JPH09206786A - Anaerobic treatment and apparatus therefor - Google Patents

Anaerobic treatment and apparatus therefor

Info

Publication number
JPH09206786A
JPH09206786A JP1912896A JP1912896A JPH09206786A JP H09206786 A JPH09206786 A JP H09206786A JP 1912896 A JP1912896 A JP 1912896A JP 1912896 A JP1912896 A JP 1912896A JP H09206786 A JPH09206786 A JP H09206786A
Authority
JP
Japan
Prior art keywords
sludge
acid
liquid
tank
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1912896A
Other languages
Japanese (ja)
Inventor
Motoyuki Yoda
元之 依田
Tetsuro Fukase
哲朗 深瀬
Shozo Nishikawa
正三 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP1912896A priority Critical patent/JPH09206786A/en
Publication of JPH09206786A publication Critical patent/JPH09206786A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

PROBLEM TO BE SOLVED: To provide an anaerobic treatment method for an org. waste liquid capable of shortening stagnation time even if an anaerobic treatment is executed with high load with the waste liquid contg. solid org. matter and executing the volumetric reduction of the sludge at a low energy consumption rate and inexpensively by the simple device and operation capable of reducing the volume of the formed sludge and an apparatus therefor. SOLUTION: The in-vessel liquid 11 is withdrawn from an acid forming vessel 1 and is subjected to sepn. of solid from the liquid in a member separator 2. Part 6 of the thickened sludge is returned to the acid forming vessel 1 and other part 18 is introduced to a reforming vessel 3, such as heat treating vessel, ozone treating vessel or high-voltage pulse discharge treating vessel by which the sludge is reformed to easily decomposable sludge. This sludge is returned to the acid forming vessel 1 and is subjected to the anaerobic treatment. The volume of the generated sludge is reduced. The separated liquid of the membrane separator 2 is subjected to high-speed methane fermentation in a high-load methane fermentation vessel 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は有機性排液を嫌気性
微生物を含む汚泥の存在下に酸生成およびメタン発酵さ
せて処理する嫌気性処理方法および装置、特に有機性排
液を二相式の嫌気性処理により処理して汚泥を減容化す
る嫌気性処理方法および装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anaerobic treatment method and apparatus for treating an organic effluent by acid production and methane fermentation in the presence of sludge containing anaerobic microorganisms. The present invention relates to an anaerobic treatment method and apparatus for reducing sludge by treating it by the anaerobic treatment.

【0002】[0002]

【従来の技術】有機性汚泥、し尿、食品排水等のスラリ
ー状の高濃度有機性排液を嫌気性微生物の存在下に、一
相式メタン発酵によって処理する嫌気性処理方法は嫌気
性消化法とも呼ばれ、古くから行われている方法であ
る。この方法では有機性物質は嫌気槽において、嫌気性
微生物により、液化、低分子化、有機酸生成、メタン生
成のステップを経てメタンガスに転換される。一相式の
メタン発酵は単一相において酸生成相とメタン生成相が
並列的に起こるものであり、従来の下水汚泥の嫌気処理
のように発酵槽と脱離液分離槽の2槽に分けて2段処理
する場合でも、各槽において酸生成相とメタン生成相が
並列的に起こる場合は一相式の処理に含まれる。
BACKGROUND ART Anaerobic digestion is an anaerobic digestion method that treats highly concentrated organic wastewater in the form of slurry such as organic sludge, human waste, food wastewater, etc. in the presence of anaerobic microorganisms. It is also called, and is a method that has been practiced since ancient times. In this method, an organic substance is converted into methane gas in an anaerobic tank by anaerobic microorganisms through the steps of liquefaction, molecular weight reduction, organic acid production, and methane production. In the single-phase methane fermentation, the acid-producing phase and the methanogenic phase occur in parallel in a single phase. It is divided into two tanks, a fermentation tank and a desorbed liquid separation tank, as in the conventional anaerobic treatment of sewage sludge. Even in the case of two-stage treatment, if the acid production phase and the methane production phase occur in parallel in each tank, they are included in the one-phase treatment.

【0003】このような嫌気性処理においては、未分解
物質および嫌気性微生物を主体とする大量の汚泥が生成
する。この汚泥は生きた菌体を主体とするため、生物学
的には安定しており、さらに生物処理を行って大幅に減
量化することは困難であり、従来は機械脱水して焼却、
埋立等により処理されていた。
In such an anaerobic treatment, a large amount of sludge mainly composed of undegraded substances and anaerobic microorganisms is produced. Since this sludge is mainly composed of living cells, it is biologically stable, and it is difficult to significantly reduce the amount by biological treatment.
It was processed by landfill.

【0004】嫌気性処理により生成する汚泥量を減容化
する方法として、特開平1−224100号には、嫌気
性消化した汚泥を100〜180℃で加熱処理した後、
この加熱処理汚泥を嫌気消化槽に返送する有機性汚泥の
処理方法が記載されている。しかし、このような従来の
方法では汚泥の減容化は可能であるが、増殖速度の遅い
メタン生成菌によるメタン発酵を行うため、長い滞留時
間を必要とし、大型の装置を必要とし、エネルギー消費
量が多く、コスト高になるという問題点がある。
As a method for reducing the volume of sludge produced by anaerobic treatment, Japanese Patent Laid-Open No. 1-224100 discloses that anaerobic digested sludge is heated at 100 to 180 ° C.
There is described a method for treating organic sludge in which the heat-treated sludge is returned to the anaerobic digestion tank. However, such conventional methods can reduce the volume of sludge, but require long residence time, large equipment, and energy consumption because methane fermentation is performed by methanogens with a slow growth rate. There is a problem that the amount is large and the cost is high.

【0005】一方、有機性排液の嫌気性処理方法とし
て、上記のような固形有機物および溶解性有機物を消化
槽に投入し、長時間滞留させて消化を行う旧来の嫌気性
消化法に代り、溶解性有機物のみを高負荷かつ高流速で
嫌気性処理する高負荷嫌気性処理法が行われている。こ
の高負荷嫌気性処理法は、消化速度の遅い固形有機物を
分離して別途処理し、消化速度の速い溶解性有機物のみ
を嫌気性処理によって高負荷で高速処理する方法であ
り、小型の装置を用いて効率よく処理を行うことができ
る。
On the other hand, as an anaerobic treatment method for organic drainage, instead of the conventional anaerobic digestion method in which a solid organic matter and a soluble organic matter as described above are put into a digestion tank and retained for a long time for digestion, A high-load anaerobic treatment method is used in which only soluble organic substances are anaerobically treated at high load and high flow rate. This high-load anaerobic treatment method is a method in which solid organic matter with a slow digestion rate is separated and treated separately, and only soluble organic matter with a fast digestion rate is treated with high load and high speed by anaerobic treatment. It can be used for efficient processing.

【0006】このような高負荷嫌気性処理法は主として
溶解性BODのみを処理の対象とするため、固形有機物
を含む排液を処理するためには、予め固形分を分離して
おく必要があり、分離された固形有機物は別途処理する
必要がある。特に下水等の余剰汚泥やし尿などは大量の
固形有機物を含むため、これらから分離された固形有機
物の処理は困難である。
Since such a high-load anaerobic treatment method mainly treats only soluble BOD, it is necessary to separate the solid content in advance in order to treat the waste liquid containing the solid organic matter. The separated solid organic matter needs to be treated separately. In particular, since excess sludge such as sewage and night soil contain a large amount of solid organic matter, it is difficult to treat the solid organic matter separated from them.

【0007】一方、有機性排液の好気性処理(活性汚泥
処理)により生成する余剰汚泥を減容化する方法とし
て、特開平6−206088号には、汚泥をオゾン処理
して曝気槽に返送する方法が記載されている。しかしこ
の方法は好気性処理に関するものであり、嫌気性処理に
おける適用の可能性については開示されていない。
On the other hand, as a method for reducing the volume of surplus sludge produced by aerobic treatment (activated sludge treatment) of organic waste liquid, Japanese Patent Laid-Open No. 6-206088 discloses a method of treating sludge with ozone and returning it to an aeration tank. How to do is described. However, this method relates to aerobic treatment, and does not disclose the possibility of application in anaerobic treatment.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、上記
問題点を解決するため、固形有機物を含む排液について
も高負荷で嫌気性処理を行って滞留時間を短くするとと
もに、生成する汚泥も減容化することができ、簡単な装
置と操作により低エネルギー消費量かつ低コストで汚泥
の減容化を行うことができる有機性排液の嫌気性処理方
法および装置を提案することである。
SUMMARY OF THE INVENTION In order to solve the above problems, an object of the present invention is to perform an anaerobic treatment on a waste liquid containing a solid organic substance under a high load to shorten the residence time and to generate sludge. It is also an object of the present invention to propose a method and a device for anaerobic treatment of organic waste liquid, which can reduce the volume of sludge with low energy consumption and low cost by a simple device and operation. .

【0009】[0009]

【課題を解決するための手段】本発明は次の有機性排液
の処理方法および装置である。 (1) 酸生成菌を含む汚泥の存在下に有機性排液を嫌
気状態に維持して有機酸を生成させる酸生成工程と、酸
生成工程の混合液を固液分離して濃縮汚泥を酸生成工程
に返送する固液分離工程と、酸生成工程で生成する汚泥
を易生物分解性に改質して酸生成工程に返送する改質工
程と、固液分離工程で分離された分離液を高負荷の状態
でメタン生成菌を含む汚泥と接触させてメタン発酵を行
う高負荷メタン発酵工程とを含む嫌気性処理方法。 (2) 酸生成菌を含む汚泥の存在下に有機性排液を嫌
気状態に維持して有機酸を生成させる酸生成槽と、酸生
成槽の混合液を固液分離して濃縮汚泥を酸生成工程に返
送する固液分離装置と、酸生成槽で生成する汚泥を易生
物分解性に改質して酸生成槽に返送する改質装置と、固
液分離装置で分離された分離液を高負荷の状態でメタン
生成菌を含む汚泥と接触させてメタン発酵を行う高負荷
メタン発酵槽とを備えた嫌気性処理装置。
The present invention is the following method and apparatus for treating organic waste liquid. (1) An acid producing step of producing an organic acid by maintaining an organic effluent in an anaerobic state in the presence of sludge containing an acid producing bacterium, and a mixed solution of the acid producing step is subjected to solid-liquid separation to convert concentrated sludge into acid. The solid-liquid separation process that returns to the production process, the reforming process that reforms sludge produced in the acid production process to easily biodegradable and returns to the acid production process, and the separation liquid that was separated in the solid-liquid separation process An anaerobic treatment method comprising a high-load methane fermentation step of performing methane fermentation by contacting sludge containing a methanogen under high load. (2) An acid production tank for producing an organic acid by maintaining an organic effluent in an anaerobic state in the presence of sludge containing acid-producing bacteria, and a mixed solution of the acid production tank is subjected to solid-liquid separation to convert concentrated sludge into acid. The solid-liquid separation device that returns to the production process, the reformer that reforms sludge generated in the acid generation tank to easily biodegradable and returns to the acid generation tank, and the separation liquid separated by the solid-liquid separation device An anaerobic treatment apparatus equipped with a high-load methane fermentation tank that performs methane fermentation by contacting sludge containing methanogens under high load.

【0010】本発明において処理の対象となる有機性排
液は、嫌気処理によって処理される有機物を含有する排
液(汚泥を含む)である。固形物を含むスラリー状のも
のが処理に適しているが、固形物を含まない液状のもの
でもよい。また難生物分解性の有機物、無機物、セルロ
ース、紙、綿、ウール布、し尿中の固形物などが含有さ
れていてもよい。このような有機性排液としては下水、
下水初沈汚泥、し尿、浄化槽汚泥、食品工場排水、ビー
ル廃酵母その他の産業排液、これらの排液を処理した際
に生じる余剰汚泥等の汚泥などがあげられる。
The organic waste liquid to be treated in the present invention is a waste liquid (including sludge) containing an organic substance treated by anaerobic treatment. A slurry containing solids is suitable for the treatment, but a liquid containing no solids may be used. Further, it may contain a biodegradable organic substance, inorganic substance, cellulose, paper, cotton, wool cloth, solid matter in human waste and the like. Such organic drainage is sewage,
Examples include sewage first settled sludge, human waste, septic tank sludge, food factory wastewater, beer waste yeast and other industrial effluents, and excess sludge generated when treating these effluents.

【0011】酸生成工程は酸生成槽において酸生成菌を
含む汚泥の存在下に有機性排液を嫌気状態に維持して有
機酸を生成させる工程であり、酸生成菌の作用により有
機物が液化→低分子化→有機酸生成のステップにより、
メタン生成菌によって分解されやすい有機酸に転換す
る。有機酸の生成により酸性となるので、水酸化ナトリ
ウム等のアルカリを添加してpH調整することができ
る。メタン発酵工程から処理液を循環して中和してもよ
い。
The acid production step is a step of producing an organic acid by maintaining an organic effluent in an anaerobic state in the presence of sludge containing an acid-producing bacterium in an acid producing tank, and liquefying an organic substance by the action of the acid-producing bacterium. → Low molecular weight → Organic acid generation step,
Converts to an organic acid that is easily decomposed by methanogens. Since it becomes acidic due to the formation of an organic acid, the pH can be adjusted by adding an alkali such as sodium hydroxide. You may circulate and neutralize a process liquid from a methane fermentation process.

【0012】酸生成の条件としては、35℃付近に最適
温度がある中温酸生成菌、および55℃付近に最適温度
を有する高温酸生成菌いずれの利用も可能であり、それ
ぞれ30〜38℃または45〜60℃で処理される。酸
生成槽での汚泥の滞留時間(SRT)は3日以上、望ま
しくは5〜10日程度とすることができる。この滞留時
間は実質的にメタン生成菌が増殖しない範囲に設定され
る。酸生成工程におけるpHは5〜7、好ましくは5.
8〜6.2とするのが好適である。
As conditions for acid production, it is possible to use both mesophilic acid-producing bacteria having an optimum temperature around 35 ° C. and high-temperature acid-producing bacteria having an optimum temperature around 55 ° C. Processed at 45-60 ° C. The retention time (SRT) of sludge in the acid production tank can be set to 3 days or more, preferably about 5 to 10 days. This residence time is set to a range in which the methanogen does not substantially grow. The pH in the acid generation step is 5 to 7, preferably 5.
It is preferably set to 8 to 6.2.

【0013】固液分離工程は酸生成工程における混合液
を固液分離して、濃縮汚泥を酸生成工程に返送し、分離
液をメタン発酵工程に送るように構成される。固液分離
工程には、膜分離装置、デカンター、ろ過装置などの任
意の固液分離装置を用いることができる。膜分離を利用
する場合は、中空糸、チューブラー、平膜などの種々の
膜形式が利用できる。また膜分離は固形物を分離するこ
とが目的であるため、MF、UFなどの比較的大きなポ
アサイズを有する膜が好ましい。
The solid-liquid separation process is configured to perform solid-liquid separation of the mixed liquid in the acid production process, return the concentrated sludge to the acid production process, and send the separated liquid to the methane fermentation process. In the solid-liquid separation step, any solid-liquid separation device such as a membrane separation device, a decanter and a filtration device can be used. When using membrane separation, various membrane types such as hollow fiber, tubular, and flat membrane can be used. Further, since the purpose of the membrane separation is to separate solids, a membrane having a relatively large pore size such as MF and UF is preferable.

【0014】改質工程は酸生成工程において生成する汚
泥の一部をオゾン処理装置、パルス放電処理装置、熱処
理装置等の改質装置により易生物分解性に改質する工程
である。汚泥を引抜く場合、固液分離装置で分離された
濃縮汚泥を引抜いて改質するのが好ましいが、酸生成槽
から混合液の状態で引抜いて処理してもよい。また場合
によっては酸生成槽内にこれらの改質装置を設けること
もできる。
The reforming step is a step in which a part of the sludge produced in the acid producing step is easily biodegradable by a reforming device such as an ozone treatment device, a pulse discharge treatment device or a heat treatment device. When sludge is drawn out, it is preferable that the concentrated sludge separated by the solid-liquid separation device is drawn out to be reformed, but it may be processed by being drawn out from the acid production tank in a mixed liquid state. Further, depending on the case, these reforming devices can be provided in the acid production tank.

【0015】オゾン処理装置は、汚泥をオゾンと接触さ
せることによりオゾン処理を行う。接触方法としては、
オゾン処理槽に消化汚泥を導入してオゾンを吹込む方
法、機械攪拌による方法、充填層を利用する方法などが
採用できる。オゾンとしてはオゾンガスの他、オゾン含
有空気、オゾン化空気などが使用できる。オゾンの使用
量は0.005〜0.04g−O3/g−VSS、好ま
しくは0.01〜0.03g−O3/g−VSSとする
のが望ましい。充填層を用いる場合は充填層のSVを1
〜10hr-1、望ましくは3〜6hr-1とするのが好ま
しい。
The ozone treatment device performs ozone treatment by bringing sludge into contact with ozone. As a contact method,
A method of introducing digested sludge into the ozone treatment tank to blow ozone, a method of mechanical stirring, a method of using a packed bed, and the like can be adopted. As ozone, ozone-containing air, ozonized air, or the like can be used in addition to ozone gas. The amount of ozone 0.005~0.04g-O 3 / g-VSS , preferably it is desirable to 0.01~0.03g-O 3 / g-VSS . When using a packed bed, set the SV of the packed bed to 1
It is preferably from 10 to 10 hr -1 , and more preferably from 3 to 6 hr -1 .

【0016】高電圧のパルス放電処理装置は、電極間隔
3〜10mm、好ましくは4〜8mmのタングステン/
トリウム合金等の+極と、ステンレス鋼等の−極間に汚
泥を存在させ、印加電圧10〜50kV、好ましくは2
0〜40kV、パルス間隔20〜80Hz、好ましくは
40〜60Hzでパルス放電を行うように構成され、汚
泥は順次循環させながら処理を行うことができる。
A high-voltage pulse discharge treatment apparatus has a tungsten / electrode spacing of 3 to 10 mm, preferably 4 to 8 mm.
Sludge is allowed to exist between the positive electrode such as thorium alloy and the negative electrode such as stainless steel, and the applied voltage is 10 to 50 kV, preferably 2
It is configured to perform pulse discharge at 0 to 40 kV and a pulse interval of 20 to 80 Hz, preferably 40 to 60 Hz, and sludge can be treated while being circulated sequentially.

【0017】熱処理装置は加熱手段を備え、汚泥をその
まま、または酸、アルカリ、酸化剤等と接触させた状態
で加熱処理することができる。温度は60〜120℃、
好ましくは80〜100℃未満、加熱時間は30〜18
0分間、好ましくは60〜120分間程度が好ましい。
また実際には温度が高ければ高いほど、また熱処理時間
が長ければ長いほど易生物分解性に改質されやすいが、
難生物分解性物質が生成しやすく、また耐圧容器等も必
要になるので、効率および経済性を勘案すると上記の範
囲が適当である。
The heat treatment apparatus is provided with a heating means, and the sludge can be heat-treated as it is or in a state of being brought into contact with an acid, an alkali, an oxidizing agent or the like. The temperature is 60-120 ℃,
Preferably 80 to less than 100 ° C., heating time is 30 to 18
It is preferably 0 minutes, preferably about 60 to 120 minutes.
In fact, the higher the temperature is, and the longer the heat treatment time is, the more easily biodegradable it is modified.
Since the biodegradable substance is easily produced and a pressure resistant container and the like are required, the above range is appropriate in consideration of efficiency and economy.

【0018】このほか改質装置としては、加熱を伴なわ
ない酸、アルカリ、酸化剤等による処理、その他の易生
物分解性化処理を行う装置が採用可能である。酸生成工
程で生成する汚泥に含まれる生きている菌体は生物学的
に安定で、難生物分解性であるが、これを死滅させると
易生物分解性になる。また高分子量の有機物も難生物分
解性であるが、これを低分子化することにより易生物分
解性に改質される。従ってこのような易生物分解性に転
換できる手段が改質装置として採用できる。
In addition, as the reforming device, a device for performing treatment with an acid, an alkali, an oxidant or the like without heating, or other treatment for facilitating biodegradation can be adopted. Living cells contained in sludge produced in the acid production process are biologically stable and hardly biodegradable, but when they are killed, they become easily biodegradable. In addition, high molecular weight organic substances are also difficult to biodegrade, but can be easily biodegradable by lowering their molecular weight. Therefore, such a means that can be easily biodegradable can be adopted as the reforming device.

【0019】酸生成槽から引抜いて改質を行う汚泥量
は、汚泥の減容効果を確保するために少なくとも酸生成
槽へ投入する固形物量と同等以上、好ましくは2倍以上
が良い。例えば5日滞留の酸生成槽であれば、循環比は
1/5day-1以上、好ましくは2/5day-1以上と
することができる。循環比の上限値は有効な酸生成の確
保の点から、1日あたり酸生成槽の全保有汚泥量の1/
3以下、好ましくは1/5〜1/3の量(固形分重量)
に相当する量とするのが望ましい。このように引抜く汚
泥の量を投入する固形物量の1倍以上の量とすることに
より、処理系全体としての汚泥の減容化を高くすること
ができ、また酸生成槽の全保有汚泥量の1/15以下と
することにより、酸生成槽全体としての汚泥活性を高く
維持した状態で酸生成を有効に行うことができる。
The amount of sludge to be extracted from the acid production tank for reforming is at least equal to or more than the amount of solids to be added to the acid production tank in order to secure the volume-reducing effect of sludge, and preferably twice or more. For example, in the case of an acid production tank that retains for 5 days, the circulation ratio can be set to 1/5 day -1 or more, preferably 2/5 day -1 or more. The upper limit of the circulation ratio is 1 / of the total amount of sludge in the acid production tank per day from the viewpoint of ensuring effective acid production.
3 or less, preferably 1/5 to 1/3 (solid weight)
It is desirable that the amount be equivalent to. By setting the amount of sludge to be drawn out to be at least 1 time the amount of solids to be input, it is possible to increase the volume reduction of sludge in the entire treatment system, and to increase the total amount of sludge in the acid production tank. By setting the ratio to 1/15 or less, acid generation can be effectively performed in a state where the sludge activity of the entire acid generation tank is maintained high.

【0020】高負荷メタン発酵工程は固液分離工程で分
離された分離液を高負荷メタン発酵槽において、高負荷
の状態で、メタン生成菌を含む汚泥と接触させて高速度
でメタン発酵を行い、メタンに転換する工程である。高
負荷メタン発酵槽は従来の高負荷嫌気性処理に採用され
ている上向流嫌気性スラッジブランケット(UASB)
式、流動床式、固定床式など、メタン発酵菌を高濃縮し
た状態でメタン発酵槽に保持し、被処理液と高負荷かつ
高速で接触させて短時間でメタン発酵を行う方式のもの
が採用される。
In the high-load methane fermentation step, the separated liquid separated in the solid-liquid separation step is brought into contact with sludge containing methanogens in a high-load methane fermentation tank at a high load to perform methane fermentation at a high speed. , The process of converting to methane. The high-load methane fermenter is an upflow anaerobic sludge blanket (UASB) used in conventional high-load anaerobic treatment.
Type, fluidized bed type, fixed bed type, etc., in which methane fermentation bacteria are kept in a highly concentrated state in a methane fermentation tank and contacted with the liquid to be treated at high load and high speed to perform methane fermentation in a short time. Adopted.

【0021】UASB式はメタン発酵菌を含む汚泥を高
濃縮して形成したグラニュール汚泥からなるスラッジブ
ランケットに被処理液を上向流で高速に通液して接触さ
せ処理する方式のものである。流動床式は砂等の担体に
汚泥を担持させて流動床を形成し、被処理液と接触させ
る方式のものである。固定床式は担体に汚泥を形成した
固定床に被処理液を通液して接触させる方式のものであ
る。いずれも汚泥を高濃度の状態で保持することによ
り、高負荷かつ高速での処理を可能とする。
The UASB method is a method in which a liquid to be treated is passed through an upward flow at a high speed and brought into contact with a sludge blanket made of granulated sludge formed by highly concentrating sludge containing methane-fermenting bacteria to treat the sludge. . The fluidized bed system is a system in which sludge is supported on a carrier such as sand to form a fluidized bed and is brought into contact with a liquid to be treated. The fixed bed type is a system in which a liquid to be treated is passed through and brought into contact with a fixed bed having sludge formed on a carrier. By keeping sludge in a high-concentration state in both cases, high-load and high-speed treatment is possible.

【0022】メタン発酵の条件としては、35℃付近に
最適温度がある中温メタン生成菌、および55℃付近に
最適温度を有する高温メタン生成菌が増殖するいずれの
温度条件も可能である。中温メタン生成菌は増殖速度が
遅いため滞留時間(SRT)が長くなるが、比較的低温
での処理が可能であるため加温および保温のための設備
が簡単になる。これに対して高温メタン生成菌の場合は
加温および保温の設備が必要になるが、増殖速度が速い
ため滞留時間が短くなり、短時間での処理が可能にな
る。
The methane fermentation conditions can be any temperature condition in which a mesophilic methanogen having an optimum temperature near 35 ° C. and a high temperature methanogen having an optimum temperature near 55 ° C. grow. Since the mesophilic methanogen has a slow growth rate and has a long residence time (SRT), it can be treated at a relatively low temperature, which simplifies the equipment for heating and heat retention. On the other hand, in the case of high-temperature methanogens, heating and heat-retaining equipment is required, but since the growth rate is high, the residence time is short and treatment can be performed in a short time.

【0023】メタン発酵工程における負荷は5〜20k
g−CODcr/m3・day、好ましくは10〜15k
g−CODcr/m3・day、滞留時間HRTは3〜4
8時間、好ましくは4〜24時間程度が適当であり、U
ASB法における上向流速は0.5〜2m/hr、好ま
しくは1〜1.5m/hr程度とされる。
The load in the methane fermentation process is 5 to 20 k
g-CODcr / m 3 · day, preferably 10 to 15 k
g-CODcr / m 3 · day, residence time HRT is 3-4
8 hours, preferably 4 to 24 hours is appropriate, and U
The upward flow velocity in the ASB method is about 0.5 to 2 m / hr, preferably about 1 to 1.5 m / hr.

【0024】本発明の嫌気性処理装置による処理方法
は、酸生成工程において、有機性排液を酸生成槽に導入
して、酸生成菌を含む汚泥と混合して嫌気性処理を行
い、酸発酵を起こさせる。ここでは有機性物質は液化、
低分子化、酸生成のステップを経て有機酸に転換され
る。酸生成槽内の液は固液分離装置において固液分離
し、濃縮汚泥は酸生成槽に返送し、分離液はメタン発酵
槽へ送られる。
In the treatment method by the anaerobic treatment apparatus of the present invention, in the acid production step, the organic waste liquid is introduced into the acid production tank and mixed with the sludge containing the acid-producing bacteria to perform the anaerobic treatment. Ferment. Here, the organic substance is liquefied,
It is converted to an organic acid through the steps of lowering molecular weight and generating acid. The liquid in the acid production tank is subjected to solid-liquid separation in the solid-liquid separation device, the concentrated sludge is returned to the acid production tank, and the separated liquid is sent to the methane fermentation tank.

【0025】上記酸生成槽内の汚泥を含む液または濃縮
汚泥の一部は改質装置において、オゾン処理、高圧パル
ス放電処理、熱処理等により易生物分解性に改質する。
酸生成工程では汚泥中の微生物の増殖により菌体が増加
するが、生きている菌体を濃縮して酸生成槽に戻しても
消化による減容化には限度がある。
A part of the sludge-containing liquid or concentrated sludge in the acid production tank is easily biodegradable by ozone treatment, high-pressure pulse discharge treatment, heat treatment or the like in a reformer.
In the acid production process, bacterial cells increase due to the growth of microorganisms in sludge, but there is a limit to the volume reduction by digestion even if the living bacterial cells are concentrated and returned to the acid production tank.

【0026】ところがオゾン処理、高圧パルス放電処
理、熱処理等の改質装置により改質を行うことにより汚
泥中の菌体は死滅し、その他の有機物とともに分解され
て、低分子の有機物および一部無機物が生成し、易生物
分解性に改質される。このような改質汚泥は酸生成槽に
循環することにより、酸生成菌の基質として利用され分
解される。これにより汚泥は減容化され、余剰汚泥とし
て排出される汚泥量は減少する。
However, by reforming with a reforming device such as ozone treatment, high-pressure pulse discharge treatment, heat treatment, etc., the bacterial cells in the sludge are killed and decomposed together with other organic substances, and low molecular weight organic substances and some inorganic substances are decomposed. Are produced and are easily biodegradable. By circulating such modified sludge in the acid production tank, it is utilized as a substrate for acid producing bacteria and decomposed. This reduces the volume of sludge and reduces the amount of sludge discharged as excess sludge.

【0027】酸生成工程から余剰汚泥として排出される
汚泥を全量改質して循環しても、これを資化して汚泥が
増殖するため、酸生成槽内の汚泥は増量していき、一部
の汚泥を余剰汚泥として排出しなければならず、排出汚
泥をゼロに近づけることはできない。そこで余剰汚泥量
がゼロとなるように、余剰汚泥として発生する汚泥量よ
り多い汚泥を抜出し、これを改質処理して循環すると、
過剰に抜出した汚泥量と増殖した汚泥量がバランスし、
見掛上汚泥の増加量がゼロに近づく。この場合でも無機
化した汚泥の蓄積を避けるために、最小限の消化汚泥を
排出するのが望ましい。
Even if all the sludge discharged as excess sludge from the acid production step is reformed and circulated, the sludge grows by assimilating this and the sludge in the acid production tank increases in quantity, The sludge must be discharged as excess sludge, and the discharged sludge cannot approach zero. Therefore, if you extract more sludge than the amount of sludge generated as excess sludge, reform it and circulate it so that the amount of excess sludge becomes zero,
Balance the amount of sludge that has been extracted excessively with the amount of sludge that has multiplied,
Apparently the amount of sludge increase approaches zero. Even in this case, it is desirable to discharge the minimum digested sludge in order to avoid the accumulation of mineralized sludge.

【0028】このように過剰の汚泥を改質すると、酸生
成効率は低下するが、酸生成槽では通常SRTを5〜1
0日程度と比較的長くとって運転されるため、改質によ
りSRTが短くなっても余裕のある運転が可能であり、
効率の低下はそれほど重大ではない。
When the excess sludge is reformed in this way, the acid production efficiency decreases, but in the acid production tank, the SRT is usually 5 to 1
Since it is operated for a relatively long time of about 0 days, it is possible to operate with a margin even if the SRT is shortened due to reforming.
The loss of efficiency is less significant.

【0029】固液分離工程の分離液は高負荷メタン発酵
槽において、メタン生成菌を含む汚泥と嫌気性下に高負
荷かつ高速で接触させてメタン発酵を行い、有機酸をメ
タンに分解する。UASBの場合は、メタン生成菌を含
むグラニュール汚泥からなるスラッジブランケットを上
向流で通過させることにより、上記の処理を行う。
In the high-load methane fermentation tank, the separated liquid in the solid-liquid separation step is brought into contact with sludge containing methanogens at a high load and high speed under anaerobic conditions to carry out methane fermentation to decompose organic acids into methane. In the case of UASB, the above treatment is performed by passing a sludge blanket made of granulated sludge containing methanogens in an upward flow.

【0030】高負荷メタン発酵槽の処理液はそのまま下
水等へ放流することができるが、好気性生物処理その他
の後処理を行ったのち放流してもよい。上記の処理で
は、嫌気性処理を酸生成工程とメタン発酵工程に分けて
行い、酸生成工程で生成する汚泥を改質して返送するた
め、固形有機物を含む排液の処理が可能であって、汚泥
の減容化も行われる。そしてメタン発酵工程は高負荷メ
タン発酵を行うため、小型の装置により高速で処理を行
うことができ、全体の処理時間が短縮される。
The treatment liquid of the high-load methane fermentation tank can be discharged as it is to sewage or the like, but it may be discharged after aerobic biological treatment and other post-treatments. In the above treatment, the anaerobic treatment is divided into the acid production step and the methane fermentation step, and the sludge produced in the acid production step is reformed and returned, so that the waste liquid containing solid organic matter can be treated. The volume of sludge is also reduced. Since the methane fermentation process performs high-load methane fermentation, it can be processed at high speed with a small apparatus, and the overall processing time can be shortened.

【0031】[0031]

【発明の実施の形態】次に本発明の実施の形態を図面に
より説明する。図1および図2はそれぞれ別の実施の形
態の嫌気性処理装置を示す系統図であり、図1は酸生成
液を固液分離装置により濃縮した濃縮汚泥を改質する
例、図2は酸生成槽内の混合液を改質する例を示してい
る。
Embodiments of the present invention will now be described with reference to the drawings. 1 and 2 are system diagrams showing an anaerobic treatment apparatus according to different embodiments, FIG. 1 is an example of reforming concentrated sludge obtained by concentrating an acid production liquid by a solid-liquid separation apparatus, and FIG. 2 is an acid. The example which reforms the mixed liquid in a production tank is shown.

【0032】図1において、1は酸生成槽、2は固液分
離装置としての膜分離装置、3は改質槽、4はUASB
法による高負荷メタン発酵槽である。図1の処理装置
は、被処理液路5から有機性排液を酸生成槽1に導入
し、返送汚泥路6を通して返送される返送汚泥および酸
生成槽1内の酸生成菌を含む汚泥と混合し、攪拌器7に
より緩やかに攪拌しながら嫌気性処理して酸生成を行う
ように構成される。ここで行われる酸生成処理工程によ
り、被処理液中の有機物は酸生成菌により分解され有機
酸が生成する。
In FIG. 1, 1 is an acid production tank, 2 is a membrane separation device as a solid-liquid separation device, 3 is a reforming tank, and 4 is UASB.
It is a high-load methane fermentation tank by the method. The treatment apparatus of FIG. 1 introduces the organic waste liquid into the acid production tank 1 from the liquid passage 5 to be treated, and returns sludge containing the acid-producing bacteria in the return sludge and the acid production tank 1 returned through the return sludge passage 6. The mixture is mixed, and the mixture is gently stirred by the stirrer 7 to perform anaerobic treatment to generate an acid. By the acid generation treatment step performed here, the organic matter in the liquid to be treated is decomposed by the acid-producing bacterium to generate an organic acid.

【0033】膜分離装置2は酸生成槽1内の混合液の一
部は連絡路11から取出し、ポンプ12で加圧して膜分
離装置2に導いて、分離膜13により膜分離するように
構成されている。ここで行われる膜分離により透過液1
4と濃縮汚泥15とに分離される。透過液14は連絡路
16からポンプ17により高負荷メタン発酵槽4へ送ら
れる。濃縮汚泥15の一部は濃縮汚泥取出路18から取
出して改質槽3に導入し、残部の一部または全部は返送
汚泥路6から酸生成槽1に返送される。余剰汚泥が生じ
る場合は余剰汚泥排出路19から系外へ排出される。
The membrane separation device 2 is constructed so that a part of the mixed liquid in the acid production tank 1 is taken out from the communication passage 11, pressurized by the pump 12 and guided to the membrane separation device 2, and separated by the separation membrane 13. Has been done. Permeate 1 by membrane separation performed here
4 and concentrated sludge 15 are separated. The permeate 14 is sent to the high-load methane fermentation tank 4 by the pump 17 from the communication path 16. Part of the thickened sludge 15 is taken out from the thickened sludge take-out path 18 and introduced into the reforming tank 3, and part or all of the remaining part is returned from the return sludge path 6 to the acid production tank 1. When excess sludge is generated, it is discharged from the excess sludge discharge path 19 to the outside of the system.

【0034】改質槽3はオゾン処理槽が用いられてお
り、充填層21に濃縮汚泥15を通過させ、オゾン発生
器22からオゾンを吹込んで接触させてオゾン処理する
ことにより汚泥が改質される。改質汚泥は改質汚泥路2
3から酸生成槽1に戻し、嫌気処理される。こうして改
質により易生物分解性に改質された固形分が酸生成槽1
で消化され、処理系から生じる余剰汚泥が減容化する。
An ozone treatment tank is used as the reforming tank 3, and the sludge is reformed by passing the concentrated sludge 15 through the packed bed 21 and blowing ozone from the ozone generator 22 to bring them into contact with each other for ozone treatment. It Modified sludge is modified sludge path 2
It is returned to the acid production tank 1 from 3, and is subjected to anaerobic treatment. In this way, the solid content that has been easily biodegradable by the modification is the acid generation tank 1
The volume of surplus sludge generated by the treatment system is reduced.

【0035】膜分離装置2で分離された分離液は、連絡
路16からポンプ17により分離液流入部31を通して
高負荷メタン発酵槽4の下部に導入され、メタン生成工
程として上向流でスラッジブランケット32を通過す
る。この際、酸生成液は嫌気性下にグラニュール汚泥3
3と接触し、これより有機酸はグラニュール汚泥33に
含まれるメタン生成菌の作用により嫌気的に分解されて
メタンと炭酸ガスに転換する。メタン発酵された反応液
はガス固液分離板34においてガスと液体と固体が分離
され、分離液は処理液として溢流部35から処理液路3
6に溢流する。分離した固体は汚泥としてスラッジブラ
ンケット32に沈降し、ガスはガス室37に上昇し、ガ
ス排出路38から取出される。
The separated liquid separated by the membrane separation device 2 is introduced into the lower part of the high-load methane fermentation tank 4 from the connecting passage 16 through the separated liquid inflow portion 31 by the pump 17 and is sludge blanket in an upward flow as a methane production process. Pass 32. At this time, the acid-generating liquid is anaerobically and the granulated sludge 3
3, the organic acid is anaerobically decomposed by the action of the methanogen contained in the granulated sludge 33 and converted into methane and carbon dioxide. The methane-fermented reaction liquid is separated into gas, liquid, and solid by the gas solid-liquid separation plate 34, and the separated liquid is treated as a treated liquid from the overflow portion 35 to the treated liquid passage 3
Overflow to 6. The separated solids settle as sludge on the sludge blanket 32, and the gas rises to the gas chamber 37 and is taken out from the gas discharge passage 38.

【0036】図2の処理装置は、酸生成槽1内の混合液
の一部を引抜汚泥として汚泥引抜路24から引抜き、こ
の引抜汚泥を改質槽3に導入して改質処理を行うように
構成される。改質槽3は高圧パルス放電処理を行うよう
に構成され、+極25および−極26間に電源装置27
から高圧パルスを印加して放電を行い、汚泥を改質させ
る。膜分離装置2の濃縮汚泥15は酸生成槽1に返送さ
れる。
In the treatment apparatus shown in FIG. 2, a part of the mixed liquid in the acid production tank 1 is drawn as drawn sludge from the sludge drawing passage 24, and the drawn sludge is introduced into the reforming tank 3 to carry out the reforming process. Is composed of. The reforming tank 3 is configured to perform high-voltage pulse discharge processing, and has a power supply device 27 between the positive electrode 25 and the negative electrode 26.
A high-voltage pulse is applied to discharge electricity to reform the sludge. The concentrated sludge 15 of the membrane separation device 2 is returned to the acid production tank 1.

【0037】図1および図2では、固液分離装置として
膜分離装置2を使用しているが、沈殿装置、遠心分離装
置などの他の固液分離装置を採用することもできる。ま
た図1では、返送汚泥路6からの汚泥の返送を省略する
こともできる。さらに改質槽3として熱処理槽を用いる
場合は、槽内または槽外に加熱器を設け、必要により
酸、アルカリ等を添加し、攪拌器で攪拌しながら熱処理
を行うことができる。
Although the membrane separator 2 is used as the solid-liquid separator in FIGS. 1 and 2, other solid-liquid separators such as a precipitation device and a centrifugal separator can be used. Further, in FIG. 1, the returning of the sludge from the returning sludge passage 6 can be omitted. Further, when a heat treatment tank is used as the reforming tank 3, a heater can be provided inside or outside the tank, and if necessary, an acid, an alkali, etc. can be added, and the heat treatment can be performed while stirring with a stirrer.

【0038】[0038]

【実施例】【Example】

実施例1、比較例1 有効容量2 literのジャーファーメンターを用いて、液
量1.2 literの酸生成槽とし、下水処理場の余剰汚泥
をTSとして約2重量%に濃縮した原泥を1日に1回2
00mlずつシリンジで供給した。酸生成槽には分画分
子量3万、膜面積177cm2の平膜UFモジュールを
有する膜分離装置を接続して、ポンプで循環しながら1
日に200mlずつ槽内液をろ過し、槽内液量が一定に
なるように循環した。酸生成槽は温度35℃で制御し、
種汚泥としてUASBのグラニュールを約50ml添加
した。
Example 1 and Comparative Example 1 Using a jar fermenter with an effective capacity of 2 liters, an acid production tank with a liquid volume of 1.2 liters was used, and the excess sludge of the sewage treatment plant was concentrated to about 2% by weight of raw sludge. Once a day 2
Each was supplied by a syringe by 00 ml. A membrane separator having a flat membrane UF module with a molecular weight cut-off of 30,000 and a membrane area of 177 cm 2 was connected to the acid production tank and circulated by a pump.
The liquid in the tank was filtered by 200 ml per day and circulated so that the amount of liquid in the tank was constant. The acid production tank is controlled at a temperature of 35 ° C,
About 50 ml of UASB granules was added as seed sludge.

【0039】実施例1では改質処理槽として熱処理槽を
用い、酸生成槽から1日に1回、原泥供給量と同一量の
汚泥200mlをシリンジで引抜いて導入し、85℃の
条件で1時間加熱処理した後に酸生成槽に戻した。比較
例1では対照系として熱処理を全く行わないものを同時
にテストして、槽内の汚泥濃度の変化を比較した。
In Example 1, a heat treatment tank was used as a reforming treatment tank, and 200 ml of sludge, which was the same amount as the amount of the raw sludge supplied, was drawn out from the acid generation tank once a day by a syringe and introduced at 85 ° C. After heat treatment for 1 hour, it was returned to the acid generation tank. In Comparative Example 1, a control system in which no heat treatment was performed was simultaneously tested to compare changes in sludge concentration in the tank.

【0040】実施例1および比較例1とも、メタン発酵
槽は直径5cm、高さ100cmの円筒型カラムの上部
に気固液三相分離器を設置した小型UASB装置(反応
部の容量1.6 liter)を用い、透過液のメタン発酵試
験を実施した。槽内にはビール排水を処理しているUA
SBの実装置から採取したグラニュール汚泥を約1 lit
er充填した。透過液を1日当り1.5 liter供給し、装
置の温度を35℃に制御して、熱処理系および対照系の
透過液をそれぞれ2週間ずつメタン発酵処理を行った。
In both Example 1 and Comparative Example 1, the methane fermentation tank was a small UASB apparatus (the reaction section had a capacity of 1.6 mm) in which a gas-solid three-phase separator was installed above a cylindrical column having a diameter of 5 cm and a height of 100 cm. liter) was used to carry out the methane fermentation test of the permeate. UA that processes beer wastewater in the tank
About 1 lit of granulated sludge collected from the SB actual equipment
er filled. The permeate was supplied at a rate of 1.5 liter per day, the temperature of the apparatus was controlled at 35 ° C., and the permeate of the heat treatment system and the control system was subjected to methane fermentation treatment for 2 weeks each.

【0041】上記処理におけるTS濃度の経日変化を図
3に示す。実施例1の熱処理系は比較例1の対照系と比
較して酸生成槽内のTS濃度は22,000mg/lで
推移したが、比較例1は分解率が低いため槽内TS濃度
は著しく増加した。このため比較例1の運転はTS5
0,000mg/lに達した時点で中断した。実施例1
の58日目の槽内液と透過液ならびに比較例1の30日
目の槽内液と透過液の水質を表1に示す。
FIG. 3 shows the daily change of the TS concentration in the above treatment. The heat treatment system of Example 1 had a TS concentration of 22,000 mg / l in the acid generation tank as compared with the control system of Comparative Example 1, but the decomposition rate of Comparative Example 1 was low and the TS concentration in the tank was remarkable. Increased. Therefore, the operation of Comparative Example 1 is TS5.
Discontinuation was reached when the amount reached 10,000 mg / l. Example 1
Table 1 shows the water qualities of the in-tank liquid and the permeated liquid on the 58th day, and the in-tank liquid and the permeated liquid on the 30th day of Comparative Example 1.

【0042】[0042]

【表1】 [Table 1]

【0043】上記の結果より明らかなように、両者とも
に透過液は膜透過液であるためSS濃度は低いが、溶解
性のCODcr濃度は実施例1の方が倍以上となってい
る。これは熱処理により固形物が改質されて有機酸等に
転換されているためであり、これが後段のUASBでメ
タンガス化される。
As is clear from the above results, the SS concentration is low in both cases because the permeate is a membrane permeate, but the soluble CODcr concentration is more than doubled in Example 1. This is because the solid matter is reformed by heat treatment and converted into an organic acid or the like, and this is methane gasified by UASB in the subsequent stage.

【0044】表2は実施例1および比較例1の透過液を
UASBによりメタン発酵させた結果である。いずれの
系も有機酸はUASBにより分解され、良好なメタン発
酵が進行した。実施例1の方が入口のCODが高かった
分、ガス発生量も多かった。これらのことから、熱処理
を酸生成槽に組込むことにより、固形物が可溶化され減
容効果が大きく、しかも液化された有機物がメタンガス
にまで分解されたことが明らかである。
Table 2 shows the results of methane fermentation of the permeates of Example 1 and Comparative Example 1 by UASB. In both systems, organic acids were decomposed by UASB, and good methane fermentation proceeded. In Example 1, the COD at the inlet was higher, so that the gas generation amount was larger. From these facts, it is clear that by incorporating the heat treatment into the acid production tank, the solid matter is solubilized and the volume reduction effect is large, and the liquefied organic matter is decomposed into methane gas.

【0045】[0045]

【表2】 [Table 2]

【0046】実施例2 実施例2では実施例1における改質処理槽としてオゾン
処理槽を用い、1日に1回、原泥供給量と同一量の汚泥
200mlをシリンジで引抜き、オゾン注入率を0.0
5g−O3/g−TSの条件でオゾン処理して改質処理
した後に酸生成槽に戻した。実施例1と同様にテストし
て、オゾン処理を全く行わない比較例1と槽内の汚泥濃
度の変化を比較した。
Example 2 In Example 2, an ozone treatment tank was used as the reforming treatment tank in Example 1, and 200 ml of sludge having the same amount as the amount of raw sludge supplied was drawn out with a syringe once a day to measure the ozone injection rate. 0.0
Back to the acid generation chamber after processing modification by ozone treatment under the condition of 5g-O 3 / g-TS . The same test as in Example 1 was performed to compare the change in sludge concentration in the tank with Comparative Example 1 in which no ozone treatment was performed.

【0047】その結果、実施例1と同様、オゾン処理を
施した実施例2は酸生成槽内の汚泥濃度は約60日間T
Sとして23,000〜25,000mg/lで安定し
ていたが、比較例1は継続して上昇し運転開始30日程
度で50,000mg/lを超えた。これらの結果か
ら、実施例1と同様に、実施例2でも比較例1に比べて
汚泥の分解率が高まり、実質的に余剰汚泥がほとんどで
ない程度まで減容化されていることが明かである。
As a result, in the same manner as in Example 1, in Example 2 in which the ozone treatment was performed, the sludge concentration in the acid production tank was about 60 days.
Although S was stable at 23,000 to 25,000 mg / l, Comparative Example 1 continuously increased and exceeded 50,000 mg / l about 30 days after the start of operation. From these results, it is clear that, similarly to Example 1, Example 2 has a higher sludge decomposition rate than Comparative Example 1, and the volume is reduced to the extent that substantially no excess sludge is present. .

【0048】実施例3 改質処理装置として実施例3では高圧パルス放電装置を
用い、1日に1回、原泥供給量と同一量の汚泥200m
lをシリンジで引抜き、容量250mlのセル中に導入
し、タングステン/トリウム合金製の+極とステンレス
鋼製の−極間に、電極間隔:5mm、印加電圧:30k
V、パルス間隔:50Hzで10分間高圧パルス放電を
行って改質処理した後に酸生成槽に戻した。
Example 3 In Example 3, a high-pressure pulse discharge device was used as a reforming treatment apparatus, and once a day, the sludge 200 m of the same amount as the raw sludge supply amount was used.
1 was drawn out with a syringe and introduced into a cell having a capacity of 250 ml, and an electrode interval was 5 mm and an applied voltage was 30 k between a positive electrode made of a tungsten / thorium alloy and a negative electrode made of stainless steel.
V, pulse interval: High-voltage pulse discharge was performed at 50 Hz for 10 minutes for reforming treatment, and then returned to the acid generation tank.

【0049】実施例1と同様にテストして、改質処理を
全く行わない比較例1と槽内の汚泥濃度の変化を比較し
た。上記各試験におけるTS濃度の経日変化を図4に示
す。この結果、実施例3では槽内のTS濃度は、約60
日間20,000〜24,000mg/lで安定した。
このため実施例3では比較例1に比べて汚泥の分解率が
高まり、実質的に余剰汚泥がほとんど出ない程度まで減
容化されていることがわかる。
The same test as in Example 1 was conducted to compare the change in the sludge concentration in the tank with Comparative Example 1 in which no modification treatment was performed. FIG. 4 shows the daily change of the TS concentration in each of the above tests. As a result, in Example 3, the TS concentration in the tank was about 60.
Stable at 20,000-24,000 mg / l daily.
Therefore, in Example 3, the sludge decomposition rate is higher than in Comparative Example 1, and it is understood that the volume is reduced to the extent that substantially no excess sludge is produced.

【0050】[0050]

【発明の効果】本発明によれば、酸生成工程の汚泥を易
生物分解性に改質して循環し固液分離した分離液を高負
荷メタン発酵で処理するようにしたので、固形有機物を
含む排液についても高負荷で嫌気処理を行って滞留時間
を短くするとともに、生成する汚泥も減容化することが
でき簡単な装置と操作により低エネルギー消費量かつ低
コストで汚泥の減容化を行うことができる。
EFFECTS OF THE INVENTION According to the present invention, since the sludge in the acid production step is modified to be easily biodegradable and circulated and solid-liquid separated, the separated liquid is treated by high-load methane fermentation. Anaerobic treatment of the waste liquid containing it is also performed at high load to shorten the residence time and the volume of the generated sludge can be reduced, and the volume and volume of the sludge can be reduced by a simple device and operation with low energy consumption and low cost. It can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態の嫌気性処理装置を示す系統
図である。
FIG. 1 is a system diagram showing an anaerobic treatment apparatus according to an embodiment of the present invention.

【図2】本発明の他の実施形態の嫌気性処理装置を示す
系統図である。
FIG. 2 is a system diagram showing an anaerobic treatment apparatus according to another embodiment of the present invention.

【図3】実施例1および比較例1におけるTS濃度の経
日変化を示すグラフである。
FIG. 3 is a graph showing changes with time of TS concentration in Example 1 and Comparative Example 1.

【図4】実施例3および比較例1におけるTS濃度の経
日変化を示すグラフである。
FIG. 4 is a graph showing changes over time in TS concentration in Example 3 and Comparative Example 1.

【符号の説明】[Explanation of symbols]

1 酸生成槽 2 膜分離装置 3 改質槽 4 高負荷メタン発酵槽 5 被処理液路 6 返送汚泥路 7、22 攪拌器 11、16 連絡路 12、17 ポンプ 13 分離膜 14 透過液 15 濃縮汚泥 18 濃縮汚泥取出路 19 余剰汚泥排出路 21 充填層 22 オゾン発生器 23 改質汚泥路 24 汚泥引抜路 31 分離液流入部 32 スラッジブランケット 33 グラニュール汚泥 34 ガス固液分離板 35 溢流部 36 処理液路 37 ガス室 38 ガス排出路 1 Acid production tank 2 Membrane separation device 3 Reforming tank 4 High load methane fermentation tank 5 Liquid to be treated 6 Returned sludge passage 7, 22 Stirrer 11, 16 Connecting passage 12, 17 Pump 13 Separation membrane 14 Permeate 15 Concentrated sludge 18 Condensed sludge discharge route 19 Excess sludge discharge route 21 Packed bed 22 Ozone generator 23 Reforming sludge route 24 Sludge extraction route 31 Separation liquid inflow part 32 Sludge blanket 33 Granule sludge 34 Gas solid-liquid separation plate 35 Overflow part 36 Treatment Liquid channel 37 Gas chamber 38 Gas discharge channel

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年2月8日[Submission date] February 8, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図1[Correction target item name] Fig. 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 [Fig. 2]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸生成菌を含む汚泥の存在下に有機性排
液を嫌気状態に維持して有機酸を生成させる酸生成工程
と、 酸生成工程の混合液を固液分離して濃縮汚泥を酸生成工
程に返送する固液分離工程と、 酸生成工程で生成する汚泥を易生物分解性に改質して酸
生成工程に返送する改質工程と、 固液分離工程で分離された分離液を高負荷の状態でメタ
ン生成菌を含む汚泥と接触させてメタン発酵を行う高負
荷メタン発酵工程とを含む嫌気性処理方法。
1. A concentrated sludge in which an acid production step of producing an organic acid by maintaining an organic effluent in an anaerobic state in the presence of sludge containing an acid-producing bacterium, and a liquid mixture of the acid production step is subjected to solid-liquid separation. -Liquid separation process that returns the acid to the acid generation process, a reforming process that reforms sludge generated in the acid generation process to easily biodegradable and returns to the acid generation process, and the separation that was separated in the solid-liquid separation process An anaerobic treatment method comprising a high-load methane fermentation step of performing methane fermentation by bringing a liquid into contact with sludge containing a methanogen under a high load.
【請求項2】 酸生成菌を含む汚泥の存在下に有機性排
液を嫌気状態に維持して有機酸を生成させる酸生成槽
と、 酸生成槽の混合液を固液分離して濃縮汚泥を酸生成工程
に返送する固液分離装置と、 酸生成槽で生成する汚泥を易生物分解性に改質して酸生
成槽に返送する改質装置と、 固液分離装置で分離された分離液を高負荷の状態でメタ
ン生成菌を含む汚泥と接触させてメタン発酵を行う高負
荷メタン発酵槽とを備えた嫌気性処理装置。
2. A concentrated sludge obtained by solid-liquid separation of an acid generation tank for maintaining an organic effluent in an anaerobic state to generate an organic acid in the presence of sludge containing an acid-producing bacterium and solid-liquid separation of a mixed solution of the acid generation tank. -Liquid separation device that returns the sludge to the acid production process, a reformer that reforms sludge produced in the acid production tank to easily biodegradable and returns it to the acid production tank, and the separation separated by the solid-liquid separation device An anaerobic treatment apparatus equipped with a high-load methane fermentation tank that performs methane fermentation by contacting a liquid with sludge containing methanogens under a high load.
JP1912896A 1996-02-05 1996-02-05 Anaerobic treatment and apparatus therefor Pending JPH09206786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1912896A JPH09206786A (en) 1996-02-05 1996-02-05 Anaerobic treatment and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1912896A JPH09206786A (en) 1996-02-05 1996-02-05 Anaerobic treatment and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH09206786A true JPH09206786A (en) 1997-08-12

Family

ID=11990833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1912896A Pending JPH09206786A (en) 1996-02-05 1996-02-05 Anaerobic treatment and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH09206786A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001000985A (en) * 1999-06-22 2001-01-09 Toshiba Corp Method and apparatus for treating organic solid- containing wastewater
JP2002320949A (en) * 2001-04-27 2002-11-05 Kurita Water Ind Ltd Dry methane fermentation process of organic waste
JP2004501739A (en) * 1999-12-07 2004-01-22 オンデオ デグレマン Wastewater treatment method with additional sludge treatment by ozone treatment and plant thereof
JP2005095811A (en) * 2003-09-26 2005-04-14 Jfe Engineering Kk Method and apparatus for treating organic waste
JP2006043511A (en) * 2004-07-30 2006-02-16 Sumitomo Heavy Ind Ltd Organic acid producing method, organic acid producing device and wastewater treatment apparatus
JP2007203150A (en) * 2006-01-31 2007-08-16 Kajima Corp Anaerobic decomposition method and apparatus for organic matter-containing liquid
JP2007260601A (en) * 2006-03-29 2007-10-11 Sumitomo Heavy Industries Environment Co Ltd Method for producing organic acid, apparatus for producing organic acid and wastewater treatment equipment
JP2008136984A (en) * 2006-12-05 2008-06-19 Fuji Electric Holdings Co Ltd Methane fermentation treatment apparatus
JP2009022955A (en) * 2008-11-04 2009-02-05 Toshiba Corp Method for treating organic solid-containing waste water, and treatment method therefor
JP2014161793A (en) * 2013-02-25 2014-09-08 Sumitomo Heavy Industries Environment Co Ltd Methane fermentation system and methane fermentation method
CN112174312A (en) * 2020-09-30 2021-01-05 山东默锐环境产业股份有限公司 Upflow anaerobic sludge blanket reactor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001000985A (en) * 1999-06-22 2001-01-09 Toshiba Corp Method and apparatus for treating organic solid- containing wastewater
JP2004501739A (en) * 1999-12-07 2004-01-22 オンデオ デグレマン Wastewater treatment method with additional sludge treatment by ozone treatment and plant thereof
JP2002320949A (en) * 2001-04-27 2002-11-05 Kurita Water Ind Ltd Dry methane fermentation process of organic waste
JP4631204B2 (en) * 2001-04-27 2011-02-16 栗田工業株式会社 Dry methane fermentation of organic waste
JP2005095811A (en) * 2003-09-26 2005-04-14 Jfe Engineering Kk Method and apparatus for treating organic waste
JP2006043511A (en) * 2004-07-30 2006-02-16 Sumitomo Heavy Ind Ltd Organic acid producing method, organic acid producing device and wastewater treatment apparatus
JP2007203150A (en) * 2006-01-31 2007-08-16 Kajima Corp Anaerobic decomposition method and apparatus for organic matter-containing liquid
JP2007260601A (en) * 2006-03-29 2007-10-11 Sumitomo Heavy Industries Environment Co Ltd Method for producing organic acid, apparatus for producing organic acid and wastewater treatment equipment
JP2008136984A (en) * 2006-12-05 2008-06-19 Fuji Electric Holdings Co Ltd Methane fermentation treatment apparatus
JP2009022955A (en) * 2008-11-04 2009-02-05 Toshiba Corp Method for treating organic solid-containing waste water, and treatment method therefor
JP2014161793A (en) * 2013-02-25 2014-09-08 Sumitomo Heavy Industries Environment Co Ltd Methane fermentation system and methane fermentation method
CN112174312A (en) * 2020-09-30 2021-01-05 山东默锐环境产业股份有限公司 Upflow anaerobic sludge blanket reactor

Similar Documents

Publication Publication Date Title
US9845260B2 (en) Treatment of municipal wastewater with anaerobic digestion
US4491522A (en) Anaerobic digestion process for organic wastes
EP1464625B1 (en) Method for sludge reduction in a waste water treatment system
US4284508A (en) Methane production by attached film
EP0641296B1 (en) Process for degrading organic matter
JPH09206786A (en) Anaerobic treatment and apparatus therefor
Stephenson et al. Evaluation of startup and operation of four anaerobic processes treating a synthetic meat waste
JP5873736B2 (en) Organic wastewater treatment method and treatment apparatus
JP2007216207A (en) Method and apparatus for anaerobic digestion of organic waste liquid
JPH10192889A (en) Method for treating organic drainage
JPH0731998A (en) Slightly anaerobic hydrogen fermentation method for organic waste
JP3959843B2 (en) Biological treatment method for organic drainage
JPH09206785A (en) Anaerobic treatment and apparatus therefor
JP2001025789A (en) Treatment of organic waste liquid and device therefor
JP4311264B2 (en) Anaerobic treatment method
JP3781216B2 (en) Anaerobic sludge digestion method and device enabling re-digestion of persistent organic substances in anaerobic digested sludge
JPH0254160B2 (en)
JP2004041902A (en) Sludge treatment equipment and sludge treatment method
JP3699999B2 (en) Treatment method of organic sludge
JP2003300096A (en) Method for anaerobic digestion of high-concentration sludge and apparatus for the same
JP2002159998A (en) Anaerobic treatment and equipment for organic matter- containing waste liquid
JP2005324173A (en) Method and apparatus for treating sludge
JP2000167586A (en) Method and apparatus for anaerobic treatment
JP4148286B2 (en) Method and apparatus for anaerobic digestion treatment of organic waste liquid
JP2002011494A (en) Method for treating organic wastewater involving treatment of active sludge

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061010