JP4075946B2 - Method and apparatus for anaerobic digestion treatment of organic waste liquid - Google Patents
Method and apparatus for anaerobic digestion treatment of organic waste liquid Download PDFInfo
- Publication number
- JP4075946B2 JP4075946B2 JP2006178364A JP2006178364A JP4075946B2 JP 4075946 B2 JP4075946 B2 JP 4075946B2 JP 2006178364 A JP2006178364 A JP 2006178364A JP 2006178364 A JP2006178364 A JP 2006178364A JP 4075946 B2 JP4075946 B2 JP 4075946B2
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- temperature
- organic waste
- digester
- waste liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007788 liquid Substances 0.000 title claims description 172
- 230000029087 digestion Effects 0.000 title claims description 139
- 239000010815 organic waste Substances 0.000 title claims description 82
- 238000011282 treatment Methods 0.000 title claims description 58
- 238000000034 method Methods 0.000 title claims description 24
- 239000010802 sludge Substances 0.000 claims description 160
- 238000000926 separation method Methods 0.000 claims description 52
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical group [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 24
- 238000002407 reforming Methods 0.000 claims description 24
- 230000008569 process Effects 0.000 claims description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 42
- 230000000052 comparative effect Effects 0.000 description 37
- 239000007789 gas Substances 0.000 description 21
- 244000005700 microbiome Species 0.000 description 17
- 239000007787 solid Substances 0.000 description 15
- 238000010586 diagram Methods 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 230000009897 systematic effect Effects 0.000 description 12
- 239000000126 substance Substances 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 6
- 238000002156 mixing Methods 0.000 description 5
- 239000010865 sewage Substances 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 235000019621 digestibility Nutrition 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 239000002351 wastewater Substances 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002309 gasification Methods 0.000 description 3
- 239000010800 human waste Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 239000000701 coagulant Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000010801 sewage sludge Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- -1 wool Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Treatment Of Sludge (AREA)
Description
本発明は、有機性廃液を嫌気性消化する方法及び装置に係り、特に、有機性廃液の消化効率を高めてメタンガスの回収量を多くすることができる有機性廃液の嫌気性消化処理方法及び装置に関する。 The present invention relates to a method and apparatus for anaerobic digestion of organic waste liquid, and in particular, an anaerobic digestion treatment method and apparatus for organic waste liquid capable of increasing the digestion efficiency of organic waste liquid and increasing the amount of methane gas recovered. About.
有機性汚泥、し尿、食品工場廃水等のスラリー状の高濃度有機性汚泥を嫌気性微生物の存在下に消化処理して減量化する方法は、古くから行われている。 A method for reducing the amount of sludge-like organic sludge such as organic sludge, human waste, and food factory wastewater by digestion in the presence of anaerobic microorganisms has been practiced for a long time.
特開平9−206785号公報には、有機性廃液を嫌気性消化槽において嫌気性消化処理した後、消化汚泥を固液分離して分離液を処理水として放流し、分離汚泥(濃縮汚泥)を嫌気性消化槽に返送し、また、消化汚泥の一部をオゾン処理することにより改質して嫌気性消化槽に返送する有機性廃液の嫌気性消化方法が記載されている。この方法では、消化汚泥を固液分離して分離汚泥を嫌気性消化槽に返送することにより、嫌気性微生物の滞留時間を確保すると共に、消化汚泥の他の一部をオゾン処理して易生物分解性に改質した後嫌気性消化槽に返送することにより、嫌気性微生物の基質として再び分解させて、消化率(汚泥の減量率)を高め、メタンガスの回収量を多くすることができる。
上記特開平9−206785号公報の装置では、メタンガスの回収率を高めるために、嫌気性消化槽での汚泥の滞留時間を保って嫌気性消化処理の効率を低下させないようにしながら、改質処理する汚泥量を増加させる必要がある。そのためには、消化汚泥の一部を固液分離し、分離液を処理水として排出するとともに分離された高濃度汚泥(濃縮汚泥)を嫌気性消化槽に返送するように構成し、嫌気性消化槽の汚泥保持量及び汚泥濃度を高く保つ必要がある。従って、嫌気性消化槽の有機物負荷が高くなるほど改質処理する汚泥量を増加させる必要があり、槽内汚泥濃度を高くする必要がある。 In the apparatus of the above-mentioned JP-A-9-206785, in order to increase the recovery rate of methane gas, the reforming treatment is performed while maintaining the sludge residence time in the anaerobic digestion tank so as not to lower the efficiency of the anaerobic digestion treatment. It is necessary to increase the amount of sludge. For that purpose, a part of the digested sludge is separated into solid and liquid, and the separated liquid is discharged as treated water, and the separated high-concentration sludge (concentrated sludge) is returned to the anaerobic digestion tank. It is necessary to keep the sludge retention amount and sludge concentration in the tank high. Therefore, it is necessary to increase the amount of sludge to be reformed as the organic load in the anaerobic digestion tank increases, and it is necessary to increase the concentration of sludge in the tank.
しかし、嫌気性消化槽の汚泥濃度が高くなると槽内液の粘性が急激に増加するため、嫌気性消化槽内が充分に撹拌混合されなくなり、嫌気性消化の効率が低下してしまう。そのため、同号公報の装置での嫌気性消化槽において、下水汚泥の嫌気性消化処理などで広く採用されている30〜38℃に加温して嫌気性消化する中温嫌気性消化を行うようにした場合には、槽内汚泥濃度を好ましくは5〜6%以下に維持するように、消化槽から消化汚泥を余剰汚泥として適宜引き抜く必要がある。このため、嫌気性消化槽の有機物負荷が高くなると、引き抜き汚泥量が多くなり、有機成分の減量及びメタンガスの回収に制約が加えられる。 However, when the sludge concentration in the anaerobic digestion tank increases, the viscosity of the liquid in the tank increases rapidly, so that the inside of the anaerobic digestion tank is not sufficiently stirred and mixed, and the efficiency of the anaerobic digestion is reduced. Therefore, in the anaerobic digestion tank in the apparatus of the same publication, medium-temperature anaerobic digestion is performed by heating to 30-38 ° C. widely used in anaerobic digestion treatment of sewage sludge and performing anaerobic digestion. In that case, it is necessary to appropriately extract the digested sludge from the digestion tank as excess sludge so that the concentration of sludge in the tank is preferably maintained at 5 to 6% or less. For this reason, when the organic substance load of an anaerobic digester becomes high, the amount of extracted sludge increases, and restrictions are imposed on the reduction of organic components and the recovery of methane gas.
同号公報の装置において、嫌気性消化槽内を45〜60℃に加温して、中温消化よりも消化速度の高い高温嫌気性消化を行うようにした場合には、中温消化よりも槽内汚泥濃度を低くして高い有機物負荷にも対応することができる。しかしながら、この場合、改質汚泥に由来する一部のタンパク、糖などは、高温微生物の産生する酵素では分解されないため、槽内で生物分解されない溶解性有機成分が中温消化よりも著しく高濃度で放出されてしまう。そのため、固形有機成分は減量するもののメタンガス回収率は高められないという問題がある。また、高温消化では、これらの溶解性有機成分により消化汚泥の固液分離性が悪化して凝集剤の使用量が著しく増加するとともに、分離液が排出される後段の水処理への負荷が著しく増加するという問題があった。また、高温消化では、中温消化よりも加温に要するエネルギーが多くなるという問題もある。 In the apparatus of the same publication, when the inside of the anaerobic digestion tank is heated to 45 to 60 ° C. and high-temperature anaerobic digestion having a digestion rate higher than that of the intermediate-temperature digestion is performed, The sludge concentration can be lowered to cope with high organic load. However, in this case, some proteins, sugars, etc. derived from the modified sludge are not decomposed by enzymes produced by high-temperature microorganisms, so that soluble organic components that are not biodegradable in the tank have a significantly higher concentration than medium-temperature digestion. It will be released. Therefore, although the amount of solid organic components is reduced, there is a problem that the methane gas recovery rate cannot be increased. In high-temperature digestion, the solid-liquid separability of digested sludge deteriorates due to these soluble organic components, and the amount of flocculant used increases remarkably, and the load on the subsequent water treatment where the separated liquid is discharged is remarkably increased. There was a problem of increasing. In addition, high-temperature digestion also has a problem that more energy is required for heating than in medium-temperature digestion.
本発明は、これらの従来の問題点を解決し、高い有機物負荷においても、有機成分を十分に減量化することができるとともに、メタンガス回収量を多くすることができる有機性廃液の嫌気性処理装置を提供することを目的とする。 The present invention solves these conventional problems, and an anaerobic treatment apparatus for organic waste liquid that can sufficiently reduce the amount of organic components and increase the amount of methane gas recovered even under a high organic load. The purpose is to provide.
本発明(請求項1)の有機性廃液の嫌気性消化処理装置は、嫌気性消化槽としての、処理温度45〜95℃の高温消化槽及び該高温消化槽の流出液が導入される処理温度25〜40℃の中温消化槽と、該中温消化槽からの消化汚泥の一部を改質する改質手段と、該改質手段からの改質汚泥を前記高温消化槽に返送する改質汚泥返送手段と、該中温消化槽からの消化汚泥を濃縮する固液分離手段と、該固液分離手段からの濃縮汚泥を前記嫌気性消化槽へ返送する濃縮汚泥返送手段と、を有する有機性廃液の嫌気性消化処理装置において、有機性廃液の全量が該中温消化槽に導入されることを特徴とするものである。 Anaerobic digestion apparatus of the organic wastewater of the present invention (claim 1), as anaerobic digestion tank, treatment temperature effluent of the hot digester and the hot digester processing temperatures 45 to 95 ° C. is introduced 25-40 ° C. medium temperature digester, reforming means for reforming part of digested sludge from the medium temperature digester, and modified sludge for returning the modified sludge from the reformer to the high temperature digester Organic waste liquid having return means, solid-liquid separation means for concentrating the digested sludge from the intermediate temperature digester, and concentrated sludge return means for returning the concentrated sludge from the solid-liquid separator to the anaerobic digester In the anaerobic digestion apparatus, the total amount of the organic waste liquid is introduced into the intermediate temperature digestion tank.
なお、本発明において、「汚泥の改質」とは、微生物によって資化されにくい汚泥中の物質や汚泥細胞を変性・破壊して、微生物によって資化されやすい形態にすることを指す。 In the present invention, “sludge reforming” refers to modifying and destroying substances and sludge cells in sludge that are not easily assimilated by microorganisms to form them that are easily assimilated by microorganisms.
請求項2の有機性廃液の嫌気性消化処理装置は、嫌気性消化槽としての、処理温度45〜95℃の高温消化槽及び該高温消化槽の流出液が導入される処理温度25〜40℃の中温消化槽と、該中温消化槽からの消化汚泥の一部を改質する改質手段と、該改質手段からの改質汚泥を前記高温消化槽に返送する改質汚泥返送手段と、該中温消化槽からの消化汚泥を濃縮する固液分離手段と、該固液分離手段からの濃縮汚泥を前記嫌気性消化槽へ返送する濃縮汚泥返送手段と、を有する有機性廃液の嫌気性消化処理装置において、有機性廃液の全量が前記固液分離手段に導入され、該固液分離手段からの濃縮汚泥が前記中温消化槽にのみ導入されることを特徴とするものである。
Anaerobic digestion apparatus of the organic wastewater according to
請求項3の有機性廃液の嫌気性消化処理装置は、請求項1において、前記固液分離手段からの濃縮汚泥の少なくとも一部を前記中温消化槽に返送することを特徴とするものである。
An organic waste liquid anaerobic digestion treatment apparatus according to
請求項4の有機性廃液の嫌気性消化処理装置は、請求項1ないし3のいずれか1項において、前記固液分離手段で固液分離される消化汚泥に凝集剤を添加する手段を備えたことを特徴とするものである。
The apparatus for anaerobic digestion of organic waste liquid according to
請求項5の有機性廃液の嫌気性消化処理装置は、請求項1ないし4のいずれか1項において、前記改質手段による改質処理がオゾン処理であることを特徴とするものである。
The organic waste liquid anaerobic digestion treatment apparatus according to
嫌気性消化槽では、嫌気性微生物を含む汚泥の存在下に、有機性廃液がメタン発酵処理される。本発明では、この嫌気性消化槽を、処理温度45〜95℃の高温消化槽と、高温消化槽の流出液が導入される処理温度25〜40℃の中温消化槽とで構成している。廃液中の有機成分は、高温消化槽及び中温消化槽のそれぞれにおいて、55℃付近に最適温度がある高温嫌気性微生物、35℃付近に最適温度がある中温嫌気性微生物により液化→低分子化→有機酸生成→メタン生成のステップによりメタンガスに転換される。 In an anaerobic digester, organic waste liquid is subjected to methane fermentation in the presence of sludge containing anaerobic microorganisms. In this invention, this anaerobic digester is comprised with the high temperature digester with a process temperature of 45-95 degreeC, and the intermediate temperature digester with the process temperature of 25-40 degreeC into which the effluent of a high temperature digester is introduced. Organic components in the waste liquid are liquefied by high-temperature anaerobic microorganisms having an optimum temperature around 55 ° C. and medium-temperature anaerobic microorganisms having an optimum temperature around 35 ° C. It is converted to methane gas through the steps of organic acid production → methane production.
高温消化槽では、前記のとおり、中温消化よりも速やかに固形有機成分の分解が進むものの、コロイド状の溶解性有機成分として多くが残留する。これらコロイド状の有機成分は、中温微生物によって分解可能であるため、高温消化槽の流出液を中温消化槽に導入することにより、残留した溶解性有機成分もメタンガスに転換される。従って、本発明によると、高温消化槽において高い消化速度で固形有機成分を分解し、中温消化槽においてメタンガスへの転換を進めることができる。 In the high-temperature digestion tank, as described above, although the decomposition of the solid organic component proceeds more rapidly than the intermediate-temperature digestion, much remains as a colloidal soluble organic component. Since these colloidal organic components can be decomposed by mesophilic microorganisms, the remaining soluble organic components are also converted into methane gas by introducing the effluent of the high-temperature digester into the intermediate-temperature digester. Therefore, according to the present invention, the solid organic component can be decomposed at a high digestion rate in the high-temperature digester, and the conversion to methane gas can be promoted in the intermediate-temperature digester.
このようにして、本発明の有機性廃液の嫌気性消化処理方法及び装置によれば、嫌気性消化処理の効率が高められ、従来より高い有機物負荷においても、加温エネルギーや凝集剤使用量を増加させずに、有機成分を大幅に減量化するとともにメタンガスを大量に回収することもできる。 Thus, according to the method and apparatus for anaerobic digestion of the organic waste liquid of the present invention, the efficiency of the anaerobic digestion is increased, and even when the organic load is higher than conventional, the heating energy and the amount of the flocculant used are reduced. Without increasing the amount, the organic components can be greatly reduced and a large amount of methane gas can be recovered.
なお、請求項1では有機性廃液の全量を中温消化槽に導入する。
In addition, in
また、請求項2では有機性廃液の全量を固液分離手段に導入する。このようにした場合には、中温消化槽からの消化汚泥が有機性廃液によって希釈されることにより、凝集剤が効きやすくなる。また、固液分離手段での処理汚泥量を少なくすることができる。この固液分離手段による固液分離は、有機性廃液を処理系に導入する際に、消化槽の液位を一定に保つ(溢れないようにする)ために行われるものであり、導入する有機性廃液と同体積の分離水(固液分離処理水)を該固液分離手段から系外に排出する必要がある。一般に、有機性廃液のSS濃度は消化汚泥のSS濃度よりも低い。そのため、有機性廃液と消化汚泥の混合液を固液分離して分離水を有機性廃液導入量と同体積だけ取り出す場合の方が、消化汚泥のみを固液分離して分離水を有機性廃液導入量と同体積だけ取り出す場合に比べて、固液分離手段で処理する汚泥量は少なくて済む。これにより、固液分離手段として、より小型の装置を採用することが可能となる。また、処理する汚泥量が少なくて済むことから、省エネルギー化にも資する。 In the second aspect, the entire amount of the organic waste liquid is introduced into the solid-liquid separation means. In this case, the digested sludge from the intermediate temperature digester is diluted with the organic waste liquid, so that the flocculant becomes effective. Moreover, the amount of treated sludge in the solid-liquid separation means can be reduced. The solid-liquid separation by this solid-liquid separation means is performed in order to keep the liquid level in the digestion tank constant (so as not to overflow) when introducing the organic waste liquid into the treatment system. It is necessary to discharge separation water (solid-liquid separation treated water) having the same volume as the effluent from the solid-liquid separation means. Generally, the SS concentration of organic waste liquid is lower than the SS concentration of digested sludge. Therefore, when separating the mixed liquid of organic waste liquid and digested sludge by solid-liquid separation and taking out the separated water in the same volume as the amount of organic waste liquid introduced, the separated water is separated into the organic waste liquid by solid-liquid separation of only the digested sludge. The amount of sludge to be treated by the solid-liquid separation means is smaller than in the case where the same volume as the amount introduced is taken out. This makes it possible to employ a smaller apparatus as the solid-liquid separation means. Moreover, since the amount of sludge to be processed is small, it contributes to energy saving.
以下に図面を参照して本発明の実施の形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図2,4,6,10はそれぞれ本発明の有機性廃液の嫌気性消化処理方法及び装置の実施の形態を示す系統図、図1,3,5,7〜9,11,12は参考例を示す系統図である。図1〜12において、同一機能を奏する部材には、同一符号を付してある。 2, 4, 6, and 10 are system diagrams showing an embodiment of an organic anaerobic digestion treatment method and apparatus of the present invention, and FIGS. 1, 3, 5, 7 to 9, 11, and 12 are reference examples. FIG. 1-12, the same code | symbol is attached | subjected to the member which show | plays the same function.
[図1の有機性廃液の嫌気性消化処理装置]
図1において、有機性汚泥(有機性廃液)は高温消化槽1に導入され、45〜95℃にて嫌気性消化処理される。この高温消化槽1の消化汚泥が中温消化槽2に導入され、25〜40℃にて嫌気性消化処理される。この中温消化槽2の消化汚泥の一部を引き抜き、固液分離装置3で濃縮する。固液分離装置3からの液分は系外に取り出される。濃縮された汚泥の一部は、返送配管4を介して中温消化槽2へ返送される。
[Anaerobic digestion treatment equipment for organic waste liquid in Fig. 1]
In FIG. 1, organic sludge (organic waste liquid) is introduced into the high-
また、中温消化槽2からの消化汚泥の一部を配管5で引き抜いて、改質装置6で改質する。改質汚泥は、返送配管7を介して高温嫌気性消化槽1に返送する。なお、中温消化槽2から配管5へ引き抜いた汚泥の一部は、必要に応じ余剰消化汚泥として系外に引き抜かれる。この余剰消化汚泥の引き抜きは、消化槽1,2の汚泥(TS)濃度を3〜10%に維持するように行うのが好ましい。
Further, a part of the digested sludge from the
[図2〜4の有機性廃液の嫌気性消化処理装置]
図2では有機性廃液は中温消化槽2に供給され、高温消化槽1には改質装置6からの改質汚泥のみが導入されている。その他の構成は図1と同様であり、同一符号は同一部分を示している。
[Anaerobic digestion treatment equipment of organic waste liquid of FIGS. 2-4]
In FIG. 2, the organic waste liquid is supplied to the
図3では、有機性廃液は高温消化槽1と中温消化槽2の双方に供給され、図4では有機性廃液は固液分離装置3に供給されている。その他の構成は図1と同様であり、同一符号は同一部分を示している。
In FIG. 3, the organic waste liquid is supplied to both the high
[図5〜8の有機性廃液の嫌気性消化処理装置]
図5〜8では、固液分離装置3からの濃縮汚泥はいずれも高温消化槽1に返送されている。
[Anaerobic digestion treatment equipment of organic waste liquid of FIGS. 5-8]
5-8, all the concentrated sludge from the solid-
図5〜8はそれぞれ図1〜4に対応するものであり、図5では有機性廃液を高温消化槽1に導入し、図6では有機性廃液を中温消化槽2に導入し、図7では有機性廃液を高温消化槽1及び中温消化槽2に導入し、図8では有機性廃液を固液分離装置3に導入している。
FIGS. 5 to 8 correspond to FIGS. 1 to 4, respectively. In FIG. 5, the organic waste liquid is introduced into the high
その他の構成は図1〜4と同一である。 Other configurations are the same as those in FIGS.
[図9〜12の有機性廃液の嫌気性消化処理装置]
図9〜12では、固液分離装置3からの濃縮汚泥は、配管4から分岐する配管4a,4bを介して高温消化槽1及び中温消化槽2の双方に返送されている。
[Anaerobic digestion treatment equipment of organic waste liquid of FIGS. 9-12]
9 to 12, the concentrated sludge from the solid-
図9〜12はそれぞれ図1〜4に対応するものであり、図9では有機性廃液を高温消化槽1に導入し、図10では有機性廃液を中温消化槽2に導入し、図11では有機性廃液を高温消化槽1及び中温消化槽2に導入し、図12では有機性廃液を固液分離装置3に導入している。
9 to 12 correspond to FIGS. 1 to 4, respectively, in FIG. 9, the organic waste liquid is introduced into the high-
その他の構成は図1〜4と同一である。 Other configurations are the same as those in FIGS.
本発明において処理の対象となる有機性廃液は、嫌気性消化処理によって減量化される有機物を含有する廃液であり、固形物を含むスラリー状のものでも、固形物を含まない液状のものでも良い。また、難生物分解性の有機物、無機物、セルロース、紙、綿、ウール、布、し尿中の固形物などが含有されていても良い。このような有機性廃液としては下水、下水初沈汚泥、し尿、浄化槽汚泥、食品工場の排水や残渣、ビール廃酵母、その他の産業廃液、これらの廃液を処理した際に生じる余剰汚泥等の有機性汚泥が挙げられる。 The organic waste liquid to be treated in the present invention is a waste liquid containing an organic substance that is reduced by anaerobic digestion treatment, and may be a slurry containing a solid or a liquid containing no solid. . In addition, non-biodegradable organic substances, inorganic substances, cellulose, paper, cotton, wool, cloth, solid matter in human waste may be contained. Examples of such organic waste liquid include sewage, sewage initial sedimentation sludge, human waste, septic tank sludge, wastewater and residue from food factories, beer waste yeast, other industrial waste liquids, and surplus sludge generated when these waste liquids are treated. Natural sludge.
高温消化槽1及び中温消化槽2では、嫌気性微生物を含む汚泥の存在下に、このような有機性廃液をメタン発酵させて処理する。嫌気性微生物を含む汚泥は酸生成菌とメタン生成菌を含む。嫌気性消化工程において有機性物質は嫌気性微生物により液化→低分子化→有機酸生成→メタン生成のステップによりメタンガスに転換され、処理される。
In the high-
高温消化槽1では、55℃付近に最適温度がある高温メタン生成菌が主として保持され、中温消化槽2では35℃付近に最適温度を有する中温メタン生成菌が主として保持されている。中温メタン生成菌は増殖が遅いためSRTを長くする、即ち、嫌気性消化槽を大きくする必要があるが、比較的低温での処理が可能なため加温及び保温のための設備を簡易にすることができる。これに対し、高温メタン生成菌の場合は加温及び保温の設備が必要になるが、増殖が速いためSRTが短くて良く、嫌気性消化槽を小さくすることができる。
In the high-
高温消化槽1は、蒸気の吹き込み、温水の導入、熱交換器への汚泥の循環などにより槽内が前記温度になるように加温される。中温消化槽は、通常、高温消化槽の流出液と前記有機性廃液の導入により、槽内温度を前述の値に保つことができるが、加温、または冷却してもよい。
The high-
嫌気性消化槽での汚泥滞留時間(SRT)は、高温消化槽1で5日以上、好ましくは10〜30日であり、中温消化槽2では10日以上、好ましくは15〜50日である。各嫌気性消化槽1,2内のSS濃度は20,000〜120,000mg/L(2〜12%)、好ましくは40,000〜80,000mg/L(4〜8%)である。
The sludge residence time (SRT) in the anaerobic digester is 5 days or more, preferably 10-30 days in the high-
なお、SRTを長くすればするほど汚泥の分解率は高くなるが、槽の容量が大きくなってしまう。消化槽内SS濃度を高くすればするほど同じ滞留時間でも改質処理される汚泥量が増え、分解率が高まるが、槽内の撹拌混合、汚泥の固液分離が難しくなる。 Note that the longer the SRT, the higher the sludge decomposition rate, but the larger the tank capacity. As the SS concentration in the digestion tank is increased, the amount of sludge to be reformed increases even in the same residence time and the decomposition rate increases, but stirring and mixing in the tank and solid-liquid separation of sludge become difficult.
消化汚泥を濃縮するための固液分離装置3としては、消化汚泥を固液分離して濃縮することができるものであれば良く、特に制限はないが、遠心分離装置、浮上分離装置、沈殿槽、膜分離装置、濾過装置などを用いることができる。
The solid-
中温消化槽2から固液分離装置3へ引き抜く消化汚泥の1日当りの引き抜き量は、中温消化槽2内の保有汚泥の1/30〜1/10程度が好ましい。
The daily extraction amount of the digested sludge extracted from the
本発明では、中温消化槽2からの消化汚泥に凝集剤、好ましくは高分子凝集剤を添加してから固液分離装置3に導入してもよい。このように凝集剤を添加して消化汚泥中のSS分を凝集させることにより、固液分離装置3での濃縮倍率を高め、清澄な分離液を得ることができる。また、固液分離装置3からの固形分の系外流出を抑えて汚泥有機成分の減量、メタンガスへの転換を促進することができる。
In the present invention, a flocculant, preferably a polymer flocculant, may be added to the digested sludge from the
なお、高温消化槽で残留する溶解性有機成分は固液分離に必要となる凝集剤添加量を増加させるが、中温消化槽においてこれらの溶解性有機成分がメタンガスに転換し除去される。そのため、凝集剤添加量をそれほど多くすることなく、中温消化槽2からの消化汚泥を良好に凝集処理することができる。
The soluble organic components remaining in the high-temperature digester increase the amount of flocculant added necessary for solid-liquid separation, but these soluble organic components are converted to methane gas and removed in the intermediate-temperature digester. Therefore, the digested sludge from the
この凝集処理の効果を高めるために、固液分離装置3の前段に混合槽を設け、この混合槽において、又はこの混合槽に流入する消化汚泥に対して、凝集剤を添加するようにしてもよい。
In order to enhance the effect of this flocculation treatment, a mixing tank is provided in the front stage of the solid-
凝集剤としては、有機系、無機系のいずれか、またはそれら両方を用いてもよいが、添加量が少なくてよいこと、消化槽内で分解されて蓄積しにくいことから有機系の高分子凝集剤、特にカチオン性、または両性高分子凝集剤が好ましい。 As the flocculant, either organic or inorganic, or both of them may be used. However, since the addition amount may be small and it is difficult to decompose and accumulate in the digester, organic polymer aggregation Agents, particularly cationic or amphoteric polymer flocculants are preferred.
固液分離装置3における消化汚泥の濃縮の程度は、用いる濃縮機の性能にもよるが、通常、TS(固形物)濃度3〜6%程度の消化汚泥を、8〜20%程度のペースト状ないし高粘性の液状に濃縮する程度であることが好ましい。
The degree of concentration of the digested sludge in the solid-
固液分離装置3の濃縮分離液は処理水としてそのまま下水道等へ放流することができるが、好気性生物処理、その他の後処理を行った後放流しても良い。
The concentrated separation liquid of the solid-
固液分離した際の濃縮汚泥を第1〜4図のように中温消化槽2に返送することによって、中温消化槽2の汚泥滞留時間を長くし、増殖が遅い中温嫌気性微生物を槽内に維持することができる。
By returning the concentrated sludge after solid-liquid separation to the intermediate
濃縮汚泥を前記有機性廃液や後述する改質汚泥、嫌気性消化槽の消化汚泥、上水、工水、その他有機性廃液の生物処理水などと混合した後、嫌気性消化槽に返送してもよい。 Concentrated sludge is mixed with the organic waste liquid, modified sludge described later, digested sludge of anaerobic digestion tank, clean water, industrial water, biological treatment water of other organic waste liquid, etc., and then returned to the anaerobic digester Also good.
中温消化槽2から取り出した消化汚泥を、この装置(嫌気性消化処理装置)に供給される有機性廃液の一部、または第4図のようにこの装置に供給される有機性廃液の全部と混合して希釈した後、固液分離を行い、有機性廃液中の固形分を含んだ濃縮汚泥を嫌気性消化槽に返送してもよい。消化汚泥が有機性廃液によって希釈されることにより、凝集剤が効きやすくなるほか、固液分離装置3での処理汚泥量を少なくすることができる。
Digested sludge taken out from the medium-
消化槽1,2での無機成分や難生物分解性有機成分の蓄積を防ぐため、嫌気性消化槽の消化汚泥(例えば図示の通り中温消化槽2の消化汚泥)又は前記固液分離装置3の濃縮汚泥の一部を余剰消化汚泥として排出し、脱水、焼却、埋立等の処分を行ってもよい。この場合も、図示の通り、中温消化槽2の消化汚泥を排出するのが好ましい。これにより、脱水を行う際の凝集剤添加率を少なくするとともに、脱水分離液の水質を良好に保つことができる。
In order to prevent the accumulation of inorganic components and hardly biodegradable organic components in the
改質装置6では、消化槽2から引き抜いた嫌気性消化汚泥をオゾン処理、熱処理、ミルによる破砕、酸/アルカリ処理などによって改質する。このような改質処理を行うことにより、嫌気性消化汚泥中の菌体は死滅し、その他の難分解性有機成分とともに易生物分解性に改質される。これら易生物分解性成分が嫌気性消化槽で消化されることで、処理系からより多くの有機成分が減量され、メタンガスが回収されるようになる。
In the reformer 6, the anaerobic digested sludge extracted from the
改質装置としてオゾン処理装置を採用した場合、このオゾン処理装置では、中温消化槽2からの消化汚泥をオゾンと接触させることにより改質する。このオゾン処理装置におけるオゾンとの接触方法としては、オゾン処理槽に消化汚泥を導入してオゾンを吹き込む方法、機械攪拌による方法、充填層を利用する方法などが採用できる。オゾンとしてはオゾン化酸素、オゾン化空気などのオゾン含有ガスの他、オゾン含有水などが使用でき、オゾンの使用量は通常オゾン処理される消化汚泥のVSSあたり0.01〜0.08g−O3/g−VSS、好ましくは0.02〜0.05g−O3/g−VSSである。オゾン処理のpHは4〜10が好ましい。
When an ozone treatment device is employed as the reforming device, the ozone treatment device is modified by bringing digested sludge from the intermediate
なお、オゾン使用量を多くすればするほど分解性は向上するが、徐々に頭打ちになるため(倍にすれば倍分解するものではない)、0.02〜0.05g−O3/g−VSSが効率的である。改質処理する汚泥量を多くすればするほど生物分解を受ける餌が増えるが、同時に餌を分解する微生物量が減るため、トータルで見た汚泥の分解率はある範囲にピークがある。また、分解汚泥量あたりのオゾン消費量は、改質処理量が少ないほど少なくて済むことから、多少分解率が下がっても改質処理量を少なくした方が効率的な場合がある。 In addition, although the decomposability improves as the amount of ozone used is increased, it gradually reaches a peak (not doubled when doubled), so 0.02 to 0.05 g-O 3 / g- VSS is efficient. As the amount of sludge to be modified increases, the amount of bait that undergoes biodegradation increases. At the same time, the amount of microorganisms that decompose the bait decreases. Further, since the ozone consumption per degraded sludge amount is smaller as the reforming treatment amount is smaller, it may be more efficient to reduce the reforming treatment amount even if the decomposition rate is somewhat lowered.
本発明では、改質する消化汚泥は中温消化槽2から引き抜く。中温消化槽2では高温消化槽1で残留する溶解性有機成分が分解されて、生物分解性の有機成分がより少なくなっており、難分解性の有機成分、微生物菌体の改質を効率的に行うことができる。
In the present invention, the digested sludge to be modified is extracted from the
改質した後の汚泥は、高温消化槽1に返送する。高温消化槽1に返送することによって、改質した汚泥の分解を中温よりも消化速度の高い高温消化で速やかに行うことができる。
The sludge after the modification is returned to the
また、改質のために中温消化槽2から引き抜く消化汚泥量は、改質による減量効果を十分確保するために、消化汚泥中に含まれる有機固形物(VSS)の量として、中温消化槽2に導入される有機固形物(VSS)量の1/3〜5倍、好ましくは1/2〜2倍に相当する量とするのが好ましい。
The amount of digested sludge extracted from the
また、一日当たりに改質処理する消化汚泥量は高温消化槽1及び中温消化槽2の全保有有機固形物(VSS)量の1/10以下、好ましくは1/100〜1/15、より好ましくは1/50〜1/30に相当する量とするのが好ましい。一日当たりの改質処理量をこのような量にすることにより、嫌気性消化処理に必要な微生物量を消化槽1,2で保持することができ、嫌気性消化処理の効率を高く保つことができる。
The amount of digested sludge to be modified per day is 1/10 or less, preferably 1/100 to 1/15 of the total amount of organic solids (VSS) in the high-
なお、本発明において、改質処理は、何らオゾン処理装置に限定されず、汚泥細胞を変性、破壊して微生物によって資化されやすい形態に改質することができるものであれば良く、オゾン処理の他、例えば過酸化水素等の酸化力の強い酸化剤や、酸、アルカリなどによる化学的処理、超音波処理、ミルによる磨砕のような物理的処理、熱的処理等の各種の方法を単独で或いは2種以上を組み合わせて採用することができる。 In the present invention, the modification treatment is not limited to an ozone treatment apparatus, and any treatment can be used as long as it can denature and destroy sludge cells and can be modified to a form that is easily assimilated by microorganisms. In addition, various methods such as chemical treatment with strong oxidizing power such as hydrogen peroxide, chemical treatment with acid, alkali, etc., ultrasonic treatment, physical treatment such as grinding with mill, thermal treatment, etc. It can be employed alone or in combination of two or more.
なお、固液分離装置3は、大気と遮断した状態で運転するのが好ましく、例えば、濃縮機を密閉状態にして濃縮することにより汚泥と酸素との接触を制限すると、嫌気性菌を生かしたまま嫌気性消化槽に返送でき、嫌気性消化槽の生菌数保持、増加が容易となり、消化効率を向上させることができる。
In addition, it is preferable to operate the solid-
また、嫌気性消化槽で発生する消化ガス(メタンガス)を有効利用して、消化槽の加温や、改質手段等に必要な動力の一部又は全部を賄うことも好ましい。 It is also preferable to effectively use digestion gas (methane gas) generated in an anaerobic digestion tank to cover part or all of the power necessary for heating of the digestion tank, reforming means, and the like.
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[比較例1]
有機性廃液として、下水処理場より採取した混合生汚泥(平均TVS濃度30g/L)を、第1図の装置(高温消化槽1及び中温消化槽2の容積は各々1.5L。固液分離装置3は遠心分離機。)を用い、下記条件にて処理した。
[Comparative Example 1]
As organic waste liquid, mixed raw sludge (average TVS concentration 30 g / L) collected from a sewage treatment plant was used for the devices shown in Fig. 1 (volumes of the high-
消化槽1,2の種汚泥として、それぞれ下水処理場の嫌気性消化槽から採取した高温消化汚泥、中温消化汚泥を用いた。
High temperature digested sludge and medium temperature digested sludge collected from the anaerobic digester of the sewage treatment plant were used as seed sludge for the
約6ヶ月間運転したところ、槽内濃度はほぼ一定で推移するようになり、系が定常に達したと考えられた。その後の6ヶ月間におけるTVS成分の収支を第13図に示す。 After operating for about 6 months, the concentration in the tank became almost constant, and the system was considered to have reached a steady state. FIG. 13 shows the balance of TVS components for the subsequent six months.
高温消化槽1の温度:55℃
中温消化槽2の温度:35℃
投入汚泥量:100mL/day(全量を高温消化槽1に投入)
改質装置6:オゾン処理装置
オゾン濃度:150mg/NL
オゾン処理汚泥量:60mL/day
オゾン反応率:0.03g−O3/g−TVS
固液分離:中温消化槽2から引き抜いた汚泥に0.1%に溶解したカチオンポリマー
を、遠心分離後の上澄液のSS濃度が2,000mg/L以下となるよう
に表1に示す添加率にて添加し、3,000rpmで10分間遠心分離し
た後、汚泥の約半分の液量の上澄液を系外に排出した(2倍濃縮)。残り
(濃縮汚泥)は中温消化槽2に戻した。
消化汚泥の引き抜き:中温消化槽2のTVS濃度が4%超えないように中温消化槽2
から適宜引き抜いた。この引き抜き量に合わせて、消化槽内の
液量が一定であるように、固液分離時の上澄液の排出量を調整
した。
Sludge input amount: 100 mL / day (the entire amount is charged into the high-temperature digester 1)
Reformer 6: Ozone treatment device Ozone concentration: 150mg / NL
Ozone treatment sludge amount: 60mL / day
Ozone reaction rate: 0.03 g-O 3 / g-TVS
Solid-liquid separation: Cationic polymer dissolved in 0.1% in the sludge extracted from the
So that the SS concentration of the supernatant after centrifugation is 2,000 mg / L or less.
At the addition rate shown in Table 1, and centrifuged at 3,000 rpm for 10 minutes.
After that, the supernatant liquid of about half the sludge was discharged out of the system (concentration twice). remaining
(Concentrated sludge) was returned to the
Extraction of digested sludge: Medium
Was pulled out from time to time. In accordance with this amount of withdrawal,
Adjust the discharge amount of the supernatant during solid-liquid separation so that the liquid volume is constant
did.
[比較例2]
図5の装置(投入汚泥を高温消化槽1に投入、固液分離後の濃縮汚泥を高温消化槽1に返送)で、消化槽1,2をいずれも35℃に維持した。その他の条件は比較例1と同一とした。
[Comparative Example 2]
The
[比較例3]
比較例2において、消化槽1,2をいずれも55℃に維持した。その他の条件は比較例1と同一とした。
[Comparative Example 3]
In Comparative Example 2, the
各消化槽1,2の種汚泥として、下水処理場より採取した消化汚泥を用い、約6ヶ月運転した後の、系が定常に達したと見られる約6ヶ月間におけるTVS成分の収支を図13に示す。
Using the digested sludge collected from the sewage treatment plant as the seed sludge for each
消化率(1−引抜汚泥量/投入汚泥量)×100%は、比較例2で80%、比較例3で92%である。比較例3では引抜汚泥量が比較例2の40%に減少したが、分離液から系外に排出されたTVS成分を考慮したガス化率では、比較例2で72%、比較例2で74%と差はわずかであった。これに対し、比較例1では、消化率が92%であったうえに、ガス化率も83%に向上した。図14のガス発生量の推移に示すように、本比較例1では、消化ガス量が比較例2,3より約15%増加した。 The digestibility (1-drawn sludge amount / input sludge amount) × 100% is 80% in Comparative Example 2 and 92% in Comparative Example 3. In Comparative Example 3, the amount of extracted sludge decreased to 40% of Comparative Example 2, but the gasification rate considering the TVS component discharged out of the system from the separated liquid was 72% in Comparative Example 2 and 74 in Comparative Example 2. % And the difference was slight. On the other hand, in Comparative Example 1, the digestibility was 92% and the gasification rate was improved to 83%. As shown in the transition of the gas generation amount in FIG. 14, in this Comparative Example 1, the digestion gas amount increased by about 15% compared to Comparative Examples 2 and 3.
また、固液分離時の凝集剤添加率の平均値は、比較例2の1.0g/g−TVSに対し、比較例3では2.5g/g−TVSに増加させる必要があったが、比較例1では比較例2と同等の1.0g/g−TVSであった。 In addition, the average value of the flocculant addition rate during the solid-liquid separation needs to be increased to 2.5 g / g-TVS in Comparative Example 3 compared to 1.0 g / g-TVS in Comparative Example 2. In Comparative Example 1, it was 1.0 g / g-TVS equivalent to Comparative Example 2 .
[実施例1]
第2図の装置を用い、有機性廃液の全量を中温消化槽2に供給するようにした他は比較例1と同一条件にて同一の有機性廃液(混合生汚泥)を処理した。有機性廃液の中温消化槽2への供給量は、比較例1における高温消化槽1への供給量と同じ100mL/dayである。
[Example 1]
The same organic waste liquid (mixed raw sludge) was treated under the same conditions as in Comparative Example 1 except that the entire amount of the organic waste liquid was supplied to the
[比較例4]
第3図の装置を用い、有機性廃液の1/2量を高温消化槽1に供給し、1/2量を中温消化槽2に供給するようにした他は実施例1と同一条件にて同一の有機性廃液(混合生汚泥)を処理した。高温消化槽1及び中温消化槽2への有機性廃液の供給量は、それぞれ50mL/dayである。
[Comparative Example 4]
The apparatus of FIG. 3 was used under the same conditions as in Example 1 except that 1/2 amount of the organic waste liquid was supplied to the high-
[実施例2]
第4図の装置を用い、有機性廃液の全量を固液分離装置3に供給するようにした他は比較例1と同一条件にて同一の有機性廃液(混合生汚泥)を処理した。有機性廃液の固液分離装置3への供給量は、比較例1における高温消化槽1への供給量と同じ100mL/dayである。
[Example 2]
The same organic waste liquid (mixed raw sludge) was treated under the same conditions as in Comparative Example 1 except that the total amount of the organic waste liquid was supplied to the solid-
実施例1,2,比較例4における投入汚泥と未消化汚泥(引抜及び分離液)の関係を第15図に示す。また、期間中の固液分離時の処理汚泥量、凝集剤添加率、凝集剤使用量の平均値を表1に示す。 FIG. 15 shows the relationship between the input sludge and undigested sludge (withdrawal and separation liquid) in Examples 1 and 2 and Comparative Example 4. Table 1 shows the average values of the amount of treated sludge, the flocculant addition rate, and the amount of flocculant used during solid-liquid separation during the period.
[考察]
実施例1,2,比較例4では、いずれも、比較例1と同様に、消化率(1−引抜汚泥量/投入汚泥量)が90〜93%に、分離液から系外に排出されたTVS成分を考慮したガス化率が82〜83%に向上し、消化ガス量が比較例2,3よりも約15%増加した。
[Discussion]
In Examples 1 and 2 and Comparative Example 4 , as in Comparative Example 1, the digestibility (1-drawn sludge amount / input sludge amount) was 90% to 93% and was discharged out of the system from the separated liquid. The gasification rate considering the TVS component was improved to 82-83%, and the amount of digestion gas was increased by about 15% compared to Comparative Examples 2 and 3.
表1の通り、比較例4では、比較例1及び実施例1に比べ、低い凝集剤添加率で清澄な分離液を得ることができ、凝集剤使用量を15%減らすことができた。 As shown in Table 1, in Comparative Example 4 , as compared with Comparative Example 1 and Example 1, a clear separation liquid could be obtained with a lower coagulant addition rate, and the amount of coagulant used could be reduced by 15%.
実施例2では、消化汚泥と有機性廃液(混合生汚泥)とを混合して固液分離装置3にて固液分離を行うようにしている。このため、固液分離装置3で固液分離処理する汚泥量が少なくなると共に、凝集剤の効きがよくなる。このため、凝集剤添加率を低くしても同等の凝集効果を得ることができるようになり、凝集剤使用量を比較例1,実施例1より46%減らすことができた。
In Example 2, digested sludge and organic waste liquid (mixed raw sludge) are mixed and solid-liquid separation is performed by the solid-
Claims (6)
該中温消化槽からの消化汚泥の一部を改質する改質手段と、
該改質手段からの改質汚泥を前記高温消化槽に返送する改質汚泥返送手段と、
該中温消化槽からの消化汚泥を濃縮する固液分離手段と、
該固液分離手段からの濃縮汚泥を前記嫌気性消化槽へ返送する濃縮汚泥返送手段と、
を有する有機性廃液の嫌気性消化処理装置において、
有機性廃液の全量が該中温消化槽に導入されることを特徴とする有機性廃液の嫌気性消化処理装置。 As anaerobic digestion tank, and the hot digester and mesophilic digester process temperature 25 to 40 ° C. the effluent of the high temperature digester is introduced process temperature 45 to 95 ° C.,
Reforming means for reforming a part of the digested sludge from the intermediate temperature digester,
Modified sludge return means for returning the modified sludge from the reforming means to the high-temperature digestion tank;
Solid-liquid separation means for concentrating the digested sludge from the intermediate temperature digester,
Concentrated sludge return means for returning the concentrated sludge from the solid-liquid separation means to the anaerobic digestion tank;
In an anaerobic digestion treatment apparatus of organic waste liquid having
An apparatus for anaerobic digestion of organic waste liquid, wherein the whole amount of the organic waste liquid is introduced into the intermediate temperature digestion tank.
該中温消化槽からの消化汚泥の一部を改質する改質手段と、
該改質手段からの改質汚泥を前記高温消化槽に返送する改質汚泥返送手段と、
該中温消化槽からの消化汚泥を濃縮する固液分離手段と、
該固液分離手段からの濃縮汚泥を前記嫌気性消化槽へ返送する濃縮汚泥返送手段と、
を有する有機性廃液の嫌気性消化処理装置において、
有機性廃液の全量が前記固液分離手段に導入され、該固液分離手段からの濃縮汚泥が前記中温消化槽にのみ導入されることを特徴とする有機性廃液の嫌気性消化処理装置。 As anaerobic digestion tank, and the hot digester and mesophilic digester process temperature 25 to 40 ° C. the effluent of the high temperature digester is introduced process temperature 45 to 95 ° C.,
Reforming means for reforming a part of the digested sludge from the intermediate temperature digester,
Modified sludge return means for returning the modified sludge from the reforming means to the high-temperature digestion tank;
Solid-liquid separation means for concentrating the digested sludge from the intermediate temperature digester,
Concentrated sludge return means for returning the concentrated sludge from the solid-liquid separation means to the anaerobic digestion tank;
In an anaerobic digestion treatment apparatus of organic waste liquid having
An apparatus for anaerobic digestion of organic waste liquid , wherein the whole amount of organic waste liquid is introduced into the solid-liquid separation means, and the concentrated sludge from the solid-liquid separation means is introduced only into the intermediate temperature digester.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006178364A JP4075946B2 (en) | 2006-01-20 | 2006-06-28 | Method and apparatus for anaerobic digestion treatment of organic waste liquid |
PCT/JP2006/324474 WO2007083456A1 (en) | 2006-01-20 | 2006-12-07 | Method and apparatus for anaerobic digestion treatment of organic waste liquid |
TW95148179A TWI414489B (en) | 2006-01-20 | 2006-12-21 | Anaerobic digestion treatment method of organic waste solution and apparatus thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006012783 | 2006-01-20 | ||
JP2006178364A JP4075946B2 (en) | 2006-01-20 | 2006-06-28 | Method and apparatus for anaerobic digestion treatment of organic waste liquid |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007216207A JP2007216207A (en) | 2007-08-30 |
JP4075946B2 true JP4075946B2 (en) | 2008-04-16 |
Family
ID=38494016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006178364A Active JP4075946B2 (en) | 2006-01-20 | 2006-06-28 | Method and apparatus for anaerobic digestion treatment of organic waste liquid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4075946B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5211769B2 (en) * | 2008-03-11 | 2013-06-12 | 栗田工業株式会社 | Biological treatment method and treatment apparatus for organic waste liquid |
JP5771099B2 (en) * | 2011-01-26 | 2015-08-26 | 株式会社タクマ | Fermentation processing apparatus and method for generating combustible gas in fermentation processing |
JP2012205991A (en) * | 2011-03-29 | 2012-10-25 | Kurita Water Ind Ltd | Treatment apparatus of organic wastewater |
KR101122559B1 (en) | 2011-12-23 | 2012-03-16 | 지에스건설 주식회사 | Method for biological treatment of organic sludge using high temperature-medium temperature methane fermentation and apparatus used therefor |
GB2521982A (en) | 2012-11-16 | 2015-07-08 | Blaygow Ltd | Grain processing |
WO2015146725A1 (en) * | 2014-03-27 | 2015-10-01 | 水ing株式会社 | Device and method for anaerobic digestion of organic sludge |
-
2006
- 2006-06-28 JP JP2006178364A patent/JP4075946B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007216207A (en) | 2007-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6500340B1 (en) | Pasteurizing sludge to exceptional quality | |
JP4075946B2 (en) | Method and apparatus for anaerobic digestion treatment of organic waste liquid | |
JP5211769B2 (en) | Biological treatment method and treatment apparatus for organic waste liquid | |
JP4864339B2 (en) | Organic waste processing apparatus and processing method | |
WO2003004423A1 (en) | Method of anaerobically treating organic material and anaerobic treatment apparatus | |
TWI414489B (en) | Anaerobic digestion treatment method of organic waste solution and apparatus thereof | |
JP2002361293A (en) | Method and apparatus for reducing volume of organic sludge | |
JP2000210694A (en) | Treating device for organic waste water | |
JP2003024972A (en) | Biological treatment method for organic sewage and apparatus therefor | |
JP2014008491A (en) | Organic waste treatment apparatus, and organic waste treatment method using the same | |
JP3977174B2 (en) | Sludge treatment method and apparatus for reducing generation amount of excess sludge | |
CN101360687A (en) | Method and apparatus for anaerobic digestion of organic waste liquid | |
JP4409928B2 (en) | Organic waste treatment methods | |
JP2003103292A (en) | Combined treatment method of wastewater and waste derived from organism | |
JP4457391B2 (en) | Organic sludge treatment method and treatment apparatus | |
JP4507712B2 (en) | Anaerobic digester for organic waste liquid | |
JP4844951B2 (en) | Processing method and apparatus for garbage and paper waste | |
JP4148286B2 (en) | Method and apparatus for anaerobic digestion treatment of organic waste liquid | |
JP4192491B2 (en) | Organic waste processing apparatus and processing method | |
JP2004041953A (en) | Method and equipment for treating organic waste water | |
JP4525161B2 (en) | Anaerobic treatment equipment | |
JP2006075730A (en) | Anaerobic treatment device | |
JP5061551B2 (en) | Biological treatment equipment for organic waste liquid | |
JP3672091B2 (en) | Organic wastewater treatment method and equipment | |
JP3969144B2 (en) | Biological treatment method and biological treatment apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070522 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070719 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080121 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4075946 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110208 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110208 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120208 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120208 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130208 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130208 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140208 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |