JP4311264B2 - Anaerobic treatment method - Google Patents

Anaerobic treatment method Download PDF

Info

Publication number
JP4311264B2
JP4311264B2 JP2004114629A JP2004114629A JP4311264B2 JP 4311264 B2 JP4311264 B2 JP 4311264B2 JP 2004114629 A JP2004114629 A JP 2004114629A JP 2004114629 A JP2004114629 A JP 2004114629A JP 4311264 B2 JP4311264 B2 JP 4311264B2
Authority
JP
Japan
Prior art keywords
sludge
anaerobic treatment
anaerobic
treatment
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004114629A
Other languages
Japanese (ja)
Other versions
JP2004209479A (en
Inventor
元之 依田
哲朗 深瀬
正三 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2004114629A priority Critical patent/JP4311264B2/en
Publication of JP2004209479A publication Critical patent/JP2004209479A/en
Application granted granted Critical
Publication of JP4311264B2 publication Critical patent/JP4311264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は有機性排液を嫌気性微生物を含む汚泥の存在下にメタン発酵させて処理する嫌気性処理方法、特に有機性排液を一相式のメタン発酵により処理して減溶化する嫌気性処理方法に関するものである。 Anaerobic present invention to reduced solubilization by treatment with methane fermentation of anaerobic treatment how, in particular organic waste liquid single-phase type processes by methane fermentation of organic waste liquid in the presence of a sludge containing anaerobic microorganisms it relates to the sex how to process.

有機性汚泥、し尿、食品排水等のスラリー状の高濃度有機性排液を嫌気性微生物の存在下に、一相式メタン発酵によって処理する嫌気性処理方法は嫌気性消化法とも呼ばれ、古くから行われている方法である。この方法では有機性物質は嫌気槽において、嫌気性微生物により、液化、低分子化、有機酸生成、メタン生成のステップを経てメタンガスに転換される。一相式のメタン発酵は単一相において酸生成相とメタン生成相が並列的に起こるものであり、従来の下水汚泥の嫌気処理のように発酵槽と脱離液分離槽の2槽に分けて2段処理する場合でも、各槽において酸生成相とメタン生成相が並列的に起こる場合は一相式の処理に含まれる。   The anaerobic digestion method, which treats slurried high-concentration organic wastewater such as organic sludge, human waste, and food wastewater in the presence of anaerobic microorganisms by single-phase methane fermentation, is also called anaerobic digestion. It is a method that has been done from. In this method, an organic substance is converted into methane gas in an anaerobic tank by anaerobic microorganisms through steps of liquefaction, low molecular weight formation, organic acid production, and methane production. In the single-phase methane fermentation, the acid-generating phase and the methane-forming phase occur in parallel in a single phase, and it is divided into two tanks, a fermentation tank and a desorbed liquid separation tank, as in the conventional anaerobic treatment of sewage sludge. Even in the case of two-stage treatment, if the acid generation phase and the methane generation phase occur in parallel in each tank, they are included in the one-phase processing.

このような嫌気性処理においては、未分解物質および嫌気性微生物を主体とする大量の汚泥が生成する。この汚泥は生きた菌体を主体とするため、生物学的には安定しており、さらに生物処理を行って大幅に減量化することは困難であり、従来は機械脱水して焼却、埋立等により処理されていた。   In such anaerobic treatment, a large amount of sludge mainly composed of undegraded substances and anaerobic microorganisms is generated. Since this sludge is mainly composed of living cells, it is biologically stable, and it is difficult to significantly reduce the volume by biological treatment. Conventionally, it is mechanically dehydrated for incineration, landfill, etc. Had been processed by.

嫌気性処理により生成する汚泥量を減容化する方法として、特許文献1には、嫌気性消化した汚泥を100〜180℃で加熱処理した後、この加熱処理汚泥を嫌気消化槽に返送する有機性汚泥の処理方法が記載されている。
しかし、このような従来の方法では汚泥の減容化は可能であるが、可溶化処理の条件が高温で厳しいため、難生物分解性の有機物が生成して処理液の色度やCODが上昇して処理水質が悪化し、しかも耐熱性、耐圧性の高い装置を必要とし、エネルギー消費量が多く、コスト高になるという問題点がある。
As a method for reducing the volume of sludge produced by anaerobic treatment, Patent Document 1 discloses an organic material in which anaerobically digested sludge is heated at 100 to 180 ° C. and then returned to the anaerobic digester. A method for treating activated sludge is described.
However, such conventional methods can reduce the volume of sludge, but the conditions of solubilization treatment are severe at high temperatures, so that non-biodegradable organic substances are generated and the chromaticity and COD of the treatment liquid are increased. As a result, the quality of the treated water deteriorates, and a device having high heat resistance and pressure resistance is required, and there is a problem that the energy consumption is large and the cost is high.

一方、有機性排液の好気性処理(活性汚泥処理)により生成する余剰汚泥を減容化する方法として、特許文献2には、汚泥をオゾン処理して曝気槽に返送する方法が記載されている。
しかしこの方法は好気性処理に関するものであり、嫌気性処理における適用の可能性については開示されていない。
特開平1−224100号 特開平6−206088号
On the other hand, as a method for reducing the volume of excess sludge produced by aerobic treatment (activated sludge treatment) of organic waste liquid, Patent Document 2 describes a method of treating sludge with ozone and returning it to an aeration tank. Yes.
However, this method relates to an aerobic treatment, and the possibility of application in an anaerobic treatment is not disclosed.
JP-A-1-224100 JP-A-6-206088

本発明の目的は、上記問題点を解決するため、処理水質の悪化を抑制し、しかも簡単な装置と操作により低エネルギー消費量かつ低コストで汚泥の減容化を行うことができる有機性排液の嫌気性処理方法を提案することである。 An object of the present invention is to solve the above problems, and to suppress the deterioration of treated water, and to reduce the sludge volume at a low energy consumption and low cost by a simple apparatus and operation. it is to propose a anaerobic how to process the liquid.

本発明は、
嫌気性微生物を含む汚泥の存在下に有機性排液を、液化、低分子化、有機酸生成およびメタン生成のステップを経てメタンガスに転換する一相式のメタン発酵によりメタン発酵させる嫌気性処理工程と、
嫌気性処理工程において生成する汚泥を、オゾン使用量0.005〜0.04g−O/g−VSSでオゾン処理することにより、易生物分解性の改質汚泥に改質する改質工程と、
改質汚泥を嫌気性処理工程に返送する返送工程と
を含む嫌気性処理方法である。
The present invention
Anaerobic treatment process in which organic wastewater is converted to methane gas through the steps of liquefaction, low molecular weight, organic acid production and methane production in the presence of sludge containing anaerobic microorganisms. When,
A reforming step for reforming sludge produced in the anaerobic treatment step into an easily biodegradable modified sludge by ozone treatment with an ozone usage of 0.005 to 0.04 g-O 3 / g-VSS; ,
An anaerobic treatment method including a return step of returning the modified sludge to the anaerobic treatment step.

本発明において処理の対象となる有機性排液は、嫌気処理によって処理される有機物を含有する排液(汚泥を含む)である。固形物を含むスラリー状のものが処理に適しているが、固形物を含まない液状のものでもよい。また難生物分解性の有機物、無機物、セルロース、紙、綿、ウール布、し尿中の固形物などが含有されていてもよい。このような有機性排液としては下水、下水初沈汚泥、し尿、浄化槽汚泥、食品工場排水、ビール廃酵母その他の産業排液、これらの排液を処理した際に生じる余剰汚泥等の汚泥などがあげられる。   In the present invention, the organic effluent to be treated is an effluent (including sludge) containing organic matter to be treated by anaerobic treatment. A slurry containing a solid is suitable for processing, but may be a liquid containing no solid. In addition, non-biodegradable organic substances, inorganic substances, cellulose, paper, cotton, wool cloth, solid matter in human waste may be contained. Such organic effluents include sewage, sewage initial sludge, human waste, septic tank sludge, food factory effluent, beer waste yeast and other industrial effluents, and sludge such as excess sludge generated when these effluents are treated. Can be given.

嫌気性処理工程は嫌気性処理槽において嫌気性微生物を含む汚泥の存在下に有機性排液をメタン発酵させる工程であって、酸生成相とメタン生成相とが単一相で起こる一相式のメタン発酵工程であり、発酵槽と脱離液分離槽とを分けてそれぞれにおいて酸生成相とメタン生成相を行う二段階処理を行う場合も含まれる。このため嫌気性微生物を含む汚泥は酸生成菌とメタン生成菌を含む汚泥が用いられる。この工程では有機性物質は、嫌気性処理槽において嫌気性微生物により液化→低分子化→有機酸生成→メタン生成のステップによりメタンガスに転換される。   The anaerobic treatment process is a process of methane fermentation of organic wastewater in the presence of sludge containing anaerobic microorganisms in an anaerobic treatment tank, where the acid-generating phase and the methane-forming phase occur in a single phase. This is a methane fermentation process, and includes a case where a fermentation tank and a desorbed liquid separation tank are separated to perform a two-stage process in which an acid generation phase and a methane generation phase are performed in each. For this reason, sludge containing acid producing bacteria and methanogenic bacteria is used as sludge containing anaerobic microorganisms. In this process, the organic substance is converted into methane gas by the steps of liquefaction → low molecular weight → organic acid production → methane production by anaerobic microorganisms in the anaerobic treatment tank.

メタン発酵の条件としては、35℃付近に最適温度がある中温メタン生成菌、および55℃付近に最適温度を有する高温メタン生成菌が増殖するいずれの温度条件も可能である。中温メタン生成菌は増殖速度が遅いため滞留時間(SRT)が長くなるが、比較的低温での処理が可能であるため加温および保温のための設備が簡単になる。これに対して高温メタン生成菌の場合は加温および保温の設備が必要になるが、増殖速度が速いため滞留時間が短くなり、短時間での処理が可能になる。   As conditions for methane fermentation, any temperature condition in which a medium temperature methanogen having an optimum temperature around 35 ° C. and a high temperature methanogen having an optimum temperature around 55 ° C. are allowed to grow. Medium-temperature methanogens have a slow growth rate and therefore a long residence time (SRT), but they can be treated at a relatively low temperature, so that the equipment for warming and keeping warm becomes simple. On the other hand, in the case of high-temperature methanogens, heating and heat retention facilities are required, but since the growth rate is fast, the residence time is shortened, and processing in a short time becomes possible.

中温メタン生成菌を主体とする場合は増殖速度がおそいため、嫌気性処理槽での汚泥の滞留時間は10日以上、望ましくは15〜30日程度が必要である。これに対して高温メタン生成菌を主体とする場合は増殖速度が速いことから、上記範囲よりも短い滞留時間(例えば最小滞留時間として5日以上)とすることも可能である。有機物負荷は0.6〜1.6kg−VSS/m3・日、嫌気性処理槽内のMLSS濃度は5,000〜100,000mg/l、好ましくは30,000〜60,000mg/l、嫌気性処理温度は30〜38℃または45〜60℃の条件で嫌気性処理することができる。 When the medium temperature methanogen is mainly used, the growth rate is slow, so the sludge residence time in the anaerobic treatment tank is 10 days or longer, preferably about 15 to 30 days. On the other hand, when a high-temperature methanogen is mainly used, the growth rate is fast, so it is possible to set a residence time shorter than the above range (for example, a minimum residence time of 5 days or more). Organic matter load is 0.6 to 1.6 kg-VSS / m 3 · day, MLSS concentration in anaerobic treatment tank is 5,000 to 100,000 mg / l, preferably 30,000 to 60,000 mg / l, anaerobic The anaerobic treatment can be performed at a temperature of 30 to 38 ° C or 45 to 60 ° C.

嫌気性処理工程には、膜分離装置、デカンター、ろ過装置などの固液分離装置を用いる固液分離工程を組合わせることができる。固液分離工程では嫌気性処理槽内液の固液分離を行い、分離液を処理液として排出するとともに、濃縮汚泥を嫌気性処理槽に戻すように構成される。膜分離を利用する場合は、中空糸、チューブラー、平膜などの種々の膜形式が利用できる。また膜分離は固形物を分離することが目的であるため、MF、UFなどの比較的大きなポアサイズを有する膜が好ましい。   The anaerobic treatment step can be combined with a solid-liquid separation step using a solid-liquid separation device such as a membrane separation device, a decanter, or a filtration device. In the solid-liquid separation step, the liquid in the anaerobic treatment tank is subjected to solid-liquid separation, the separation liquid is discharged as a treatment liquid, and the concentrated sludge is returned to the anaerobic treatment tank. When membrane separation is used, various membrane types such as hollow fiber, tubular, and flat membrane can be used. Moreover, since the purpose of membrane separation is to separate solids, membranes having a relatively large pore size such as MF and UF are preferred.

改質工程はこのような嫌気性処理工程における処理系から生物汚泥の一部を改質装置において、オゾン処理により易生物分解性に改質する工程である。生物汚泥を引抜く場合、固液分離装置で分離された濃縮汚泥を引抜いて改質処理するのが好ましいが、嫌気性処理槽から混合液の状態で引抜いて処理してもよい。また場合によっては嫌気性処理槽内にこれらの改質装置を設けることもできる。 In reformer a portion of biological sludge reforming step from processing system in such anaerobic treatment step is a step of modifying the more readily biodegradable ozone treatment. When extracting biological sludge, it is preferable to extract the concentrated sludge separated by the solid-liquid separator and perform the reforming treatment. However, the biological sludge may be extracted from the anaerobic treatment tank in a mixed solution state. In some cases, these reformers can be provided in the anaerobic treatment tank.

オゾン処理は、汚泥をオゾンと接触させることにより行う。接触方法としては、オゾン処理槽に消化汚泥を導入してオゾンを吹込む方法、機械攪拌による方法、充填層を利用する方法などが採用できる。オゾンとしてはオゾンガスの他、オゾン含有空気、オゾン化空気などが使用できる。オゾンの使用量は0.005〜0.04g−O3/g−VSS、好ましくは0.01〜0.03g−O3/g−VSSとする。充填層を用いる場合は充填層のSVを1〜10hr-1、望ましくは3〜6hr-1とするのが好ましい。 The ozone treatment is performed by bringing sludge into contact with ozone. As a contact method, a method of introducing digested sludge into an ozone treatment tank and blowing ozone, a method of mechanical stirring, a method of using a packed bed, or the like can be employed. As ozone, ozone gas, ozone-containing air, ozonized air, or the like can be used. The amount of ozone 0.005~0.04g-O 3 / g-VSS , preferably shall be the 0.01~0.03g-O 3 / g-VSS . When a packed bed is used, the SV of the packed bed is preferably 1 to 10 hr −1 , desirably 3 to 6 hr −1 .

嫌気性処理槽から引抜いて改質を行う汚泥量は、汚泥の減容効果を確保するために少なくとも嫌気性処理槽へ投入する固形物量と同等以上、好ましくは2倍以上が良い。例えば15日滞留の嫌気性処理槽であれば、循環比は1/15day-1以上、好ましくは2/15day-1以上とすることができる。循環比の上限値は有効な嫌気性処理の確保の点から、1日あたり嫌気性処理槽の全保有汚泥量の1/15以下、好ましくは1/15〜1/50の量(固形分重量)に相当する量とするのが望ましい。 The amount of sludge that is pulled out from the anaerobic treatment tank and reformed is at least equal to, or preferably twice or more, the amount of solids charged into the anaerobic treatment tank in order to ensure the sludge volume reduction effect. For example, in the case of an anaerobic treatment tank staying for 15 days, the circulation ratio can be set to 1/15 day −1 or more, preferably 2/15 day −1 or more. The upper limit of the circulation ratio is 1/15 or less, preferably 1/15 to 1/50 of the total amount of sludge retained in the anaerobic treatment tank per day from the viewpoint of ensuring effective anaerobic treatment (solid content weight). ) Is preferable.

このように引抜く汚泥の量を投入する固形物量の1倍以上の量とすることにより、処理系全体としての汚泥の減容化を高くすることができ、また嫌気性処理槽の全保有汚泥量の1/15以下とすることにより、嫌気性処理槽全体としての汚泥活性を高く維持した状態で嫌気性処理を有効に行うことができる。
嫌気性処理槽が発酵槽と脱離液分離槽の2個に分けられた2段処理の場合には、改質処理のための汚泥の引抜は1段目、2段目いずれからでもよい。
By making the amount of sludge extracted in this way more than 1 times the amount of solids to be charged, the volume of sludge as a whole treatment system can be increased, and all the retained sludge in the anaerobic treatment tank By setting it as 1/15 or less of quantity, anaerobic processing can be effectively performed in the state which maintained sludge activity as the whole anaerobic processing tank highly.
In the case of a two-stage treatment in which the anaerobic treatment tank is divided into two parts, a fermentation tank and a desorbed liquid separation tank, the sludge extraction for the reforming treatment may be performed from either the first stage or the second stage.

返送工程は改質工程で改質された汚泥を嫌気性処理工程に返送する工程であり、嫌気性処理工程から汚泥を引抜く場合はこの引抜と返送を組合せて循環工程とすることができる。嫌気性処理槽内において改質を行う場合は、嫌気性処理槽内の液が循環するように構成する。   The return process is a process of returning the sludge modified in the reforming process to the anaerobic treatment process. When the sludge is extracted from the anaerobic treatment process, the extraction and the return can be combined to form a circulation process. When reforming is performed in the anaerobic treatment tank, the liquid in the anaerobic treatment tank is circulated.

本発明の嫌気性処理装置による処理方法は、嫌気性処理工程において、有機性排液を嫌気性処理槽に導入して、嫌気性微生物を含む汚泥と混合して嫌気性処理を行い、メタン発酵を起こさせる。ここでは有機性物質は液化、低分子化、有機酸生成、メタン生成のステップを経てメタンガスに転換される。嫌気性処理槽内の液は固液分離装置において固液分離し、分離液は処理液として排出し、濃縮汚泥は嫌気性処理槽に返送する。   The treatment method using the anaerobic treatment apparatus of the present invention is an anaerobic treatment step, in which an organic effluent is introduced into an anaerobic treatment tank, mixed with sludge containing anaerobic microorganisms, and subjected to anaerobic treatment. Wake up. Here, the organic substance is converted into methane gas through the steps of liquefaction, molecular weight reduction, organic acid generation, and methane generation. The liquid in the anaerobic treatment tank is subjected to solid-liquid separation in a solid-liquid separator, the separated liquid is discharged as a treatment liquid, and the concentrated sludge is returned to the anaerobic treatment tank.

上記嫌気性処理槽内の汚泥を含む液または濃縮汚泥の一部は改質装置において、オゾン処理により易生物分解性に改質する。嫌気性処理工程では汚泥中の微生物の増殖により菌体が増加するが、生きている菌体を濃縮して嫌気性処理槽に戻しても消化による減容化には限度がある。 In reformer part of the liquid or concentrated sludge containing sludge of the anaerobic treatment tank, modified into a more readily biodegradable ozone treatment. In the anaerobic treatment process, the number of microorganisms increases due to the growth of microorganisms in the sludge, but there is a limit to the volume reduction by digestion even if the living bacteria are concentrated and returned to the anaerobic treatment tank.

ところが改質装置においてオゾン処理により改質を行うことにより汚泥中の菌体は死滅し、その他の有機物とともに分解されて、低分子の有機物および一部無機物が生成し、易生物分解性に改質される。このような改質汚泥は嫌気性処理槽に循環することにより、嫌気性微生物の基質として利用され分解される。
これにより汚泥は減容化され、余剰汚泥として排出される汚泥量は減少する。
However bacteria in the sludge by performing more reforming the ozone treatment in the reformer is killed, it is decomposed with other organic materials, low molecular weight organic material and some inorganic substances generated, the easily biodegradable Reformed. Such modified sludge is used and decomposed as a substrate for anaerobic microorganisms by circulating to an anaerobic treatment tank.
As a result, the volume of sludge is reduced, and the amount of sludge discharged as excess sludge is reduced.

嫌気性処理工程から余剰汚泥として排出される汚泥を全量改質して循環しても、これを資化して汚泥が増殖するため、嫌気性処理槽内の汚泥は増量していき、一部の汚泥を余剰汚泥として排出しなければならず、排出汚泥をゼロに近づけることはできない。そこで余剰汚泥量がゼロとなるように、余剰汚泥として発生する汚泥量より多い汚泥を抜出し、これを改質処理して循環すると、過剰に抜出した汚泥量と増殖した汚泥量がバランスし、見掛上汚泥の増加量がゼロに近づく。この場合でも無機化した汚泥の蓄積を避けるために、最小限の消化汚泥を排出するのが望ましい。   Even if all the sludge discharged as surplus sludge from the anaerobic treatment process is reformed and circulated, the sludge in the anaerobic treatment tank will increase, because it will be utilized and the sludge will grow. The sludge must be discharged as surplus sludge, and the discharged sludge cannot be brought close to zero. Therefore, if more sludge is extracted than the amount of sludge generated as surplus sludge so that the amount of excess sludge is zero, and this is reformed and circulated, the amount of excess sludge extracted and the amount of proliferated sludge are balanced. The amount of sludge increased will approach zero. Even in this case, in order to avoid accumulation of mineralized sludge, it is desirable to discharge a minimum amount of digested sludge.

このように過剰の汚泥を改質処理すると、消化効率は低下するが、嫌気性処理槽では通常SRTを15日程度と比較的長くとって運転されるため、改質処理によりSRTが短くなっても余裕のある運転が可能であり、効率の低下はそれほど重大ではない。   When excessive sludge is reformed in this way, digestion efficiency is reduced, but an anaerobic treatment tank is usually operated with an SRT of about 15 days, so the SRT is shortened by the reforming process. However, it is possible to operate with sufficient margin, and the decrease in efficiency is not so serious.

嫌気性処理工程の処理液はそのまま下水等へ放流することができるが、好気性生物処理その他の後処理を行ったのち放流してもよい。   The treatment liquid in the anaerobic treatment step can be discharged as it is into sewage or the like, but it may be discharged after an aerobic biological treatment or other post-treatment.

本発明の嫌気性処理方法によれば、嫌気性微生物を含む汚泥の存在下に有機性排液を、液化、低分子化、有機酸生成およびメタン生成のステップを経てメタンガスに転換する一相式のメタン発酵によりメタン発酵させる嫌気性処理工程で生成する汚泥を、オゾン使用量0.005〜0.04g−O/g−VSSでオゾン処理することにより、易生物分解性の改質汚泥に改質して嫌気性処理を行うため、色度やCODが上昇するなどの処理水質の悪化を抑制して汚泥の減容化を行うことができる。また従来の処理法と比べてエネルギー消費量を少なくすることができ、かつ耐熱性および耐圧性の高い装置を使用する必要がなくなり、このため低コストでの処理が可能となる。 According to the anaerobic treatment method of the present invention , the organic drainage is converted into methane gas through the steps of liquefaction, low molecular weight, organic acid generation and methane generation in the presence of sludge containing anaerobic microorganisms. the sludge produced in the anaerobic treatment step of Ru is methane fermentation by methane fermentation, by ozone treatment in the ozone amount 0.005~0.04g-O 3 / g-VSS , easily biodegradable modification sludge Since the anaerobic treatment is carried out by reforming to the above, it is possible to reduce the volume of sludge while suppressing deterioration of treated water quality such as an increase in chromaticity and COD. Further, energy consumption can be reduced as compared with the conventional processing method, and it is not necessary to use a device having high heat resistance and pressure resistance, and therefore, processing at low cost is possible.

次に本発明の実施の形態を図面により説明する。図1は実施形態の嫌気性処理装置を示す系統図、図2は参考例の嫌気性処理装置を示す系統図であり、図1は嫌気性処理液を固液分離装置により濃縮した濃縮汚泥を改質する例、図2は嫌気性処理槽内の混合液を改質する例を示している。 Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram showing an anaerobic treatment apparatus of an embodiment, FIG. 2 is a system diagram showing an anaerobic treatment apparatus of a reference example , and FIG. 1 shows concentrated sludge obtained by concentrating an anaerobic treatment liquid using a solid-liquid separator. FIG. 2 shows an example of reforming the mixed solution in the anaerobic treatment tank.

図1において、1は嫌気性処理槽、2は固液分離装置としての膜分離装置、3は改質槽である。
図1の処理装置では、嫌気性処理槽1は被処理液路4から有機性排液を導入し、返送汚泥路5を通して返送される返送汚泥および嫌気性処理槽1内の嫌気性生物汚泥と混合し、攪拌器6により緩やかに攪拌しながら嫌気性処理を行うように構成されている。ここで行われる嫌気性処理により、被処理液中の有機物は酸生成菌およびメタン生成菌により分解される。生成するメタンガスを含む消化ガスは排ガス路7から排出する。
In FIG. 1, 1 is an anaerobic treatment tank, 2 is a membrane separation apparatus as a solid-liquid separation apparatus, and 3 is a reforming tank.
In the treatment apparatus of FIG. 1, the anaerobic treatment tank 1 introduces organic drainage from the liquid passage 4 to be treated, and returns sludge returned through the return sludge passage 5 and anaerobic biological sludge in the anaerobic treatment tank 1. It mixes and it is comprised so that anaerobic processing may be performed, stirring gently with the stirrer 6. FIG. By the anaerobic treatment performed here, the organic matter in the liquid to be treated is decomposed by acid-producing bacteria and methanogenic bacteria. Digestion gas containing the generated methane gas is discharged from the exhaust gas passage 7.

膜分離装置2は、嫌気性処理槽1内の混合液の一部は連絡路11から取出し、ポンプ12で加圧して膜分離装置2に導いて、分離膜13により膜分離するように構成されている。ここで行われる膜分離により透過液14と濃縮汚泥15とに分離される。透過液14は処理液として処理液路16から系外に排出される。濃縮汚泥15の一部は濃縮液取出路17から取出して改質処理槽3に導入し、残部の一部または全部は返送汚泥路5から嫌気性処理槽1に返送される。余剰汚泥が生じる場合は余剰汚泥排出路18から系外へ排出される。   The membrane separation device 2 is configured such that a part of the mixed solution in the anaerobic treatment tank 1 is taken out from the communication path 11, pressurized by the pump 12 and guided to the membrane separation device 2, and membrane separation is performed by the separation membrane 13. ing. The permeated liquid 14 and the concentrated sludge 15 are separated by membrane separation performed here. The permeate 14 is discharged out of the system from the treatment liquid path 16 as a treatment liquid. A part of the concentrated sludge 15 is taken out from the concentrated liquid take-out path 17 and introduced into the reforming treatment tank 3, and a part or all of the remaining part is returned from the return sludge path 5 to the anaerobic treatment tank 1. When surplus sludge is generated, it is discharged from the surplus sludge discharge path 18 outside the system.

改質槽3はオゾン処理槽が用いられており、充填層21に濃縮汚泥15を通過させ、オゾン発生器22からオゾンを吹込んで接触させてオゾン処理することにより汚泥が改質される。改質汚泥は改質汚泥路23から嫌気性処理槽1に戻し、嫌気処理する。こうして改質により易生物分解性に改質された固形分が嫌気性処理槽1で消化され、処理系から生じる余剰汚泥が減容化する。   An ozone treatment tank is used as the reforming tank 3, and the sludge is reformed by passing the concentrated sludge 15 through the packed bed 21, blowing ozone from the ozone generator 22, and performing ozone treatment. The modified sludge is returned to the anaerobic treatment tank 1 from the modified sludge passage 23 and subjected to anaerobic treatment. Thus, the solid content modified to be readily biodegradable by the modification is digested in the anaerobic treatment tank 1, and the excess sludge generated from the treatment system is reduced in volume.

図2の処理装置は、嫌気性処理槽1内の混合液の一部を引抜汚泥として汚泥引抜路24から引抜き、この引抜汚泥を改質槽3に導入して改質処理を行うように構成される。改質槽3は参考例として高圧パルス放電処理を行うように構成され、+極25および−極26間に電源装置27から高圧パルスを印加して放電を行い、汚泥を改質させる。膜分離装置2の濃縮汚泥は嫌気性処理槽1に返送される。 The treatment apparatus of FIG. 2 is configured to draw a part of the mixed liquid in the anaerobic treatment tank 1 from the sludge extraction passage 24 as drawn sludge and introduce the drawn sludge into the reforming tank 3 to perform the reforming process. Is done. The reforming tank 3 is configured to perform a high-pressure pulse discharge process as a reference example, and applies a high-pressure pulse from the power supply device 27 between the + electrode 25 and the − electrode 26 to perform discharge, thereby reforming sludge. The concentrated sludge from the membrane separator 2 is returned to the anaerobic treatment tank 1.

図1および図2では、固液分離装置として膜分離装置2を使用しているが、沈殿装置、遠心分離装置などの他の固液分離装置を採用することもできる。また図1では、返送汚泥路5からの汚泥の返送を省略することもできる。   In FIG. 1 and FIG. 2, the membrane separation device 2 is used as the solid-liquid separation device, but other solid-liquid separation devices such as a precipitation device and a centrifugal separation device can also be employed. In FIG. 1, the return of the sludge from the return sludge path 5 can be omitted.

参考例1、比較例1
有効容量2 literのジャーファーメンターを用いて、液量1.2 literの嫌気性処理槽とし、下水処理場の余剰汚泥をTSとして約2重量%に濃縮した原泥を1日に1回80mlずつシリンジで供給した。嫌気性処理槽には分画分子量3万、膜面積177cm2の平膜モジュールを有する膜分離装置を接続して、ポンプで循環しながら1日に80mlずつ槽内液をろ過し、槽内液量が一定になるように循環した。嫌気性処理槽は温度35℃で制御し、種汚泥としてUASBのグラニュールを約50ml添加した。
Reference Example 1 and Comparative Example 1
Using an jar fermenter with an effective volume of 2 liters, an anaerobic treatment tank with a liquid volume of 1.2 liters and 80 ml of raw mud concentrated to about 2% by weight of excess sludge from the sewage treatment plant as TS Each was supplied by syringe. A membrane separation device having a flat membrane module with a molecular weight cut off of 30,000 and a membrane area of 177 cm 2 is connected to the anaerobic treatment tank, and the liquid in the tank is filtered 80 ml per day while circulating with a pump. It was circulated so that the amount was constant. The anaerobic treatment tank was controlled at a temperature of 35 ° C., and about 50 ml of UASB granules were added as seed sludge.

参考例1では改質処理槽として高圧パルス放電装置を用い、1日に1回、原泥供給量と同一量の汚泥80mlをシリンジで引抜き、容量150mlのセル中に導入し、タングステン/トリウム合金製の+極とステンレス鋼製の−極間に、電極間隔:5mm、印加電圧:30kV、パルス間隔:50Hzで10分間高圧パルス放電を行って改質処理した後に嫌気性処理槽に戻した。 In Reference Example 1, a high-pressure pulse discharge device was used as the reforming treatment tank, and once a day, 80 ml of sludge having the same amount as the raw mud supply was drawn out with a syringe and introduced into a 150 ml capacity cell, and a tungsten / thorium alloy. Between the positive electrode made of stainless steel and the negative electrode made of stainless steel, a high pressure pulse discharge was performed for 10 minutes at an electrode interval of 5 mm, an applied voltage of 30 kV, and a pulse interval of 50 Hz, and then returned to the anaerobic treatment tank.

比較例1として改質処理を全く行わないものも同時にテストして、槽内の汚泥濃度の変化を比較した。ガス発生量の経日変化を図3に、TS濃度の経日変化を図4に示す。これらの結果から、参考例1では比較例1に比べて汚泥の分解率が高まり、実質的に余剰汚泥がほとんど出ない程度まで減容化されていることがわかる。 A comparative example 1 that was not subjected to any reforming treatment was also tested at the same time to compare changes in sludge concentration in the tank. FIG. 3 shows the daily change of the gas generation amount, and FIG. 4 shows the daily change of the TS concentration. From these results, it can be seen that in Reference Example 1, the sludge decomposition rate is higher than in Comparative Example 1, and the volume is reduced to such an extent that substantially no excess sludge is produced.

実施例
実施例では実施例1における改質処理槽としてオゾン処理槽を用い、1日に1回、原泥供給量と同一量の汚泥80mlをシリンジで引抜き、オゾン注入率を0.05g−O3/g−TSの条件でオゾン処理して改質処理した後に嫌気性処理槽に戻した。
参考例1と同様にテストして、オゾン処理を全く行わない比較例1と槽内の汚泥濃度の変化を比較した。
Example 1
In Example 1 , an ozone treatment tank was used as the reforming treatment tank in Example 1, and once a day, 80 ml of sludge having the same amount as the raw mud supply amount was drawn out with a syringe, and the ozone injection rate was 0.05 g-O 3. After the ozone treatment under the condition of / g-TS and the reforming treatment, it was returned to the anaerobic treatment tank.
The test was performed in the same manner as in Reference Example 1, and the change in the sludge concentration in the tank was compared with Comparative Example 1 in which no ozone treatment was performed.

その結果、参考例1と同様、オゾン処理を施した実施例は嫌気性消化槽内の汚泥濃度はTSとして1.8重量%で安定していたが、比較例1は継続して上昇し運転開始30日目には5重量%以上に達した。これらの結果から、参考例1と同様に、実施例でも比較例1に比べて汚泥の分解率が高まり、実質的に余剰汚泥がほとんどでない程度まで減容化されていることが明かである。 As a result, similarly as in Reference Example 1, Example was subjected to ozone treatment 1 is the sludge concentration in the anaerobic digestion tank was stable at 1.8% by weight TS, Comparative Example 1 is increased continuously It reached 5% by weight or more on the 30th day from the start of operation. From these results, as in Reference Example 1, it is clear that Example 1 also has a higher sludge decomposition rate than Comparative Example 1, and has reduced the volume to such an extent that there is substantially no excess sludge. .

本発明の実施形態の嫌気性処理装置を示す系統図である。It is a systematic diagram which shows the anaerobic processing apparatus of embodiment of this invention. 参考例の嫌気性処理装置を示す系統図である。It is a systematic diagram which shows the anaerobic processing apparatus of a reference example . 参考例1および比較例1のガス発生量の経日変化を示すグラフである。It is a graph which shows the daily change of the gas generation amount of the reference example 1 and the comparative example 1. FIG. 参考例1および比較例1のTS濃度の経日変化を示すグラフである。It is a graph which shows the daily change of TS density | concentration of the reference example 1 and the comparative example 1. FIG.

符号の説明Explanation of symbols

1 嫌気性処理槽
2 膜分離装置
3 改質槽
4 被処理液路
5 返送汚泥路
6、22 攪拌器
7 排ガス路
11 連絡路
12 ポンプ
13 分離膜
14 透過液
15 濃縮汚泥
16 処理液路
17 濃縮液取出路
18 余剰汚泥排出路
21 充填層
22 オゾン発生器
23 改質汚泥路
24 汚泥引抜路
25 +極
26 −極
DESCRIPTION OF SYMBOLS 1 Anaerobic treatment tank 2 Membrane separation device 3 Reforming tank 4 Processed liquid path 5 Return sludge path 6, 22 Stirrer 7 Exhaust gas path 11 Connection path 12 Pump 13 Separation membrane 14 Permeate 15 Concentrated sludge 16 Process liquid path 17 Concentration Liquid discharge path 18 Excess sludge discharge path 21 Packed bed 22 Ozone generator 23 Reformed sludge path 24 Sludge extraction path 25 + Pole 26 -Pole

Claims (1)

嫌気性微生物を含む汚泥の存在下に有機性排液を、液化、低分子化、有機酸生成およびメタン生成のステップを経てメタンガスに転換する一相式のメタン発酵によりメタン発酵させる嫌気性処理工程と、
嫌気性処理工程において生成する汚泥を、オゾン使用量0.005〜0.04g−O/g−VSSでオゾン処理することにより、易生物分解性の改質汚泥に改質する改質工程と、
改質汚泥を嫌気性処理工程に返送する返送工程と
を含む嫌気性処理方法。
Anaerobic treatment process in which organic wastewater is converted to methane gas through the steps of liquefaction, low molecular weight, organic acid production and methane production in the presence of sludge containing anaerobic microorganisms. When,
A reforming step for reforming sludge produced in the anaerobic treatment step into an easily biodegradable modified sludge by ozone treatment with an ozone usage of 0.005 to 0.04 g-O 3 / g-VSS; ,
An anaerobic treatment method including a return step of returning the modified sludge to the anaerobic treatment step.
JP2004114629A 2004-04-08 2004-04-08 Anaerobic treatment method Expired - Fee Related JP4311264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004114629A JP4311264B2 (en) 2004-04-08 2004-04-08 Anaerobic treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004114629A JP4311264B2 (en) 2004-04-08 2004-04-08 Anaerobic treatment method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1912796A Division JPH09206785A (en) 1996-02-05 1996-02-05 Anaerobic treatment and apparatus therefor

Publications (2)

Publication Number Publication Date
JP2004209479A JP2004209479A (en) 2004-07-29
JP4311264B2 true JP4311264B2 (en) 2009-08-12

Family

ID=32822382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004114629A Expired - Fee Related JP4311264B2 (en) 2004-04-08 2004-04-08 Anaerobic treatment method

Country Status (1)

Country Link
JP (1) JP4311264B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203150A (en) * 2006-01-31 2007-08-16 Kajima Corp Anaerobic decomposition method and apparatus for organic matter-containing liquid
JPWO2023176161A1 (en) * 2022-03-14 2023-09-21

Also Published As

Publication number Publication date
JP2004209479A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
US9845260B2 (en) Treatment of municipal wastewater with anaerobic digestion
US7507341B2 (en) Method of and apparatus for converting biological materials into energy resources
WO2016019677A1 (en) Application of potamogeton crispus fermentation liquor in constructed wetland denitrification
JP4075946B2 (en) Method and apparatus for anaerobic digestion treatment of organic waste liquid
JPH09206786A (en) Anaerobic treatment and apparatus therefor
WO2006017738A1 (en) Method of and apparatus for converting biological materials into energy resources
JP2002361293A (en) Method and apparatus for reducing volume of organic sludge
JPH10192889A (en) Method for treating organic drainage
JP5873736B2 (en) Organic wastewater treatment method and treatment apparatus
JP4311264B2 (en) Anaerobic treatment method
JP3959843B2 (en) Biological treatment method for organic drainage
JP4844951B2 (en) Processing method and apparatus for garbage and paper waste
JPH09206785A (en) Anaerobic treatment and apparatus therefor
JP2005103375A (en) Methane fermentation treatment method and apparatus
WO2007083456A1 (en) Method and apparatus for anaerobic digestion treatment of organic waste liquid
JP2004041953A (en) Method and equipment for treating organic waste water
JP2001025789A (en) Treatment of organic waste liquid and device therefor
CN116137857A (en) Household toilet waste treatment system including biological treatment apparatus and combustion apparatus, and method of treating toilet waste by using the same
JPH07124597A (en) Organic sludge treatment method
JP2003300096A (en) Method for anaerobic digestion of high-concentration sludge and apparatus for the same
JP3781216B2 (en) Anaerobic sludge digestion method and device enabling re-digestion of persistent organic substances in anaerobic digested sludge
JP2004041902A (en) Sludge treatment equipment and sludge treatment method
JP3699999B2 (en) Treatment method of organic sludge
JP4148286B2 (en) Method and apparatus for anaerobic digestion treatment of organic waste liquid
JP2002159998A (en) Anaerobic treatment and equipment for organic matter- containing waste liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090504

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees