JP3591086B2 - Biological treatment of organic wastewater - Google Patents

Biological treatment of organic wastewater Download PDF

Info

Publication number
JP3591086B2
JP3591086B2 JP27797395A JP27797395A JP3591086B2 JP 3591086 B2 JP3591086 B2 JP 3591086B2 JP 27797395 A JP27797395 A JP 27797395A JP 27797395 A JP27797395 A JP 27797395A JP 3591086 B2 JP3591086 B2 JP 3591086B2
Authority
JP
Japan
Prior art keywords
sludge
biological treatment
treatment
tank
solubilization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27797395A
Other languages
Japanese (ja)
Other versions
JPH09117800A (en
Inventor
哲朗 深瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP27797395A priority Critical patent/JP3591086B2/en
Publication of JPH09117800A publication Critical patent/JPH09117800A/en
Application granted granted Critical
Publication of JP3591086B2 publication Critical patent/JP3591086B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Biological Wastes In General (AREA)
  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は有機性排液を生物処理し、生成する汚泥を可溶化処理により減容化するようにした有機性排液の生物処理方法に関するものである。
【0002】
【従来の技術】
有機性排液を活性汚泥の存在下に好気的に生物処理する方法では、難脱水性の余剰活性汚泥が大量に生成する。また嫌気性汚泥の存在下に嫌気的に処理する方法でも、大量の余剰消化汚泥が生成する。このような余剰汚泥の減容化のために、余剰汚泥を好気的または嫌気的に消化する方法が行われている。このうち好気的消化では、余剰汚泥を消化槽で単純に曝気して消化し、曝気汚泥を固液分離して分離汚泥を消化槽に返送している。また嫌気性消化では、余剰汚泥を消化槽に投入し、嫌気性細菌の作用で消化している。
【0003】
このような消化方法は、好気性または嫌気性生物の作用を利用して消化するものであるが、余剰汚泥自体生物処理を経て生物学的に安定した汚泥であるため、汚泥の減容化には限度があり、通常余剰汚泥の30〜40%が減容化されるにすぎない。
【0004】
このような点を改善するために、特公平5−61994号には、余剰汚泥をpH2.5以下、温度50℃以上で可溶化したのち曝気槽に返送する有機性汚水の処理方法が記載されている。
また特開平1−224100号には、嫌気性消化した汚泥を100〜180℃で可溶化処理した後、この可溶化処理汚泥を嫌気消化槽に返送する有機性汚泥の処理方法が記載されている。
【0005】
【発明が解決しようとする課題】
しかし、このような従来の方法では汚泥の減容化は可能であるが、可溶化処理の条件が高温で厳しいため、難生物分解性の有機物が生成して処理液の色度やCODが上昇して処理水質が悪化し、しかも耐熱性の高い装置を必要とし、エネルギー消費量が多く、コスト高になるという問題点がある。
【0006】
本発明の目的は、上記問題点を解決するため、処理水質の悪化を抑制し、しかも低温の加熱により、低コストで汚泥の減容化を行うことができる有機性排液の生物処理方法を提案することである。
【0007】
【課題を解決するための手段】
本発明は、有機性排液を生物処理槽において好気性または嫌気性微生物を含む生物汚泥の存在下に生物処理する方法であって、
有機性排液を生物処理槽に導入して、好気性または嫌気性微生物を含む生物汚泥の存在下に好気性または嫌気性生物処理する生物処理工程と、
生物処理槽内の混合液または濃縮汚泥を引抜き、この引抜汚泥を界面活性剤の存在下に加熱して可溶化処理した後、生物処理槽に移送する可溶化処理工程と
を含むことを特徴とする有機性排液の生物処理方法である。
【0008】
本発明において処理の対象となる有機性排液は、生物処理によって処理される有機物を含有する排液または汚泥であるが、難生物分解性の有機物または無機物が含有されていてもよい。このような有機性排液としては下水、し尿、食品工場排水、その他の産業排液、これらの排液を処理した際に生じる余剰汚泥等の汚泥などがあげられる。
【0009】
このような有機性排液を生物処理する生物処理工程は、好気性生物処理でも嫌気性生物処理でもよい。好気性生物処理としては、活性汚泥法、生物膜法などがあげられる。活性汚泥法は有機性排液を活性汚泥の存在下に好気性生物処理する処理法であり、有機性排液を曝気槽で活性汚泥と混合して曝気し、混合液を濃縮装置で濃縮し、濃縮汚泥の一部を曝気槽に返送する標準活性汚泥法が一般的であるが、これを変形した他の処理法でもよい。また生物膜法は担体に生物膜を形成して好気性下に排液と接触させる処理である。また嫌気性処理としては、嫌気性消化法、高負荷嫌気性処理法などがあげられる。
【0010】
好気性生物処理および嫌気性生物処理の処理条件は特に制限されず、通常の好気性生物処理または嫌気性生物処理の条件が採用できる。例えば、好気性生物処理の場合、汚泥の消化においては消化槽(生物処理槽)滞留時間は1日以上、通常3〜15日とすることができ、有機性排水の活性汚泥処理においては汚泥負荷0.1〜0.5kg−BOD/MLSS/日のような運転ができる。また嫌気性処理の場合、汚泥の消化においては消化槽(生物処理槽)滞留時間は2.5日以上、通常5〜30日とすることができる。
【0011】
本発明では、このような生物処理における処理系から生物汚泥の一部を引抜き、この引抜汚泥を可溶化処理する。生物汚泥を引抜く場合、濃縮装置で濃縮された濃縮汚泥を引抜いてもよいし、生物処理槽から混合液の状態で引抜いてもよいが、可溶化処理が小さい容量の処理槽で行うことができ、しかも加熱エネルギーが少なくてもよいので前者の方が好ましい。濃縮装置としては、沈殿装置、遠心分離機、膜分離装置などの公知の装置が使用できる。これらの中では、汚泥を高濃縮できるので、遠心分離装置、膜分離装置が好ましい。
【0012】
濃縮汚泥は一部または全部を引抜汚泥として引抜いて可溶化処理することができる。前者の場合、濃縮汚泥の一部を可溶化処理し、他の一部を返送汚泥として生物処理槽に返送し、残部を余剰汚泥または消化汚泥として排出することができる。生物処理槽には活性な微生物が存在しており、被処理液中の有機物や可溶化処理汚泥を基質として増殖するので、生物処理槽への汚泥の返送は必ずしも必要ではないが、活性な微生物を生物処理槽に供給できるので汚泥の返送を行うのが好ましい。本発明では、余剰汚泥に加えて、返送汚泥として生物処理槽に返送される汚泥の一部をさらに引抜いて可溶化処理するのが好ましく、この場合余剰汚泥の発生量をより少なくすることができ、条件によっては余剰汚泥の発生量をゼロにすることもできる。この点については、後で詳しく述べる。
【0013】
本発明では、引抜汚泥を界面活性剤の存在下に加熱して可溶化処理する。
本発明で使用する界面活性剤としては、たとえばポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンアルキルエーテル等のノニオン性界面活性剤;ラウリルベンゼンスルフォン酸ナトリウム、ソディウムドデシルスルフェート等のアニオン性界面活性剤;テトラデシルアミン、セチルトリメチルアンモニウムクロリド等のカチオン性界面活性剤などがあげられる。これらの中では生物分解性が高く、微生物の消化活性を阻害しないノニオン性界面活性剤が好ましい。
【0014】
界面活性剤の添加量は、可溶化処理するMLVSSに対して10〜100,000mg/kg、好ましくは1,000〜20,000mg/kgとするのが望ましい。このような量で界面活性剤を添加することにより、可溶化処理汚泥を生物処理槽に導入して生物処理しても微生物の消化活性が阻害されることはなく、また処理全体の効率に影響を及ぼすような新たな負荷とはならないで界面活性剤の添加効果が得られ、従来の方法に比べて穏和な条件で可溶化処理を行うことができる。
界面活性剤は可溶化処理槽(加熱処理槽)または可溶化処理槽に供給する引抜汚泥に添加するのが好ましい。
【0015】
加熱温度は50〜150℃、好ましくは60〜90℃とするのが望ましい。加熱時間は、連続式の場合滞留時間として15分間〜6時間、好ましくは30分間〜2時間、バッチ式の場合10分間〜6時間、好ましくは30分間〜1時間とするのが望ましい。
【0016】
このような条件で可溶化処理することにより、有機性汚泥の90%以上が易生物分解性物質に改質される。そして可溶化処理汚泥を好気性または嫌気性生物処理することにより、有機物が微生物により分解され、汚泥が減容する。条件にもよるが、1回の可溶化処理で、処理に供した引抜汚泥の1/3〜1/4が減容化される。可溶化処理汚泥の生物処理は、汚泥を引抜いた処理系の生物処理槽に返送(循環)して行うこともできるし、別の処理系の生物処理槽に導入して行うこともできる。
【0017】
本発明においては、可溶化処理する汚泥の量を多くするほど汚泥の減容率は高くなる。ただし、可溶化処理した汚泥中の有機物を生物分解する際に汚泥が増殖するので、単に余剰汚泥を可溶化処理しただけでは余剰汚泥をゼロにすることはできないが、増殖する汚泥量を見かけ上ゼロになるように過剰の汚泥を引抜いて可溶化処理する場合には、系全体から生じる余剰汚泥の量をゼロにすることもできる。例えば、汚泥を消化処理する場合、消化槽(生物処理槽)の滞留時間中に可溶化処理槽に循環され、可溶化処理される回数を考慮すると、流入汚泥量のおよそ1/3〜1/6に相当する量を可溶化処理すればよい。なお、可溶化処理する汚泥の量が多くなると生物処理性能が低下する場合があるが、このようなときには汚泥を担持するための担体を生物処理槽内に設け、一定量の汚泥量を保持することにより、生物処理性能を高く維持することができる。
【0018】
本発明における汚泥減容化の原理を図を用いて説明する。
図1は汚泥減容化の原理を説明するための模式図である。図において、1は生物処理系、2は可溶化処理系である。生物処理系1は、有機性排液を生物汚泥と接触させて好気的または嫌気的に分解する処理系であり、生物処理槽と濃縮装置とが別々に設けられるが、これらを含めた全体の処理系として図示されている。可溶化処理系2は混合液または濃縮液の状態で引抜かれる引抜汚泥を可溶化処理する処理系として図示されている。可溶化処理により汚泥は加水分解され、BOD源になる。
【0019】
図1の生物処理系1には、生物処理を行うために一定量の生物汚泥3aが保持されている。このような生物処理系1に被処理液4を導入して生物処理を行うと、被処理液4に含まれるBODは生物汚泥3aに同化され、その増殖により新たに生成汚泥3bが生成する。一方、系内の生物汚泥3aは自己分解により、自己分解分3cが消失する。従って定常状態では、生成汚泥3bと自己分解分3cの差が増殖汚泥3dとして増殖する。
【0020】
増殖汚泥3dを余剰汚泥として可溶化処理系2で処理する場合を、図1に破線5で示しているが、増殖汚泥3dを可溶化処理して生物処理系1に戻すと、可溶化処理により生成するBODが汚泥に転換して、別の生成汚泥3eが生成し、この分が実質的な汚泥増殖分となり、余剰汚泥として排出されなければならない。これに対し、増殖汚泥3dよりも多い量の引抜汚泥3fを生物処理系1から引抜き、可溶化処理系2で可溶化処理してBODに転換し、可溶化処理汚泥6を生物処理系1に戻すことにより、可溶化処理で生成したBODから別の生成汚泥3gが生成する。この場合、引抜汚泥3fと生成汚泥3gの差が無機化部分3hとなる。
【0021】
ここで増殖汚泥3dよりも多い量の引抜汚泥3fを可溶化処理してBODに転換することにより、増殖汚泥3dのみを可溶化処理する場合よりも、無機化部分が多くなり、汚泥減容化率は高くなる。増殖汚泥3dと無機化部分3hが等しくなるように、引抜汚泥3fの量を決めると、余剰汚泥は実質的にゼロになる。増殖汚泥3dが無機化部分3hより多い場合は、その差が実質的な増加部分3iとなり、余剰汚泥7として系外に排出される。8は生物処理系1の処理液である。
【0022】
上記生物処理系1における生物処理容量をV、その生物汚泥濃度をX、汚泥収率をY、被処理液流量(処理液流量)をQ、被処理液の有機物濃度をCi、処理液の有機物濃度をCe、生物処理された有機物濃度を(Ci−Ce)、汚泥自己分解定数をKd、余剰汚泥排出量をq、可溶化処理系への引抜量をQ′、可溶化処理された汚泥が生物汚泥に再変換された割合をkとすると、物質収支は次の〔1〕式で表される。
【0023】
【数1】
V dX/dt=Y Q (Ci−Ce) −V Kd X−q X−Q′X+k Q′X 〔1〕
〔1〕式において、V dX/dtは生物処理系1における生物汚泥3aの変化量、Y Q (Ci−Ce) は生成汚泥3bの量、V Kd Xは自己分解分3cの量、q Xは余剰汚泥7の排出量、Q′Xは引抜汚泥3fの量、k Q′Xは生成汚泥3gの量を示している。
【0024】
ここでQ (Ci−Ce) /V=LV(槽負荷)、q/v=1/SRT(余剰汚泥滞留時間比)、Q′/V=θ(可溶化処理系への生物汚泥の循環比)、(1−k)=δ(無機化率)とおくと、定常状態では、〔1〕式は次の〔2〕式のように簡略化される。
【数2】
Y LV/X=Kd+1/SRT+δθ 〔2〕
【0025】
可溶化処理系2が存在しない通常の生物処理系では、〔2〕式の第3項(δθ)がないので、汚泥負荷を一定としたとき第2項で余剰汚泥(X/SRT)が決定される。これに対して可溶化処理を組合せた処理系では、〔2〕式から明らかなように、第3項の値により余剰汚泥が減容化する。そして第3項の値が第2項の値に匹敵するような条件下では、余剰汚泥を排出しなくても(1/SRT=0)、汚泥負荷を通常の値に設定することが可能である。
【0026】
本発明の方法では、界面活性剤の存在下に可溶化処理することにより、従来と同程度の減容化率を得るためには従来より低い温度で、または同じ温度で処理する場合は短い時間で可溶化処理することができる。このため難生物分解成分の生成を抑制することができ、しかも従来に比べて低い耐熱性の装置を使用することができるとともに、エネルギー消費量も少なくすることもでき、かつ臭気も抑制することができる。
【0027】
【発明の実施の形態】
次に本発明の実施の形態を図面により説明する。
図2ないし図4はそれぞれ別の実施の形態の生物処理装置を示す系統図であり、図2は好気性処理液を濃縮装置により濃縮した濃縮汚泥を可溶化処理する例、図3は曝気槽内の混合液を可溶化処理する例、図4は嫌気性生物処理槽内の混合液を可溶化処理する例を示している。
図2において、1は好気性の生物処理系、2は可溶化処理系、11は曝気槽、12は濃縮装置としての沈殿装置、21は可溶化処理槽、23は界面活性剤供給路、24は加熱器である。
【0028】
図2の処理装置による有機性排液の好気性生物処理方法は、被処理液路13から有機性の排液または汚泥を曝気槽11に導入し、返送汚泥路14を通して返送される返送汚泥および曝気槽11内の活性汚泥と混合し、空気供給路16から供給される空気を散気装置15から散気して好気性生物処理を行う。これにより、被処理液中の有機物は生物酸化反応によって分解される。
【0029】
曝気槽11内の混合液(反応液)の一部は連絡路17を通して沈殿装置12に導入し、沈降分離により分離液と分離汚泥(濃縮汚泥)とに分離する。分離液は処理液として処理液路18から系外に排出し、分離汚泥は分離汚泥取出路19から取出し、その一部は返送汚泥として返送汚泥路14から曝気槽11に返送し、残部の一部または全部は汚泥引抜路22を通して可溶化処理槽21に導入して可溶化処理を行う。
【0030】
可溶化処理槽21では、界面活性剤供給路23から界面活性剤を添加し、加熱器24により加熱し、攪拌器25により緩やかに攪拌しながら引抜汚泥を可溶化処理する。これにより汚泥が加水分解されてBOD化する。可溶化処理汚泥は可溶化処理汚泥路26から曝気槽11に連続的に戻し、好気性生物処理する。これにより可溶化処理により変換されたBOD成分が分解除去され、好気性生物処理系1から生じる余剰汚泥が減容化する。余剰汚泥が生じる場合は余剰汚泥排出路20から系外へ排出する。
【0031】
図3の装置による処理方法は、曝気槽11内の混合液の一部を引抜汚泥として汚泥引抜路22から引抜き、この引抜汚泥に界面活性剤供給路23から界面活性剤を添加した後、可溶化処理槽21に導入して可溶化処理を行う。他の操作は図2の場合と同様である。
【0032】
図2および図3では、濃縮装置として沈殿装置12を採用しているが、膜分離装置、遠心分離装置などの他の濃縮装置を採用することもできる。また曝気槽11の代わりに嫌気処理槽を用いて嫌気処理することもできる。また可溶化処理汚泥は、汚泥を引抜いた生物処理系1以外の好気性または嫌気性生物処理系に移送して生物処理することもできる。
【0033】
図4において、1は嫌気性の生物処理系、2は可溶化処理系、31は嫌気処理槽、36は膜分離装置である。
図4の処理装置による処理方法は、被処理液路13から有機性の排液または汚泥を嫌気処理槽31に導入し、返送汚泥路14を通して返送される返送汚泥および嫌気処理槽31内の生物汚泥と混合し、攪拌器32により緩やかに攪拌しながら嫌気性生物処理を行う。これにより、被処理液中の有機物は酸生成菌およびメタン発酵菌により分解される。生成するメタンガスを含む消化ガスは排ガス路33から排出する。
【0034】
嫌気処理槽31内の混合液(反応液)の一部は連絡路17から取出し、ポンプ34で加圧して膜分離装置36に導いて、分離膜37により膜分離する。これにより透過液38と濃縮液39とに分離する。この透過液38は処理液として処理液路18から系外に排出し、濃縮液39は濃縮液取出路19aから取出し、返送汚泥として返送汚泥路14から嫌気処理槽31に返送し、余剰汚泥が生じる場合は余剰汚泥排出路20から系外へ排出する。
【0035】
可溶化処理系2では、嫌気処理槽31内の混合液の一部を引抜汚泥として汚泥引抜路22から引抜き、可溶化処理槽21に導入して可溶化処理を行う。他の操作は図2の場合と同様である。
【0036】
図4では、濃縮装置として膜分離装置36を使用しているが、沈殿装置、遠心分離装置などの他の濃縮装置を採用することもできる。また嫌気処理槽31の代わりに曝気槽を用いて好気処理することもできる。
【0037】
【実施例】
比較例1
図3の装置により、ただし可溶化処理系2における可溶化処理を省略して有機性排液を好気性処理した。すなわち、下水余剰汚泥(MLSS=6000mg/l)を20 literの曝気槽11および10 literの沈殿装置12で連続処理した。汚泥は4 liter/日の量で連続投入した。曝気槽11内の混合液を1日1 liter引抜いた。その結果、2か月後には曝気槽11内のMLSSは10,600mg/lとなった。
【0038】
比較例2
上記の運転で、曝気槽11内の混合液を1日1.5 liter引抜き、可溶化処理槽21に導入して60℃で2時間加熱して可溶化処理し、曝気槽11へ戻した。可溶化処理は毎日行った。MLSSを10,000mg/lに維持して運転したところ、60日後の時点で余剰汚泥が1日当り乾燥重量で4.7g生成した。この処理水のCODCrは310〜380mg/lであった。なお処理水のCODCrは、15,000rpmで5分間遠心分離した上澄み液について測定した。
【0039】
比較例3
上記の運転で、曝気槽11内の混合液を1日1 liter引抜き、可溶化処理槽21に導入して120℃で2時間加熱して可溶化処理し、曝気槽11へ戻した。可溶化処理は毎日行った。余剰汚泥の排出を全く行わず、沈殿汚泥を全量曝気槽11に返送したところ、MLSSは徐々に増加した。2か月経過後、MLSSは16,000mg/l付近で安定した。この処理水のCODCrは730〜840mg/lであった。
【0040】
実施例1
比較例2の運転と平行して、曝気槽11内の混合液を1日1 liter引抜き、可溶化処理槽21に導入して可溶化処理した。可溶化処理は、熱処理汚泥量に対して2%の量のポリオキシエチレンノニルフェニルエーテル(HLB=14)を添加し、60℃で2時間行った。可溶化処理は毎日行い、可溶化処理汚泥は曝気槽11へ戻した。余剰汚泥の排出を全く行わず、沈殿汚泥は全量曝気槽11へ返送したところ、MLSSは徐々に増加したが、約1か月経過後に12,000〜14,000mg/lで安定した。この処理水のCODCrは360〜540mg/lであった。
【0041】
実施例2
実施例1に続いて、曝気槽11内の混合液を1日1 liter引抜き、可溶化処理槽21に導入して可溶化処理した。可溶化処理は、熱処理汚泥量に対して1%の量のラウリルベンゼンスルフォン酸ナトリウム(アニオン性界面活性剤)を添加し、60℃で2時間行った。可溶化処理は毎日行い、可溶化処理汚泥は曝気槽11へ戻した。その結果、MLSSは13,000〜15,000mg/lで安定し、余剰汚泥の排出は行う必要がなかった(沈殿汚泥は全量曝気槽11へ返送した)。この処理水のCODCrは430〜570mg/lであった。
【0042】
上記の結果から、界面活性剤を添加することにより、低い温度で可溶化処理しても汚泥の減容化率が高いことがわかる。すなわち、界面活性剤を用いて60℃で可溶化処理した場合の減容効果(実施例1、2)は、界面活性剤を添加しないで120℃で可溶化処理した場合(比較例2)と同等またはそれ以上の結果が得られた。しかも実施例1、2のCODCrは比較例2に比べて低く、処理水の悪化を抑制することができることがわかる。
【0043】
【発明の効果】
本発明の有機性排液の生物処理方法は、生物処理槽内の混合液または濃縮汚泥を引抜き、この引抜汚泥を界面活性剤の存在下に加熱して可溶化処理した後、生物処理槽に移送する可溶化処理工程を含んでいるので、処理水質の悪化を抑制し、しかも低い耐熱性の装置を使用して、低コストで汚泥の減容化を行うことができる。
【図面の簡単な説明】
【図1】汚泥減容化の原理を説明するための模式図である。
【図2】本発明の実施形態の生物処理装置を示す系統図である。
【図3】本発明の他の実施形態の生物処理装置を示す系統図である。
【図4】本発明の他の実施形態の生物処理装置を示す系統図である。
【符号の説明】
1 生物処理系
2 可溶化処理系
3a 生物汚泥
3b、3e、3g 生成汚泥
3c 自己分解分
3d 増殖汚泥
3f 引抜汚泥
3h 無機化部分
3i 増加部分
4 被処理液
6 可溶化処理汚泥
7 余剰汚泥
8 処理液
11 曝気槽
12 沈殿装置
13 被処理液路
14 返送汚泥路
15 散気装置
16 空気供給路
17 連絡路
18 処理液路
19 分離汚泥取出路
19a 濃縮液取出路
20 余剰汚泥排出路
21 可溶化処理槽
22 汚泥引抜路
23 界面活性剤供給路
24 加熱器
25、32 攪拌器
26 可溶化処理汚泥路
31 嫌気処理槽
33 排ガス路
34 ポンプ
36 膜分離装置
37 分離膜
38 透過液
39 濃縮液
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a biological treatment method for organic wastewater in which organic wastewater is biologically treated and sludge generated is reduced in volume by solubilization treatment.
[0002]
[Prior art]
In the method of aerobic biological treatment of organic effluent in the presence of activated sludge, a large amount of hardly dewaterable surplus activated sludge is generated. Also, a method of anaerobically treating in the presence of anaerobic sludge generates a large amount of excess digested sludge. In order to reduce the volume of such excess sludge, a method of aerobically or anaerobically digesting excess sludge has been used. In the aerobic digestion, surplus sludge is simply aerated in a digestion tank to digest it, the aerated sludge is separated into solid and liquid, and the separated sludge is returned to the digestion tank. In anaerobic digestion, excess sludge is put into a digestion tank and digested by the action of anaerobic bacteria.
[0003]
Such a digestion method digests by utilizing the action of aerobic or anaerobic organisms.However, since the excess sludge itself is biologically stable through biological treatment, it can be used for sludge volume reduction. Is limited, and usually only 30-40% of the excess sludge is reduced.
[0004]
In order to improve such a point, Japanese Patent Publication No. 5-61994 describes a method for treating organic wastewater in which excess sludge is solubilized at a pH of 2.5 or lower and a temperature of 50 ° C or higher and then returned to an aeration tank. ing.
JP-A-1-224100 describes a method for treating organic sludge in which anaerobic digested sludge is solubilized at 100 to 180 ° C., and the solubilized sludge is returned to the anaerobic digestion tank. .
[0005]
[Problems to be solved by the invention]
However, although the volume of sludge can be reduced by such conventional methods, the conditions for solubilization are severe at high temperatures, so that non-biodegradable organic substances are generated and the chromaticity and COD of the processing solution increase. As a result, there is a problem that the quality of the treated water is deteriorated, a device having high heat resistance is required, the energy consumption is large, and the cost is high.
[0006]
An object of the present invention is to provide a biological treatment method for an organic wastewater capable of suppressing the deterioration of treated water quality and reducing the volume of sludge at low cost by heating at a low temperature in order to solve the above problems. It is to propose.
[0007]
[Means for Solving the Problems]
The present invention is a method of biologically treating an organic wastewater in a biological treatment tank in the presence of biological sludge containing aerobic or anaerobic microorganisms,
A biological treatment step of introducing an organic effluent into a biological treatment tank and performing aerobic or anaerobic biological treatment in the presence of biological sludge containing aerobic or anaerobic microorganisms;
Drawing out the mixed liquid or concentrated sludge in the biological treatment tank, heating the extracted sludge in the presence of a surfactant, solubilizing the sludge, and then transferring the sludge to the biological treatment tank. This is a biological treatment method for organic wastewater.
[0008]
The organic effluent to be treated in the present invention is an effluent or sludge containing an organic substance to be treated by biological treatment, but may contain a hardly biodegradable organic or inorganic substance. Such organic effluents include sewage, human waste, food factory effluents, other industrial effluents, and sludge such as excess sludge generated when these effluents are treated.
[0009]
The biological treatment step of biologically treating such organic effluent may be an aerobic biological treatment or an anaerobic biological treatment. The aerobic biological treatment includes an activated sludge method and a biofilm method. The activated sludge method is an aerobic biological treatment of organic effluent in the presence of activated sludge.The organic effluent is mixed with activated sludge in an aeration tank and aerated, and the mixture is concentrated by a concentrator. In general, a standard activated sludge method in which a part of the concentrated sludge is returned to the aeration tank is used, but another modified treatment method may be used. The biofilm method is a process in which a biofilm is formed on a carrier and brought into contact with the drainage under aerobic conditions. The anaerobic treatment includes an anaerobic digestion method and a high-load anaerobic treatment method.
[0010]
The processing conditions for the aerobic biological treatment and the anaerobic biological treatment are not particularly limited, and ordinary aerobic biological treatment or anaerobic biological treatment conditions can be employed. For example, in the case of aerobic biological treatment, the digestion tank (biological treatment tank) residence time can be 1 day or more, usually 3 to 15 days in digestion of sludge, and the sludge load is in the activated sludge treatment of organic wastewater. Operation is possible at 0.1-0.5 kg-BOD / MLSS / day. In the case of anaerobic treatment, in digestion of sludge, the residence time of the digestion tank (biological treatment tank) can be 2.5 days or more, usually 5 to 30 days.
[0011]
In the present invention, a part of the biological sludge is withdrawn from the treatment system in such biological treatment, and the extracted sludge is solubilized. When extracting biological sludge, the concentrated sludge that has been concentrated by the concentrator may be extracted, or may be extracted in the form of a mixed solution from the biological treatment tank, but the solubilization treatment may be performed in a small-capacity treatment tank. The former is preferable because it can be performed and the heating energy may be small. Known devices such as a precipitation device, a centrifugal separator, and a membrane separation device can be used as the concentration device. Among these, a centrifugal separator and a membrane separator are preferable because sludge can be highly concentrated.
[0012]
The concentrated sludge can be solubilized by extracting a part or the whole as a drawn sludge. In the former case, a part of the concentrated sludge can be solubilized, the other part can be returned to the biological treatment tank as return sludge, and the remainder can be discharged as surplus sludge or digested sludge. Active microorganisms are present in the biological treatment tank, and the organic matter in the liquid to be treated and the solubilized sludge grow as a substrate.Thus, it is not necessary to return the sludge to the biological treatment tank. Is preferably returned to the biological treatment tank. In the present invention, in addition to excess sludge, it is preferable to further extract and solubilize a part of the sludge returned to the biological treatment tank as return sludge, in which case the amount of excess sludge can be reduced. Depending on conditions, the amount of surplus sludge can be reduced to zero. This will be described in detail later.
[0013]
In the present invention, the extracted sludge is heated and solubilized in the presence of a surfactant.
Examples of the surfactant used in the present invention include nonionic surfactants such as polyoxyethylene nonylphenyl ether and polyoxyethylene alkyl ether; anionic surfactants such as sodium laurylbenzenesulfonate and sodium dodecyl sulfate; And cationic surfactants such as tetradecylamine and cetyltrimethylammonium chloride. Among these, nonionic surfactants which have high biodegradability and do not inhibit the digestive activity of microorganisms are preferred.
[0014]
The amount of the surfactant to be added is desirably 10 to 100,000 mg / kg, preferably 1,000 to 20,000 mg / kg, based on the MLVSS to be solubilized. By adding the surfactant in such an amount, even if the solubilized sludge is introduced into the biological treatment tank and biologically treated, the digestive activity of microorganisms is not inhibited, and the efficiency of the entire treatment is affected. The effect of adding the surfactant can be obtained without causing a new load that causes the solubilization, and the solubilization treatment can be performed under milder conditions as compared with the conventional method.
The surfactant is preferably added to the solubilization tank (heat treatment tank) or the drawn sludge supplied to the solubilization tank.
[0015]
The heating temperature is desirably 50 to 150 ° C, preferably 60 to 90 ° C. The heating time is desirably 15 minutes to 6 hours, preferably 30 minutes to 2 hours as a residence time in the case of the continuous method, and 10 minutes to 6 hours, preferably 30 minutes to 1 hour in the case of the batch method.
[0016]
By performing the solubilization treatment under such conditions, 90% or more of the organic sludge is reformed into easily biodegradable substances. Then, by subjecting the solubilized sludge to aerobic or anaerobic biological treatment, organic matter is decomposed by microorganisms, and sludge volume is reduced. Depending on the conditions, one solubilization treatment reduces the volume of 1/3 to 1/4 of the extracted sludge subjected to the treatment. The biological treatment of the solubilized sludge can be performed by returning (circulating) the sludge to the biological treatment tank of the treatment system from which the sludge has been extracted, or can be introduced into a biological treatment tank of another treatment system.
[0017]
In the present invention, the larger the amount of sludge to be solubilized, the higher the sludge volume reduction rate. However, sludge multiplies when biodegrading the organic matter in the solubilized sludge.Thus, simply treating the excess sludge with solubilization does not reduce the excess sludge to zero. When the excess sludge is withdrawn and solubilized so as to be zero, the amount of excess sludge generated from the entire system can be reduced to zero. For example, when sludge is digested, it is circulated to the solubilization tank during the residence time of the digestion tank (biological treatment tank), and considering the number of times of the solubilization treatment, about 1/3 to 1 / l of the inflow sludge amount. The amount corresponding to 6 may be solubilized. In addition, when the amount of the sludge to be solubilized increases, the biological treatment performance may be reduced.In such a case, a carrier for supporting the sludge is provided in the biological treatment tank to maintain a fixed amount of the sludge. Thereby, the biological treatment performance can be maintained high.
[0018]
The principle of sludge volume reduction in the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram for explaining the principle of sludge volume reduction. In the figure, 1 is a biological treatment system, and 2 is a solubilization treatment system. The biological treatment system 1 is a treatment system in which organic wastewater is brought into contact with biological sludge to decompose aerobically or anaerobically, and a biological treatment tank and a concentrator are separately provided. Is shown in FIG. The solubilization treatment system 2 is illustrated as a treatment system for solubilizing drawn sludge that is drawn in a state of a mixed solution or a concentrated solution. Sludge is hydrolyzed by the solubilization treatment and becomes a BOD source.
[0019]
The biological treatment system 1 of FIG. 1 holds a certain amount of biological sludge 3a for performing biological treatment. When the liquid 4 to be treated is introduced into the biological treatment system 1 and biological treatment is performed, the BOD contained in the liquid 4 to be treated is assimilated into biological sludge 3a, and the sludge 3b is newly generated by the proliferation. On the other hand, the biological sludge 3a in the system is self-decomposed, and the self-decomposed component 3c is lost. Therefore, in a steady state, the difference between the generated sludge 3b and the self-decomposed component 3c multiplies as multiplication sludge 3d.
[0020]
The case where the sludge 3d is treated as surplus sludge in the solubilization treatment system 2 is shown by a broken line 5 in FIG. 1, but when the sludge 3d is solubilized and returned to the biological treatment system 1, the sludge treatment causes The generated BOD is converted into sludge, and another generated sludge 3e is generated, which becomes a substantial sludge multiplication and must be discharged as surplus sludge. On the other hand, a larger amount of the extracted sludge 3f than the multiplication sludge 3d is withdrawn from the biological treatment system 1 and solubilized in the solubilization treatment system 2 to be converted to BOD, and the solubilized sludge 6 is converted to the biological treatment system 1. By returning, another 3 g of generated sludge is generated from the BOD generated by the solubilization treatment. In this case, the difference between the extracted sludge 3f and the generated sludge 3g is the mineralized portion 3h.
[0021]
Here, by solubilizing a larger amount of the extracted sludge 3f than the proliferating sludge 3d and converting it to BOD, the mineralized portion is increased and the sludge volume is reduced as compared with the case where only the proliferating sludge 3d is solubilized. The rate will be higher. When the amount of the extracted sludge 3f is determined so that the propagation sludge 3d is equal to the mineralized portion 3h, the surplus sludge becomes substantially zero. When the amount of the proliferating sludge 3d is larger than that of the mineralized portion 3h, the difference becomes a substantial increase portion 3i, and is discharged out of the system as surplus sludge 7. Reference numeral 8 denotes a treatment liquid of the biological treatment system 1.
[0022]
The biological treatment capacity in the biological treatment system 1 is V, the biological sludge concentration is X, the sludge yield is Y, the flow rate of the liquid to be treated (the flow rate of the treatment liquid) is Q, the organic matter concentration of the liquid to be treated is Ci, and the organic matter of the treatment liquid is Ci. The concentration is Ce, the biologically treated organic matter concentration is (Ci-Ce), the sludge self-decomposition constant is Kd, the surplus sludge discharge amount is q, the withdrawal amount to the solubilization treatment system is Q ', and the solubilized sludge is Assuming that the rate of conversion into biological sludge is k, the material balance is expressed by the following equation [1].
[0023]
(Equation 1)
VdX / dt = YQ (Ci-Ce) -VKdX-qX-Q'X + kQ'X [1]
In the formula [1], VdX / dt is the amount of change in the biological sludge 3a in the biological treatment system 1, YQ (Ci-Ce) is the amount of the generated sludge 3b, VKdX is the amount of the autolysis portion 3c, qX Indicates the amount of surplus sludge 7 discharged, Q'X indicates the amount of the extracted sludge 3f, and kQ'X indicates the amount of the generated sludge 3g.
[0024]
Here, Q (Ci-Ce) / V = LV (tank load), q / v = 1 / SRT (surplus sludge residence time ratio), Q '/ V = θ (circulation ratio of biological sludge to the solubilization treatment system) ), (1−k) = δ (inorganization ratio), in a steady state, the equation [1] is simplified as the following equation [2].
(Equation 2)
Y LV / X = Kd + 1 / SRT + δθ [2]
[0025]
In a normal biological treatment system in which the solubilization treatment system 2 does not exist, there is no third term (δθ) in the equation [2], so that when the sludge load is fixed, the excess sludge (X / SRT) is determined in the second term. Is done. On the other hand, in the treatment system combined with the solubilization treatment, the excess sludge is reduced by the value of the third term as is apparent from the equation (2). Under conditions where the value of the third term is comparable to the value of the second term, the sludge load can be set to a normal value without discharging excess sludge (1 / SRT = 0). is there.
[0026]
In the method of the present invention, by performing the solubilization treatment in the presence of a surfactant, to obtain a volume reduction ratio comparable to the conventional one, a lower temperature than before or a short time when the treatment is performed at the same temperature. Can be solubilized. Therefore, it is possible to suppress the production of the biodegradable component, and to use a device having a lower heat resistance than before, to reduce the energy consumption and to suppress the odor. it can.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings.
2 to 4 are system diagrams each showing a biological treatment apparatus according to another embodiment. FIG. 2 shows an example in which a concentrated sludge obtained by concentrating an aerobic treatment liquid by a concentration apparatus is solubilized, and FIG. 3 is an aeration tank. FIG. 4 shows an example in which the mixed solution in the anaerobic biological treatment tank is solubilized.
In FIG. 2, 1 is an aerobic biological treatment system, 2 is a solubilization treatment system, 11 is an aeration tank, 12 is a sedimentation device as a concentrator, 21 is a solubilization treatment tank, 23 is a surfactant supply channel, and 24 Is a heater.
[0028]
In the aerobic biological treatment method for organic waste liquid by the processing apparatus of FIG. 2, the organic waste liquid or sludge is introduced into the aeration tank 11 from the liquid passage 13 to be treated, and returned sludge returned through the return sludge passage 14 and It mixes with the activated sludge in the aeration tank 11 and diffuses the air supplied from the air supply path 16 from the diffuser 15 to perform aerobic biological treatment. Thereby, the organic matter in the liquid to be treated is decomposed by the biological oxidation reaction.
[0029]
A part of the mixed liquid (reaction liquid) in the aeration tank 11 is introduced into the sedimentation device 12 through the communication path 17 and separated into a separated liquid and a separated sludge (concentrated sludge) by sedimentation. The separated liquid is discharged as a processing liquid from the processing liquid path 18 to the outside of the system, the separated sludge is taken out from the separated sludge extraction path 19, a part of the separated sludge is returned to the aeration tank 11 from the returned sludge path 14 as returned sludge, and A part or the whole is introduced into a solubilization tank 21 through a sludge extraction path 22 to perform a solubilization treatment.
[0030]
In the solubilization tank 21, a surfactant is added from the surfactant supply channel 23, heated by the heater 24, and the extracted sludge is solubilized while being slowly stirred by the stirrer 25. Thereby, the sludge is hydrolyzed to BOD. The solubilized sludge is continuously returned from the solubilized sludge passage 26 to the aeration tank 11 and subjected to aerobic biological treatment. Thereby, the BOD component converted by the solubilization treatment is decomposed and removed, and the volume of excess sludge generated from the aerobic biological treatment system 1 is reduced. When excess sludge is generated, the excess sludge is discharged from the excess sludge discharge passage 20 to the outside of the system.
[0031]
In the treatment method using the apparatus shown in FIG. 3, a part of the mixed solution in the aeration tank 11 is withdrawn from the sludge extraction passage 22 as extracted sludge, and a surfactant is added to the extracted sludge from the surfactant supply passage 23. It is introduced into the solubilization tank 21 for solubilization. Other operations are the same as those in FIG.
[0032]
2 and 3, the sedimentation device 12 is employed as the concentration device, but other concentration devices such as a membrane separation device and a centrifugal separation device may be employed. Anaerobic treatment can also be performed using an anaerobic treatment tank instead of the aeration tank 11. The solubilized sludge can also be transferred to an aerobic or anaerobic biological treatment system other than the biological treatment system 1 from which the sludge has been extracted, and subjected to biological treatment.
[0033]
In FIG. 4, 1 is an anaerobic biological treatment system, 2 is a solubilization treatment system, 31 is an anaerobic treatment tank, and 36 is a membrane separation device.
In the processing method using the processing apparatus shown in FIG. 4, the organic wastewater or sludge is introduced into the anaerobic treatment tank 31 from the liquid passage 13 to be treated, and the returned sludge returned through the return sludge path 14 and the organism in the anaerobic treatment tank 31 are returned. The mixture is mixed with the sludge, and the anaerobic biological treatment is performed while the mixture is gently stirred by the stirrer 32. Thereby, the organic matter in the liquid to be treated is decomposed by the acid-producing bacteria and the methane-fermenting bacteria. The digestion gas including the generated methane gas is discharged from the exhaust gas passage 33.
[0034]
A part of the mixed liquid (reaction liquid) in the anaerobic treatment tank 31 is taken out from the communication path 17, pressurized by a pump 34, guided to a membrane separation device 36, and separated by a separation membrane 37. This separates into a permeate 38 and a concentrate 39. The permeated liquid 38 is discharged as a processing liquid from the processing liquid path 18 to the outside of the system, and the concentrated liquid 39 is removed from the concentrated liquid discharge path 19a and returned as returned sludge from the returned sludge path 14 to the anaerobic treatment tank 31. If it occurs, it is discharged from the excess sludge discharge passage 20 to the outside of the system.
[0035]
In the solubilization treatment system 2, a part of the mixed solution in the anaerobic treatment tank 31 is withdrawn from the sludge extraction passage 22 as extracted sludge and introduced into the solubilization treatment tank 21 to perform the solubilization treatment. Other operations are the same as those in FIG.
[0036]
In FIG. 4, the membrane separation device 36 is used as the concentration device, but other concentration devices such as a precipitation device and a centrifugal separation device can be employed. Also, aerobic treatment can be performed using an aeration tank instead of the anaerobic treatment tank 31.
[0037]
【Example】
Comparative Example 1
The organic effluent was subjected to aerobic treatment using the apparatus shown in FIG. 3 except that the solubilization treatment in the solubilization treatment system 2 was omitted. That is, excess sewage sludge (MLSS = 6000 mg / l) was continuously treated in a 20 liter aeration tank 11 and a 10 liter settling apparatus 12. Sludge was continuously fed in an amount of 4 liters / day. One liter of the mixed solution in the aeration tank 11 was withdrawn per day. As a result, the MLSS in the aeration tank 11 became 10,600 mg / l two months later.
[0038]
Comparative Example 2
In the above operation, the mixed solution in the aeration tank 11 was withdrawn 1.5 liters per day, introduced into the solubilization tank 21, heated at 60 ° C. for 2 hours, solubilized, and returned to the aeration tank 11. Solubilization was performed daily. When the system was operated while maintaining the MLSS at 10,000 mg / l, 4.7 g of surplus sludge was produced in a dry weight per day after 60 days. The COD Cr of this treated water was 310 to 380 mg / l. In addition, the COD Cr of the treated water was measured on the supernatant liquid centrifuged at 15,000 rpm for 5 minutes.
[0039]
Comparative Example 3
In the above operation, the mixed solution in the aeration tank 11 was withdrawn one liter per day, introduced into the solubilization tank 21, heated at 120 ° C. for 2 hours, solubilized, and returned to the aeration tank 11. Solubilization was performed daily. When the entire amount of the settled sludge was returned to the aeration tank 11 without discharging the excess sludge at all, the MLSS gradually increased. After 2 months, the MLSS stabilized around 16,000 mg / l. The COD Cr of this treated water was 730 to 840 mg / l.
[0040]
Example 1
In parallel with the operation of Comparative Example 2, the mixed solution in the aeration tank 11 was withdrawn one liter per day and introduced into the solubilization tank 21 for solubilization. The solubilization treatment was performed by adding 2% of polyoxyethylene nonylphenyl ether (HLB = 14) based on the amount of the heat-treated sludge and conducting the treatment at 60 ° C. for 2 hours. The solubilization treatment was performed every day, and the solubilized sludge was returned to the aeration tank 11. When the excess sludge was not discharged at all and the entire amount of the settled sludge was returned to the aeration tank 11, the MLSS gradually increased, but was stabilized at 12,000 to 14,000 mg / l after about one month. The COD Cr of this treated water was 360 to 540 mg / l.
[0041]
Example 2
Following Example 1, the mixture in the aeration tank 11 was withdrawn one liter per day and introduced into the solubilization tank 21 for solubilization. The solubilization treatment was performed by adding sodium laurylbenzenesulfonate (anionic surfactant) in an amount of 1% based on the amount of the heat-treated sludge and performing the treatment at 60 ° C. for 2 hours. The solubilization treatment was performed every day, and the solubilized sludge was returned to the aeration tank 11. As a result, the MLSS was stable at 13,000 to 15,000 mg / l, and there was no need to discharge excess sludge (the entire settled sludge was returned to the aeration tank 11). The COD Cr of the treated water was 430 to 570 mg / l.
[0042]
From the above results, it can be seen that by adding the surfactant, the sludge volume reduction rate is high even when the solubilization treatment is performed at a low temperature. That is, the volume reduction effect when the solubilization treatment was performed at 60 ° C. using the surfactant (Examples 1 and 2) was different from that when the solubilization treatment was performed at 120 ° C. without adding the surfactant (Comparative Example 2). Equal or better results were obtained. Moreover, the COD Cr of Examples 1 and 2 is lower than that of Comparative Example 2, and it can be seen that the deterioration of the treated water can be suppressed.
[0043]
【The invention's effect】
In the biological treatment method of the organic wastewater of the present invention, the mixed liquid or the concentrated sludge in the biological treatment tank is drawn out, and the extracted sludge is heated and solubilized in the presence of a surfactant, and then is passed to the biological treatment tank. Since it includes the solubilization treatment step of transferring, it is possible to suppress the deterioration of treated water quality and to reduce the volume of sludge at low cost by using a device having low heat resistance.
[Brief description of the drawings]
FIG. 1 is a schematic diagram for explaining the principle of sludge volume reduction.
FIG. 2 is a system diagram illustrating a biological treatment apparatus according to an embodiment of the present invention.
FIG. 3 is a system diagram showing a biological treatment apparatus according to another embodiment of the present invention.
FIG. 4 is a system diagram showing a biological treatment apparatus according to another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Biological treatment system 2 Solubilization treatment system 3a Biological sludge 3b, 3e, 3g Generated sludge 3c Self-decomposition part 3d Propagation sludge 3f Extraction sludge 3h Mineralization part 3i Increasing part 4 Liquid to be treated 6 Solubilization treatment sludge 7 Surplus sludge 8 Treatment Liquid 11 Aeration tank 12 Precipitation device 13 Liquid passage to be treated 14 Return sludge passage 15 Air diffuser 16 Air supply passage 17 Communication passage 18 Treatment liquid passage 19 Separate sludge discharge passage 19a Concentrated liquid discharge passage 20 Excess sludge discharge passage 21 Solubilization treatment Tank 22 Sludge extraction path 23 Surfactant supply path 24 Heater 25, 32 Stirrer 26 Solubilization treatment sludge path 31 Anaerobic treatment tank 33 Exhaust gas path 34 Pump 36 Membrane separation device 37 Separation membrane 38 Permeate 39 Concentrate

Claims (1)

有機性排液を生物処理槽において好気性または嫌気性微生物を含む生物汚泥の存在下に生物処理する方法であって、
有機性排液を生物処理槽に導入して、好気性または嫌気性微生物を含む生物汚泥の存在下に好気性または嫌気性生物処理する生物処理工程と、
生物処理槽内の混合液または濃縮汚泥を引抜き、この引抜汚泥を界面活性剤の存在下に加熱して可溶化処理した後、生物処理槽に移送する可溶化処理工程と
を含むことを特徴とする有機性排液の生物処理方法。
A method for biologically treating an organic wastewater in a biological treatment tank in the presence of biological sludge containing aerobic or anaerobic microorganisms,
A biological treatment step of introducing an organic effluent into a biological treatment tank and performing aerobic or anaerobic biological treatment in the presence of biological sludge containing aerobic or anaerobic microorganisms;
Drawing out the mixed liquid or concentrated sludge in the biological treatment tank, heating the extracted sludge in the presence of a surfactant, solubilizing the sludge, and then transferring the sludge to the biological treatment tank. Biological treatment of organic wastewater.
JP27797395A 1995-10-25 1995-10-25 Biological treatment of organic wastewater Expired - Fee Related JP3591086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27797395A JP3591086B2 (en) 1995-10-25 1995-10-25 Biological treatment of organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27797395A JP3591086B2 (en) 1995-10-25 1995-10-25 Biological treatment of organic wastewater

Publications (2)

Publication Number Publication Date
JPH09117800A JPH09117800A (en) 1997-05-06
JP3591086B2 true JP3591086B2 (en) 2004-11-17

Family

ID=17590855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27797395A Expired - Fee Related JP3591086B2 (en) 1995-10-25 1995-10-25 Biological treatment of organic wastewater

Country Status (1)

Country Link
JP (1) JP3591086B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4290854B2 (en) * 2000-05-29 2009-07-08 株式会社神鋼環境ソリューション Waste water treatment apparatus and waste water treatment method
ATE423752T1 (en) * 2000-06-26 2009-03-15 Georg Kalos METHOD FOR REDUCING EXCESS SEWAGE SLUDGE DURING THE PURIFICATION OF WASTEWATER IN A BIOLOGICAL OXIDATION STAGE OF A SEWAGE TREATMENT PLANT
JP2002066507A (en) * 2000-08-25 2002-03-05 Ishikawajima Harima Heavy Ind Co Ltd Treating method for organic solid and treating device for organic solid
JP2002316182A (en) * 2001-04-23 2002-10-29 Kurita Water Ind Ltd Method for treating organic waste liquid
FR2838428B1 (en) * 2002-04-12 2005-01-28 Rhodia Chimie Sa PROCESS FOR REDUCING SLUDGE PRODUCTION IN AEROBIC BIOLOGICAL FERMENTATION PROCESS FOR AQUEOUS EFFLUENT PURIFICATION
CN104276723B (en) * 2014-08-20 2016-05-11 交城县威创环保工程有限公司 A kind of flush-with-ground type sewage treating device
JP2016221491A (en) * 2015-06-03 2016-12-28 オルガノ株式会社 Organic wastewater treatment method and organic wastewater treatment equipment
CN107500499A (en) * 2016-06-14 2017-12-22 洛阳华清天木生物科技有限公司 A kind of method for promoting sludge anaerobic fermentation using biosurfactant

Also Published As

Publication number Publication date
JPH09117800A (en) 1997-05-06

Similar Documents

Publication Publication Date Title
JP2973761B2 (en) Aerobic treatment of organic wastewater
JP2003245689A (en) Method and apparatus for treating wastewater
JP3591086B2 (en) Biological treatment of organic wastewater
JP2002361291A (en) Anaerobic digesting apparatus
JPH1147784A (en) Treatment of organic waste water
JP2005066381A (en) Method and apparatus for treating organic waste water
JPH10192889A (en) Method for treating organic drainage
JP2003024972A (en) Biological treatment method for organic sewage and apparatus therefor
JP3959843B2 (en) Biological treatment method for organic drainage
JPH05305294A (en) Activated sludge treatment method
JP3900796B2 (en) Method and apparatus for treating organic wastewater
JP4590756B2 (en) Organic drainage treatment method and organic drainage treatment apparatus
JP3921693B2 (en) Organic wastewater treatment method
JP3611292B2 (en) Wastewater treatment method
JP3814855B2 (en) Anaerobic treatment method for organic drainage
JP2002361279A (en) Method and apparatus for treating waste water
JP2002361292A (en) Anaerobic digesting apparatus
JP3409728B2 (en) Organic waste treatment method
JPH08103786A (en) Aerobic treating method for organic waste liquid
JP3493783B2 (en) Aerobic treatment of organic wastewater
JPH0788495A (en) Method for aerobic treatment of organic drainage
JP2001025789A (en) Treatment of organic waste liquid and device therefor
JP3969144B2 (en) Biological treatment method and biological treatment apparatus
JP2003047928A (en) Method and apparatus for treating organic waste
JPH08276197A (en) Treatment of organic waste fluid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040816

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees