JP4991832B2 - Methane fermentation method and methane fermentation apparatus - Google Patents

Methane fermentation method and methane fermentation apparatus Download PDF

Info

Publication number
JP4991832B2
JP4991832B2 JP2009279028A JP2009279028A JP4991832B2 JP 4991832 B2 JP4991832 B2 JP 4991832B2 JP 2009279028 A JP2009279028 A JP 2009279028A JP 2009279028 A JP2009279028 A JP 2009279028A JP 4991832 B2 JP4991832 B2 JP 4991832B2
Authority
JP
Japan
Prior art keywords
liquid
sludge concentration
sludge
methane fermentation
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009279028A
Other languages
Japanese (ja)
Other versions
JP2011120975A (en
Inventor
芳昌 富内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2009279028A priority Critical patent/JP4991832B2/en
Priority to PCT/JP2010/071820 priority patent/WO2011071013A1/en
Priority to MYPI2012001431A priority patent/MY158944A/en
Publication of JP2011120975A publication Critical patent/JP2011120975A/en
Application granted granted Critical
Publication of JP4991832B2 publication Critical patent/JP4991832B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2813Anaerobic digestion processes using anaerobic contact processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • C02F2209/006Processes using a programmable logic controller [PLC] comprising a software program or a logic diagram
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/01Density
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Treatment Of Sludge (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、長期にわたって、有機性廃棄物を安定してメタン発酵処理できるメタン発酵処理及びメタン発酵装置に関する。   The present invention relates to a methane fermentation treatment and a methane fermentation apparatus capable of stably treating methane fermentation of organic waste over a long period of time.

メタン発酵処理は、有機性廃棄物を嫌気性下でメタン菌により発酵処理して有機性廃棄物をメタンガスに転換するもので、有機性廃棄物をバイオガスと水とに分解して大幅に減量することができる。しかも、副産物として生成するメタンガスをエネルギーとして回収できるメリットがある。   Methane fermentation treatment is an anaerobic treatment of organic waste with methane bacteria to convert the organic waste into methane gas. The organic waste is decomposed into biogas and water to greatly reduce the amount of waste. can do. In addition, there is a merit that methane gas generated as a by-product can be recovered as energy.

メタン発酵槽内にメタン菌を多量に蓄えることができれば、より高速での処理が可能となる。メタン発酵槽内にメタン菌を多量に蓄えるための手段として、メタン発酵槽内にメタン菌等の微生物を担持させるろ床を設置する方法がある。しかしながら、装置構成が複雑になるばかりか、ろ床の目詰まり等を防止する必要があることからメンテナンスに手間やコストがかかる問題があった。   If a large amount of methane bacteria can be stored in the methane fermentation tank, processing at higher speed becomes possible. As a means for storing a large amount of methane bacteria in the methane fermentation tank, there is a method of installing a filter bed for supporting microorganisms such as methane bacteria in the methane fermentation tank. However, there is a problem that not only the apparatus configuration becomes complicated, but also maintenance is troublesome and expensive because it is necessary to prevent clogging of the filter bed.

また、ろ床を使用しない方法としては、メタン発酵槽から取出した発酵液を固液分離し、固液分離した分離汚泥をメタン発酵槽等に返送してメタン発酵を行う方法がある。   Further, as a method not using a filter bed, there is a method in which a fermentation liquid taken out from a methane fermentation tank is subjected to solid-liquid separation, and the separated sludge separated into solid and liquid is returned to a methane fermentation tank or the like to perform methane fermentation.

例えば、特許文献1には、有機性廃棄物をメタン発酵槽でメタン発酵し、このメタン発酵槽からの汚泥を固液分離手段で固液分離し、前記固液分離手段で固液分離した分離汚泥の一部及び前記固液分離手段で固液分離した分離液の一部を、前記有機性廃棄物に混合するように返送すると共に、前記固液分離手段で固液分離した分離液のさらに一部を、前記メタン発酵槽からの汚泥に混合するように返送し、前記固液分離手段で固液分離した分離汚泥の残り及び前記固液分離手段で固液分離した分離液の残りを系外に排出することをメタン発酵方法が開示されている。固液分離手段としては、スクリュープレス脱水機、遠心脱水機、フィルタープレス脱水機、ベルトプレス脱水機、多重円板脱水機等の機械式の固液分離手段、沈殿式の固液分離手段が挙げられている。   For example, in Patent Literature 1, organic waste is methane-fermented in a methane fermentation tank, and sludge from the methane fermentation tank is solid-liquid separated by solid-liquid separation means, and separated by solid-liquid separation by the solid-liquid separation means. A part of the sludge and a part of the separated liquid separated by the solid-liquid separating means are returned to be mixed with the organic waste, and the separated liquid separated by the solid-liquid separating means is further removed. A part is returned so as to be mixed with the sludge from the methane fermentation tank, and the remainder of the separated sludge solid-liquid separated by the solid-liquid separation means and the remainder of the separated liquid solid-liquid separated by the solid-liquid separation means A methane fermentation method is disclosed that discharges to the outside. Examples of the solid-liquid separation means include screw-type dehydrators, centrifugal dehydrators, filter press dehydrators, belt press dehydrators, multiple disk dehydrators, and other mechanical solid-liquid separation means, and precipitation-type solid-liquid separation means. It has been.

引用文献1に開示された固液分離手段のうち、沈殿式の固液分離手段は、動力等を要さないので、ランニングコストは優れる。   Of the solid-liquid separation means disclosed in Cited Document 1, the precipitation-type solid-liquid separation means does not require power, so that the running cost is excellent.

しかしながら、沈殿式の固液分離手段では、流入による乱れや、風による混合、および気泡の発生によって生じる乱流を抑制する内部構造を有していないものが多いため、レイノルズ数が高くなって、汚泥の沈降性を損ねていた。   However, since many precipitation-type solid-liquid separation means do not have an internal structure that suppresses turbulence caused by inflow turbulence, mixing by wind, and generation of bubbles, the Reynolds number increases, The sedimentation property of sludge was impaired.

また、従来では、固液分離手段からメタン発酵槽への汚泥の返送量や、固液分離手段から系外への排液量は特に制御をしておらず一定にしていた。しかしながら、メタン発酵槽における有機性廃棄物の負荷(投入量と濃度による)が大きくなるとメタン発酵槽内における発酵液の粘性が増加し、メタン発酵槽から取出される発酵液の汚泥濃度も高くなり、その粘性も増加する。沈殿式の固液分離手段における汚泥の沈降速度は、汚泥濃度や発酵液の粘性が高まる程遅くなる傾向にあるため、メタン発酵槽における有機性廃棄物の負荷が変動することに起因して、沈降時間が十分に確保されない場合があり、必要な濃度まで濃縮した汚泥をメタン発酵槽に返送することが困難な場合があった。更には、沈殿式の固液分離手段から排出される液性状が悪くなり、排水処理に手間を要する問題があった。このため、沈殿式の固液分離手段からメタン発酵槽への汚泥の返送量や、固液分離手段から系外への排液量を一定にしてメタン発酵を行う場合においては、メタン発酵槽における有機性廃棄物の負荷変動を考慮して安全率をかけ、沈殿式の固液分離手段の槽容積を大きくする必要があり、装置構成が複雑化、大型化する問題があった。   Conventionally, the amount of sludge returned from the solid-liquid separation means to the methane fermentation tank and the amount of drainage from the solid-liquid separation means to the outside of the system are not particularly controlled and are kept constant. However, when the load of organic waste in the methane fermenter (depending on the input and concentration) increases, the viscosity of the fermented liquid in the methane fermenter increases and the sludge concentration in the fermented liquid extracted from the methane fermenter also increases. , Its viscosity also increases. Since the sedimentation rate of sludge in the precipitation-type solid-liquid separation means tends to become slower as the sludge concentration and the viscosity of the fermentation liquid increase, the load of organic waste in the methane fermentation tank fluctuates. Sedimentation time may not be sufficiently secured, and it may be difficult to return the sludge concentrated to the required concentration to the methane fermentation tank. Furthermore, the liquid property discharged from the precipitation-type solid-liquid separation means is deteriorated, and there is a problem that labor is required for wastewater treatment. For this reason, in the case of performing methane fermentation with a constant amount of sludge being returned from the precipitation-type solid-liquid separation means to the methane fermentation tank and the amount of drainage from the solid-liquid separation means to the outside of the system, Considering the load fluctuation of the organic waste, it is necessary to increase the safety factor and increase the tank volume of the precipitation type solid-liquid separation means.

特開2006−255571号公報JP 2006-255571 A

本発明の目的は、複雑な装置構成をとらなくても、短時間で高い分解率を維持できるメタン発酵方法およびメタン発酵装置を提供することにある。   The objective of this invention is providing the methane fermentation method and methane fermentation apparatus which can maintain a high decomposition rate in a short time, without taking a complicated apparatus structure.

上記目的を達成するにあたり、本発明のメタン発酵方法は、有機性廃棄物をメタン発酵槽内でメタン発酵処理し、前記メタン発酵槽から発酵液を所定量ずつ取出して重力沈降手段により汚泥濃度が下方ほど高くなる汚泥沈降液を形成し、前記汚泥沈降液の下層側の汚泥高濃度液を、返送ラインを通して直接又は間接的に前記メタン発酵槽に返送し、前記汚泥沈降液の上層側の汚泥低濃度液を、排出ラインを通して系外に排出し、前記返送ラインを通して返送する液量と、前記排出ラインを通して排出する液量との合計量が、前記メタン発酵槽から取出す発酵液の量とほぼ等しくなるように制御するメタン発酵方法において、
前記メタン発酵槽中の発酵液の汚泥濃度を第1の汚泥濃度測定手段により測定し、
前記重力沈降手段により形成された汚泥沈降液の所定部分の汚泥濃度を第2の汚泥濃度測定手段により測定し、
前記第1の汚泥濃度測定手段により測定された汚泥濃度と、前記第2の汚泥濃度測定手段により測定された汚泥濃度とを比較して、前記排出ラインを通して排出する液の汚泥濃度が前記メタン発酵槽中の発酵液の汚泥濃度よりも低くなるか、又は、前記返送ラインを通して前記メタン発酵槽に返送する液の汚泥濃度が前記メタン発酵槽中の発酵液の汚泥濃度よりも高くなるように、前記排出ラインを通して排出する液量及び前記返送ラインを通して前記メタン発酵槽に返送する液量を制御することを特徴とする。
In achieving the above object, the methane fermentation method of the present invention performs a methane fermentation treatment of organic waste in a methane fermentation tank, takes out a predetermined amount of the fermentation liquid from the methane fermentation tank, and the sludge concentration is reduced by gravity sedimentation means. A sludge sedimentation liquid that becomes higher as it goes downward is formed, and the sludge high-concentration liquid on the lower layer side of the sludge sedimentation liquid is directly or indirectly returned to the methane fermentation tank through a return line, and the sludge on the upper layer side of the sludge sedimentation liquid The low concentration liquid is discharged out of the system through the discharge line, and the total amount of the liquid amount returned through the return line and the liquid amount discharged through the discharge line is almost equal to the amount of the fermentation liquid taken out from the methane fermentation tank. In a methane fermentation process that controls to be equal,
Measuring the sludge concentration of the fermentation broth in the methane fermentation tank by the first sludge concentration measuring means;
Measuring a sludge concentration of a predetermined portion of the sludge sedimentation liquid formed by the gravity sedimentation means by a second sludge concentration measurement means;
Comparing the sludge concentration measured by the first sludge concentration measuring means with the sludge concentration measured by the second sludge concentration measuring means, the sludge concentration of the liquid discharged through the discharge line is the methane fermentation The sludge concentration of the fermentation liquor in the tank is lower than that, or the sludge concentration of the liquid returned to the methane fermentation tank through the return line is higher than the sludge concentration of the fermentation liquid in the methane fermentation tank. The amount of liquid discharged through the discharge line and the amount of liquid returned to the methane fermenter through the return line are controlled.

また、本発明のメタン発酵装置は、有機性廃棄物をメタン発酵処理するメタン発酵槽と、前記メタン発酵槽から取出される発酵液中の汚泥を重力沈降させて、汚泥濃度が下方ほど高くなる汚泥沈降液を形成する重力沈降手段と、前記汚泥沈降液の下層側の汚泥高濃度液を直接又は間接的に前記メタン発酵槽に返送する返送ラインと、前記汚泥沈降液の上層側の汚泥低濃度液を系外に排出する排出ラインとを備え、前記返送ラインを通して返送される液量と、前記排出ラインを通して排出される液量との合計量が、前記メタン発酵槽から取出される発酵液の量とほぼ等しくなるように制御されるメタン発酵装置において、
前記メタン発酵槽中の発酵液の汚泥濃度を測定する第1の汚泥濃度測定手段と、
前記重力沈降手段により形成された汚泥沈降液の所定部分の汚泥濃度を測定する第2の汚泥濃度測定手段と、
前記第1の汚泥濃度測定手段により測定された汚泥濃度と、前記第2の汚泥濃度測定手段により測定された汚泥濃度とを比較して、前記返送ラインを通して前記メタン発酵槽に返送する液の汚泥濃度が前記メタン発酵槽中の発酵液の汚泥濃度よりも高く、前記排出ラインを通して排出する液の汚泥濃度が前記メタン発酵槽中の発酵液の汚泥濃度よりも低くなるように、前記排出ラインを通して排出する液量及び前記返送ラインを通して前記メタン発酵槽に返送する液量を制御する制御装置とを有していることを特徴とする。
In addition, the methane fermentation apparatus of the present invention gravity settles sludge in a fermentation broth extracted from the methane fermentation tank for methane fermentation treatment of organic waste and the methane fermentation tank, and the sludge concentration increases toward the bottom. Gravity sedimentation means for forming sludge sedimentation liquid, return line for returning sludge high-concentration liquid on the lower side of the sludge sedimentation liquid directly or indirectly to the methane fermentation tank, and sludge low on the upper layer side of the sludge sedimentation liquid A fermentation liquid in which a total amount of a liquid amount returned through the return line and a liquid amount discharged through the discharge line is taken out from the methane fermentation tank. In a methane fermentation device controlled to be approximately equal to the amount of
First sludge concentration measuring means for measuring the sludge concentration of the fermentation broth in the methane fermenter;
A second sludge concentration measuring means for measuring a sludge concentration of a predetermined portion of the sludge sedimentation liquid formed by the gravity settling means;
The sludge of the liquid returned to the methane fermentation tank through the return line by comparing the sludge concentration measured by the first sludge concentration measuring means with the sludge concentration measured by the second sludge concentration measuring means. Through the discharge line, the concentration is higher than the sludge concentration of the fermentation liquid in the methane fermentation tank, and the sludge concentration of the liquid discharged through the discharge line is lower than the sludge concentration of the fermentation liquid in the methane fermentation tank. And a controller for controlling the amount of liquid to be discharged and the amount of liquid to be returned to the methane fermentation tank through the return line.

本発明によれば、第1の汚泥濃度測定手段により測定された汚泥濃度と、第2の汚泥濃度測定手段により測定された汚泥濃度に応じて、排出ラインを通して排出する液の汚泥濃度がメタン発酵槽中の発酵液の汚泥濃度よりも低くなるか、又は、返送ラインを通してメタン発酵槽に返送する液の汚泥濃度がメタン発酵槽中の発酵液の汚泥濃度よりも高くなるように、それぞれの液量を調整する。
排出ラインを通して排出する液の汚泥濃度がメタン発酵槽中の発酵液の汚泥濃度よりも低くなるように調整した場合は、重力沈降手段の下部から汚泥を引き抜いて返送ラインを通してメタン発酵槽に返送する液の汚泥濃度は相対的に高くなる。同様に、返送ラインを通してメタン発酵槽に返送する液の汚泥濃度がメタン発酵槽中の発酵液の汚泥濃度よりも高くなるように調整した場合は、重力沈降手段の上部から排出ラインを通して排出する液の汚泥濃度が相対的に低くなる。
このため、メタン発酵槽に供給する有機性廃棄物の性状が変動してメタン発酵槽から取出される発酵液の汚泥濃度が変動しても、排出ラインからは、汚泥濃度が低減された汚泥低濃度液を排出することができると共に、返送ラインからは、メタン発酵槽に必要な濃度まで濃縮した汚泥高濃度液を返送することができる。その結果、重力沈降手段を、大型化することなく、メタン菌を発酵槽に長期間滞留させつつも、処理する有機物の処理時間は短期間で高い分解率を保持したメタン発酵をすることができる。
According to the present invention, according to the sludge concentration measured by the first sludge concentration measuring means and the sludge concentration measured by the second sludge concentration measuring means, the sludge concentration of the liquid discharged through the discharge line is methane fermentation. Make sure that each sludge concentration is lower than the sludge concentration in the fermentation broth in the tank, or higher than the sludge concentration in the fermentation broth in the methane fermentation tank. Adjust the amount.
When the sludge concentration of the liquid discharged through the discharge line is adjusted to be lower than the sludge concentration of the fermentation liquid in the methane fermentation tank, the sludge is drawn from the lower part of the gravity sedimentation means and returned to the methane fermentation tank through the return line. The sludge concentration in the liquid is relatively high. Similarly, if the sludge concentration in the liquid returned to the methane fermentation tank through the return line is adjusted to be higher than the sludge concentration in the fermentation liquid in the methane fermentation tank, the liquid discharged from the upper part of the gravity sedimentation means through the discharge line. The sludge concentration is relatively low.
For this reason, even if the properties of the organic waste supplied to the methane fermenter fluctuate and the sludge concentration in the fermentation liquid extracted from the methane fermenter fluctuates, the sludge concentration with reduced sludge concentration is reduced from the discharge line. Concentrated liquid can be discharged, and a sludge high-concentrated liquid concentrated to a concentration required for the methane fermentation tank can be returned from the return line. As a result, it is possible to perform methane fermentation while maintaining a high decomposition rate in a short period of time for treating the organic matter while keeping the methane bacteria in the fermentation tank for a long time without increasing the size of the gravity sedimentation means. .

本発明の1つの態様では、前記第2の汚泥濃度測定手段を、前記重力沈降手段内であって前記排出ラインよりも上部及び/又は前記排出ライン内に配置し、前記第1の汚泥濃度測定手段により測定された汚泥濃度よりも、前記第2の汚泥濃度測定手段により測定された汚泥濃度の方が高い場合は、前記排出ラインを通して排出する液量を減少させ、前記第1の汚泥濃度測定手段により測定された汚泥濃度よりも、前記第2の汚泥濃度測定手段により測定された汚泥濃度の方が低い場合は、前記排出ラインを通して排出する液量を増大させ、前記返送ラインを通して前記メタン発酵槽に返送する液量は、前記メタン発酵槽から取出されて重力沈降手段に投入される発酵液の量から前記排出ラインを通して排出する液量を減じた量となるように制御することが好ましい。
上記態様によれば、排出ラインを通して排出する液の汚泥濃度をより安定して低い状態に維持することができると共に、返送ラインを通してメタン発酵槽に返送する液の汚泥濃度を相対的に高くすることができる。
In one aspect of the present invention, the second sludge concentration measuring means is disposed in the gravity settling means, above the discharge line and / or in the discharge line, and the first sludge concentration measurement. If the sludge concentration measured by the second sludge concentration measuring means is higher than the sludge concentration measured by the means, the amount of liquid discharged through the discharge line is reduced, and the first sludge concentration measurement is performed. If the sludge concentration measured by the second sludge concentration measuring means is lower than the sludge concentration measured by the means, the amount of liquid discharged through the discharge line is increased, and the methane fermentation through the return line The amount of liquid returned to the tank is controlled so as to be the amount obtained by subtracting the amount of liquid discharged through the discharge line from the amount of fermented liquid removed from the methane fermentation tank and introduced into the gravity sedimentation means. It is preferable to.
According to the said aspect, while being able to maintain the sludge density | concentration of the liquid discharged | emitted through a discharge line more stably and in a low state, making the sludge density | concentration of the liquid returned to a methane fermentation tank through a return line relatively high Can do.

本発明の別の態様では、前記第2の汚泥濃度測定手段を、前記重力沈降手段内であって前記排出ラインよりも下部及び/又は前記返送ライン内に配置し、前記第1の汚泥濃度測定手段により測定された汚泥濃度よりも、前記第2の汚泥濃度測定手段により測定された汚泥濃度の方が高い場合は、前記返送ラインを通して前記メタン発酵槽に返送する液量を増大させ、前記第1の汚泥濃度測定手段により測定された汚泥濃度よりも、前記第2の汚泥濃度測定手段により測定された汚泥濃度の方が低い場合は、前記返送ラインを通して前記メタン発酵槽に返送する液量を減少させ、前記排出ラインを通して排出する液量は、前記メタン発酵槽から取出されて重力沈降手段に投入される発酵液の量から前記返送ラインを通して前記メタン発酵槽に返送する液量を減じた量となるように制御することが好ましい。
上記態様によれば、返送ラインを通してメタン発酵槽に返送する液の汚泥濃度をより安定して高い状態に維持することができると共に、排出ラインを通して排出する液の汚泥濃度を相対的に低くすることができる。
In another aspect of the present invention, the second sludge concentration measuring means is disposed in the gravity settling means, below the discharge line and / or in the return line, and the first sludge concentration measurement. If the sludge concentration measured by the second sludge concentration measuring means is higher than the sludge concentration measured by the means, the amount of liquid returned to the methane fermentation tank through the return line is increased, When the sludge concentration measured by the second sludge concentration measuring means is lower than the sludge concentration measured by the sludge concentration measuring means, the amount of liquid returned to the methane fermentation tank through the return line is The amount of liquid that is reduced and discharged through the discharge line is returned to the methane fermenter through the return line from the amount of fermentation liquid that is removed from the methane fermenter and introduced into the gravity sedimentation means. Is preferably controlled such that the amount obtained by subtracting the amount of liquid.
According to the said aspect, while being able to maintain the sludge density | concentration of the liquid returned to a methane fermentation tank through a return line more stably and in a high state, making the sludge density | concentration of the liquid discharged | emitted through a discharge line relatively low Can do.

本発明においては、前記メタン発酵槽の前段に有機性廃棄物を前処理してスラリー化するスラリー調整槽を配置し、前記返送ラインを前記スラリー調整槽及び/又は前記メタン発酵槽に接続することが好ましい。
上記態様によれば、重力沈降手段により形成された汚泥を高濃度に含む液を、スラリー調整槽を介してメタン発酵槽に返送し、あるいは直接メタン発酵槽に返送することができる。汚泥を高濃度に含む液を、スラリー調整槽を介してメタン発酵槽に返送する場合は、スラリー調整槽にて、可溶化処理等がなされてメタン発酵処理され易い性状になるので、メタン発酵槽における処理効率が向上し、より高い分解効率が得られる。
In the present invention, a slurry adjustment tank for pre-treating organic waste into a slurry is disposed in front of the methane fermentation tank, and the return line is connected to the slurry adjustment tank and / or the methane fermentation tank. Is preferred.
According to the said aspect, the liquid which contains the sludge formed by the gravity sedimentation means in high concentration can be returned to a methane fermentation tank via a slurry adjustment tank, or can be directly returned to a methane fermentation tank. When returning a liquid containing sludge to a high concentration to the methane fermentation tank via the slurry adjustment tank, the slurry adjustment tank is solubilized, etc., so that the methane fermentation process is easily performed. The processing efficiency is improved, and higher decomposition efficiency is obtained.

また、本発明において、前記汚泥濃度測定手段としては、粘度計、近赤外線散乱光方式濃度計、超音波式汚泥界面計及びマイクロ波濃度計から選ばれる1種以上であることが好ましい。   In the present invention, the sludge concentration measuring means is preferably at least one selected from a viscometer, a near infrared scattered light type concentration meter, an ultrasonic sludge interface meter, and a microwave concentration meter.

本発明によれば、メタン発酵槽に供給する有機性廃棄物の性状が変動してメタン発酵槽から取出される発酵液の汚泥濃度が変動しても、排出ラインからは、汚泥濃度が低減された汚泥低濃度液を短時間で処理排出することができる。さらに、返送ラインからは、メタン発酵槽に必要な濃度まで濃縮した汚泥高濃度液を返送することができるため、発酵槽のメタン菌を確保でき、メタン菌の十分な滞留時間とることが可能となる。その結果、重力沈降手段として大型のものを用いることなく、短時間で、かつ、高い分解率で有機性廃棄物をメタン発酵することができる。   According to the present invention, even if the properties of the organic waste supplied to the methane fermenter fluctuate and the sludge concentration of the fermentation liquor extracted from the methane fermenter fluctuates, the sludge concentration is reduced from the discharge line. The sludge low concentration liquid can be processed and discharged in a short time. Furthermore, from the return line, it is possible to return the high-concentrated sludge liquid concentrated to the concentration required for the methane fermentation tank, so that the methane bacteria in the fermenter can be secured and sufficient residence time of the methane bacteria can be taken. Become. As a result, organic waste can be methane-fermented in a short time and at a high decomposition rate without using a large-scale gravity sedimentation means.

本発明のメタン発酵装置の第1の実施形態を表す概略構成図である。It is a schematic block diagram showing 1st Embodiment of the methane fermentation apparatus of this invention. 同メタン発酵装置の制御装置で行う制御フローチャート図である。It is a control flowchart figure performed with the control apparatus of the methane fermentation apparatus. 本発明のメタン発酵装置の第2の実施形態を表す概略構成図である。It is a schematic block diagram showing 2nd Embodiment of the methane fermentation apparatus of this invention. 同メタン発酵装置の制御装置で行う制御フローチャート図である。It is a control flowchart figure performed with the control apparatus of the methane fermentation apparatus.

本発明のメタン発酵装置の第1の実施形態について、図1を用いて説明する。
図1に示すように、このメタン発酵装置は、前処理槽1と、メタン発酵槽2と、重力沈降槽3とで主に構成されている。
1st Embodiment of the methane fermentation apparatus of this invention is described using FIG.
As shown in FIG. 1, the methane fermentation apparatus mainly includes a pretreatment tank 1, a methane fermentation tank 2, and a gravity sedimentation tank 3.

前処理槽1は、有機性廃棄物の供給源から送られてくる有機性廃棄物を粉砕、破砕、可溶化等の処理を行い、スラリー状に調整する処理槽すなわちスラリー調整槽である。前処理槽1は、スラリー状に調整された有機性廃棄物の、後述するメタン発酵槽2への流入量を安定化させるための緩衝機能も有している。前処理槽1には、有機性廃棄物の供給源から伸びた配管L1と、重力沈降槽3の底部(側面の下部に接続してもよい)から伸びた、ポンプP1が介装された配管L2(本発明における「返送ライン」に相当)とが連結している。   The pretreatment tank 1 is a treatment tank that performs processing such as pulverization, crushing, and solubilization of organic waste sent from an organic waste supply source, and adjusts it into a slurry state, that is, a slurry adjustment tank. The pretreatment tank 1 also has a buffering function for stabilizing the inflow amount of organic waste adjusted to a slurry state into a methane fermentation tank 2 described later. In the pretreatment tank 1, a pipe L1 extending from an organic waste supply source and a pipe P1 extending from the bottom of the gravity settling tank 3 (may be connected to the lower part of the side surface) are provided. L2 (corresponding to “return line” in the present invention) is connected.

前処理槽1の後段には、メタン発酵槽2が配置されている。前処理槽1とメタン発酵槽2は、ポンプP2が介装された配管L3を介して連結している。   A methane fermentation tank 2 is disposed at the subsequent stage of the pretreatment tank 1. The pretreatment tank 1 and the methane fermentation tank 2 are connected via a pipe L3 in which a pump P2 is interposed.

メタン発酵槽2は、槽内に供給された有機性廃棄物(スラリー)をメタン菌等の嫌気性微生物の作用で嫌気処理し、メタンガス等のバイオガスに分解する処理槽である。メタン発酵槽2には、槽内の発酵液を攪拌する攪拌装置(図示しない)と、槽内の発酵液の汚泥濃度を測定する第1汚泥濃度計10が配置されている。また、メタン発酵槽2の上部からは、バイオガス取出し用の配管L4が伸びて、ガスホルダやガス利用設備等に接続している。   The methane fermentation tank 2 is a treatment tank that anaerobically treats organic waste (slurry) supplied into the tank by the action of anaerobic microorganisms such as methane bacteria and decomposes it into biogas such as methane gas. The methane fermentation tank 2 is provided with a stirring device (not shown) for stirring the fermentation liquid in the tank and a first sludge concentration meter 10 for measuring the sludge concentration of the fermentation liquid in the tank. Further, from the upper part of the methane fermentation tank 2, a biogas extraction pipe L4 extends and is connected to a gas holder, a gas utilization facility, and the like.

攪拌装置は、槽内の発酵液を攪拌出来るものであれば特に限定はない。例えば、攪拌翼を備えた攪拌機等が挙げられる。また、槽内の発酵液を循環する経路を形成して、槽内の発酵液に上昇流又は下降流を形成するような機構を設けたり、発生したバイオガスを循環させて吹き込みバブリングさせるガス攪拌装置を設けても良い。   The stirring device is not particularly limited as long as it can stir the fermentation broth in the tank. For example, a stirrer equipped with a stirring blade may be used. In addition, a gas agitation that forms a path for circulating the fermented liquid in the tank and provides a mechanism for forming an upward flow or a downward flow in the fermented liquid in the tank, or circulates the generated biogas for bubbling. An apparatus may be provided.

第1汚泥濃度計10としては、特に限定はなく、粘度計、近赤外線散乱光方式濃度計、超音波式汚泥界面計、マイクロ波濃度計等が好ましく挙げられる。粘度計としては、例えばセコニックから上市されている「FMV80A」(商品名)が挙げられる。また、近赤外線散乱光方式濃度計としては、例えば堀場アドバンストテクノから上市されている「SG−200」(商品名)が挙げられる。また、超音波式汚泥界面計としては、例えば堀場アドバンストテクノから上市されている「SL−200」(商品名)が挙げられる。また、マイクロ波濃度計としては、例えば東芝から市販されている「LQシリーズ「(商品名)を用いることができる。   The first sludge concentration meter 10 is not particularly limited, and preferred examples include a viscometer, a near infrared scattered light type concentration meter, an ultrasonic sludge interface meter, a microwave concentration meter, and the like. Examples of the viscometer include “FMV80A” (trade name) marketed by Seconic. Moreover, as a near-infrared scattered light type | mold densitometer, "SG-200" (brand name) marketed, for example from Horiba Advanced Techno is mentioned. Moreover, as an ultrasonic sludge interface meter, for example, “SL-200” (trade name) marketed by HORIBA Advanced Techno is cited. Moreover, as a microwave densitometer, "LQ series" (brand name) marketed from Toshiba, for example can be used.

メタン発酵槽2の後段には、重力沈降槽3が配置されている。メタン発酵槽2と重力沈降槽3は、ポンプP3が介装された配管L5を介して連結している。   A gravity sedimentation tank 3 is arranged at the subsequent stage of the methane fermentation tank 2. The methane fermentation tank 2 and the gravity sedimentation tank 3 are connected via a pipe L5 in which a pump P3 is interposed.

重力沈降槽3は、メタン発酵槽2から取出した発酵液中の汚泥を重力沈降して、汚泥濃度が下方ほど高くなる汚泥沈降液を形成する処理槽である。例えば、重力沈殿池が挙げられる。また、重力沈降槽3に水流傾斜板を配置することで、汚泥の沈降速度をより高めることができる。水流傾斜板を備えた重力沈降槽としては、例えば、特開平6−63321号に記載されたもの等が挙げられる。   The gravity sedimentation tank 3 is a treatment tank that gravity settles the sludge in the fermentation liquid taken out from the methane fermentation tank 2 to form a sludge sedimentation liquid whose sludge concentration increases downward. An example is a gravity sedimentation pond. Moreover, the sedimentation speed | rate of sludge can be raised more by arrange | positioning a water flow inclination board to the gravity sedimentation tank 3. FIG. As a gravity sedimentation tank provided with the water flow inclination board, what was described in Unexamined-Japanese-Patent No. 6-63321 etc. is mentioned, for example.

重力沈降槽3の側部からは、上層側の汚泥低濃度液(以下、「汚泥分離液」ともいう)を系外に排出する配管L6(本発明における「排出ライン」に相当)が接続している。この配管L6には、ポンプP4が介装されている。また、重力沈降槽3の下部(本実施例では底部)からは、前処理槽1に接続する配管L2が伸びており、下層側の汚泥高濃度液汚泥(以下、「汚泥濃縮液」ともいう)の少なくとも一部を前処理槽1に返送できるように構成されている。また重力沈降槽3内であって、配管L6が重力沈降槽3に接続されている位置よりも上部には、第2汚泥濃度計20が配置されている。本実施形態における第2汚泥濃度計20は、重力沈降槽3内の汚泥沈降液の上面位置が変動しても、汚泥沈降液の上層部の汚泥分離液の濃度を測定できるよう設置される。第2汚泥濃度計20は、上記した第1汚泥濃度計10と同一のものを用いる。また、第2汚泥濃度計20は、配管L6との連結部近傍に設置されていることが好ましい。   From the side of the gravity settling tank 3, a pipe L6 (corresponding to the “discharge line” in the present invention) for discharging the sludge low concentration liquid on the upper layer side (hereinafter also referred to as “sludge separation liquid”) to the outside of the system is connected. ing. A pump P4 is interposed in the pipe L6. Further, a pipe L2 connected to the pretreatment tank 1 extends from the lower part (bottom part in the present embodiment) of the gravity settling tank 3, and is also referred to as a sludge high-concentration liquid sludge (hereinafter referred to as "sludge concentrate") on the lower layer side. ) At least a part thereof can be returned to the pretreatment tank 1. The second sludge concentration meter 20 is disposed in the gravity settling tank 3 above the position where the pipe L6 is connected to the gravity settling tank 3. The second sludge concentration meter 20 in the present embodiment is installed so that the concentration of the sludge separation liquid in the upper layer portion of the sludge sedimentation liquid can be measured even if the upper surface position of the sludge sedimentation liquid in the gravity sedimentation tank 3 fluctuates. The second sludge concentration meter 20 is the same as the first sludge concentration meter 10 described above. Moreover, it is preferable that the 2nd sludge concentration meter 20 is installed in the connection part vicinity with the piping L6.

制御装置100は、ポンプP1,P4の作動を、後述する図2に示すフローチャートに従って制御する。   The control device 100 controls the operation of the pumps P1 and P4 according to a flowchart shown in FIG.

次に、このメタン発酵装置を用いた場合を例にして、本発明のメタン発酵方法の第1の実施形態の作用について説明する。   Next, the operation of the first embodiment of the methane fermentation method of the present invention will be described using the case of using this methane fermentation apparatus as an example.

有機性廃棄物を、配管L1及び配管L2から前処理槽1に供給し、粉砕・破砕等の処理や、可溶化処理等を行ってスラリー状に調整する。有機性廃棄物の前処理方法は、処理に用いる有機性廃棄物の種類や性状によって適宜変更できる。例えば、塵芥、生ごみ、家畜糞尿、下水汚泥などの有機性廃棄物の場合、上水と混合し、粉砕・破砕などの処理を行うことが好ましい。また、油脂排液、ステアリン酸やパルミチン酸等のような油脂分を多く含む有機性廃棄物の場合は、65〜80℃に加温して可溶化処理することが好ましい。   Organic waste is supplied to the pretreatment tank 1 from the pipe L1 and the pipe L2, and is subjected to processing such as pulverization and crushing, solubilization processing, and the like, and is adjusted to a slurry state. The organic waste pretreatment method can be appropriately changed depending on the type and properties of the organic waste used for the treatment. For example, in the case of organic waste such as dust, garbage, livestock manure, sewage sludge, it is preferable to mix with clean water and perform processing such as crushing and crushing. In the case of an organic waste containing a large amount of fats and oils, such as fat and oil drainage, stearic acid, palmitic acid, etc., it is preferably heated to 65 to 80 ° C. and solubilized.

スラリー状に前処理した有機性廃棄物は、ポンプP2により配管L3を経由してメタン発酵槽2内に供給する。   The organic waste pretreated in a slurry state is supplied into the methane fermentation tank 2 via the pipe L3 by the pump P2.

メタン発酵槽2では、槽内の発酵液の汚泥濃度及び温度がほぼ均一になるように、図示しない攪拌手段で連続的又は間欠的に攪拌する。槽内の発酵液の汚泥濃度は、第1汚泥濃度計10で測定し、測定結果を制御装置100に入力する。   In the methane fermentation tank 2, stirring is performed continuously or intermittently by a stirring means (not shown) so that the sludge concentration and temperature of the fermentation liquid in the tank are substantially uniform. The sludge concentration of the fermentation broth in the tank is measured by the first sludge concentration meter 10 and the measurement result is input to the control device 100.

メタン発酵槽2に供給した有機性廃棄物(スラリー)は、メタン発酵槽2内で所定期間滞留することによりメタン菌などの嫌気性微生物の作用でメタン発酵する。そして、メタン発酵槽2に供給した有機性廃棄物(スラリー)と同量のメタン発酵槽2内の発酵液を配管L5からポンプP3により引き抜き、重力沈降槽3に供給する。また、有機性廃棄物をメタン発酵した際に発生したメタンガス等のバイオガスは、配管L4から槽外に取り出し、図示しないバイオガスホルダ等に貯留する。   The organic waste (slurry) supplied to the methane fermentation tank 2 is methane-fermented by the action of anaerobic microorganisms such as methane bacteria by staying in the methane fermentation tank 2 for a predetermined period. Then, the same amount of fermentation liquid in the methane fermentation tank 2 as the organic waste (slurry) supplied to the methane fermentation tank 2 is drawn out from the pipe L5 by the pump P3 and supplied to the gravity sedimentation tank 3. In addition, biogas such as methane gas generated when methane fermentation of organic waste is taken out of the tank from the pipe L4 and stored in a biogas holder (not shown) or the like.

重力沈降槽3では、メタン発酵槽2から取出した発酵液中の汚泥を重力沈降させて、汚泥濃度が下方ほど高くなる汚泥沈降液を形成し、汚泥沈降液の少なくとも一部を配管L6を通してポンプP4により排出すると共に、残部を配管L2を通してポンプP1により前処理槽1に返送する。また、第2汚泥濃度計20にて、汚泥沈降液の所定部分の汚泥濃度を測定する。この実施形態のメタン発酵装置では、第2汚泥濃度計20は、重力沈降槽3内であって、配管L6の重力沈降槽3への接続位置よりも上部に配置されているので、第2汚泥濃度計20では、汚泥分離液の汚泥濃度を測定する。そして、第2汚泥濃度計20の測定結果を制御装置100に入力する。   In the gravity sedimentation tank 3, the sludge in the fermentation liquid taken out from the methane fermentation tank 2 is gravity settled to form a sludge sedimentation liquid in which the sludge concentration increases downward, and at least a part of the sludge sedimentation liquid is pumped through the pipe L6. While discharging by P4, the remainder is returned to the pretreatment tank 1 by the pump P1 through the pipe L2. Further, the second sludge concentration meter 20 measures the sludge concentration in a predetermined portion of the sludge sedimentation liquid. In the methane fermentation apparatus of this embodiment, the second sludge concentration meter 20 is disposed in the gravity sedimentation tank 3 and above the connection position of the pipe L6 to the gravity sedimentation tank 3, so that the second sludge The densitometer 20 measures the sludge concentration of the sludge separation liquid. Then, the measurement result of the second sludge concentration meter 20 is input to the control device 100.

制御装置100に、第1汚泥濃度計10、第2汚泥濃度計20の測定結果がそれぞれ入力されると、制御装置100からは、第1汚泥濃度計10の測定値よりも、第2汚泥濃度計20の測定値の方が小さくなるようにポンプP1,P4に出力信号を送信して、配管L2を通って前処理槽1に返送する液量(以下、「汚泥濃縮液の返送量」ともいう)と、配管L6を通して排出する液量(以下、「汚泥分離液の排出量」ともいう)とを制御する。   When the measurement results of the first sludge densitometer 10 and the second sludge densitometer 20 are input to the control device 100, the second sludge concentration from the control device 100 is higher than the measurement value of the first sludge densitometer 10. An output signal is transmitted to the pumps P1 and P4 so that the measured value of the total 20 becomes smaller, and the amount of liquid returned to the pretreatment tank 1 through the pipe L2 (hereinafter referred to as “return amount of sludge concentrate”) And the amount of liquid discharged through the pipe L6 (hereinafter also referred to as “sludge separation liquid discharge amount”).

すなわち、図2に示すように、第1汚泥濃度計10、第2汚泥濃度計20の測定結果がそれぞれ入力されると(ステップS1)、第1汚泥濃度計10の測定値C1と、第2汚泥濃度計20の測定値C2との比較を行う(ステップS2)。   That is, as shown in FIG. 2, when the measurement results of the first sludge concentration meter 10 and the second sludge concentration meter 20 are input (step S1), the measured value C1 of the first sludge concentration meter 10 and the second Comparison with the measured value C2 of the sludge concentration meter 20 is performed (step S2).

第1汚泥濃度計10の測定値C1よりも第2汚泥濃度計20の測定値C2の方が大きい場合は、配管L6を通して排出される汚泥分離液の汚泥濃度が高いことを意味するので、ポンプP4の出力を減少させて、配管L6を通して排出する汚泥分離液の排出量を減少させる。それと共に、ポンプP1の出力は、配管L2を通して返送する汚泥濃縮液の返送量が、メタン発酵槽2から取出されて重力沈降槽3に投入される発酵液の量から、前記汚泥分離液の排出量を減じた量となるように制御する。具体的には、ポンプP4の出力を減少させて汚泥分離液の排出量を減少させたことにより、汚泥濃縮液の返送量は逆に増大させる必要があるため、ポンプP1の出力は増大させる(ステップS3)。これによって、汚泥濃度が高い汚泥分離液が排出されてしまうことを防止でき、メタン菌をメタン発酵槽2に長期間滞留させることができる。   When the measurement value C2 of the second sludge concentration meter 20 is larger than the measurement value C1 of the first sludge concentration meter 10, it means that the sludge concentration of the sludge separation liquid discharged through the pipe L6 is high. The output of P4 is reduced, and the discharge amount of the sludge separation liquid discharged through the pipe L6 is reduced. At the same time, the output of the pump P1 is that the return amount of the sludge concentrate returned through the pipe L2 is the discharge of the sludge separation liquid from the amount of the fermentation liquid taken out from the methane fermentation tank 2 and charged into the gravity sedimentation tank 3. Control so that the amount is reduced. Specifically, by reducing the output of the pump P4 and reducing the discharge amount of the sludge separation liquid, it is necessary to increase the return amount of the sludge concentrate, and therefore the output of the pump P1 is increased ( Step S3). Thereby, it can prevent that the sludge separation liquid with a high sludge density | concentration will be discharged | emitted, and a methane microbe can be made to stay in the methane fermentation tank 2 for a long period of time.

一方、第1汚泥濃度計10の測定値C1よりも第2汚泥濃度計20の測定値C2の方が小さい場合は、配管L6を通して排出される汚泥分離液の汚泥濃度が低いことを意味するので、ポンプP4の出力を増大させて、配管L6を通して排出する汚泥分離液の排出量を増大させる。それと共に、ポンプP1の出力は、配管L2を通して返送する汚泥濃縮液の返送量が、メタン発酵槽2から取出されて重力沈降槽3に投入される発酵液の量から、前記汚泥分離液の排出量を減じた量となるように制御する。具体的には、ポンプP4の出力を増大させて汚泥分離液の排出量を増大させたことにより、汚泥濃縮液の返送量は逆に減少させる必要があるため、ポンプP1の出力は減少させる(ステップS4)。これによって、重力沈降槽3に投入される発酵液の排出速度を可能な限り高めて、処理効率を高めることができる。   On the other hand, when the measurement value C2 of the second sludge concentration meter 20 is smaller than the measurement value C1 of the first sludge concentration meter 10, it means that the sludge concentration of the sludge separation liquid discharged through the pipe L6 is low. The output of the pump P4 is increased to increase the discharge amount of the sludge separation liquid discharged through the pipe L6. At the same time, the output of the pump P1 is that the return amount of the sludge concentrate returned through the pipe L2 is the discharge of the sludge separation liquid from the amount of the fermentation liquid taken out from the methane fermentation tank 2 and charged into the gravity sedimentation tank 3. Control so that the amount is reduced. Specifically, by increasing the output of the pump P4 and increasing the discharge amount of the sludge separation liquid, it is necessary to reduce the return amount of the sludge concentrate, so the output of the pump P1 is reduced ( Step S4). Thereby, the discharge rate of the fermented liquid thrown into the gravity sedimentation tank 3 can be increased as much as possible, and processing efficiency can be improved.

そして、このような操作によって、汚泥濃度の高い汚泥分離液が配管L6から排出されてしまうことを防止できるので、相対的に、配管L2を介して返送される汚泥濃縮液の汚泥濃度は、比較的高く維持されることとなり、汚泥中の微生物をメタン発酵槽2内に返送して、メタン発酵に必要な微生物の量を常に維持することが可能となる。   And since it can prevent that sludge separation liquid with a high sludge density | concentration will be discharged | emitted from piping L6 by such operation, the sludge density | concentration of the sludge concentrate returned relatively via piping L2 is compared. It is possible to maintain the amount of microorganisms necessary for methane fermentation at all times by returning microorganisms in the sludge into the methane fermentation tank 2.

従来の方法では、重力沈降槽3からのメタン発酵槽2への返送量と、配管L6を通しての系外への排出量を一定にしていた。上述したように、重力沈降手段での汚泥の沈降速度は、汚泥濃度が高まる程遅くなる傾向にあるため、メタン発酵槽へは汚泥濃度が十分に濃縮された汚泥濃縮液を返送し、系外には汚泥濃度が十分に低減された汚泥分離液を排出できるように運転するには、有機性廃棄物の負荷変動を考慮して安全率をかけ、槽容積を大きくする必要があり、装置構成が複雑化する問題があった。   In the conventional method, the return amount from the gravity sedimentation tank 3 to the methane fermentation tank 2 and the discharge amount outside the system through the pipe L6 are made constant. As described above, since the sludge sedimentation rate in the gravity sedimentation means tends to become slower as the sludge concentration increases, the sludge concentrate with a sufficiently concentrated sludge concentration is returned to the methane fermentation tank. To operate so that the sludge separation liquid with sufficiently reduced sludge concentration can be discharged, it is necessary to increase the tank volume by taking into account the load fluctuation of organic waste and increasing the tank volume. There was a problem that became complicated.

これに対し、本発明によれば、上述のようにして第1汚泥濃度計10の測定値よりも、第2汚泥濃度計20の測定値の方が小さくなるようにポンプP1,P4の駆動を制御することで、重力沈降槽3の槽容積が比較的小さい状態で、メタン発酵槽2における有機性廃棄物の負荷が変動しても、配管L6から排出される汚泥分離液の汚泥濃度を低い状態に維持できると共に、メタン発酵槽2に返送される汚泥濃宿液の汚泥濃度を高い状態に維持できる。それによって、有機性廃棄物を、効率よくかつ高い分解率でメタン発酵することができる。   On the other hand, according to the present invention, the pumps P1 and P4 are driven so that the measurement value of the second sludge concentration meter 20 is smaller than the measurement value of the first sludge concentration meter 10 as described above. By controlling, even if the load of the organic waste in the methane fermentation tank 2 fluctuates with the tank volume of the gravity sedimentation tank 3 being relatively small, the sludge concentration of the sludge separation liquid discharged from the pipe L6 is low. While being able to maintain in a state, the sludge density | concentration of the sludge concentrated semen liquid returned to the methane fermentation tank 2 can be maintained in a high state. Thereby, organic waste can be methane-fermented efficiently and at a high decomposition rate.

なお、この実施形態では、重力沈降槽3から前処理槽1に汚泥濃縮液を返送して、汚泥濃縮液を間接的にメタン発酵槽2に返送するようにしたが、配管L2をメタン発酵槽2に接続して、汚泥濃縮液をメタン発酵槽2へ直接返送するようにしてもよい。ただし、汚泥濃縮液を前処理槽1に返送した方が、可溶化処理等がなされてメタン発酵処理され易い性状になるので、メタン発酵槽2における処理効率が向上し、より高い分解効率が得られるので好ましい。   In this embodiment, the sludge concentrate is returned from the gravity settling tank 3 to the pretreatment tank 1, and the sludge concentrate is indirectly returned to the methane fermentation tank 2, but the pipe L2 is connected to the methane fermentation tank. 2 may be connected directly to the methane fermentation tank 2. However, when the sludge concentrate is returned to the pretreatment tank 1, the solubilization process is performed and the methane fermentation process is easily performed, so that the treatment efficiency in the methane fermentation tank 2 is improved and higher decomposition efficiency is obtained. This is preferable.

また、第2汚泥濃度計20は、重力沈降槽3内の配管L6よりも上部に設置したが、配管L6内に設置して、配管L6を通過する液(汚泥分離液)の汚泥濃度を直接測定してもよい。   Moreover, although the 2nd sludge concentration meter 20 was installed above the piping L6 in the gravity sedimentation tank 3, it installs in the piping L6, and the sludge density | concentration of the liquid (sludge separation liquid) which passes the piping L6 is directly set. You may measure.

次に、本発明のメタン発酵装置の第2の実施形態について、図3を用いて説明する。なお、第1の実施形態と実質的同一箇所には、同一符号を付してその説明を省略する。   Next, 2nd Embodiment of the methane fermentation apparatus of this invention is described using FIG. In addition, the same code | symbol is attached | subjected to the location substantially the same as 1st Embodiment, and the description is abbreviate | omitted.

この実施形態では、第2汚泥濃度計21が、重力沈降槽3内であって重力沈降槽3の配管L6の接続位置よりも下部に配置されている点が、上記第1の実施形態と相違する。   In this embodiment, the second sludge densitometer 21 is different from the first embodiment in that the second sludge concentration meter 21 is arranged in the gravity settling tank 3 and below the connection position of the pipe L6 of the gravity settling tank 3. To do.

すなわち、この実施形態では、第2汚泥濃度計21にて汚泥沈降液の下層側の汚泥高濃度液(汚泥濃縮液)の汚泥濃度を測定する。第2汚泥濃度計21は、重力沈降槽3の底部に配置されていることが好ましく、配管L2との連結部近傍に配置されていることがより好ましい。   That is, in this embodiment, the second sludge concentration meter 21 measures the sludge concentration of the sludge high concentration liquid (sludge concentrate) on the lower layer side of the sludge sedimentation liquid. The second sludge concentration meter 21 is preferably disposed at the bottom of the gravity sedimentation tank 3, and more preferably disposed in the vicinity of the connection portion with the pipe L2.

この実施形態では、制御装置101に、第1汚泥濃度計10、第2汚泥濃度計21の測定結果がそれぞれ入力されると、制御装置101からは、第1汚泥濃度計10の測定値よりも、第2汚泥濃度計20の測定値の方が大きくなるようにポンプP1,P4に出力信号を送信し、汚泥濃縮液の返送量と、汚泥分離液の排出量とを制御する。   In this embodiment, when the measurement results of the first sludge densitometer 10 and the second sludge densitometer 21 are respectively input to the control device 101, the control device 101 is more than the measured value of the first sludge densitometer 10. The output signal is transmitted to the pumps P1 and P4 so that the measured value of the second sludge concentration meter 20 becomes larger, and the return amount of the sludge concentrate and the discharge amount of the sludge separation liquid are controlled.

すなわち、図4に示すように、第1汚泥濃度計10、第2汚泥濃度計21の測定結果がそれぞれ入力されると(ステップS11)、第1汚泥濃度計10の測定値C1と、第2汚泥濃度計21の測定値C2’との比較を行う(ステップS12)。   That is, as shown in FIG. 4, when the measurement results of the first sludge concentration meter 10 and the second sludge concentration meter 21 are input (step S11), the measured value C1 of the first sludge concentration meter 10 and the second Comparison with the measured value C2 ′ of the sludge concentration meter 21 is performed (step S12).

第1汚泥濃度計10の測定値C1よりも第2汚泥濃度計21の測定値C2’の方が大きい場合は、配管L2を通して返送される汚泥濃縮液の汚泥濃度が高いことを意味するので、ポンプP1の出力を増大させて、配管L2を通して返送する汚泥濃縮液の量を増大させる。それと共に、ポンプP4の出力は、配管L6を通して排出する汚泥分離液の排出量が、メタン発酵槽2から取出されて重力沈降槽3に投入される発酵液の量から、配管L2を通して返送する汚泥濃縮液の量を減じた量となるように制御する。具体的には、ポンプP1の出力を増大させて汚泥濃縮液の返送量を増大させたことにより、汚泥分離液の排出量は逆に減少させる必要があるため、ポンプP4の出力は減少させる(ステップS13)。これによって、汚泥を効率よくメタン発酵槽2に返送して、発酵に必要な微生物の量及び滞留時間を確保することができる。   When the measurement value C2 ′ of the second sludge concentration meter 21 is larger than the measurement value C1 of the first sludge concentration meter 10, it means that the sludge concentration of the sludge concentrate returned through the pipe L2 is high. The output of the pump P1 is increased to increase the amount of sludge concentrate returned through the pipe L2. At the same time, the output of the pump P4 is that the amount of sludge separation liquid discharged through the pipe L6 is returned from the amount of fermentation liquid taken out from the methane fermentation tank 2 and introduced into the gravity settling tank 3 through the pipe L2. Control to reduce the amount of concentrate. Specifically, by increasing the output of the pump P1 and increasing the return amount of the sludge concentrate, it is necessary to reduce the discharge amount of the sludge separation liquid, so the output of the pump P4 is decreased ( Step S13). As a result, the sludge can be efficiently returned to the methane fermentation tank 2 to ensure the amount of microorganisms necessary for fermentation and the residence time.

一方、第1汚泥濃度計10の測定値C1よりも第2汚泥濃度計21の測定値C2’の方が小さい場合は、配管L2を通して返送される汚泥濃縮液の汚泥濃度が低いことを意味するので、ポンプP1の出力を減少させて、配管L2を通して返送する汚泥濃縮液の量を減少させる。それと共に、ポンプP4の出力は、配管L6を通して排出する汚泥分離液の排出量が、メタン発酵槽2から取出されて重力沈降槽3に投入される発酵液の量から、配管L2を通して返送する汚泥濃縮液の量を減じた量となるように制御する。具体的には、ポンプP1の出力を減少させて汚泥濃縮液の返送量を減少させたことにより、汚泥分離液の排出量は逆に増大させる必要があるため、ポンプP4の出力は増大させる(ステップS14)。これによって、汚泥濃度の低い液がメタン発酵槽2に返送されて、メタン発酵槽2中の微生物濃度が低下してしまうことを防止できる。   On the other hand, when the measured value C2 ′ of the second sludge concentration meter 21 is smaller than the measured value C1 of the first sludge concentration meter 10, it means that the sludge concentration of the sludge concentrate returned through the pipe L2 is low. Therefore, the output of the pump P1 is reduced and the amount of the sludge concentrate returned through the pipe L2 is reduced. At the same time, the output of the pump P4 is that the amount of sludge separation liquid discharged through the pipe L6 is returned from the amount of fermentation liquid taken out from the methane fermentation tank 2 and introduced into the gravity settling tank 3 through the pipe L2. Control to reduce the amount of concentrate. Specifically, by reducing the output of the pump P1 and reducing the return amount of the sludge concentrate, the discharge amount of the sludge separation liquid needs to be increased conversely, so the output of the pump P4 is increased ( Step S14). As a result, it is possible to prevent a liquid having a low sludge concentration from being returned to the methane fermentation tank 2 and a decrease in the microorganism concentration in the methane fermentation tank 2.

そして、このような操作によって、汚泥が効率よくメタン発酵槽2に返送されるため、相対的に配管L6から排出される汚泥分離液の汚泥濃度は比較的低い状態に維持されることとなり、以後の排水処理を容易にすることができる。   And since sludge is efficiently returned to the methane fermentation tank 2 by such operation, the sludge density | concentration of the sludge separation liquid discharged | emitted from the piping L6 will be maintained in a comparatively low state from now on, The waste water treatment can be facilitated.

この実施形態によれば、汚泥濃縮液の汚泥濃度を測定しながら、濃縮汚泥の返送量を制御するので、より確実に所望の汚泥濃度、好ましくはメタン発酵槽2内の発酵液の汚泥濃度の1.5〜3倍、より好ましくは2〜3倍まで濃縮された汚泥濃縮液をメタン発酵槽2へ直接または間接的に返送できる。   According to this embodiment, since the return amount of the concentrated sludge is controlled while measuring the sludge concentration of the sludge concentrate, the desired sludge concentration, preferably the sludge concentration of the fermentation liquor in the methane fermentation tank 2 is more reliably determined. The sludge concentrate concentrated to 1.5 to 3 times, more preferably 2 to 3 times, can be directly or indirectly returned to the methane fermentation tank 2.

なお、この実施形態では、第2汚泥濃度計21は、重力沈降槽3の底部に配置したが、配管L1内に設置して、配管L1を通過する液(汚泥濃縮液)の汚泥濃度を直接測定してもよい。   In this embodiment, the second sludge concentration meter 21 is disposed at the bottom of the gravity sedimentation tank 3, but is installed in the pipe L1 to directly determine the sludge concentration of the liquid (sludge concentrate) that passes through the pipe L1. You may measure.

また、メタン発酵槽2から発酵液を取出して重力沈降槽3に投入する操作は、連続して行ってもよく、所定時間毎に間欠的に行ってもよい。発酵液の重力沈降槽3への投入を間欠的に行う場合には、汚泥濃縮液の返送量と汚泥分離液の排出量との合計量が、メタン発酵槽2から重力沈降槽3に投入した発酵液の量に達したら、ポンプP1,P4の駆動を停止して、再びメタン発酵槽2から重力沈降槽3に発酵液を投入するようにすればよい。   Moreover, operation which takes out fermentation liquid from the methane fermenter 2 and throws it into the gravity sedimentation tank 3 may be performed continuously, and may be performed intermittently for every predetermined time. In the case where the fermentation liquid is intermittently charged into the gravity sedimentation tank 3, the total amount of the sludge concentrate return and the sludge separation liquid discharged is charged from the methane fermentation tank 2 to the gravity sedimentation tank 3. When the amount of the fermented liquid is reached, the driving of the pumps P1 and P4 may be stopped and the fermented liquid may be charged again from the methane fermenter 2 to the gravity settling tank 3.

また、メタン発酵槽2及び重力沈降槽3内に、槽内の液面レベルを測定するレベル計を設置し、各槽内の液面レベルが所定の範囲となるように、ポンプP2、P3の駆動を制御しても良い。例えば、メタン発酵槽2内の液面レベルが所定値を超えたらポンプP2の駆動を停止あるいは低減し、ポンプP3の駆動を増加させる。また、メタン発酵槽2内の液面レベルが所定値を下回ったらポンプP3の駆動を停止あるいは低減し、ポンプP2の駆動を増加させる。また、重力沈降槽3内の液面レベルが所定値を超えたらポンプP3の駆動を停止あるいは低減する。また、重力沈降槽3内の液面レベルが所定値を下回ったらポンプP3の駆動を増加させる。   Moreover, in the methane fermentation tank 2 and the gravity sedimentation tank 3, a level meter for measuring the liquid level in the tank is installed, and the pumps P2 and P3 are set so that the liquid level in each tank is within a predetermined range. The drive may be controlled. For example, when the liquid level in the methane fermentation tank 2 exceeds a predetermined value, the driving of the pump P2 is stopped or reduced, and the driving of the pump P3 is increased. Further, when the liquid level in the methane fermentation tank 2 falls below a predetermined value, the driving of the pump P3 is stopped or reduced, and the driving of the pump P2 is increased. When the liquid level in the gravity sedimentation tank 3 exceeds a predetermined value, the driving of the pump P3 is stopped or reduced. Further, when the liquid level in the gravity settling tank 3 falls below a predetermined value, the drive of the pump P3 is increased.

(実施例1)
図1に示したメタン発酵装置を用いてメタン発酵を行った。メタン発酵槽2は、容積5Lの槽を用いた。また、重力沈殿槽3は、容積0.5Lの槽を用いた。また、汚泥濃度計10,20として、振動式粘度計「VM−10A」(商品名、セコニック製)を用いた。また、有機性廃棄物として、固形物濃度が約30,000mg/L、不揮発性有機物(VS)濃度が約25,000mg/Lの下水処理場の混合汚泥(初沈汚泥TS濃度:余剰汚泥TS濃度=6:4)を用いた。
なお、TS濃度(蒸発残留物)は、下水試験方法‐2.2.9に準じて測定した。すなわち、試料液を110℃で蒸発乾固して残った固形物量を試料液体積で割って求めた。また、VS濃度は、TS濃度(発酵液(mg/l)を、110℃で蒸発乾固して残った固形物の質量を試料液体積で割って求めた値)から、発酵液を600℃±25℃加熱した残った固形物の質量を試料体積で割って求めた灰分濃度を差し引いて求めた。
前調整槽1からメタン発酵槽2へは、ポンプP2を介して1日4分割でスラリーを投入し、滞留時間を10日(1日の投入する混合汚泥量500mL)の負荷でメタン発酵を行った。また、メタン発酵槽2から重力沈殿槽3には、ポンプP3を介して1日4分割で発酵液を排出した。動作の流れは、メタン発酵槽2から発酵液の引き抜きを行ってから、スラリーを供給した。
メタン発酵中、第1汚泥濃度計10による測定値が、第2汚泥濃度計20による測定値よりも大きくなるように、ポンプP1、P4の駆動を前記図2に示したフローチャートにより制御して、配管L2を通って前処理槽1に返送される液量と、配管L6を通して排出する液量とを制御した。なお、配管L2を通って前処理槽1に返送される液量は、重力沈殿槽3に投入された発酵液量から、配管L6を通して排出する液量を減じた量とした。
滞留時間10日になってから30日間経過した後の発酵液のVS濃度を測定したところ、10,500mg/Lであり、VS分解率は58.0%であった。
Example 1
Methane fermentation was performed using the methane fermentation apparatus shown in FIG. As the methane fermentation tank 2, a tank having a volume of 5 L was used. Moreover, the gravity precipitation tank 3 used the tank of the volume 0.5L. Further, as the sludge concentration meters 10 and 20, a vibration viscometer “VM-10A” (trade name, manufactured by Seconic) was used. Moreover, as organic waste, solid sludge concentration of about 30,000 mg / L, non-volatile organic matter (VS) concentration of about 25,000 mg / L, mixed sludge in the sewage treatment plant (primary sludge TS concentration: surplus sludge TS Concentration = 6: 4) was used.
The TS concentration (evaporation residue) was measured according to the sewage test method-2.2.9. That is, the amount of solid matter remaining after evaporation of the sample solution at 110 ° C. was divided by the sample solution volume. Further, the VS concentration was determined from the TS concentration (the value obtained by dividing the fermentation liquid (mg / l) by evaporating to dryness at 110 ° C. and dividing the mass of the remaining solid material by the sample liquid volume). It was determined by subtracting the ash concentration obtained by dividing the mass of the remaining solid heated at ± 25 ° C. by the sample volume.
From the preconditioning tank 1 to the methane fermentation tank 2, slurry is charged into four parts a day via the pump P 2, and methane fermentation is performed with a load of 10 days (mixed sludge amount to be charged a day 500 mL). It was. Moreover, the fermented liquor was discharged | emitted from the methane fermentation tank 2 to the gravity precipitation tank 3 by the 4 divisions per day via the pump P3. The flow of operation | movement extracted the fermentation liquid from the methane fermenter 2, and then supplied the slurry.
During the methane fermentation, the driving of the pumps P1 and P4 is controlled by the flowchart shown in FIG. 2 so that the measured value by the first sludge concentration meter 10 becomes larger than the measured value by the second sludge concentration meter 20. The amount of liquid returned to the pretreatment tank 1 through the pipe L2 and the amount of liquid discharged through the pipe L6 were controlled. The amount of liquid returned to the pretreatment tank 1 through the pipe L2 was an amount obtained by subtracting the amount of liquid discharged through the pipe L6 from the amount of fermentation liquid charged into the gravity precipitation tank 3.
When the VS concentration of the fermentation broth after 30 days had elapsed after the residence time of 10 days was measured, it was 10,500 mg / L and the VS decomposition rate was 58.0%.

(実施例2)
図3に示したメタン発酵装置を用い、メタン発酵中、第1汚泥濃度計10による測定値が、第2汚泥濃度計21による測定値よりも小さくなるように、ポンプP1、P4の駆動を前記図4に示したフローチャートにより制御して、配管L2を通って前処理槽1に返送される液量と、配管L6を通して排出する液量とを制御した以外は、実施例1と同様にしてメタン発酵を行った。なお、配管L6を通して排出する液量は、重力沈殿槽3に投入された発酵液量から、配管L2を通って前処理槽1に返送される液量を減じた量とした。
滞留時間10日になってから30日間経過した後の発酵液のVS濃度を測定したところ、10,100mg/Lであり、VS分解率は59.6%であった。
(Example 2)
Using the methane fermentation apparatus shown in FIG. 3, during the methane fermentation, the pumps P <b> 1 and P <b> 4 are driven so that the measured value by the first sludge concentration meter 10 becomes smaller than the measured value by the second sludge concentration meter 21. Control was performed according to the flowchart shown in FIG. 4, and methane was used in the same manner as in Example 1 except that the amount of liquid returned to the pretreatment tank 1 through the pipe L2 and the amount of liquid discharged through the pipe L6 were controlled. Fermentation was performed. The amount of liquid discharged through the pipe L6 was an amount obtained by subtracting the amount of liquid returned to the pretreatment tank 1 through the pipe L2 from the amount of fermentation liquid charged into the gravity settling tank 3.
When the VS concentration of the fermentation broth after 30 days had elapsed after the residence time of 10 days was measured, it was 10,100 mg / L and the VS decomposition rate was 59.6%.

(比較例1)
実施例1において、重力沈殿槽3内の液の全量を配管L6を通して排出してメタン発酵を行った以外は、実施例1と同様にしてメタン発酵を行った。
メタン発酵槽2に投入された有機性廃棄物のメタン発酵槽2における滞留時間が10日(毎日500mL投入)になってから30日間経過した後の発酵液のVS濃度を測定したところ、11,600mg/Lであり、VS分解率は53.6%であった。
(Comparative Example 1)
In Example 1, methane fermentation was performed in the same manner as in Example 1 except that methane fermentation was performed by discharging the entire amount of the liquid in the gravity sedimentation tank 3 through the pipe L6.
When the VS concentration of the fermented liquid after 30 days had elapsed after the residence time in the methane fermenter 2 of the organic waste charged into the methane fermenter 2 became 10 days (500 mL added daily), The VS decomposition rate was 53.6%.

(比較例2)
実施例1において、重力沈殿槽3内から配管L2を通って前処理槽1に返送される液量を50mL、配管L6を通して排出する液量を500mLとした以外は、施例1と同様にしてメタン発酵を行った。
メタン発酵槽2に投入された有機性廃棄物のメタン発酵槽2における滞留時間が10日になってから30日間経過した後の発酵液のVS濃度を測定したところ、11,300mg/Lであり、VS分解率は54.8%であった。
(Comparative Example 2)
In Example 1, the amount of liquid returned from the gravity settling tank 3 through the pipe L2 to the pretreatment tank 1 was 50 mL, and the amount of liquid discharged through the pipe L6 was 500 mL. Methane fermentation was performed.
It was 11,300 mg / L when the VS density | concentration of the fermented liquid after 30 days passed since the residence time in the methane fermenter 2 of the organic waste thrown into the methane fermenter 2 became 10 days. The VS decomposition rate was 54.8%.

1:前処理槽
2:メタン発酵槽
3:重力沈降槽
10:第1汚泥濃度計
20,21:第2汚泥濃度計
100,101:制御装置
L1〜L6:配管
P1〜P4:ポンプ
1: Pretreatment tank 2: Methane fermentation tank 3: Gravity sedimentation tank 10: First sludge concentration meter 20, 21: Second sludge concentration meter 100, 101: Controllers L1-L6: Piping P1-P4: Pump

Claims (9)

有機性廃棄物をメタン発酵槽内でメタン発酵処理し、前記メタン発酵槽から発酵液を所定量ずつ取出して重力沈降手段により汚泥濃度が下方ほど高くなる汚泥沈降液を形成し、前記汚泥沈降液の下層側の汚泥高濃度液を、返送ラインを通して直接又は間接的に前記メタン発酵槽に返送し、前記汚泥沈降液の上層側の汚泥低濃度液を、排出ラインを通して系外に排出し、前記返送ラインを通して返送する液量と、前記排出ラインを通して排出する液量との合計量が、前記メタン発酵槽から取出す発酵液の量とほぼ等しくなるように制御するメタン発酵方法において、
前記メタン発酵槽中の発酵液の汚泥濃度を第1の汚泥濃度測定手段により測定し、
前記重力沈降手段により形成された汚泥沈降液の所定部分の汚泥濃度を第2の汚泥濃度測定手段により測定し、
前記第1の汚泥濃度測定手段により測定された汚泥濃度と、前記第2の汚泥濃度測定手段により測定された汚泥濃度とを比較して、前記排出ラインを通して排出する液の汚泥濃度が前記メタン発酵槽中の発酵液の汚泥濃度よりも低くなるか、又は、前記返送ラインを通して前記メタン発酵槽に返送する液の汚泥濃度が前記メタン発酵槽中の発酵液の汚泥濃度よりも高くなるように、前記排出ラインを通して排出する液量及び前記返送ラインを通して前記メタン発酵槽に返送する液量を制御することを特徴とするメタン発酵方法。
The organic waste is subjected to methane fermentation treatment in a methane fermentation tank, and a predetermined amount of the fermentation liquid is taken out from the methane fermentation tank to form a sludge sedimentation liquid in which the sludge concentration increases downward by gravity sedimentation means. The sludge high-concentration liquid on the lower layer side is directly or indirectly returned to the methane fermentation tank through a return line, and the sludge low-concentration liquid on the upper layer side of the sludge sedimentation liquid is discharged out of the system through the discharge line, In the methane fermentation method for controlling the total amount of liquid to be returned through the return line and the amount of liquid to be discharged through the discharge line to be substantially equal to the amount of the fermentation liquid to be taken out from the methane fermentation tank,
Measuring the sludge concentration of the fermentation broth in the methane fermentation tank by the first sludge concentration measuring means;
Measuring a sludge concentration of a predetermined portion of the sludge sedimentation liquid formed by the gravity sedimentation means by a second sludge concentration measurement means;
Comparing the sludge concentration measured by the first sludge concentration measuring means with the sludge concentration measured by the second sludge concentration measuring means, the sludge concentration of the liquid discharged through the discharge line is the methane fermentation The sludge concentration of the fermentation liquor in the tank is lower than that, or the sludge concentration of the liquid returned to the methane fermentation tank through the return line is higher than the sludge concentration of the fermentation liquid in the methane fermentation tank. Controlling the amount of liquid discharged through the discharge line and the amount of liquid returned to the methane fermentation tank through the return line.
前記第2の汚泥濃度測定手段を、前記重力沈降手段内であって前記排出ラインよりも上部及び/又は前記排出ライン内に配置し、前記第1の汚泥濃度測定手段により測定された汚泥濃度よりも、前記第2の汚泥濃度測定手段により測定された汚泥濃度の方が高い場合は、前記排出ラインを通して排出する液量を減少させ、前記第1の汚泥濃度測定手段により測定された汚泥濃度よりも、前記第2の汚泥濃度測定手段により測定された汚泥濃度の方が低い場合は、前記排出ラインを通して排出する液量を増大させ、前記返送ラインを通して前記メタン発酵槽に返送する液量は、前記メタン発酵槽から取出されて重力沈降手段に投入される発酵液の量から前記排出ラインを通して排出する液量を減じた量となるように制御する、請求項1に記載のメタン発酵方法。   The second sludge concentration measuring means is disposed in the gravity settling means and above the discharge line and / or in the discharge line, and from the sludge concentration measured by the first sludge concentration measuring means. However, if the sludge concentration measured by the second sludge concentration measuring means is higher, the amount of liquid discharged through the discharge line is reduced, and the sludge concentration measured by the first sludge concentration measuring means is reduced. However, if the sludge concentration measured by the second sludge concentration measuring means is lower, the amount of liquid discharged through the discharge line is increased, and the amount of liquid returned to the methane fermentation tank through the return line is: It controls so that it may become the quantity which reduced the liquid quantity discharged | emitted through the said discharge line from the quantity of the fermented liquid taken out from the said methane fermenter and thrown into a gravity sedimentation means. Tan fermentation process. 前記第2の汚泥濃度測定手段を、前記重力沈降手段内であって前記排出ラインよりも下部及び/又は前記返送ライン内に配置し、前記第1の汚泥濃度測定手段により測定された汚泥濃度よりも、前記第2の汚泥濃度測定手段により測定された汚泥濃度の方が高い場合は、前記返送ラインを通して前記メタン発酵槽に返送する液量を増大させ、前記第1の汚泥濃度測定手段により測定された汚泥濃度よりも、前記第2の汚泥濃度測定手段により測定された汚泥濃度の方が低い場合は、前記返送ラインを通して前記メタン発酵槽に返送する液量を減少させ、前記排出ラインを通して排出する液量は、前記メタン発酵槽から取出されて重力沈降手段に投入される発酵液の量から前記返送ラインを通して前記メタン発酵槽に返送する液量を減じた量となるように制御する、請求項1に記載のメタン発酵方法。   The second sludge concentration measuring means is disposed in the gravity settling means and below the discharge line and / or in the return line, and from the sludge concentration measured by the first sludge concentration measuring means. However, if the sludge concentration measured by the second sludge concentration measuring means is higher, the amount of liquid returned to the methane fermenter through the return line is increased and measured by the first sludge concentration measuring means. If the sludge concentration measured by the second sludge concentration measuring means is lower than the measured sludge concentration, the amount of liquid returned to the methane fermentation tank is reduced through the return line and discharged through the discharge line. The amount of liquid to be obtained is the amount obtained by subtracting the amount of liquid returned to the methane fermenter through the return line from the amount of fermented liquid taken out from the methane fermenter and introduced into the gravity sedimentation means. Controlled to so that methane fermentation method according to claim 1. 前記メタン発酵槽の前段に有機性廃棄物を前処理してスラリー化するスラリー調整槽を配置し、前記返送ラインを前記スラリー調整槽及び/又は前記メタン発酵槽に接続する、請求項1〜3のいずれか1項に記載のメタン発酵方法。   The slurry adjustment tank which pre-processes organic waste in the front | former stage of the said methane fermentation tank is arrange | positioned, The said return line is connected to the said slurry adjustment tank and / or the said methane fermentation tank, The Claims 1-3 The methane fermentation method according to any one of the above. 有機性廃棄物をメタン発酵処理するメタン発酵槽と、前記メタン発酵槽から取出される発酵液中の汚泥を重力沈降させて、汚泥濃度が下方ほど高くなる汚泥沈降液を形成する重力沈降手段と、前記汚泥沈降液の下層側の汚泥高濃度液を直接又は間接的に前記メタン発酵槽に返送する返送ラインと、前記汚泥沈降液の上層側の汚泥低濃度液を系外に排出する排出ラインとを備え、前記返送ラインを通して返送される液量と、前記排出ラインを通して排出される液量との合計量が、前記メタン発酵槽から取出される発酵液の量とほぼ等しくなるように制御されるメタン発酵装置において、
前記メタン発酵槽中の発酵液の汚泥濃度を測定する第1の汚泥濃度測定手段と、
前記重力沈降手段により形成された汚泥沈降液の所定部分の汚泥濃度を測定する第2の汚泥濃度測定手段と、
前記第1の汚泥濃度測定手段により測定された汚泥濃度と、前記第2の汚泥濃度測定手段により測定された汚泥濃度とを比較して、前記返送ラインを通して前記メタン発酵槽に返送する液の汚泥濃度が前記メタン発酵槽中の発酵液の汚泥濃度よりも高く、前記排出ラインを通して排出する液の汚泥濃度が前記メタン発酵槽中の発酵液の汚泥濃度よりも低くなるように、前記排出ラインを通して排出する液量及び前記返送ラインを通して前記メタン発酵槽に返送する液量を制御する制御装置とを有していることを特徴とするメタン発酵装置。
A methane fermentation tank for subjecting organic waste to methane fermentation, and gravity sedimentation means for gravity-settling the sludge in the fermentation liquor taken out of the methane fermentation tank to form a sludge sedimentation liquid whose sludge concentration increases downward. A return line for returning the sludge high concentration liquid on the lower layer side of the sludge sedimentation liquid directly or indirectly to the methane fermentation tank, and a discharge line for discharging the sludge low concentration liquid on the upper layer side of the sludge sedimentation liquid to the outside of the system The total amount of the liquid returned through the return line and the liquid discharged through the discharge line is controlled so as to be substantially equal to the amount of the fermentation liquid taken out from the methane fermentation tank. In methane fermentation equipment,
First sludge concentration measuring means for measuring the sludge concentration of the fermentation broth in the methane fermenter;
A second sludge concentration measuring means for measuring a sludge concentration of a predetermined portion of the sludge sedimentation liquid formed by the gravity settling means;
The sludge of the liquid returned to the methane fermentation tank through the return line by comparing the sludge concentration measured by the first sludge concentration measuring means with the sludge concentration measured by the second sludge concentration measuring means. Through the discharge line, the concentration is higher than the sludge concentration of the fermentation liquid in the methane fermentation tank, and the sludge concentration of the liquid discharged through the discharge line is lower than the sludge concentration of the fermentation liquid in the methane fermentation tank. A methane fermentation apparatus, comprising: a controller for controlling the amount of liquid discharged and the amount of liquid returned to the methane fermentation tank through the return line.
前記第2の汚泥濃度測定手段が、前記重力沈降手段内であって前記排出ラインよりも上部及び/又は前記排出ライン内に配置されており、前記制御装置は、前記第1の汚泥濃度測定手段により測定された汚泥濃度よりも、前記第2の汚泥濃度測定手段により測定された汚泥濃度の方が高い場合は、前記排出ラインを通して排出する液量を減少させ、前記第1の汚泥濃度測定手段により測定された汚泥濃度よりも、前記第2の汚泥濃度測定手段により測定された汚泥濃度の方が低い場合は、前記排出ラインを通して排出する液量を増大させ、前記返送ラインを通して前記メタン発酵槽に返送する液量は、前記メタン発酵槽から取出されて重力沈降手段に投入される発酵液の量から前記排出ラインを通して排出する液量を減じた量となるように制御する、請求項5に記載のメタン発酵装置。   The second sludge concentration measuring means is disposed in the gravity settling means and above the discharge line and / or in the discharge line, and the control device is configured to provide the first sludge concentration measuring means. When the sludge concentration measured by the second sludge concentration measuring means is higher than the sludge concentration measured by the above, the amount of liquid discharged through the discharge line is reduced, and the first sludge concentration measuring means When the sludge concentration measured by the second sludge concentration measuring means is lower than the sludge concentration measured by the above, the amount of liquid discharged through the discharge line is increased, and the methane fermenter is passed through the return line. The amount of liquid returned to the tank is controlled so that the amount of fermentation liquid taken out from the methane fermentation tank and introduced into the gravity sedimentation means is subtracted from the amount discharged through the discharge line. To methane fermentation apparatus according to claim 5. 前記第2の汚泥濃度測定手段が、前記重力沈降手段内であって前記排出ラインよりも下部及び/又は前記返送ライン内に配置されており、前記制御装置は、前記第1の汚泥濃度測定手段により測定された汚泥濃度よりも、前記第2の汚泥濃度測定手段により測定された汚泥濃度の方が高い場合は、前記返送ラインを通して前記メタン発酵槽に返送する液量を増大させ、前記第1の汚泥濃度測定手段により測定された汚泥濃度よりも、前記第2の汚泥濃度測定手段により測定された汚泥濃度の方が低い場合は、前記返送ラインを通して前記メタン発酵槽に返送する液量を減少させ、前記排出ラインを通して排出する液量は、前記メタン発酵槽から取出されて重力沈降手段に投入される発酵液の量から前記返送ラインを通して前記メタン発酵槽に返送する液量を減じた量となるように制御する、請求項5に記載のメタン発酵装置。   The second sludge concentration measuring means is disposed in the gravity settling means and below the discharge line and / or in the return line, and the control device is configured to provide the first sludge concentration measuring means. When the sludge concentration measured by the second sludge concentration measuring means is higher than the sludge concentration measured by the above, the amount of liquid returned to the methane fermentation tank through the return line is increased, and the first sludge concentration is measured. If the sludge concentration measured by the second sludge concentration measuring means is lower than the sludge concentration measured by the sludge concentration measuring means, the amount of liquid returned to the methane fermentation tank through the return line is reduced. The amount of liquid discharged through the discharge line is taken into the methane fermenter through the return line from the amount of fermentation liquid taken out from the methane fermenter and introduced into the gravity sedimentation means. It is controlled to be an amount obtained by subtracting the amount of liquid feed, methane fermentation apparatus according to claim 5. 前記メタン発酵槽の前段に有機性廃棄物を前処理してスラリー化するスラリー調整槽が配置され、前記返送ラインが前記スラリー調整槽及び/又は前記メタン発酵槽に接続されている、請求項5〜7のいずれか1項に記載メタン発酵装置。   The slurry adjustment tank which pre-processes organic waste in the front | former stage of the said methane fermentation tank is arrange | positioned, The said return line is connected to the said slurry adjustment tank and / or the said methane fermentation tank. The methane fermentation apparatus of any one of -7. 前記汚泥濃度測定手段が、粘度計、近赤外線散乱光方式濃度計、超音波式汚泥界面計及びマイクロ波濃度計から選ばれる1種以上である、請求項5〜8のいずれか1項に記載のメタン発酵装置。   The said sludge density | concentration measuring means is 1 or more types chosen from a viscometer, a near-infrared scattered light type | formula densitometer, an ultrasonic sludge interface meter, and a microwave densitometer, The any one of Claims 5-8. Methane fermentation equipment.
JP2009279028A 2009-12-09 2009-12-09 Methane fermentation method and methane fermentation apparatus Active JP4991832B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009279028A JP4991832B2 (en) 2009-12-09 2009-12-09 Methane fermentation method and methane fermentation apparatus
PCT/JP2010/071820 WO2011071013A1 (en) 2009-12-09 2010-12-06 Methane fermentation method and methane fermentation device
MYPI2012001431A MY158944A (en) 2009-12-09 2010-12-06 Methane fermentation method and methane fermentation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009279028A JP4991832B2 (en) 2009-12-09 2009-12-09 Methane fermentation method and methane fermentation apparatus

Publications (2)

Publication Number Publication Date
JP2011120975A JP2011120975A (en) 2011-06-23
JP4991832B2 true JP4991832B2 (en) 2012-08-01

Family

ID=44145557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009279028A Active JP4991832B2 (en) 2009-12-09 2009-12-09 Methane fermentation method and methane fermentation apparatus

Country Status (3)

Country Link
JP (1) JP4991832B2 (en)
MY (1) MY158944A (en)
WO (1) WO2011071013A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102557375A (en) * 2012-03-19 2012-07-11 同济大学 Two-phase return microwave-assisted anaerobic digestion method for sludge
JP2014176784A (en) * 2013-03-13 2014-09-25 Zukosha:Kk Methane fermentation system
CN104773933B (en) * 2015-04-03 2016-07-06 重庆鼎旺环保园林有限公司 A kind of process system of sewage plant sludge
CN104761110B (en) * 2015-04-03 2016-02-10 温州中城晟泰市政工程有限公司 A kind for the treatment of process of sewage plant sludge
JP2018176085A (en) * 2017-04-14 2018-11-15 株式会社サピエナント Organic matter treatment system and organic matter treatment method
US20180334401A1 (en) * 2017-05-22 2018-11-22 Voith Meri Environmental Solutions, Inc. Plant for the purification of waste and/or process water by means of anaerobic microorganisms with a reactor tank and an external separation apparatus
CN117342754B (en) * 2023-12-04 2024-02-27 宁安市粮油淀粉机械制造有限公司 Treatment facility based on sewage comprehensive utilization

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150698A (en) * 1984-08-14 1986-03-12 Toshiba Corp Seed sludge return control apparatus of digestion tank
JP2729624B2 (en) * 1988-03-03 1998-03-18 建設省土木研究所長 Organic sludge treatment method
JPH078325B2 (en) * 1991-05-13 1995-02-01 荏原インフィルコ株式会社 Suspension concentrating method and device
JPH1177007A (en) * 1997-09-02 1999-03-23 Ebara Corp Anaerobic digestion of organic waste
JP3619995B2 (en) * 2001-03-06 2005-02-16 水道機工株式会社 Sludge concentrator and coagulant adjustment method
JP4192491B2 (en) * 2002-04-30 2008-12-10 栗田工業株式会社 Organic waste processing apparatus and processing method
JP4050976B2 (en) * 2002-11-14 2008-02-20 豊国工業株式会社 Method for automatically managing ammonia concentration in biogas conversion and organic waste treatment apparatus using the method
JP2005319388A (en) * 2004-05-07 2005-11-17 Sumitomo Heavy Ind Ltd Method for setting operation condition of methane fermentation system
JP4611777B2 (en) * 2005-03-16 2011-01-12 住友重機械エンバイロメント株式会社 Methane fermentation system and methane fermentation method
JP4630244B2 (en) * 2006-03-31 2011-02-09 荏原エンジニアリングサービス株式会社 Method and apparatus for treating organic waste by anaerobic microorganisms
JP5079834B2 (en) * 2010-03-11 2012-11-21 メタウォーター株式会社 Methane fermentation method
JP5006424B2 (en) * 2010-03-29 2012-08-22 メタウォーター株式会社 Methane fermentation treatment method

Also Published As

Publication number Publication date
WO2011071013A1 (en) 2011-06-16
MY158944A (en) 2016-11-30
JP2011120975A (en) 2011-06-23

Similar Documents

Publication Publication Date Title
JP4991832B2 (en) Methane fermentation method and methane fermentation apparatus
CN104944702B (en) A kind for the treatment of process and system of ice cream waste water
JP5963668B2 (en) Wastewater treatment method
KR101532371B1 (en) High efficiency liquid fertilizer manufacturing system for resourcization of livestock excrements
JP2007289946A (en) Anaerobic treatment process and device of organic solid waste
JP2018167165A (en) Method of treating organic waste and system of treating organic waste
KR101527470B1 (en) Magnetic Powder Recovery System for Advanced waste water treatment of highly concentrated MLSS
JP5574398B2 (en) Method and system for methane fermentation of organic solid waste
KR20200102447A (en) Simultaneous phase run anaerobic sequential batch reactor
JP6725538B2 (en) Method and device for purifying domestic or industrial water
JP4571065B2 (en) Granular microbial sludge generation method and granular microbial sludge generation apparatus
CN106698644B (en) Automatic control mechanical aeration stirring intermittent reaction tank for garbage leachate
JP4917507B2 (en) Methane gas generation system that generates methane gas from organic waste such as garbage
CN103608303B (en) The treatment process of organic waste water and organic sludge and treatment unit
JP2007275846A (en) Wastewater treatment system and wastewater treatment method
JP5811563B2 (en) Method and apparatus for anaerobic treatment of kraft pulp drainage
JP7105136B2 (en) ORGANIC WASTE TREATMENT METHOD AND ORGANIC WASTE TREATMENT SYSTEM
JP5180132B2 (en) Methane fermentation method and methane fermentation apparatus
JP2015131271A (en) Treatment method and treatment apparatus of fat-containing waste water
JP5006424B2 (en) Methane fermentation treatment method
JP2019130486A (en) Operation method of wet type methane fermentation facility
JP2012157807A (en) Method for treating processed liquid
JP2011230100A (en) Method and apparatus for methane fermentation
JP5142514B2 (en) Apparatus and method for methane fermentation treatment of organic waste
JP2007222830A (en) Treatment method of nitrogen-containing organic wastewater, and treatment apparatus for it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120229

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120229

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4991832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250