰り返す際に2回目の脱窒工程を有機物の供給なしで行うことが可能となる。従って、このような有機物蓄積能の高い活性汚泥が調製された場合には、図2の廃水処理装置の活性汚泥処理槽30に複数対の嫌気槽30a及び好気槽30bを設けることによって、アンモニアを含む廃水でも2番目の嫌気槽において残留硝酸態窒素が除去されるので、全てのCOD/N比の廃水に対応可能となり、十分に窒素を除去した廃水が得られる。又、吸着処理において多量の有機物を蓄積することによってリン蓄積細菌の活性も高まり、これが好気槽において廃水中のリン成分を効果的に取り込むので、廃水のリン除去率の向上にも有効である。   In the activated sludge used in the above-described adsorption treatment, the bacteria of the activated sludge oxidize the organic matter adsorbed in the aerobic tank after sufficiently ingesting the organic matter, and the bacteria grow and acclimatize by repeating this, Improve organic matter accumulation capacity of activated sludge. As a result, the organic matter can remain in the activated sludge even after the nitrification step, and the second denitrification step can be performed without supplying the organic matter when the denitrification step and the nitrification step are repeated. Therefore, when such an activated sludge having a high organic matter accumulation capacity is prepared, ammonia is obtained by providing a plurality of pairs of anaerobic tanks 30a and aerobic tanks 30b in the activated sludge treatment tank 30 of the wastewater treatment apparatus of FIG. Since the residual nitrate nitrogen is removed in the second anaerobic tank even in the wastewater containing the wastewater, it becomes possible to deal with wastewater having all COD / N ratios, and wastewater from which nitrogen has been sufficiently removed can be obtained. In addition, accumulation of a large amount of organic matter in the adsorption treatment also increases the activity of phosphorus-accumulating bacteria, which effectively incorporates the phosphorus component in the wastewater in the aerobic tank, which is also effective in improving the phosphorus removal rate of the wastewater. .

図3は、図2の廃水処理装置と同等の廃水処理を複数の回分式処理槽を用いて連続的に実施する一例を示す工程図であり、COD/N比が0.3〜7の廃水が処理される。この例では5つの処理槽a〜eを用い、処理槽a,bは吸着処理槽として、処理槽cはアナモックス処理槽として、処理槽d,eは活性汚泥処理槽として役割区分される。従って、処理槽c〜eには、空気(酸素)を供給する手段が付設される。   FIG. 3 is a process diagram showing an example in which wastewater treatment equivalent to the wastewater treatment apparatus of FIG. 2 is continuously performed using a plurality of batch-type treatment tanks, and wastewater having a COD / N ratio of 0.3 to 7 Is processed. In this example, five treatment tanks a to e are used, the treatment tanks a and b are classified as adsorption treatment tanks, the treatment tank c is treated as an anammox treatment tank, and the treatment tanks d and e are classified as activated sludge treatment tanks. Therefore, means for supplying air (oxygen) is attached to the processing tanks c to e.

図3の(a)は、処理槽bは原廃水の貯留に用いられ、処理槽cはアナモックス処理中、処理槽eは活性汚泥による脱窒処理中、処理槽dは活性汚泥による硝化が終了した工程を示す。この後、(b)〜(l)の工程が続く。   In FIG. 3A, the treatment tank b is used for storing raw waste water, the treatment tank c is under anammox treatment, the treatment tank e is under denitrification treatment with activated sludge, and the treatment tank d is nitrified with activated sludge. Shows the steps. Thereafter, steps (b) to (l) are continued.

工程(b)では、処理槽dの廃水の一部は、空の処理槽aに移して汚泥を沈降分離(約1時間)する。   In the step (b), a part of the waste water in the treatment tank d is transferred to an empty treatment tank a to settle and separate sludge (about 1 hour).

工程(c)では、処理槽aの上澄み廃水は排出され、処理槽cではアナモックス処理が終了し、細菌剤を沈降分離する(約20分)。処理槽eでは廃水を曝気して硝化処理を開始する。   In the step (c), the supernatant waste water of the processing tank a is discharged, and in the processing tank c, the anammox treatment is completed, and the bacterial agent is settled and separated (about 20 minutes). In the treatment tank e, waste water is aerated and nitrification is started.

工程(d)では、処理槽cの上澄み廃水は処理槽dへ送り、処理槽aの活性汚泥を処理槽bの廃水に加えて吸着処理(約30分)を開始する。空になった処理槽aは、原廃水の貯留を開始する。   In the step (d), the supernatant waste water of the processing tank c is sent to the processing tank d, and the activated sludge of the processing tank a is added to the waste water of the processing tank b to start the adsorption process (about 30 minutes). The processing tank a which has become empty starts to store raw wastewater.

工程(e)では、処理槽bの汚泥を沈降させて(約1時間)、上澄み廃水を処理槽cに移し、処理槽cのアナモックス処理を開始する。   In the step (e), the sludge in the processing tank b is allowed to settle (about 1 hour), the supernatant wastewater is transferred to the processing tank c, and the anammox treatment in the processing tank c is started.

工程(f)では、処理槽bの有機物を吸着した活性汚泥を処理槽dに移し、処理槽dは、嫌気性状態にて脱窒処理を開始する(約20分)。   In the step (f), the activated sludge adsorbing the organic matter in the treatment tank b is transferred to the treatment tank d, and the treatment tank d starts denitrification treatment in an anaerobic state (about 20 minutes).

工程(g)では、処理槽eの硝化処理が終了し、工程(h)では、処理槽eの廃水の一部を空の処理槽bに移して汚泥を沈降分離(約1時間)する。   In the step (g), the nitrification treatment of the treatment tank e is completed, and in the step (h), a part of the waste water in the treatment tank e is transferred to an empty treatment tank b to settle and separate sludge (about 1 hour).

工程(i)では、処理槽bの上澄み廃水は排出され、処理槽cではアナモックス処理が終了し、細菌剤を沈降分離する(約20分)。処理槽dでは廃水を曝気して硝化処理を開始する。   In step (i), the supernatant wastewater in the treatment tank b is discharged, and in the treatment tank c, the anammox treatment is completed, and the bacterial agent is settled and separated (about 20 minutes). In the treatment tank d, waste water is aerated and nitrification treatment is started.

工程(j)では、処理槽cの上澄み廃水は処理槽eへ送り、処理槽bの活性汚泥を処理槽aの廃水に加えて吸着処理(約30分)を開始する。空になった処理槽bは、原廃水の貯留を開始する。   In the step (j), the supernatant wastewater of the processing tank c is sent to the processing tank e, and the activated sludge of the processing tank b is added to the waste water of the processing tank a to start the adsorption process (about 30 minutes). The processing tank b that has become empty starts to store raw wastewater.

工程(k)では、処理槽aの汚泥を沈降させて(約1時間)、上澄み廃水を処理槽cに移し、処理槽cのアナモックス処理を開始する。   In the step (k), the sludge in the processing tank a is allowed to settle (about 1 hour), the supernatant wastewater is transferred to the processing tank c, and the anammox treatment in the processing tank c is started.

工程(l)では、処理槽aの有機物を吸着した活性汚泥を処理槽eに加えて、処理槽eは、嫌気性状態にて脱窒処理を開始する(約20分)。この後、工程(a)に戻って、工程(a)〜(l)が繰り返される。   In the step (l), the activated sludge adsorbing the organic matter in the treatment tank a is added to the treatment tank e, and the treatment tank e starts denitrification treatment in an anaerobic state (about 20 minutes). Thereafter, returning to the step (a), the steps (a) to (l) are repeated.

このようにして、苛性汚泥処理及びアナモックス処理の何れにも適さないCOD/N比が0.3〜7.0の範囲の廃水についても好適に処理でき、廃水のCOD/N比に基づいて適正な廃水処理手順を選択して窒素成分及び有機物の除去率が高い廃水処理が実施される。   In this way, wastewater having a COD / N ratio in the range of 0.3 to 7.0 that is not suitable for both caustic sludge treatment and anammox treatment can be suitably treated, and is appropriate based on the wastewater COD / N ratio. Wastewater treatment procedures are selected and wastewater treatment with a high removal rate of nitrogen components and organic substances is performed.

尚、前述したように、アナモックス細菌の活性は系内の溶存酸素濃度及び亜硝酸濃度の影響を受けて活性低下又は被毒が起こるので、アナモックス処理を安定的に繰り返すには、廃水の亜硝酸濃度が20mg-N/L以下、好ましくは5mg-N/L以下、溶存酸素濃度が1mg-O/L以下、好ましくは0.5mg-O/L以下であるような条件で処理を進行することが重要である。このためには、アンモニア酸化細菌の処理速度(亜硝酸態窒素生成速度)が律速となるように条件を制御して、アンモニア酸化細菌が生成する亜硝酸態窒素が全てアナモックス細菌によって消費されるようにする。これには、a)廃水(つまり、アンモニア酸化細菌)への酸素の供給を制御する、及び、b)系内のアンモニア酸化細菌の処理能力(亜硝酸態窒素生成能力)がアナモックス細菌の処理能力(亜硝酸取り込み能力)以下となるように細菌バランスを調節する、の2つが要素となり、亜硝酸態窒素生成速度が律速状態であるか否かは、廃水の溶存酸素濃度を測定して溶存酸素濃度が上昇するか否かによって判断できる。酸素の供給速度が小さい状態では、細菌バランスに関わらず、亜硝酸態窒素生成速度が律速となるが、系内のアンモニア酸化細菌の処理能力がアナモックス細菌の処理能力を超える細菌バランスでは、酸素供給の増加によってアナモックス細菌の処理能力を超える亜硝酸態窒素が生成すると、即座に亜硝酸態窒素濃度が上昇して被毒する。アンモニア酸化細菌の処理能力がアナモックス細菌の処理能力未満であれば、アナモックス細菌の処理能力を超える亜硝酸態窒素が生成する前に、廃水の溶存酸素濃度の上昇によって酸素の過剰供給を検知する構成が可能となる。被毒に関する安全性を考慮すると、アナモックス細菌の処理能力[mol-N/h]がアンモニア酸化細菌の亜硝酸態窒素生成能力[mol-N/h]の1.5倍以上であると好ましい。アンモニア酸化細菌の処理能力がアナモックス細菌の処理能力を超える細菌バランスの場合は、アナモックス細菌の処理能力に対して0.5当量以下となる酸素供給速度であることが望ましい。このようにすることにより、アナモックス細菌の不活性化を避けられので、細菌の養生等のための準備工程が不要になり、処理効率が向上する。又、アナモックス細菌の増殖・活動を安定して継続することができる。アナモックス処理における部分硝化・脱窒の反応は、重炭酸イオンを必要とするので、通常、炭酸水素ナトリウム等の重炭酸塩が添加される。重炭酸塩を構成する塩基は、重金属等の細菌の生育・増殖を阻害するもの以外であれば特に制限はない。添加量は、廃水のアンモニア濃度に応じて、アンモニア1モル当たり重炭酸塩0.1〜2モルとなる量を添加するのが好ましい。但し、空気中の炭酸ガスを利用することも可能であり、廃水のpHが高い場合、重炭酸塩は必ずしも用いなくてもよい。アンモニア酸化細菌及びアナモックス細菌は、予め細菌の培養を行ってを準備しても、市販のものを入手してもよい。各細菌の培養は、従来法に従って公知技術により適宜行うことができ、アンモニアを分解する既存の水処理プラントのスラッジから周知の方法により得られる。アンモニア酸化細菌については、例えば、B. Sorriano及びM. Walkerの文献(J. Applied Bacteriology, 31, 493-497(1968))を参照して単離でき、アナモックス細菌については、特表2001−506535号公報等を参照して用意でき、オランダ国バールンのCentraal Bureau voor Schimmelculturesにより登録番号94987(1987年12月12日)で寄託されるスラッジを利用できる。各培養細菌の菌体量及び活性は下記のようにして調べられ、これらから各細菌の処理能力が分かる。   As described above, the activity of anammox bacteria is affected by the dissolved oxygen concentration and nitrous acid concentration in the system, resulting in decreased activity or poisoning. The treatment proceeds under conditions such that the concentration is 20 mg-N / L or less, preferably 5 mg-N / L or less, and the dissolved oxygen concentration is 1 mg-O / L or less, preferably 0.5 mg-O / L or less. is important. For this purpose, the nitrite nitrogen produced by the ammonia-oxidizing bacteria is all consumed by the anammox bacteria by controlling the conditions so that the treatment rate of the ammonia-oxidizing bacteria (nitrite-nitrogen production rate) is rate-limiting. To. This includes: a) controlling oxygen supply to wastewater (ie, ammonia-oxidizing bacteria), and b) the ability of ammonia-oxidizing bacteria in the system (the ability to produce nitrite nitrogen) to be the capacity of anammox bacteria. (Nitrite uptake capacity) The two factors of adjusting the bacterial balance to be below are factors, and whether the rate of nitrite nitrogen production is rate-limiting or not is determined by measuring the dissolved oxygen concentration of wastewater It can be judged by whether or not the concentration increases. When the oxygen supply rate is low, the nitrite nitrogen production rate is rate-limiting regardless of the bacterial balance, but in the bacterial balance where the processing capacity of ammonia oxidizing bacteria in the system exceeds the processing capacity of anammox bacteria, oxygen supply If nitrite nitrogen exceeds the processing capacity of anammox bacteria due to the increase in nitrite, the nitrite nitrogen concentration immediately rises and poisons. If the capacity of ammonia-oxidizing bacteria is less than the capacity of anammox bacteria, an excess supply of oxygen is detected by increasing the dissolved oxygen concentration of wastewater before nitrite nitrogen exceeding the capacity of anammox bacteria is generated. Is possible. Considering the safety regarding poisoning, it is preferable that the treatment capacity [mol-N / h] of the anammox bacteria is 1.5 times or more than the nitrite nitrogen production capacity [mol-N / h] of the ammonia oxidizing bacteria. In the case of a bacterial balance in which the treatment capacity of ammonia-oxidizing bacteria exceeds the treatment capacity of anammox bacteria, it is desirable that the oxygen supply rate be 0.5 equivalent or less with respect to the treatment capacity of anammox bacteria. By doing so, inactivation of the anammox bacteria can be avoided, so that a preparation step for curing the bacteria and the like is not required, and the processing efficiency is improved. In addition, the growth and activity of anammox bacteria can be stably continued. Since the reaction of partial nitrification and denitrification in the anammox treatment requires bicarbonate ions, a bicarbonate such as sodium bicarbonate is usually added. The base constituting the bicarbonate is not particularly limited as long as it does not inhibit the growth and proliferation of bacteria such as heavy metals. It is preferable to add an amount of 0.1 to 2 moles of bicarbonate per mole of ammonia, depending on the ammonia concentration of the wastewater. However, carbon dioxide in the air can be used, and bicarbonate is not necessarily used when the pH of the wastewater is high. Ammonia-oxidizing bacteria and anammox bacteria may be prepared by culturing bacteria in advance or commercially available. Culture of each bacterium can be appropriately performed by a known technique according to a conventional method, and can be obtained by a known method from sludge of an existing water treatment plant that decomposes ammonia. Ammonia-oxidizing bacteria can be isolated with reference to, for example, the literature of B. Sorriano and M. Walker (J. Applied Bacteriology, 31, 493-497 (1968)). The sludge deposited with the registration number 94987 (December 12, 1987) by the Centraal Bureau voor Schimmelcultures in Baarn, the Netherlands can be used. The amount and activity of each cultured bacterium are examined as follows, and the treatment ability of each bacterium can be understood from these.

(アンモニア酸化細菌)
菌体量: Wagner M., Rath G., Amann R., Koops H.-P. and Schleifer K.-H., "In situ identification of ammonia-oxidizing bacteria", Syst. Appl. Microbiol. 18(1995), p251-264.
活性: Grunditz C. and Dalhammar G., "Development of nitrification inhibition assays using pure cultures of nitrosomonas and nitrobacter", Water Research, Vol.35(2001), Issue 2, p433-440.
(アナモックス細菌)
菌体量: Schmid M. et al., "Candidatus "Scalindual brodae", sp. nov., Candidatus "Scalindua Wagneri", sp. nov., Two New Species of Anaerobic Ammonium Oxidizing Bacteria", Syst. Appl. Microbiol., 26(2003), No.4, p529-538.
活性: Sliekers A. et al., "Completely autotrophic nitrogen removal over nitrite in one single reactor", Water Research, Vol.36(2002), Issue 10, p2475-2482.
以下、実施例を参照して、本発明に係る廃水の処理について具体的に説明する。
(Ammonia-oxidizing bacteria)
Bacterial mass: Wagner M., Rath G., Amann R., Koops H.-P. and Schleifer K.-H., "In situ identification of ammonia-oxidizing bacteria", Syst. Appl. Microbiol. 18 (1995 ), p251-264.
Activity: Grunditz C. and Dalhammar G., "Development of nitrification inhibition assays using pure cultures of nitrosomonas and nitrobacter", Water Research, Vol.35 (2001), Issue 2, p433-440.
(Anamox bacteria)
Cell weight: Schmid M. et al., "Candidatus" Scalindual brodae ", sp. Nov., Candidatus" Scalindua Wagneri ", sp. Nov., Two New Species of Anaerobic Ammonium Oxidizing Bacteria", Syst. Appl. Microbiol. , 26 (2003), No. 4, p529-538.
Activity: Sliekers A. et al., "Completely autotrophic nitrogen removal over nitrite in one single reactor", Water Research, Vol. 36 (2002), Issue 10, p2475-2482.
Hereinafter, the treatment of wastewater according to the present invention will be specifically described with reference to Examples.

活性汚泥槽30を回分式単槽に変更したこと以外は図2と同様の構成の廃水処理装置を用いて、以下の廃水処理を行った。尚、アナモックス処理槽には、廃水の溶存酸素濃度を測定する測定器が付設されている。   Except for changing the activated sludge tank 30 to a batch-type single tank, the following wastewater treatment was performed using a wastewater treatment apparatus having the same configuration as in FIG. In addition, the measuring device which measures the dissolved oxygen concentration of wastewater is attached to the anammox processing tank.

(実施例1)
活性汚泥(含水)2Lを収容した吸着処理槽10に、アンモニア濃度650mg-N/L、硝酸・亜硝酸濃度0mg-N/L、COD値1800mg-COD/Lの原廃水(COD/N比=2.8)8Lを投入し、攪拌して活性汚泥を分散した後、静置して活性汚泥を沈降分離し、上澄みの廃水のアンモニア濃度及びCOD値を測定したところ、アンモニア濃度620mg-N/L、COD値150mg-COD/Lであり、COD/N比は0.24となった。この上澄みの廃水8Lを、アンモニア酸化細菌及びアナモックス細菌を含む細菌剤2L(アンモニア酸化細菌の処理能力:アンモニア消費速度で12g-N/(L・d)、アナモックス細菌の処理能力:アンモニア消費速度で18g-N/(L・d))を収容するアナモックス処理槽20に投入した。底部の活性汚泥は、活性汚泥処理槽に投入した。
(Example 1)
Raw wastewater (COD / N ratio = COD value = 1800 mg-COD / L, ammonia concentration 650 mg-N / L, nitric acid / nitrite concentration 0 mg-N / L, and adsorption treatment tank 10 containing 2 L of activated sludge (water content) 2.8) 8 L was added and stirred to disperse the activated sludge. Then, the activated sludge was settled and separated, and the ammonia concentration and COD value of the supernatant wastewater were measured. The ammonia concentration was 620 mg-N / L, COD value 150 mg-COD / L, COD / N ratio was 0.24. 8 L of this supernatant waste water was converted into 2 L of bacterial agent containing ammonia-oxidizing bacteria and anammox bacteria (treatment capacity of ammonia-oxidizing bacteria: 12 g-N / (L · d) in terms of ammonia consumption rate, treatment capacity of anammox bacteria: in terms of ammonia consumption rate) The anammox treatment tank 20 containing 18 g-N / (L · d)) was charged. The activated sludge at the bottom was put into an activated sludge treatment tank.

アナモックス処理槽20の廃水に重炭酸ナトリウム500gを添加し、攪拌して細菌を分散させ、溶存酸素濃度測定器を作動させて溶存酸素濃度の測定を開始したところ、0.1mg-O/Lで一定していた。廃液のpH値は7.5であった。この後、曝気装置を作動させて酸素供給速度が0.2g-O/(L・d)となるように空気の吹き込み速度を調節して廃水の曝気を開始した。曝気開始によって溶存酸素濃度は僅かに増加したが、その後ほぼ一定であったので曝気を継続した。曝気を開始して15時間後、溶存酸素濃度が上昇し始めたので、酸素の供給を停止して廃水を静置した。菌体スラッジが槽の底部に沈降した後、上澄みの廃水の水質を測定したところ、アンモニア濃度は0.1mg-N/L、硝酸濃度は73mg-N/L、亜硝酸濃度は0mg-N/Lであった。COD値は20mg-COD/Lであり、COD/N比は0.27となった。又、pH値は7.0であった。この上澄みの廃水8Lは、活性汚泥(含水)42Lを収容する活性汚泥処理槽に排出した。活性汚泥処理槽の廃水の水質は、アンモニア濃度:26mg-N/L、硝酸濃度:18mg-N/L、亜硝酸濃度:0mg-N/Lとなった。又、COD値は53mg-COD/L、pH値は6.8となった。 When 500 g of sodium bicarbonate was added to the waste water of the anammox treatment tank 20 and stirred to disperse the bacteria, and the dissolved oxygen concentration measuring device was started to measure the dissolved oxygen concentration, 0.1 mg-O 2 / L It was constant. The pH value of the waste liquid was 7.5. Thereafter, the aeration apparatus was operated to adjust the air blowing rate so that the oxygen supply rate was 0.2 g-O 2 / (L · d), and aeration of the wastewater was started. The dissolved oxygen concentration slightly increased with the start of aeration, but since then it was almost constant, aeration was continued. 15 hours after the start of aeration, the dissolved oxygen concentration began to rise, so the supply of oxygen was stopped and the wastewater was allowed to stand. After the bacterial sludge settled at the bottom of the tank, the quality of the supernatant wastewater was measured. The ammonia concentration was 0.1 mg-N / L, the nitric acid concentration was 73 mg-N / L, and the nitrite concentration was 0 mg-N / L. L. The COD value was 20 mg-COD / L, and the COD / N ratio was 0.27. The pH value was 7.0. The supernatant waste water 8L was discharged into an activated sludge treatment tank containing activated sludge (containing water) 42L. The wastewater quality of the activated sludge treatment tank was ammonia concentration: 26 mg-N / L, nitric acid concentration: 18 mg-N / L, and nitrous acid concentration: 0 mg-N / L. The COD value was 53 mg-COD / L, and the pH value was 6.8.

活性汚泥処理槽の廃水を嫌気性条件にして、穏やかに攪拌しながら脱窒処理を6時間行った。この後、曝気装置を作動させて好気性条件にして硝化処理を5時間行い、廃水8L(全量の20容積%)を活性汚泥処理槽から最終沈澱槽40へ排出し、活性汚泥を沈降分離した。上澄みの水質を測定したところ、アンモニア濃度は5.3mg-N/L、硝酸濃度は15mg-N/L、亜硝酸濃度は0.1mg-N/Lであった。又、COD値は5mg-COD/Lであり、pH値は6.8であった。   The waste water in the activated sludge treatment tank was anaerobic, and denitrification was performed for 6 hours with gentle stirring. Thereafter, the aeration apparatus is operated to perform a nitrification treatment under an aerobic condition for 5 hours, and 8 L of waste water (20% by volume of the total amount) is discharged from the activated sludge treatment tank to the final sedimentation tank 40 to separate and separate the activated sludge. . When the water quality of the supernatant was measured, the ammonia concentration was 5.3 mg-N / L, the nitric acid concentration was 15 mg-N / L, and the nitrous acid concentration was 0.1 mg-N / L. The COD value was 5 mg-COD / L, and the pH value was 6.8.

(実施例2)
実施例1において最終沈澱槽40に残留する活性汚泥2Lを吸着処理槽10に投入し、新たな原廃水8Lを投入して、実施例1と同様にして吸着処理を行って活性汚泥を沈降分離した。上澄みの廃水8Lを、細菌剤を収容するアナモックス処理槽へ移して前述と同様の処理条件でアナモックス処理を行い、細菌剤を沈降分離した。上澄みの廃水の水質を測定したところ、アンモニア濃度は0.3mg-N/L、硝酸濃度は69mg-N/L、亜硝酸濃度は0mg-N/Lであった。COD値は17mg-COD/Lであり、COD/N比は0.25となった。又、pH値は6.9であった。この上澄みの廃水8Lは、吸着処理槽に残留する活性汚泥2Lと共に活性汚泥(含水)40Lを収容する活性汚泥処理槽に排出した。
(Example 2)
In Example 1, 2 L of activated sludge remaining in the final sedimentation tank 40 is introduced into the adsorption treatment tank 10, and 8 L of new raw waste water is introduced, and adsorption treatment is performed in the same manner as in Example 1 to settle and separate activated sludge. did. 8 L of the supernatant waste water was transferred to an anammox treatment tank containing a bacterial agent and subjected to an anammox treatment under the same treatment conditions as described above to separate and separate the bacterial agent. When the water quality of the supernatant wastewater was measured, the ammonia concentration was 0.3 mg-N / L, the nitric acid concentration was 69 mg-N / L, and the nitrous acid concentration was 0 mg-N / L. The COD value was 17 mg-COD / L, and the COD / N ratio was 0.25. The pH value was 6.9. The supernatant waste water 8L was discharged into an activated sludge treatment tank containing activated sludge (water content) 40L together with the activated sludge 2L remaining in the adsorption treatment tank.

活性汚泥処理槽の廃水を嫌気性条件にして、穏やかに攪拌しながら脱窒処理を2時間行った。この後、曝気装置を作動させて好気性条件にして硝化処理を5時間行い、廃水8L(全量の20容積%)を活性汚泥処理槽から最終沈澱槽40へ排出し、活性汚泥を沈降分離した。上澄みの水質を測定したところ、アンモニア濃度は4.9mg-N/L、硝酸濃度は12mg-N/L、亜硝酸濃度は0mg-N/Lであった。又、COD値は4mg-COD/Lであり、pH値は6.6であった。   The waste water in the activated sludge treatment tank was anaerobic, and denitrification was performed for 2 hours with gentle stirring. Thereafter, the aeration apparatus is operated to perform a nitrification treatment under an aerobic condition for 5 hours, 8 L of waste water (20% by volume of the total amount) is discharged from the activated sludge treatment tank to the final sedimentation tank 40, and the activated sludge is settled and separated. . When the water quality of the supernatant was measured, the ammonia concentration was 4.9 mg-N / L, the nitric acid concentration was 12 mg-N / L, and the nitrous acid concentration was 0 mg-N / L. The COD value was 4 mg-COD / L, and the pH value was 6.6.

最終沈澱槽40の活性汚泥及び新たな原廃水を用いて、上記と同じ操作を10回繰り返した結果、最終沈澱槽40で得られる廃水の水質は、アンモニア濃度:0mg-N/L、硝酸濃度:14mg-N/L、亜硝酸濃度:0mg-N/L、COD値:10mg-COD/L、pH値:6.6となった。   As a result of repeating the same operation 10 times using the activated sludge of the final sedimentation tank 40 and new raw wastewater, the water quality of the wastewater obtained in the final sedimentation tank 40 is ammonia concentration: 0 mg-N / L, nitric acid concentration : 14 mg-N / L, nitrite concentration: 0 mg-N / L, COD value: 10 mg-COD / L, pH value: 6.6.

(比較例1)
吸着処理槽10での処理を行わずに原廃水をアナモックス処理槽20へ投入して実施例1と同じ条件で廃水処理を5回行ったところ、アナモックス処理槽20の上澄み廃水液の水質は、アンモニア濃度:0mg-N/L、硝酸濃度:5mg-N/L、亜硝酸濃度:240mg-N/Lであった。COD値は520mg-COD/L(COD/N比:2.1)となり、pH値は6.1であった。これは、硝化細菌及び脱窒細菌が増殖してアナモックス細菌が駆逐されたことを示している。
(Comparative Example 1)
When the raw wastewater was put into the anammox treatment tank 20 without performing the treatment in the adsorption treatment tank 10 and the wastewater treatment was performed five times under the same conditions as in Example 1, the water quality of the supernatant wastewater liquid of the anammox treatment tank 20 was The ammonia concentration was 0 mg-N / L, the nitric acid concentration was 5 mg-N / L, and the nitrous acid concentration was 240 mg-N / L. The COD value was 520 mg-COD / L (COD / N ratio: 2.1), and the pH value was 6.1. This indicates that nitrifying bacteria and denitrifying bacteria have grown to destroy the anammox bacteria.

(比較例2)
原廃水を直接活性汚泥処理槽に導入して、実施例1と同様の条件で廃水処理を行ったところ、最終沈澱槽40で得られた上澄み廃水の水質は、アンモニア濃度:103mg-N/L、硝酸濃度:320mg-N/L、亜硝酸濃度:0mg-N/Lであった。COD値は12mg-COD/L(COD/N比:0.03)となり、pH値は6.0であった。これは、有機物不足により十分に脱膣細菌が作用しなかったことを示している。
(Comparative Example 2)
When the raw wastewater was directly introduced into the activated sludge treatment tank and the wastewater was treated under the same conditions as in Example 1, the quality of the supernatant wastewater obtained in the final sedimentation tank 40 was ammonia concentration: 103 mg-N / L Nitric acid concentration: 320 mg-N / L, nitrous acid concentration: 0 mg-N / L. The COD value was 12 mg-COD / L (COD / N ratio: 0.03), and the pH value was 6.0. This indicates that the vaginal bacteria did not act sufficiently due to lack of organic matter.

(実施例3)
吸着処理槽10の活性汚泥に活性炭0.5kgを添加したこと以外は実施例1と同じ操作を行って廃水を処理した。その結果、吸着処理後の廃水は、アンモニア濃度:515mg-N/L、COD値:20mg-COD/Lであり、COD/N比は0.04となった。アナモックス処理後の廃水のアンモニア濃度は0.2mg-N/L、硝酸濃度は55mg-N/L、亜硝酸濃度は0.2mg-N/Lであった。COD値は24mg-COD/Lであり、COD/N比は0.4となった。又、pH値は7.2であった。活性汚泥処理後の廃水は、アンモニア濃度:0mg-N/L、硝酸濃度:12mg-N/L、亜硝酸濃度:0mg-N/Lであった。又、COD値は9mg-COD/Lであり、pH値は6.7であった。この廃水を再度嫌気性条件にして、穏やかに攪拌しながら脱窒処理を2時間行ったところ、硝酸濃度は3mg-N/Lとなった。これは、吸着処理において吸着された有機物の一部が硝化処理後に残留して脱窒細菌の活動が可能であったことを示している。
(Example 3)
Except for adding 0.5 kg of activated carbon to the activated sludge in the adsorption treatment tank 10, the same operation as in Example 1 was performed to treat the wastewater. As a result, the wastewater after the adsorption treatment had an ammonia concentration of 515 mg-N / L, a COD value of 20 mg-COD / L, and the COD / N ratio was 0.04. The ammonia concentration of the waste water after the anammox treatment was 0.2 mg-N / L, the nitric acid concentration was 55 mg-N / L, and the nitrous acid concentration was 0.2 mg-N / L. The COD value was 24 mg-COD / L, and the COD / N ratio was 0.4. The pH value was 7.2. The wastewater after the activated sludge treatment was ammonia concentration: 0 mg-N / L, nitric acid concentration: 12 mg-N / L, and nitrous acid concentration: 0 mg-N / L. The COD value was 9 mg-COD / L, and the pH value was 6.7. The wastewater was again subjected to anaerobic conditions, and denitrification was performed for 2 hours with gentle stirring. As a result, the nitric acid concentration was 3 mg-N / L. This indicates that a part of the organic matter adsorbed in the adsorption treatment remained after the nitrification treatment, and the activity of denitrifying bacteria was possible.

本発明に係る廃水処理方法を示すフロー図である。It is a flowchart which shows the wastewater treatment method which concerns on this invention. 本発明に係る廃水処理装置の一実施例を示す概略構成図である。It is a schematic block diagram which shows one Example of the waste water treatment apparatus which concerns on this invention. 本発明に係る廃水処理方法の一実施例を示す工程図である。It is process drawing which shows one Example of the waste water treatment method which concerns on this invention.

符号の説明Explanation of symbols

10 吸着処理槽、 20 アナモックス処理槽、 30 活性汚泥処理槽
40 最終沈澱槽、 a〜e 処理槽
DESCRIPTION OF SYMBOLS 10 Adsorption processing tank, 20 Anammox processing tank, 30 Activated sludge processing tank 40 Final sedimentation tank, ae processing tank

Claims (15)

有機物を吸着可能な吸着材を廃水に作用させて前記廃水に含まれる有機物を吸着材に吸着させる吸着処理を行い、前記吸着処理後の廃水から吸着材を除去してアンモニア酸化細菌及びアナモックス細菌を作用させるアナモックス処理を行い、前記アナモックス処理後の廃水からアンモニア酸化細菌及びアナモックス細菌を除去して前記吸着処理後の吸着材と共に活性汚泥処理を行うことを特徴とする廃水処理方法。   An adsorbent capable of adsorbing organic matter is allowed to act on the wastewater to adsorb the organic matter contained in the wastewater to the adsorbent, and the adsorbent is removed from the wastewater after the adsorption treatment to remove ammonia oxidizing bacteria and anammox bacteria. A wastewater treatment method comprising performing an anammox treatment, removing ammonia oxidizing bacteria and anammox bacteria from the wastewater after the anammox treatment, and performing an activated sludge treatment together with the adsorbent after the adsorption treatment. 廃水のアンモニア態窒素濃度に対する化学的酸素要求量の比であるCOD/N比[mg-COD/mg-N]を求め、COD/N比が7.0以上の廃水には活性汚泥処理を施し、COD/N比が0.3以下の廃水には、アンモニア酸化細菌及びアナモックス細菌を用いたアナモックス処理を施し、COD/N比が0.3を超え7.0未満の廃水には、有機物を吸着可能な吸着材を作用させる吸着処理を施した後に前記アナモックス処理を施すことを特徴とする廃水処理方法。   The COD / N ratio [mg-COD / mg-N], which is the ratio of chemical oxygen demand to the ammonia nitrogen concentration of wastewater, is determined, and activated sludge treatment is applied to wastewater with a COD / N ratio of 7.0 or higher. In addition, wastewater with a COD / N ratio of 0.3 or less is subjected to anammox treatment using ammonia-oxidizing bacteria and anammox bacteria, and wastewater with a COD / N ratio of more than 0.3 and less than 7.0 is treated with organic matter. A wastewater treatment method, wherein the anammox treatment is performed after an adsorption treatment in which an adsorbable adsorbent is applied. 前記アナモックス処理を施した後の廃水に活性汚泥処理を施すことを特徴とする請求項2記載の廃水処理方法。   The wastewater treatment method according to claim 2, wherein activated sludge treatment is performed on the wastewater after the anammox treatment. 廃水のアンモニア態窒素濃度に対する化学的酸素要求量の比であるCOD/N比[mg-COD/mg-N]を求め、COD/N比が0.3以下の廃水には、アンモニア酸化細菌及びアナモックス細菌を用いたアナモックス処理を施し、COD/N比が0.3を超え7.0未満の廃水には、有機物を吸着可能な吸着材を作用させる吸着処理を施した後に前記アナモックス処理を施し、前記アナモックス処理を施した後の廃水に活性汚泥処理を施すことを特徴とする廃水処理方法。   The COD / N ratio [mg-COD / mg-N], which is the ratio of the chemical oxygen demand to the ammonia nitrogen concentration of the wastewater, is determined. The wastewater having a COD / N ratio of 0.3 or less contains ammonia oxidizing bacteria and An anammox treatment using anammox bacteria is performed, and the waste water having a COD / N ratio of more than 0.3 and less than 7.0 is subjected to an adsorption treatment in which an adsorbent capable of adsorbing an organic substance is applied and then subjected to the anammox treatment. A wastewater treatment method, wherein activated sludge treatment is performed on the wastewater after the anammox treatment. 前記吸着材は活性汚泥を含み、前記吸着処理後の有機物を吸着した活性汚泥を前記活性汚泥処理に導入することを特徴とする請求項2〜4の何れかに記載の廃水処理方法。   The waste water treatment method according to any one of claims 2 to 4, wherein the adsorbent contains activated sludge, and activated sludge that has adsorbed the organic matter after the adsorption treatment is introduced into the activated sludge treatment. 前記活性汚泥処理後の廃水から回収される活性汚泥を、前記吸着処理における吸着材として用いることを特徴とする請求項5記載の廃水処理方法。   The wastewater treatment method according to claim 5, wherein the activated sludge recovered from the wastewater after the activated sludge treatment is used as an adsorbent in the adsorption treatment. 前記活性汚泥処理は、嫌気性条件下の第1の脱窒処理工程と、好気性条件下の第1の硝化処理工程と、前記第1の硝化処理工程後に行われる第2の脱窒処理と、前記第2の脱窒処理後に行われる第2の硝化処理工程とを有することを特徴とする請求項6記載の廃水処理方法。   The activated sludge treatment includes a first denitrification treatment step under anaerobic conditions, a first nitrification treatment step under aerobic conditions, and a second denitrification treatment performed after the first nitrification treatment step. The waste water treatment method according to claim 6, further comprising a second nitrification treatment step performed after the second denitrification treatment. 前記吸着材は活性炭を含むことを特徴とする請求項1〜7の何れかに記載の廃水処理方法。   The waste water treatment method according to claim 1, wherein the adsorbent contains activated carbon. 前記アナモックス処理において、前記アンモニア酸化細菌が酸素を用いてアンモニア態窒素から亜硝酸態窒素を生成する速度が律速となるように制御された速度で酸素が供給されることを特徴とする請求項1〜8の何れかに記載の廃水処理方法。   The oxygen is supplied at a controlled rate in the anammox treatment so that the rate at which the ammonia-oxidizing bacteria produce nitrite nitrogen from ammonia nitrogen using oxygen is controlled. The wastewater treatment method in any one of -8. 廃水中の有機物を吸着可能な吸着材を収容するための吸着処理槽と、
廃水中のアンモニア態窒素の部分硝化及び脱窒を行うアンモニア酸化細菌及びアナモックス細菌を収容するためのアナモックス処理槽と、
廃水中のアンモニア態窒素を硝化及び脱窒する活性汚泥を収容するための活性汚泥処理槽と、
前記吸着処理槽から前記アナモックス処理槽へ廃水を供給するための送水手段と、
前記アナモックス処理槽から前記活性汚泥処理槽へ廃水を供給するための送水手段と、
前記吸着処理槽から前記活性汚泥処理槽へ前記吸着材を供給するための供給手段と
を有することを特徴とする廃水処理装置。
An adsorption treatment tank for containing an adsorbent capable of adsorbing organic matter in wastewater;
An anammox treatment tank for containing ammonia-oxidizing bacteria and anammox bacteria for partial nitrification and denitrification of ammonia nitrogen in waste water;
An activated sludge treatment tank for containing activated sludge for nitrifying and denitrifying ammonia nitrogen in wastewater;
Water supply means for supplying wastewater from the adsorption treatment tank to the anammox treatment tank;
Water supply means for supplying wastewater from the anammox treatment tank to the activated sludge treatment tank;
A wastewater treatment apparatus comprising: a supply means for supplying the adsorbent from the adsorption treatment tank to the activated sludge treatment tank.
廃水中の有機物を吸着可能な吸着材を収容するための吸着処理槽と、
廃水中のアンモニア態窒素の部分硝化及び脱窒を行うアンモニア酸化細菌及びアナモックス細菌を収容するためのアナモックス処理槽と、
廃水中のアンモニア態窒素を硝化及び脱窒する活性汚泥を収容するための活性汚泥処理槽と、
廃水のアンモニア態窒素濃度に対する化学的酸素要求量の比であるCOD/N比[mg-COD/mg-N]に従って、廃水の供給を、COD/N比が7.0以上の廃水は前記活性汚泥処理槽に供給し、COD/N比が0.3以下の廃水は前記アナモックス処理槽に供給し、COD/N比が0.3を超え7.0未満の廃水は前記吸着処理槽に供給するように切り換えるための切り換え手段と、
前記吸着処理槽から前記アナモックス処理槽へ廃水を供給するための送水手段と
を有することを特徴とする廃水処理装置。
An adsorption treatment tank for containing an adsorbent capable of adsorbing organic matter in wastewater;
An anammox treatment tank for containing ammonia-oxidizing bacteria and anammox bacteria for partial nitrification and denitrification of ammonia nitrogen in waste water;
An activated sludge treatment tank for containing activated sludge for nitrifying and denitrifying ammonia nitrogen in wastewater;
According to the COD / N ratio [mg-COD / mg-N], which is the ratio of chemical oxygen demand to ammonia nitrogen concentration in the wastewater, wastewater with a COD / N ratio of 7.0 or higher is said to be active. Supplied to the sludge treatment tank, wastewater with a COD / N ratio of 0.3 or less is supplied to the Anammox treatment tank, and wastewater with a COD / N ratio of more than 0.3 and less than 7.0 is supplied to the adsorption treatment tank Switching means for switching to
A wastewater treatment apparatus comprising: a water supply means for supplying wastewater from the adsorption treatment tank to the anammox treatment tank.
前記アナモックス処理槽から前記活性汚泥処理槽へ廃水を供給するための送水手段を有する請求項11記載の廃水処理装置。   The wastewater treatment apparatus according to claim 11, further comprising water supply means for supplying wastewater from the anammox treatment tank to the activated sludge treatment tank. 廃水中の有機物を吸着可能な吸着材を収容するための吸着処理槽と、
廃水中のアンモニア態窒素の部分硝化及び脱窒を行うアンモニア酸化細菌及びアナモックス細菌を収容するためのアナモックス処理槽と、
廃水中のアンモニア態窒素を硝化及び脱窒する活性汚泥とを収容するための活性汚泥処理槽と、
廃水のアンモニア態窒素濃度に対する化学的酸素要求量の比であるCOD/N比[mg-COD/mg-N]に従って、廃水の供給を、COD/N比が0.3以下の廃水は前記アナモックス処理槽に供給し、COD/N比が0.3を超え7.0未満の廃水は前記吸着処理槽に供給するように切り換えるための切り換え手段と、
前記吸着処理槽から前記アナモックス処理槽へ廃水を供給するための送水手段と、
前記アナモックス処理槽から前記活性汚泥処理槽へ廃水を供給するための送水手段と
を有することを特徴とする廃水処理装置。
An adsorption treatment tank for containing an adsorbent capable of adsorbing organic matter in wastewater;
An anammox treatment tank for containing ammonia-oxidizing bacteria and anammox bacteria for partial nitrification and denitrification of ammonia nitrogen in waste water;
An activated sludge treatment tank for containing activated sludge for nitrifying and denitrifying ammonia nitrogen in wastewater;
According to the COD / N ratio [mg-COD / mg-N], which is the ratio of the chemical oxygen demand to the ammonia nitrogen concentration of the wastewater, the wastewater is supplied as wastewater having a COD / N ratio of 0.3 or less. Switching means for switching to supply wastewater having a COD / N ratio of more than 0.3 and less than 7.0 to the treatment tank;
Water supply means for supplying wastewater from the adsorption treatment tank to the anammox treatment tank;
A wastewater treatment apparatus comprising water supply means for supplying wastewater from the anammox treatment tank to the activated sludge treatment tank.
前記吸着材は活性汚泥を含み、更に、
前記吸着処理槽の活性汚泥を前記活性汚泥処理槽に供給するための供給手段と、
前記活性汚泥処理槽から回収される活性汚泥を前記吸着処理槽に供給するための供給手段と
を有することを特徴とする請求項11〜13の何れかに記載の廃水処理装置。
The adsorbent contains activated sludge, and
Supply means for supplying the activated sludge of the adsorption treatment tank to the activated sludge treatment tank;
The wastewater treatment apparatus according to any one of claims 11 to 13, further comprising supply means for supplying the activated sludge recovered from the activated sludge treatment tank to the adsorption treatment tank.
前記活性汚泥処理槽は、前記廃水を嫌気性条件下に置く第1の脱窒処理槽と、前記廃水を好気性条件下に置く第1の硝化処理槽と、前記第1の硝化処理槽から供給される廃水を収容する第2の脱窒処理槽と、前記第2の脱窒処理から供給される廃水を収容する第2の硝化処理槽とを有することを特徴とする請求項14記載の廃水処理装置。   The activated sludge treatment tank includes a first denitrification treatment tank that places the wastewater under anaerobic conditions, a first nitrification treatment tank that places the wastewater under aerobic conditions, and the first nitrification treatment tank. 15. The method according to claim 14, further comprising: a second denitrification treatment tank that accommodates the supplied wastewater; and a second nitrification treatment tank that accommodates the wastewater supplied from the second denitrification process. Waste water treatment equipment.
JP2006344197A 2006-12-21 2006-12-21 Waste water treatment method and waste water treatment apparatus Active JP4957229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006344197A JP4957229B2 (en) 2006-12-21 2006-12-21 Waste water treatment method and waste water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006344197A JP4957229B2 (en) 2006-12-21 2006-12-21 Waste water treatment method and waste water treatment apparatus

Publications (2)

Publication Number Publication Date
JP2008155085A true JP2008155085A (en) 2008-07-10
JP4957229B2 JP4957229B2 (en) 2012-06-20

Family

ID=39656591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006344197A Active JP4957229B2 (en) 2006-12-21 2006-12-21 Waste water treatment method and waste water treatment apparatus

Country Status (1)

Country Link
JP (1) JP4957229B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115620A (en) * 2008-11-14 2010-05-27 Ihi Corp Wastewater treatment method and wastewater treatment apparatus
JP2013017928A (en) * 2011-07-08 2013-01-31 Ihi Corp Wastewater treatment method, and wastewater treatment apparatus
CN108358403A (en) * 2018-05-03 2018-08-03 环境保护部南京环境科学研究所 A kind of domestic sewage in rural areas purification slot device
CN109626701A (en) * 2017-10-09 2019-04-16 天津职业技术师范大学 Full-automatic sewage processing unit monitoring system
CN116874077A (en) * 2023-08-25 2023-10-13 广东清研环境科技有限公司 Integrated short-cut nitrification-anaerobic ammoxidation reaction system and reaction process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105903426A (en) * 2016-05-09 2016-08-31 河海大学 Modified water supply sludge, and preparation method and application thereof

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233354A (en) * 1975-09-09 1977-03-14 Nishihara Environ Sanit Res Corp Waste water (solution) purification treatment method
JPS52100748A (en) * 1976-02-19 1977-08-24 Sumitomo Chem Co Ltd Biological denitrification method
JPS6034797A (en) * 1983-08-03 1985-02-22 Daido Steel Co Ltd Water treating apparatus
JPH0919698A (en) * 1995-07-04 1997-01-21 Hitachi Plant Eng & Constr Co Ltd Advanced treatment of waste water
JP2001506535A (en) * 1996-08-23 2001-05-22 テクニシエ ウニベルジテイト デルフト Method of treating wastewater containing ammonia
JP2001507619A (en) * 1996-11-06 2001-06-12 パクエス ベースローテン フェンノートシャップ Equipment for biological purification of wastewater
JP2002521182A (en) * 1998-07-24 2002-07-16 パクエス バイオ システムズ ベスローテン フェンノートシャップ Treatment of wastewater containing ammonia
JP2002263689A (en) * 2001-03-13 2002-09-17 Ebara Corp Method for treating ammonia-containing waste water and device
JP2002361285A (en) * 2001-06-12 2002-12-17 Kurita Water Ind Ltd Denitrification method and denitrification equipment
JP2003154390A (en) * 2001-11-22 2003-05-27 Ebara Corp Method and apparatus for treating ammonia-containing sewage
JP2006055739A (en) * 2004-08-19 2006-03-02 Kurita Water Ind Ltd Treating method of organic matter- and nitrogen-containing wastewater
JP2006130397A (en) * 2004-11-05 2006-05-25 Hitachi Plant Eng & Constr Co Ltd Waste water treatment system
JP2006272177A (en) * 2005-03-29 2006-10-12 Mitsubishi Heavy Ind Ltd Method and system for removing biological nitrogen
JP2008155086A (en) * 2006-12-21 2008-07-10 Ihi Corp Waste water treatment method and apparatus and microbial agent for waste water treatment

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233354A (en) * 1975-09-09 1977-03-14 Nishihara Environ Sanit Res Corp Waste water (solution) purification treatment method
JPS52100748A (en) * 1976-02-19 1977-08-24 Sumitomo Chem Co Ltd Biological denitrification method
JPS6034797A (en) * 1983-08-03 1985-02-22 Daido Steel Co Ltd Water treating apparatus
JPH0919698A (en) * 1995-07-04 1997-01-21 Hitachi Plant Eng & Constr Co Ltd Advanced treatment of waste water
JP2001506535A (en) * 1996-08-23 2001-05-22 テクニシエ ウニベルジテイト デルフト Method of treating wastewater containing ammonia
JP2001507619A (en) * 1996-11-06 2001-06-12 パクエス ベースローテン フェンノートシャップ Equipment for biological purification of wastewater
JP2002521182A (en) * 1998-07-24 2002-07-16 パクエス バイオ システムズ ベスローテン フェンノートシャップ Treatment of wastewater containing ammonia
JP2002263689A (en) * 2001-03-13 2002-09-17 Ebara Corp Method for treating ammonia-containing waste water and device
JP2002361285A (en) * 2001-06-12 2002-12-17 Kurita Water Ind Ltd Denitrification method and denitrification equipment
JP2003154390A (en) * 2001-11-22 2003-05-27 Ebara Corp Method and apparatus for treating ammonia-containing sewage
JP2006055739A (en) * 2004-08-19 2006-03-02 Kurita Water Ind Ltd Treating method of organic matter- and nitrogen-containing wastewater
JP2006130397A (en) * 2004-11-05 2006-05-25 Hitachi Plant Eng & Constr Co Ltd Waste water treatment system
JP2006272177A (en) * 2005-03-29 2006-10-12 Mitsubishi Heavy Ind Ltd Method and system for removing biological nitrogen
JP2008155086A (en) * 2006-12-21 2008-07-10 Ihi Corp Waste water treatment method and apparatus and microbial agent for waste water treatment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115620A (en) * 2008-11-14 2010-05-27 Ihi Corp Wastewater treatment method and wastewater treatment apparatus
JP2013017928A (en) * 2011-07-08 2013-01-31 Ihi Corp Wastewater treatment method, and wastewater treatment apparatus
CN109626701A (en) * 2017-10-09 2019-04-16 天津职业技术师范大学 Full-automatic sewage processing unit monitoring system
CN108358403A (en) * 2018-05-03 2018-08-03 环境保护部南京环境科学研究所 A kind of domestic sewage in rural areas purification slot device
CN116874077A (en) * 2023-08-25 2023-10-13 广东清研环境科技有限公司 Integrated short-cut nitrification-anaerobic ammoxidation reaction system and reaction process
CN116874077B (en) * 2023-08-25 2024-03-22 广东清研环境科技有限公司 Integrated short-cut nitrification-anaerobic ammoxidation reaction system and reaction process

Also Published As

Publication number Publication date
JP4957229B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP5862082B2 (en) Waste water treatment method and waste water treatment apparatus
JP5161834B2 (en) Method for treating wastewater containing ammonia
JP3776315B2 (en) Method for treating wastewater containing ammonia
JP4496735B2 (en) Biological treatment of BOD and nitrogen-containing wastewater
KR20010007872A (en) High Concentrated Organic Wastewater Treatment Process Using Bio-maker
JP5324269B2 (en) Waste water treatment method and waste water treatment apparatus
JP4649911B2 (en) Treatment of organic matter and nitrogen-containing wastewater
JP5186420B2 (en) Waste water treatment method and waste water treatment equipment
JP4957229B2 (en) Waste water treatment method and waste water treatment apparatus
JP2003245689A (en) Method and apparatus for treating wastewater
JP2006325512A (en) Waste water-treating system
JP5115252B2 (en) Activated sludge treatment method and activated sludge treatment apparatus for wastewater
JP4915036B2 (en) Denitrification method and denitrification apparatus
JP2008155086A (en) Waste water treatment method and apparatus and microbial agent for waste water treatment
CN113226996A (en) Water treatment process for simultaneous carbon, nitrogen and phosphorus reduction in a sequencing batch moving bed biofilm reactor
JP2003154393A (en) Biological method for removing nitrogen and apparatus therefor
JP5858769B2 (en) Suspended organic matter-containing wastewater treatment system and treatment method
JP2003126886A (en) Biological denitrification method and device of the same
JP5055670B2 (en) Denitrification method and denitrification apparatus
JP4570550B2 (en) Nitrogen removal method and apparatus for high concentration organic wastewater
JP6491056B2 (en) Nitrogen removal method and nitrogen removal apparatus
JP5812277B2 (en) Nitrogen removal method
JP2002301500A (en) Water treatment method and apparatus using acid fermentation
JP5536894B2 (en) Digestion method of excess sludge by lack of normal time
CN110759607B (en) Process for removing total nitrogen from printing and dyeing wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350