JP4192491B2 - Organic waste processing apparatus and processing method - Google Patents

Organic waste processing apparatus and processing method Download PDF

Info

Publication number
JP4192491B2
JP4192491B2 JP2002128420A JP2002128420A JP4192491B2 JP 4192491 B2 JP4192491 B2 JP 4192491B2 JP 2002128420 A JP2002128420 A JP 2002128420A JP 2002128420 A JP2002128420 A JP 2002128420A JP 4192491 B2 JP4192491 B2 JP 4192491B2
Authority
JP
Japan
Prior art keywords
sludge
organic waste
tank
subdividing
subdivided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002128420A
Other languages
Japanese (ja)
Other versions
JP2003320394A (en
Inventor
繁樹 藤島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2002128420A priority Critical patent/JP4192491B2/en
Publication of JP2003320394A publication Critical patent/JP2003320394A/en
Application granted granted Critical
Publication of JP4192491B2 publication Critical patent/JP4192491B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、し尿、浄化槽汚泥、下水汚泥、食品工場排水、化学工場排水などの高濃度有機性汚水、生物処理工程からの余剰汚泥、食品廃棄物、家畜糞尿、生ゴミ等の固形廃棄物などの有機性廃棄物を嫌気性消化する処理装置及び処理方法に係り、特に、有機性廃棄物の嫌気性消化効率を高めて消化汚泥の減容化の促進と、メタンガス発生量の増加を図る有機性廃棄物の処理装置及び処理方法に関する。
【0002】
【従来の技術】
有機性廃棄物の処理方法として、有機性廃棄物を嫌気性細菌の存在下にメタン発酵する嫌気性消化法がある。有機廃棄物を嫌気性消化する場合、主成分が易生物分解性であれば、短い滞留時間で分解することができ、発生するメタンガス量も多くなる。一方、下水汚泥や固形廃棄物のように難生物分解性で分解速度が遅いものでは、高い減容化率やメタン生成量を得るためには、長い滞留時間が必要になり、消化槽容積は大きくなる。
【0003】
消化槽容積の増大を抑えて長い滞留時間を確保する方法として、消化槽から消化汚泥を引き抜き、これを固液分離することにより濃縮し、濃縮汚泥を消化槽に返送する方法が提案されている。このように濃縮汚泥を消化槽に返送することにより、HRT(水理学的滞留時間)はそのままで、SRT(固形物滞留時間)を長く設定することができ、有機性廃棄物中の分解速度が遅い固形分をも分解することが可能となり、高い減容化率とメタン生成量を得ることができる。
【0004】
従来、この消化汚泥の濃縮方法としては、沈殿法や膜分離法、遠心法によるものが一般的な方法とされている。しかしながら、これらの方法が適用されるのは、消化汚泥の濃度(固形物(SS)濃度)が低い場合に限られており、難分解性であるため、汚泥を返送することによりSRTを長くすることが必要とされ、このため、槽内で汚泥が高濃度化される下水汚泥等の嫌気性消化には適用し得ない。
【0005】
即ち、沈殿法や膜分離等による固液分離では、消化汚泥濃度が3%を超えると良好な固液分離は行えず、SS濃度5%以上の消化汚泥では実質的に固液分離不可能である。特に、膜分離の場合には、消化汚泥濃度が高いと、膜の閉塞のために頻繁に膜洗浄を行うことが必要になり、現実的には使用不可能である。
【0006】
このようなことから、従来の固液分離法では消化槽内の汚泥濃度を3%以上に高めることはできず、また膜分離においても殆ど濃縮倍率を上げることはできず、固液分離手段で消化汚泥を殆ど濃縮することなく消化槽に返送することになり、大容量の消化槽が必要となる。
【0007】
また、沈殿法や遠心法は、消化汚泥中のSS分を可能な限り回収し得るものではなく、一部のSSは分離水と共に、或いは汚泥残渣として系外へ排出されてしまうため、十分な汚泥の減容化を図ることはできないという欠点もある。
【0008】
このようなことから、汚泥の減容化とメタンガスの生成を促進すべく、消化汚泥を高度に濃縮してSS分を可能な限り回収し、これを再度消化槽に戻して嫌気性消化するためには、消化汚泥を脱水機で脱水することが最も有効であると考えられる。脱水機であれば、高濃度の消化汚泥であっても確実に高濃縮化することが可能であり、また、分離水中へのSS分の流出も防止することができる。
【0009】
【発明が解決しようとする課題】
しかしながら、本発明者らの検討により、消化汚泥を脱水機で脱水して得られた脱水汚泥を消化槽に返送した場合には、この脱水汚泥の消化効率が悪く、このために、汚泥の減容化及びメタンガスの生成効率の向上を達成し得ないことが判明した。
【0010】
本発明は、消化汚泥を脱水機で脱水して消化槽に返送する有機性廃棄物の嫌気性処理において、消化槽に返送される脱水汚泥の消化効率を高め、汚泥の減容化とメタンガス生成の促進を図る有機性廃棄物の処理装置及び処理方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明の有機性廃棄物の処理装置は、有機性廃棄物を嫌気性消化する嫌気性消化槽と、該嫌気性消化槽から排出される消化汚泥を脱水する脱水機と、該脱水機からの脱水汚泥を細分化する細分化手段と、該細分化手段で細分化された汚泥を前記嫌気性消化槽に返送する返送手段とを有する有機性廃棄物の処理装置であって、前記細分化手段で細分化される脱水汚泥の汚泥濃度を調整するための水分供給手段を有することを特徴とする。
【0012】
高濃度の消化汚泥を脱水した場合、得られる脱水汚泥はケーキ状塊となり、消化槽内の汚泥に比べて大きいものとなる。特に、この脱水に当たり、凝集剤を用いた場合には、汚泥中のSS粒子は凝集剤により結合して非常に大きな塊状の脱水汚泥となる。
【0013】
一方、嫌気性細菌による固形有機物の分解は、酸生成細菌の一部が細胞外酵素である加水分解酵素を作り、この加水分解酵素により行われる。従って、加水分解を促進させるためには、有機物粒子とこれらの細菌や酵素との接触効率を上げることが必要となる。
【0014】
しかし、上述の如く、脱水後の汚泥は大きな塊となっており、表面積も小さく、細菌や酵素との接触効率が悪いため、脱水前の汚泥に比べて分解し難い。従って、単に消化汚泥を脱水して消化槽に返送するのみでは、SRTは長くなるが、消化効率の向上を達成することはできない。また、このような大きな塊状の脱水汚泥を返送すると、消化槽内でのSS濃度が高くなり、撹拌が不十分となって汚泥が消化槽内に十分に分散せず、この結果、有効容積の減少を引き起こすことによっても、消化効率が低下する場合がある。
【0015】
本発明では、脱水汚泥を細分化して消化槽に返送するため、返送された汚泥は、消化槽内に均一に分散すると共に、酸生成細菌や加水分解酵素と効率的に接触し、槽内の汚泥と同等の消化効率で分解されるようになる。このため、汚泥を返送することによるSRTの増大が汚泥の消化効率に有効に機能するようになり、汚泥の減容化の促進及びメタンガス生成量の増大を図ることができるようになる。
【0016】
本発明において、消化汚泥の濃度が高く、脱水汚泥も高濃度であった場合には、汚泥の流動性が悪く、移送が困難であったり、細分化が困難であったり、また、細分化エネルギーが多大になるなどの不具合を生じる場合がある。従って、細分化前の脱水汚泥に水分を供給して汚泥濃度を調整し、容易に移送又は細分化することができるようにすることが好ましい。
【0017】
また、消化槽における汚泥の消化効率をより一層高めるために、返送汚泥及び/又は消化汚泥を改質しても良い。
【0018】
本発明の有機性廃棄物の処理方法は、有機性廃棄物を嫌気性消化する嫌気性消化工程と、該嫌気性消化工程からの消化汚泥を脱水機で脱水する脱水工程と、該脱水工程からの脱水汚泥に水分を供給して濃度調整した後、細分化する細分化工程と、該細分化工程で細分化された汚泥を前記嫌気性消化工程に返送する返送工程とを備えることを特徴とするものであり、消化汚泥を脱水し、脱水汚泥を濃度調整して細分化した後消化槽に返送することにより、従来のHRTで、即ち、消化槽容積を増大させることなく、SRTを長くして、汚泥の減容化とメタンガス生成を促進させることができる。
【0019】
【発明の実施の形態】
以下に図面を参照して本発明の有機性廃棄物の処理装置及び処理方法の実施の形態を詳細に説明する。
【0020】
図1は本発明の有機性廃棄物の処理装置の実施の形態を示す系統図である。
【0021】
有機性廃棄物は消化槽1に導入され嫌気性消化処理される。消化槽1の消化汚泥の一部を引き抜き、脱水機2で脱水する。脱水機2の脱水汚泥は細分化槽3に送給して細分化し、細分化汚泥を消化槽1に返送する。
【0022】
消化汚泥を脱水する脱水機2としては特に制限はなく、濾布型脱水機、圧搾脱水機、フィルタープレス、遠心分離機などを用いることができる。
【0023】
脱水機2における脱水に際しては、凝集剤、好ましくは高分子凝集剤を添加して消化汚泥中のSS分を凝集させることにより、SS回収率を高めることができ好ましい。このような高分子凝集剤としてはノニオン性、カチオン性、両性高分子凝集剤等を用いることができ、その添加量は汚泥のSSに対して0.5〜1.0重量%程度とするのが好ましい。消化汚泥に凝集剤を添加する場合、凝集剤は消化汚泥の移送ラインに注入しても良く、脱水機に添加しても良く、また、別途凝集槽を設けて凝集処理しても良い。
【0024】
下水汚泥等の難分解性の有機性廃棄物を嫌気性消化処理する場合、消化槽の汚泥濃度は、4〜8%程度に高めることが好ましく、従って、脱水機2では、消化槽1から引き抜いたSS濃度4〜8%程度の消化汚泥を脱水して15〜25%程度の脱水汚泥を得ることが好ましい。
【0025】
細分化槽3としては、ミキサー(回転刃)、噴射ノズルを備えるもの、或いは、強撹拌可能な攪拌機を備えるものなどを用いることができる。脱水汚泥の細分化手段としては、このような細分化槽の他、破砕ポンプ等を用いることもできる。
【0026】
この細分化手段には、汚泥粒子を破壊するほどの強い破砕力は必要とされず、脱水汚泥の塊を細分化して、消化槽1に返送した際に塊状ではなく、槽内液中に均一に分散されるような程度で良い。
【0027】
脱水機2で得られる脱水汚泥は通常、1〜50cm程度の塊状であるが、細分化槽3等の細分化手段により、このような塊状の脱水汚泥を粒子径2mm以下、好ましくは1mm以下程度に細分化することが好ましい。
【0028】
ところで、脱水機2で得られる高濃度の脱水汚泥は、そのままでは流動性が低く、移送が困難であったり、また細分化が困難であるか或いは細分化に多大なエネルギーを必要としたりする場合が多いため、細分化に当っては、脱水汚泥に水分を供給して流動性のある汚泥濃度、好ましくは5〜10%程度のSS濃度に調整することが好ましい。
【0029】
この濃度調整のために脱水汚泥に供給する水分としては、脱水機2の脱離液であっても良く、消化汚泥であっても良い。また、処理する有機性廃棄物であっても良い。濃度調整に脱離液を用いる場合には、図1の(1)の系路で脱水機2から排出される脱離液の一部を分取して細分化槽3に供給する。また、消化汚泥を用いる場合には、図1の(2)の系路で消化槽1から引き抜いた消化汚泥の一部を細分化槽3に供給する。この汚泥濃度の調整のための水分は、系外から工水、市水、その他のプロセスの処理水等を供給しても良い。
【0030】
なお、図1では、細分化槽3に水分を直接供給して、汚泥濃度の調整と細分化とをほぼ同時に行っているが、脱水機2と細分化槽3との間で脱水汚泥に水分を供給して濃度調整を行っても良い。この場合において、水分は脱水汚泥の移送ラインに供給しても良く、別途汚泥濃度調整のための調整槽を設けても良い。
【0031】
細分化槽3等の細分化手段で細分化された汚泥は、消化槽1に返送されるが、本発明では細分化槽3と消化槽1との間に汚泥改質手段を設け、細分化汚泥を改質した後消化槽1に返送することにより、より一層汚泥の消化効率を高めることができ、好ましい。
【0032】
汚泥の改質とは、汚泥細胞を変性、破壊して微生物によって資化されやすい形態にするものであり、通常汚泥改質方法として知られている任意の方法を採用することができ、例えばオゾン処理、過酸化水素等の酸化力の強い酸化剤や、酸、アルカリなどによる化学的処理、超音波処理、ミルによる磨砕のような物理的処理、熱的処理等の各種の方法を単独で或いは2種以上を組み合わせて採用することができる。
【0033】
汚泥改質手段としてオゾン処理手段を採用する場合、細分化槽3と消化槽1との間にオゾン処理槽を設け、細分化汚泥をオゾン処理槽に導入してオゾンと接触させれば良い。オゾンとの接触方法としては、オゾン処理槽に細分化汚泥を導入してオゾンを吹き込む方法、機械撹拌による方法、充填層を利用する方法などが採用できる。オゾンとしてはオゾン含有ガスの他、オゾン含有水などが使用でき、オゾンの使用量は通常0.01〜0.3g−O/g−VSS、好ましくは0.03〜0.2g−O/g−VSSである。
【0034】
上述の例では、汚泥改質手段を細分化槽3と消化槽1との間に設けているが、汚泥改質手段を細分化層3に設けて、汚泥の細分化とオゾン等による改質を同時に行うようにしても良い。また、汚泥の改質は返送汚泥に対して行うのでなく、消化槽1の消化汚泥に対して行うようにしても良い。この場合、消化槽と汚泥改質手段とを、消化汚泥を改質手段に送る供給路と改質汚泥を消化槽に戻す返送路とで連絡し、消化槽内の消化汚泥の一部を改質手段に送って改質した後消化槽に戻すことにより消化し易くすることができる。
【0035】
このように消化槽1内の消化汚泥の一部を引き抜いて脱水機2で脱水し、脱水汚泥を細分化して消化槽1に返送することにより、HRTを変えることなくSRTを長くすることができる。
【0036】
消化槽1からの消化汚泥の引き抜き量は特に制限はないが、消化槽1内の保有汚泥の1/30〜1/10程度を引き抜いて、脱水、細分化した後循環させることにより、SRTを、このような汚泥循環を行わない場合の少なくとも3倍程度以上に延長することができ、難生物分解性の有機性廃棄物であっても、汚泥の減容化を促進させると共に、メタンガス生成量を増大させることができる。
【0037】
また、本発明においては、脱水機や細分化槽を大気と遮断した状態で運転するのが好ましく、例えば、脱水機を密閉状態にして脱水することにより、汚泥と酸素との接触を制限すると、嫌気性菌を生かしたまま消化槽に返送でき、消化槽の生菌数保持、増加が容易となり、消化効率を向上させることができる。
【0038】
【実施例】
以下に実験例、実施例及び比較例を挙げて本発明をより具体的に説明する。
【0039】
実験例1
下水処理場の余剰汚泥(SS分4%)を嫌気性消化して排出されたVSS濃度28,000mg/Lの消化汚泥を遠心脱水機で脱水してSS濃度18%の脱水汚泥を得た。この脱水汚泥に水道水を添加してSS濃度7%に調整した。この汚泥塊の径は10〜50mmであった。
【0040】
また、このSS濃度7%に調整した汚泥の一部についてはミキサーで細分化して粒子径1mm以下とした。
【0041】
この細分化汚泥の一部については、オゾン使用量0.03g−O/g−VSSでオゾン処理した。
【0042】
消化汚泥を脱水した後濃度調整したSS濃度7%の汚泥(7%脱水汚泥)と、この汚泥を細分化した汚泥(脱水,細分化汚泥)と、更にオゾン処理した汚泥(脱水,細分化,オゾン処理汚泥)を各々消化槽に投入し、メタンガス生成量の経時増加より、汚泥の分解性を調べ、結果を図2に示した。
【0043】
図2より明らかなように、細分化していない7%脱水汚泥に比べて、脱水,細分化汚泥は約2倍汚泥分解性が向上しており、また、脱水,細分化,オゾン処理汚泥は約4倍汚泥分解性が向上している。
【0044】
このことから、消化汚泥を脱水して、そのまま消化槽に返送すると、分解性が低下するため、脱水汚泥を細分化して本来の消化汚泥の分解性を回復させてから消化槽に返送すること、更に、細分化汚泥をオゾン処理して消化槽に返送することが好ましく、これにより、消化効率を高めることができることがわかる。
【0045】
実施例1
図1に示す有機性廃棄物の処理装置により、下水処理場の混合汚泥(SS分4%)の嫌気性消化処理を処理量2.4g/日(SS換算)、HRT=30日で行った。脱水機2としては遠心脱水機を用い、細分化槽3としては家庭用ミキサーを用いた。
【0046】
消化槽1からのVSS濃度28,000mg/Lの消化汚泥を3.2g(SS換算)引き抜いて脱水機2で脱水してSS濃度18%の脱水ケーキを得た。なお、脱水に当っては消化汚泥に凝集剤としてカチオン性高分子凝集剤を0.5重量%対SS添加した。脱水機2の脱離液はSS:0.5%であり、系外へ排出した。
【0047】
脱水汚泥は次いで細分化槽3で粒子径1mm以下に細分化した。この細分化に当たり、水分として消化汚泥を供給して細分化される汚泥の濃度を7%とした。細分化汚泥は消化槽1に返送した。
【0048】
このようにして、消化汚泥を脱水した後細分化して消化槽に返送することにより、SRT120日以上を確保することができた。
【0049】
このときの消化槽におけるTVS除去率及びメタン生成量を調べ、結果を表1に示した。
【0050】
実施例2
実施例1において、細分化汚泥をオゾン処理した後消化槽に返送したこと以外は同様にして下水汚泥の嫌気性消化を行い、TVS除去率及びメタン生成量を調べ、結果を表1に示した。なお、オゾン処理は、0.03g−O/g−VSSのオゾン使用量で行った。
【0051】
比較例1
実施例1において、消化汚泥の脱水、細分化及び返送を行わず、HRT=SRT=30日としたこと以外は同様にして処理を行い、TVS除去率及びメタン生成量を調べ、結果を表1に示した。
【0052】
比較例2
実施例1において、消化汚泥を脱水した後、細分化せずにそのまま消化槽に返送したこと以外は同様にして処理を行い、TVS除去率及びメタン生成量を調べ、結果を表1に示した。
【0053】
【表1】

Figure 0004192491
【0054】
表1より明らかなように、実施例1では、消化汚泥を脱水した後細分化して消化槽に返送することによるSRTの延長で、比較例1に比べてTVS除去率及びメタンガス生成量は1.3倍に増加した。また、細分化汚泥をオゾン処理して消化槽に返送した実施例2によれば、TVS除去率及びメタンガス生成量は更に向上し、比較例1の場合の1.5倍になった。
【0055】
なお、脱水汚泥の返送を行っても、脱水汚泥を細分化することなくそのまま返送する比較例2では、TVS除去率及びメタン生成量は向上しない。
【0056】
【発明の効果】
以上詳述した通り、本発明の有機性廃棄物の処理装置及び処理方法によれば、有機性廃棄物の嫌気性消化処理において、有機性廃棄物を効率的に処理して汚泥のより一層の減容化とメタンガス生成量の増大を図ることが可能となる。
【図面の簡単な説明】
【図1】本発明の有機性廃棄物の処理装置の実施の形態を示す系統図である。
【図2】実験例1の結果を示すグラフである。
【符号の説明】
1 消化槽
2 脱水機
3 細分化槽[0001]
BACKGROUND OF THE INVENTION
The present invention includes high-concentration organic sewage such as human waste, septic tank sludge, sewage sludge, food factory wastewater, chemical factory wastewater, excess sludge from biological treatment processes, solid waste such as food waste, livestock manure, and garbage In particular, it is intended to increase the anaerobic digestion efficiency of organic waste, promote the volume reduction of digested sludge, and increase the amount of methane gas generated. The present invention relates to a processing apparatus and a processing method for radioactive waste.
[0002]
[Prior art]
As an organic waste treatment method, there is an anaerobic digestion method in which organic waste is subjected to methane fermentation in the presence of anaerobic bacteria. In the case of anaerobic digestion of organic waste, if the main component is readily biodegradable, it can be decomposed in a short residence time, and the amount of methane gas generated increases. On the other hand, those that are difficult to biodegrade and have a slow decomposition rate, such as sewage sludge and solid waste, require a long residence time in order to obtain a high volume reduction rate and methane production amount. growing.
[0003]
As a method of ensuring a long residence time by suppressing an increase in digestion tank volume, a method has been proposed in which digested sludge is extracted from the digestion tank, concentrated by solid-liquid separation, and the concentrated sludge is returned to the digestion tank. . By returning the concentrated sludge to the digestion tank in this way, the SRT (solids residence time) can be set longer while maintaining the HRT (hydraulic residence time), and the decomposition rate in organic waste can be reduced. Slow solids can be decomposed, and a high volume reduction rate and methane production can be obtained.
[0004]
Conventionally, as a method for concentrating digested sludge, a precipitation method, a membrane separation method, or a centrifugal method is generally used. However, these methods are applied only when the concentration of digested sludge (solid matter (SS) concentration) is low, and since it is hardly decomposable, the SRT is lengthened by returning the sludge. Therefore, it cannot be applied to anaerobic digestion such as sewage sludge in which the sludge is highly concentrated in the tank.
[0005]
In other words, solid-liquid separation by precipitation or membrane separation cannot achieve good solid-liquid separation when the digested sludge concentration exceeds 3%, and solid-liquid separation is not substantially possible with digested sludge having an SS concentration of 5% or more. is there. In particular, in the case of membrane separation, if the digested sludge concentration is high, it is necessary to frequently perform membrane cleaning due to membrane clogging, which is practically impossible to use.
[0006]
For this reason, the conventional solid-liquid separation method cannot increase the sludge concentration in the digestion tank to 3% or more, and can hardly increase the concentration factor even in membrane separation. The digested sludge is returned to the digester without almost concentrating, and a large-capacity digester is required.
[0007]
In addition, the precipitation method and the centrifugal method cannot recover the SS content in the digested sludge as much as possible, and a part of SS is discharged out of the system together with the separated water or as a sludge residue. There is also a drawback that sludge volume cannot be reduced.
[0008]
For this reason, in order to promote sludge volume reduction and methane gas generation, the digested sludge is highly concentrated to recover as much SS as possible, and then returned to the digestion tank for anaerobic digestion. For this reason, it is considered most effective to dehydrate the digested sludge with a dehydrator. If it is a dehydrator, highly concentrated digested sludge can be reliably concentrated, and SS can be prevented from flowing into the separated water.
[0009]
[Problems to be solved by the invention]
However, when the dehydrated sludge obtained by dewatering the digested sludge with a dehydrator is returned to the digestion tank by the inventors, the digestion efficiency of the dehydrated sludge is poor. It has been found that it is impossible to achieve an increase in the volume and efficiency of methane gas generation.
[0010]
In the present invention, in anaerobic treatment of organic waste that dehydrates digested sludge and returns it to the digestion tank, the digestion sludge returned to the digestion tank is improved in digestion efficiency, sludge volume reduction and methane gas generation An object of the present invention is to provide an organic waste processing apparatus and a processing method that promote the promotion of the above.
[0011]
[Means for Solving the Problems]
The organic waste treatment apparatus of the present invention includes an anaerobic digester that anaerobically digests organic waste, a dehydrator that dehydrates digested sludge discharged from the anaerobic digester, and a An organic waste treatment apparatus comprising: a subdividing means for subdividing dehydrated sludge; and a return means for returning sludge subdivided by the subdividing means to the anaerobic digestion tank , wherein the subdividing means It has a water supply means for adjusting the sludge concentration of the dewatered sludge that is subdivided in (1).
[0012]
When high-concentration digested sludge is dehydrated, the resulting dehydrated sludge becomes cake-like lump, which is larger than the sludge in the digestion tank. In particular, in the case of this dehydration, when a flocculant is used, SS particles in the sludge are combined by the flocculant to form a very large dehydrated sludge.
[0013]
On the other hand, the decomposition of solid organic matter by anaerobic bacteria is carried out by hydrolyzing enzymes, in which a part of acid-producing bacteria is an extracellular enzyme. Therefore, in order to promote hydrolysis, it is necessary to increase the contact efficiency between the organic particles and these bacteria and enzymes.
[0014]
However, as described above, the sludge after dehydration is a large lump, has a small surface area, and has poor contact efficiency with bacteria and enzymes, so it is difficult to decompose compared with sludge before dehydration. Therefore, simply dehydrating the digested sludge and returning it to the digestion tank increases the SRT, but cannot improve the digestion efficiency. Moreover, when such a large block of dewatered sludge is returned, the SS concentration in the digestion tank becomes high, stirring becomes insufficient, and the sludge is not sufficiently dispersed in the digestion tank. Digestion efficiency may also decrease by causing a decrease.
[0015]
In the present invention, since the dewatered sludge is subdivided and returned to the digestion tank, the returned sludge is uniformly dispersed in the digestion tank, and efficiently contacts with acid-producing bacteria and hydrolases, It will be decomposed with the same digestion efficiency as sludge. For this reason, the increase in SRT by returning the sludge functions effectively in the digestion efficiency of the sludge, and it becomes possible to promote the volume reduction of the sludge and increase the amount of methane gas generated.
[0016]
In the present invention, when the concentration of digested sludge is high and the dewatered sludge is also high in concentration, the sludge has poor fluidity, is difficult to transfer, difficult to subdivide, May cause problems such as a large amount. Therefore, it is preferable to supply moisture to the dewatered sludge before fragmentation to adjust the sludge concentration so that it can be easily transferred or fragmented.
[0017]
In order to further increase the digestion efficiency of the sludge in the digestion tank, the return sludge and / or the digested sludge may be modified.
[0018]
The organic waste treatment method of the present invention includes an anaerobic digestion step for anaerobically digesting organic waste, a dehydration step for dewatering digested sludge from the anaerobic digestion step with a dehydrator, and the dehydration step. After supplying water to the dewatered sludge and adjusting the concentration, the finely divided step is subdivided, and the return step is to return the sludge subdivided in the subdivided step to the anaerobic digestion step. By dewatering the digested sludge, adjusting the concentration of the dewatered sludge, and then returning it to the digester, the SRT can be lengthened with conventional HRT, that is, without increasing the digester volume. Therefore, volume reduction of sludge and methane gas generation can be promoted.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Embodiments of an organic waste processing apparatus and a processing method according to the present invention will be described below in detail with reference to the drawings.
[0020]
FIG. 1 is a system diagram showing an embodiment of the organic waste processing apparatus of the present invention.
[0021]
The organic waste is introduced into the digester 1 and subjected to anaerobic digestion. A portion of the digested sludge in the digestion tank 1 is extracted and dehydrated by the dehydrator 2. The dewatered sludge of the dehydrator 2 is sent to the subdividing tank 3 and subdivided, and the subdivided sludge is returned to the digestion tank 1.
[0022]
There is no restriction | limiting in particular as the dehydrator 2 which dehydrates digested sludge, A filter cloth type dehydrator, a press dehydrator, a filter press, a centrifuge, etc. can be used.
[0023]
In the dehydration in the dehydrator 2, a coagulant, preferably a polymer coagulant is added to agglomerate the SS component in the digested sludge, which is preferable because the SS recovery rate can be increased. As such a polymer flocculant, nonionic, cationic, amphoteric polymer flocculants and the like can be used, and the addition amount is about 0.5 to 1.0% by weight with respect to SS of sludge. Is preferred. When adding a flocculant to digested sludge, a flocculant may be inject | poured into the transfer line of digested sludge, may be added to a dehydrator, and a coagulation tank may be provided and a coagulation process may be provided.
[0024]
In the case of anaerobic digestion treatment of refractory organic waste such as sewage sludge, the sludge concentration in the digester is preferably increased to about 4 to 8%. It is preferable to dehydrate the digested sludge having an SS concentration of about 4 to 8% to obtain a dehydrated sludge of about 15 to 25%.
[0025]
As the subdividing tank 3, a mixer (rotary blade), a spray nozzle, or a stirrer capable of strong stirring can be used. As a means for subdividing dewatered sludge, a crushing pump or the like can be used in addition to such a subdivision tank.
[0026]
This subdividing means does not require a strong crushing force to destroy sludge particles, and when the dewatered sludge mass is subdivided and returned to the digestion tank 1, it is not agglomerated and is uniform in the liquid in the tank. It is sufficient that it is dispersed.
[0027]
The dewatered sludge obtained by the dehydrator 2 is usually a lump of about 1 to 50 cm. However, such a lump of dewatered sludge is submerged by a subdividing means such as a subdivision tank 3, and the particle diameter is 2 mm or less, preferably about 1 mm or less. It is preferable to subdivide.
[0028]
By the way, the high concentration dewatered sludge obtained by the dehydrator 2 has low fluidity as it is, and is difficult to transfer, or is difficult to subdivide, or requires a lot of energy for subdivision. Therefore, when subdividing, it is preferable to supply moisture to the dewatered sludge and adjust it to a fluid sludge concentration, preferably about 5 to 10% SS concentration.
[0029]
The moisture supplied to the dewatered sludge for this concentration adjustment may be the desorbed liquid of the dehydrator 2 or digested sludge. Moreover, the organic waste to process may be sufficient. When the desorbed liquid is used for concentration adjustment, a part of the desorbed liquid discharged from the dehydrator 2 is separated and supplied to the subdividing tank 3 through the system path (1) in FIG. In the case of using the digested sludge it is supplied to subdivide tank 3 part of the digested sludge was withdrawn from the digestion tank 1 in a system path in FIG. 1 (2). As water for adjusting the sludge concentration, industrial water, city water, treated water of other processes, and the like may be supplied from outside the system.
[0030]
In FIG. 1, moisture is directly supplied to the subdivision tank 3 to adjust the sludge concentration and subdivision at almost the same time. To adjust the density. In this case, moisture may be supplied to the dewatered sludge transfer line, or a separate adjustment tank for adjusting the sludge concentration may be provided.
[0031]
Sludge that has been subdivided by subdivision means such as subdivision tank 3 is returned to digestion tank 1, but in the present invention, sludge reforming means is provided between subdivision tank 3 and digestion tank 1, and subdivision is performed. By reforming the sludge and returning it to the digestion tank 1, the digestion efficiency of the sludge can be further enhanced, which is preferable.
[0032]
Sludge reforming is a method that denatures and destroys sludge cells into a form that is easily assimilated by microorganisms, and any method commonly known as a sludge reforming method can be employed, such as ozone. A variety of methods such as treatment, oxidizing agents with strong oxidizing power such as hydrogen peroxide, chemical treatment with acid, alkali, etc., ultrasonic treatment, physical treatment such as grinding with mill, thermal treatment, etc. Or it can employ | adopt combining 2 or more types.
[0033]
When ozone treatment means is employed as the sludge reforming means, an ozone treatment tank may be provided between the subdivision tank 3 and the digestion tank 1, and the subdivided sludge may be introduced into the ozone treatment tank and brought into contact with ozone. As a contact method with ozone, a method of introducing subdivided sludge into an ozone treatment tank and blowing ozone, a method by mechanical stirring, a method using a packed bed, or the like can be adopted. As ozone, ozone-containing gas can be used in addition to ozone-containing gas, and the amount of ozone used is usually 0.01 to 0.3 g-O 3 / g-VSS, preferably 0.03 to 0.2 g-O 3. / G-VSS.
[0034]
In the above example, the sludge reforming means is provided between the subdividing tank 3 and the digestion tank 1, but the sludge reforming means is provided in the subdivided layer 3, so that the sludge is subdivided and reformed by ozone or the like. May be performed simultaneously. Further, the sludge reforming may be performed on the digested sludge in the digestion tank 1 instead of the return sludge. In this case, the digestion tank and the sludge reforming means are connected to each other by a supply path for sending the digested sludge to the reforming means and a return path for returning the reformed sludge to the digestion tank, and a part of the digested sludge in the digestion tank is revised. It can be made easy to digest by returning to the digestion tank after being sent to the quality means and modified.
[0035]
Thus, by extracting a part of the digested sludge in the digestion tank 1 and dehydrating it with the dehydrator 2, subdividing the dehydrated sludge and returning it to the digestion tank 1, the SRT can be lengthened without changing the HRT. .
[0036]
The amount of the digested sludge withdrawn from the digestion tank 1 is not particularly limited, but the SRT can be circulated after extracting about 1/30 to 1/10 of the retained sludge in the digestion tank 1, dewatering and subdividing it. This can be extended to at least about 3 times the case where such sludge circulation is not performed, and even if it is a non-biodegradable organic waste, the volume reduction of sludge is promoted and the amount of methane gas produced Can be increased.
[0037]
Further, in the present invention, it is preferable to operate in a state where the dehydrator and the subdividing tank are shut off from the atmosphere.For example, by restricting the contact between sludge and oxygen by dehydrating the dehydrator in a sealed state, It can be returned to the digestion tank while keeping the anaerobic bacteria alive, and the number of live bacteria in the digestion tank can be easily maintained and increased, and the digestion efficiency can be improved.
[0038]
【Example】
Hereinafter, the present invention will be described in more detail with reference to experimental examples, examples and comparative examples.
[0039]
Experimental example 1
Excess sludge from the sewage treatment plant (SS content: 4%) was anaerobically digested and the digested sludge with a VSS concentration of 28,000 mg / L was dehydrated with a centrifugal dehydrator to obtain a dehydrated sludge with an SS concentration of 18%. Tap water was added to the dewatered sludge to adjust the SS concentration to 7%. The diameter of the sludge mass was 10 to 50 mm.
[0040]
In addition, a part of the sludge adjusted to the SS concentration of 7% was subdivided with a mixer to have a particle diameter of 1 mm or less.
[0041]
For some of the subdivision sludge was treated with ozone in an ozone amount 0.03g-O 3 / g-VSS .
[0042]
SS sludge with a concentration of 7% (7% dehydrated sludge) whose concentration was adjusted after dewatering digested sludge, sludge obtained by subdividing this sludge (dehydrated, subdivided sludge), and sludge that was further treated with ozone (dehydrated, subdivided, Ozone-treated sludge) was introduced into each digester, and the degradability of sludge was examined from the increase in the amount of methane gas produced over time. The results are shown in FIG.
[0043]
As can be seen from Fig. 2, compared to 7% dewatered sludge that is not subdivided, dewatered, subdivided sludge is approximately twice as sludge degradable, and dewatered, subdivided, ozone treated sludge is about 4 times better sludge degradability.
[0044]
From this, dehydrated digested sludge and returning it to the digestion tank as it is will degrade the degradability, so subdivide the dehydrated sludge to restore the original digested sludge degradability and return it to the digestion tank. Furthermore, it is preferable that the subdivided sludge is treated with ozone and returned to the digestion tank, which can increase digestion efficiency.
[0045]
Example 1
Using the organic waste treatment apparatus shown in FIG. 1, anaerobic digestion treatment of mixed sludge (SS content 4%) at a sewage treatment plant was performed at a throughput of 2.4 g / day (SS conversion), HRT = 30 days. . A centrifugal dehydrator was used as the dehydrator 2, and a household mixer was used as the subdividing tank 3.
[0046]
3.2 g (SS conversion) of the digested sludge with a VSS concentration of 28,000 mg / L was extracted from the digester 1 and dehydrated with the dehydrator 2 to obtain a dehydrated cake with an SS concentration of 18%. In the dehydration, 0.5% by weight of a cationic polymer flocculant as SS was added to digested sludge as a flocculant. The desorbed liquid of the dehydrator 2 was SS: 0.5% and was discharged out of the system.
[0047]
Next, the dewatered sludge was subdivided into a particle diameter of 1 mm or less in the subdividing tank 3. In this subdivision, the concentration of sludge subdivided by supplying digested sludge as moisture was set to 7%. The finely divided sludge was returned to the digester 1.
[0048]
In this way, it was possible to secure SRT for 120 days or more by dewatering the digested sludge and then subdividing it and returning it to the digester.
[0049]
The TVS removal rate and the amount of methane produced in the digestion tank at this time were examined, and the results are shown in Table 1.
[0050]
Example 2
In Example 1, anaerobic digestion of sewage sludge was performed in the same manner except that the subdivided sludge was treated with ozone and then returned to the digestion tank, and the TVS removal rate and the amount of methane produced were examined. The results are shown in Table 1. . Note that the ozone treatment was performed with an amount of ozone used of 0.03 g-O 3 / g-VSS.
[0051]
Comparative Example 1
In Example 1, the digested sludge was not dehydrated, subdivided, and returned, but was treated in the same manner except that HRT = SRT = 30 days, and the TVS removal rate and the amount of methane produced were examined. It was shown to.
[0052]
Comparative Example 2
In Example 1, the digested sludge was dehydrated and then treated in the same manner except that the digested sludge was returned to the digester without being subdivided. The TVS removal rate and the amount of methane produced were examined, and the results are shown in Table 1. .
[0053]
[Table 1]
Figure 0004192491
[0054]
As is clear from Table 1, in Example 1, the digestion sludge was dehydrated and then subdivided and returned to the digestion tank to extend the SRT. Compared with Comparative Example 1, the TVS removal rate and the amount of methane gas produced were 1. Increased 3 times. Further, according to Example 2 in which the subdivided sludge was treated with ozone and returned to the digestion tank, the TVS removal rate and the amount of methane gas generated were further improved, and were 1.5 times that in Comparative Example 1.
[0055]
In addition, even if it returns dehydrated sludge, in the comparative example 2 which returns dehydrated sludge as it is, without subdividing, a TVS removal rate and methane production amount do not improve.
[0056]
【The invention's effect】
As described above in detail, according to the organic waste processing apparatus and processing method of the present invention, in the anaerobic digestion processing of organic waste, the organic waste is efficiently processed to further improve the sludge. It is possible to reduce the volume and increase the amount of methane gas generated.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of an organic waste treatment apparatus of the present invention.
2 is a graph showing the results of Experimental Example 1. FIG.
[Explanation of symbols]
1 Digestion tank 2 Dehydrator 3 Subdivision tank

Claims (3)

有機性廃棄物を嫌気性消化する嫌気性消化槽と、該嫌気性消化槽から排出される消化汚泥を脱水する脱水機と、該脱水機からの脱水汚泥を細分化する細分化手段と、該細分化手段で細分化された汚泥を前記嫌気性消化槽に返送する返送手段とを有する有機性廃棄物の処理装置であって、
前記細分化手段で細分化される脱水汚泥の汚泥濃度を調整するための水分供給手段を有することを特徴とする有機性廃棄物の処理装置。
An anaerobic digester for anaerobically digesting organic waste, a dehydrator for dewatering the digested sludge discharged from the anaerobic digester, and a subdividing means for subdividing the dehydrated sludge from the dehydrator, An organic waste processing apparatus having return means for returning sludge subdivided by the subdividing means to the anaerobic digester ,
An organic waste treatment apparatus comprising a water supply means for adjusting a sludge concentration of dewatered sludge subdivided by the subdivision means .
請求項1において、前記嫌気性消化槽に返送される汚泥及び/又は嫌気性消化槽の消化汚泥を改質するための汚泥改質手段を有することを特徴とする有機性廃棄物の処理装置。Process according Oite to claim 1, organic waste, characterized in that it comprises a sludge reforming means for reforming the sludge and / or digested sludge of the anaerobic digestion tank is returned to the anaerobic digestion tank apparatus. 有機性廃棄物を嫌気性消化する嫌気性消化工程と、
該嫌気性消化工程からの消化汚泥を脱水機で脱水する脱水工程と、
該脱水工程からの脱水汚泥に水分を供給して濃度調整した後、細分化する細分化工程と、
該細分化工程で細分化された汚泥を前記嫌気性消化工程に返送する返送工程と
を備えることを特徴とする有機性廃棄物の処理方法。
An anaerobic digestion process for anaerobically digesting organic waste;
A dehydration step of dewatering the digested sludge from the anaerobic digestion step with a dehydrator;
After supplying moisture to the dewatered sludge from the dewatering step and adjusting the concentration, a subdividing step to subdivide,
And a return step of returning the sludge subdivided in the subdividing step to the anaerobic digestion step.
JP2002128420A 2002-04-30 2002-04-30 Organic waste processing apparatus and processing method Expired - Fee Related JP4192491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002128420A JP4192491B2 (en) 2002-04-30 2002-04-30 Organic waste processing apparatus and processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002128420A JP4192491B2 (en) 2002-04-30 2002-04-30 Organic waste processing apparatus and processing method

Publications (2)

Publication Number Publication Date
JP2003320394A JP2003320394A (en) 2003-11-11
JP4192491B2 true JP4192491B2 (en) 2008-12-10

Family

ID=29542178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002128420A Expired - Fee Related JP4192491B2 (en) 2002-04-30 2002-04-30 Organic waste processing apparatus and processing method

Country Status (1)

Country Link
JP (1) JP4192491B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI118596B (en) * 2005-02-08 2008-01-15 Dgt Direct Granulation Technol Method for treating biomass
JP4611777B2 (en) * 2005-03-16 2011-01-12 住友重機械エンバイロメント株式会社 Methane fermentation system and methane fermentation method
JP4991832B2 (en) * 2009-12-09 2012-08-01 メタウォーター株式会社 Methane fermentation method and methane fermentation apparatus
CN104030537A (en) * 2014-06-09 2014-09-10 王胜初 Sludge treatment system and sludge treatment method
CN106964633A (en) * 2017-04-14 2017-07-21 镇江市海润环保科技有限公司 A kind of kitchen castoff and sewage plant sludge cooperative processing method

Also Published As

Publication number Publication date
JP2003320394A (en) 2003-11-11

Similar Documents

Publication Publication Date Title
JP6342434B2 (en) Improved digestion of biosolids in wastewater
JP2004042043A (en) Method of treating waste by oxidation
JP5211769B2 (en) Biological treatment method and treatment apparatus for organic waste liquid
JP3873643B2 (en) Organic wastewater treatment method
JP2000015231A (en) Method for methane fermentation of organic waste
JP4075946B2 (en) Method and apparatus for anaerobic digestion treatment of organic waste liquid
JP4864339B2 (en) Organic waste processing apparatus and processing method
JP4192491B2 (en) Organic waste processing apparatus and processing method
JPH11197636A (en) Method for treatment of organic waste
TWI414489B (en) Anaerobic digestion treatment method of organic waste solution and apparatus thereof
JP4409928B2 (en) Organic waste treatment methods
JP3977174B2 (en) Sludge treatment method and apparatus for reducing generation amount of excess sludge
JP4507712B2 (en) Anaerobic digester for organic waste liquid
JP3885879B2 (en) Sludge treatment equipment
JP3775670B2 (en) Method and apparatus for treating cellulose-containing organic waste
JP3971657B2 (en) Method and apparatus for treating organic waste liquid
JP2004041953A (en) Method and equipment for treating organic waste water
JPH04326994A (en) Methane fermentation method and apparatus
JP2006075730A (en) Anaerobic treatment device
JP4148286B2 (en) Method and apparatus for anaerobic digestion treatment of organic waste liquid
JP3915217B2 (en) Organic waste treatment equipment
JP3800048B2 (en) Woody solid waste treatment method
JP3969144B2 (en) Biological treatment method and biological treatment apparatus
JP3672091B2 (en) Organic wastewater treatment method and equipment
JP2002224686A (en) Anaerobic treatment method and equipment for starch particle-containing liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees