JP4148286B2 - Method and apparatus for anaerobic digestion treatment of organic waste liquid - Google Patents

Method and apparatus for anaerobic digestion treatment of organic waste liquid Download PDF

Info

Publication number
JP4148286B2
JP4148286B2 JP2006225578A JP2006225578A JP4148286B2 JP 4148286 B2 JP4148286 B2 JP 4148286B2 JP 2006225578 A JP2006225578 A JP 2006225578A JP 2006225578 A JP2006225578 A JP 2006225578A JP 4148286 B2 JP4148286 B2 JP 4148286B2
Authority
JP
Japan
Prior art keywords
sludge
organic
temperature
digester
suspended solids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006225578A
Other languages
Japanese (ja)
Other versions
JP2008049228A (en
Inventor
和也 小松
英斉 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2006225578A priority Critical patent/JP4148286B2/en
Priority to PCT/JP2006/324474 priority patent/WO2007083456A1/en
Priority to TW95148179A priority patent/TWI414489B/en
Publication of JP2008049228A publication Critical patent/JP2008049228A/en
Application granted granted Critical
Publication of JP4148286B2 publication Critical patent/JP4148286B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Description

本発明は、有機性廃液を嫌気性消化する方法及び装置に係り、特に、有機性廃液の消化効率を高めてメタンガスの回収量を多くすることができる有機性廃液の嫌気性消化処理方法及び装置に関する。   The present invention relates to a method and apparatus for anaerobic digestion of organic waste liquid, and in particular, an anaerobic digestion treatment method and apparatus for organic waste liquid capable of increasing the digestion efficiency of organic waste liquid and increasing the amount of methane gas recovered. About.

有機性汚泥、し尿、食品工場廃水等のスラリー状の高濃度有機性汚泥を嫌気性微生物の存在下に消化処理して減量化する方法は、古くから行われている。   A method for reducing the amount of sludge-like organic sludge such as organic sludge, human waste, and food factory wastewater by digestion in the presence of anaerobic microorganisms has been practiced for a long time.

このような嫌気性消化処理においては、未分解物質及び嫌気性微生物を主体とする汚泥(消化汚泥)が生成する。この消化汚泥は、従来は機械脱水した後、焼却、埋立等により処理されている。   In such anaerobic digestion treatment, sludge (digested sludge) mainly composed of undegraded substances and anaerobic microorganisms is generated. This digested sludge is conventionally treated by incineration, landfill, etc. after mechanical dehydration.

嫌気性消化処理により生成する汚泥を減量化し、有機性廃液からメタンガスをより多く回収することができる装置として、特開平9-206785 号には、消化汚泥をオゾン処理により改質した後、この改質汚泥を嫌気性消化槽に返送する嫌気性消化処理装置が記載されている。この装置は消化汚泥をオゾン処理して易生物分解性に改質した後、嫌気性消化槽に戻して嫌気性微生物の基質としてさらに分解するものであり、汚泥を減量化し、有機性廃液からメタンガスをより多く回収するのに有効な装置である。   Japanese Patent Laid-Open No. 9-206785 describes a device that reduces the amount of sludge produced by anaerobic digestion and recovers more methane gas from organic waste liquid. An anaerobic digestion processing apparatus is described for returning quality sludge to an anaerobic digestion tank. In this equipment, digested sludge is treated with ozone to improve biodegradability, then returned to the anaerobic digester and further decomposed as a substrate for anaerobic microorganisms. The sludge is reduced and methane gas is discharged from organic waste liquid. It is an effective device to collect more.

しかし、この装置を、下水汚泥の嫌気性消化処理などで広く用いられている嫌気性消化槽内を30〜38℃に加温して行う中温嫌気性消化で用いた場合、オゾン処理により改質された汚泥の消化速度が低いため、汚泥をより減量化して有機性排液からのメタンガスの回収率を高めるには改質する汚泥量を増やす必要があり、オゾン使用量の増加に繋がっていた。   However, when this device is used for medium temperature anaerobic digestion, which is performed by heating the anaerobic digestion tank widely used for anaerobic digestion treatment of sewage sludge to 30-38 ° C, it is modified by ozone treatment. Since the digestion rate of the sludge was low, it was necessary to increase the amount of sludge to be modified in order to further reduce the sludge and increase the recovery rate of methane gas from the organic effluent, leading to an increase in the amount of ozone used .

また、この装置を、中温消化よりも消化速度の高い、嫌気性消化槽内を45〜60℃に加温して行う高温嫌気性消化で用いた場合には、オゾン使用量は中温消化に比べ低減されるが、改質汚泥に由来する一部のタンパク、糖などが高温微生物の産生する酵素では分解されないため、槽内で生物分解されない溶解性有機成分が中温消化よりも著しく高濃度で放出されてしまい、固形有機成分は減量されるもののメタンガス回収率は高められないという問題があった。また、これらコロイド状の溶解性有機成分により、消化汚泥の固液分離性が悪化し、凝集剤の使用量が著しく増加するとともに、分離液が排出される後段の水処理への負荷が著しく増加するという問題があった。   In addition, when this device is used for high-temperature anaerobic digestion, which is performed at a temperature of 45-60 ° C in an anaerobic digestion tank, which has a higher digestion rate than medium-temperature digestion, the amount of ozone used is higher than that of medium-temperature digestion. Although some of the proteins and sugars derived from the modified sludge are not degraded by enzymes produced by high-temperature microorganisms, soluble organic components that are not biodegradable in the tank are released at a significantly higher concentration than in the middle-temperature digestion. As a result, the solid organic component is reduced, but the methane gas recovery rate cannot be increased. In addition, these colloidal soluble organic components deteriorate the solid-liquid separability of digested sludge, significantly increase the amount of flocculant used, and significantly increase the load on the subsequent water treatment where the separated liquid is discharged. There was a problem to do.

特開2001−205289号には、有機性廃液を生物処理槽において処理した後、処理液を固液分離して分離水は処理水として放流し、分離汚泥は生物処理槽に返送する際に、その一部または全部を可溶化処理してから返送する有機性廃液の処理方法において、遠心力を利用して、有機性浮遊物質の割合の低い汚泥と、有機性浮遊物質の割合の高い汚泥に分画し、有機性浮遊物質の割合の低い汚泥を系外に排出するとともに、有機性浮遊物質の割合の高い汚泥を生物処理槽に返送することを特徴とする有機性廃液の処理方法が記載されている。この方法では、生物処理槽内の汚泥に蓄積する無機性物質を優先的に系外に排出することができるため、生物処理槽内の汚泥の有機性物質の割合をほとんど低下させずに廃液の処理能力を維持しつつ、発生する余剰汚泥の量を安定して減少させることができる。
特開平9−206785号公報 特開2001−205289号公報
In JP-A-2001-205289, after treating an organic waste liquid in a biological treatment tank, the treatment liquid is separated into solid and liquid, and the separated water is discharged as treated water, and the separated sludge is returned to the biological treatment tank. In a method for treating organic waste liquid that is partly or entirely solubilized and then returned, centrifugal force is used to convert sludge with a low percentage of organic suspended solids and sludge with a high percentage of organic suspended solids. Describes a method for treating organic waste liquid, which fractionates and discharges sludge with a low percentage of organic suspended solids out of the system and returns sludge with a high percentage of organic suspended solids to the biological treatment tank. Has been. In this method, since inorganic substances accumulated in the sludge in the biological treatment tank can be discharged out of the system preferentially, the waste liquid can be reduced without substantially reducing the proportion of organic substances in the sludge in the biological treatment tank. The amount of excess sludge generated can be stably reduced while maintaining the processing capacity.
JP-A-9-206785 JP 2001-205289 A

本発明は、有機性廃液を嫌気性消化槽において嫌気性消化処理した後、消化汚泥を固液分離して分離液を処理水として放流し、分離汚泥(濃縮汚泥)を嫌気性消化槽に返送し、また、消化汚泥の一部を改質して嫌気性消化槽に返送する有機性廃液の嫌気性消化方法において、嫌気性消化槽に蓄積する無機物をより効率的に系外に排出することにより、高い有機物負荷においても、有機成分を十分に減量化することができるとともに、メタンガス回収量を多くすることができる有機性廃液の嫌気性処理装置を提供することを目的とする。 In the present invention, an organic waste liquid is subjected to an anaerobic digestion treatment in an anaerobic digestion tank, then the digested sludge is separated into solid and liquid, the separated liquid is discharged as treated water, and the separated sludge (concentrated sludge) is returned to the anaerobic digestion tank. In addition, in the anaerobic digestion method of organic waste liquid that reforms part of the digested sludge and returns it to the anaerobic digester, the inorganic substances accumulated in the anaerobic digester are more efficiently discharged out of the system. Accordingly, an object of the present invention is to provide an anaerobic treatment apparatus for organic waste liquid that can sufficiently reduce the amount of organic components and increase the amount of methane gas recovered even under high organic load.

本発明(請求項1)の有機性廃液の嫌気性消化処理装置は、該嫌気性消化槽としての、処理温度45〜95℃の高温消化槽及び該高温消化槽の流出液が導入される処理温度25〜40℃の中温消化槽と、該中温消化槽からの消化汚泥の一部を改質する改質手段と、該改質手段からの改質汚泥を前記高温消化槽に返送する改質汚泥返送手段と、該中温消化槽からの消化汚泥を濃縮する固液分離手段と、該固液分離手段に導入される液に凝集剤を添加する凝集剤添加手段と、該固液分離手段からの濃縮汚泥を前記中温消化槽へ返送する濃縮汚泥返送手段と、前記中温消化槽からの消化汚泥の一部を有機性浮遊物質の割合の低い汚泥と、有機性浮遊物質の割合の高い汚泥とに分画し、有機性浮遊物質の割合の低い汚泥を系外に排出する汚泥分画手段と、該汚泥分画手段で分画された有機性浮遊物質の割合の高い高有機性浮遊物質汚泥を該中温消化槽に返送する高有機性浮遊物質汚泥返送手段と、を有する有機性廃液の嫌気性消化処理装置であって、有機性廃液が前記固液分離手段にのみ導入されることを特徴とするものである。 The anaerobic digestion treatment apparatus for organic waste liquid of the present invention (Claim 1) is a treatment in which a high-temperature digestion tank having a treatment temperature of 45 to 95 ° C. and an effluent of the high-temperature digestion tank are introduced as the anaerobic digestion tank. Medium temperature digestion tank having a temperature of 25 to 40 ° C., reforming means for reforming a part of the digested sludge from the medium temperature digestion tank, and reforming for returning the reformed sludge from the reforming means to the high temperature digestion tank From the sludge return means, the solid-liquid separation means for concentrating the digested sludge from the intermediate temperature digester, the flocculant addition means for adding a flocculant to the liquid introduced into the solid-liquid separation means, and the solid-liquid separation means Concentrated sludge return means for returning the concentrated sludge to the intermediate-temperature digestion tank, a portion of the digested sludge from the intermediate-temperature digestion tank, sludge having a low ratio of organic suspended solids, and sludge having a high ratio of organic suspended solids And sludge fractionation means to discharge sludge with a low proportion of organic suspended solids out of the system An organic anaerobic wastewater having a high organic suspended solids sludge fractionated by the sludge fractionating means and returning a high organic suspended solids sludge having a high proportion of the organic suspended solids to the intermediate temperature digester It is an oxidative digestion processing apparatus, and an organic waste liquid is introduced only into the solid-liquid separation means.

なお、本発明において、「汚泥の改質」とは、微生物によって資化されにくい汚泥中の物質や汚泥細胞を変性・破壊して、微生物によって資化されやすい形態にすることを指す。   In the present invention, “sludge reforming” refers to modifying and destroying substances and sludge cells in sludge that are not easily assimilated by microorganisms to form them that are easily assimilated by microorganisms.

本発明(請求項2)の有機性廃液の嫌気性消化処理装置は、該嫌気性消化槽としての、処理温度45〜95℃の高温消化槽及び該高温消化槽の流出液が導入される処理温度25〜40℃の中温消化槽と、該中温消化槽からの消化汚泥の一部を改質する改質手段と、該改質手段からの改質汚泥を前記高温消化槽に返送する改質汚泥返送手段と、該中温消化槽からの消化汚泥を濃縮する固液分離手段と、該固液分離手段に導入される液に凝集剤を添加する凝集剤添加手段と、該固液分離手段からの濃縮汚泥を前記中温消化槽へ返送する濃縮汚泥返送手段と、前記中温消化槽からの消化汚泥の一部を有機性浮遊物質の割合の低い汚泥と、有機性浮遊物質の割合の高い汚泥とに分画し、有機性浮遊物質の割合の低い汚泥を系外に排出する汚泥分画手段と、該汚泥分画手段で分画された有機性浮遊物質の割合の高い高有機性浮遊物質汚泥を該中温消化槽に返送する高有機性浮遊物質汚泥返送手段と、を有する有機性廃液の嫌気性消化処理装置であって、有機性廃液が前記中温消化槽及び固液分離手段の双方にのみ導入されることを特徴とするものである。 The organic waste liquid anaerobic digestion treatment apparatus of the present invention (Claim 2) is a treatment in which a high temperature digestion tank having a treatment temperature of 45 to 95 ° C. and an effluent of the high temperature digestion tank are introduced as the anaerobic digestion tank. Medium temperature digestion tank having a temperature of 25 to 40 ° C., reforming means for reforming a part of the digested sludge from the medium temperature digestion tank, and reforming for returning the reformed sludge from the reforming means to the high temperature digestion tank From the sludge return means, the solid-liquid separation means for concentrating the digested sludge from the intermediate temperature digester, the flocculant addition means for adding a flocculant to the liquid introduced into the solid-liquid separation means, and the solid-liquid separation means Concentrated sludge return means for returning the concentrated sludge to the intermediate-temperature digestion tank, a portion of the digested sludge from the intermediate-temperature digestion tank, sludge having a low ratio of organic suspended solids, and sludge having a high ratio of organic suspended solids And sludge fractionation means to discharge sludge with a low proportion of organic suspended solids out of the system An organic anaerobic wastewater anaerobic solution having high organic suspended solids sludge fractionated by the sludge fractionating means and returning high organic suspended solids sludge having a high proportion of organic suspended solids to the intermediate temperature digester It is a sexual digestion processing apparatus, Comprising: An organic waste liquid is introduce | transduced only into both the said intermediate temperature digestion tank and a solid-liquid separation means.

請求項の有機性廃液の嫌気性消化処理装置は、請求項1又は2において、前記改質手段による改質処理がオゾン処理であることを特徴とするものである。 Anaerobic digestion apparatus of the organic wastewater according to claim 3, in claim 1 or 2, reforming treatment by the reforming means is characterized in that an ozone treatment.

請求項の有機性廃液の嫌気性消化処理装置は、請求項1ないしのいずれか1項において、前記汚泥分画装置には前記中温消化槽からの汚泥の一部を導入することを特徴とするものである。 The anaerobic digestion treatment apparatus for organic waste liquid according to claim 4 is characterized in that, in any one of claims 1 to 3 , a part of sludge from the intermediate-temperature digestion tank is introduced into the sludge fractionation apparatus. It is what.

本発明(請求項)の有機性廃液の嫌気性消化処理方法は、請求項1ないし4のいずれか1項の嫌気性消化処理装置を用いるものである。 The organic anaerobic digestion treatment method of the present invention (Claim 5 ) uses the anaerobic digestion apparatus of any one of Claims 1 to 4 .

嫌気性消化槽では、嫌気性微生物を含む汚泥の存在下に、有機性廃液がメタン発酵処理される。本発明では、この嫌気性消化槽を、処理温度45〜95℃の高温消化槽と、高温消化槽の流出液が導入される処理温度25〜40℃の中温消化槽の少なくとも2槽で構成している。廃液中の有機成分は、高温消化槽及び中温消化槽のそれぞれにおいて、55℃付近に最適温度がある高温嫌気性微生物、35℃付近に最適温度がある中温嫌気性微生物により液化→低分子化→有機酸生成→メタン生成のステップによりメタンガスに転換される。   In an anaerobic digester, organic waste liquid is subjected to methane fermentation in the presence of sludge containing anaerobic microorganisms. In the present invention, the anaerobic digester is composed of at least two tanks, a high-temperature digester with a treatment temperature of 45 to 95 ° C. and a medium-temperature digester with a treatment temperature of 25 to 40 ° C. into which the effluent of the high-temperature digester is introduced. ing. Organic components in the waste liquid are liquefied by high-temperature anaerobic microorganisms having an optimum temperature around 55 ° C. and medium-temperature anaerobic microorganisms having an optimum temperature around 35 ° C. It is converted to methane gas through the steps of organic acid production → methane production.

高温消化槽では、前記のとおり、中温消化よりも速やかに固形有機成分の分解が進むものの、コロイド状の溶解性有機成分として多くが残留する。これらコロイド状の有機成分は、中温微生物によって分解可能であるため、高温消化槽の流出液を中温消化槽に導入することにより、残留した溶解性有機成分もメタンガスに転換される。従って、本発明によると、高温消化槽において高い消化速度で固形有機成分を分解し、中温消化槽においてメタンガスへの転換を進めることができる。   In the high-temperature digestion tank, as described above, although the decomposition of the solid organic component proceeds more rapidly than the intermediate-temperature digestion, much remains as a colloidal soluble organic component. Since these colloidal organic components can be decomposed by mesophilic microorganisms, the remaining soluble organic components are also converted into methane gas by introducing the effluent of the high-temperature digester into the intermediate-temperature digester. Therefore, according to the present invention, the solid organic component can be decomposed at a high digestion rate in the high-temperature digester, and the conversion to methane gas can be promoted in the intermediate-temperature digester.

本発明では、中温消化槽からの汚泥の一部を、重力沈降、遠心分離などにより、有機性浮遊物質の割合の低い汚泥と、有機性浮遊物質の高い汚泥に分画し、有機性浮遊物質の割合の高い汚泥を嫌気性消化槽に返送し、有機性浮遊物質の割合の低い汚泥を系外に排出する。 In the present invention, a part of the sludge from the intermediate temperature digester, gravity settling, such as by centrifugation, fractionated and low proportion of organic suspended solids sludge, with high organic suspended solids sludge min, organic suspended Return sludge with a high proportion of material to an anaerobic digester and discharge sludge with a low proportion of organic suspended solids outside the system.

一般的に、汚泥を構成する有機物の主成分である微生物の密度は1.0g/mよりわずかに大きい程度であるのに対して、無機分の主成分である土砂成分のSiOやAlの密度は2〜4g/m程度である。従って、消化汚泥を遠心分離器に導入し高速回転による遠心力を利用して、微生物に対して土砂成分などの割合が高く有機性浮遊物質の割合の低い汚泥と、その逆で有機性浮遊物質の割合の高い汚泥に分画することができる。 In general, the density of microorganisms, which are the main components of organic matter constituting sludge, is slightly higher than 1.0 g / m 3 , whereas the earth and sand components, SiO 2 and Al, which are the main components of inorganic components, are used. The density of 2 O 3 is about 2 to 4 g / m 3 . Therefore, digested sludge is introduced into a centrifuge and the centrifugal force generated by high-speed rotation is used to make sludge with a high proportion of sediment and other organic suspended solids to microorganisms and vice versa. It can be fractionated into sludge with a high ratio.

このようにして得られた有機性浮遊物質の割合の低い汚泥系外へ排出することにより、嫌気性消化槽に無機物が蓄積することが防止される。また、有機性浮遊物質の割合の
高い汚泥を嫌気性消化槽に返送する。これにより、有機性浮遊物質の割合の高い消化汚泥が該嫌気性消化槽内において効率よく消化され、余剰汚泥が十分に減量されると共に、メタンガスが大量に回収される。
By discharging the sludge having a low proportion of organic suspended solids thus obtained out of the system, accumulation of inorganic substances in the anaerobic digester is prevented. Also, sludge with a high proportion of organic suspended solids is returned to the anaerobic digester. As a result, digested sludge having a high proportion of organic suspended solids is efficiently digested in the anaerobic digester, so that excess sludge is sufficiently reduced and a large amount of methane gas is recovered.

このようにして、本発明の有機性廃液の嫌気性消化処理方法及び装置によれば、嫌気性消化処理の効率が高められ、従来より高い有機物負荷においても、加温エネルギーや凝集剤使用量を増加させずに、有機成分を大幅に減量化するとともにメタンガスを大量に回収することもできる。   Thus, according to the method and apparatus for anaerobic digestion of the organic waste liquid of the present invention, the efficiency of the anaerobic digestion is increased, and even when the organic load is higher than conventional, the heating energy and the amount of the flocculant used are reduced. Without increasing the amount, the organic components can be greatly reduced and a large amount of methane gas can be recovered.

汚泥分画装置に導入する消化汚泥は、中温消化槽から引き抜いたものである。中温消化槽では、高温消化槽で残留する溶解性有機成分がメタンガスに転換し除去されているため、後段の脱水処理における凝集剤の必要量を、高温消化汚泥を分画処理した場合に比べ少なくすることができる。 Digested sludge is introduced into the sludge fraction apparatus, Ru der those withdrawn or Atsushi Naka digester al. In medium-temperature digester, the solubility organic components remaining in the high temperature digester is converted removed methane gas, the required amount of flocculant in the subsequent dehydration treatment, compared with the case of fractionation hot digested sludge Can be reduced.

汚泥分画装置により分画された有機性浮遊物質の割合の高い汚泥は、中温消化槽に返送する。 High proportion of organic suspended solids fractionated by sludge fractionator sludge is returned to the medium-temperature digester.

なお、本発明では有機性廃液中温消化槽及び固液分離手段に導入してもよい。 In the present invention may be an organic wastewater introduced into the mesophilic digester and solid-liquid separation means.

また、本発明では有機性廃液の少なくとも一部を固液分離手段に導入するので、中温消化槽からの消化汚泥が有機性廃液によって希釈されることにより、凝集剤が効きやすくなる。また、固液分離手段での処理汚泥量を少なくすることができる。この固液分離手段による固液分離は、有機性廃液を処理系に導入する際に、消化槽の液位を一定に保つ(溢れないようにする)ために行われるものであり、導入する有機性廃液と同体積の分離水(固液分離処理水)を該固液分離手段から系外に排出する必要がある。一般に、有機性廃液のSS濃度は消化汚泥のSS濃度よりも低い。そのため、有機性廃液と消化汚泥の混合液を固液分離して分離水を有機性廃液導入量と同体積だけ取り出す場合の方が、消化汚泥のみを固液分離して分離水を有機性廃液導入量と同体積だけ取り出す場合に比べて、固液分離手段で処理する汚泥量は少なくて済む。これにより、固液分離手段として、より小型の装置を採用することが可能となる。また、処理する汚泥量が少なくて済むことから、省エネルギー化にも資する。 In the present invention, at least a part of the organic waste liquid is introduced into the solid-liquid separation means, so that the digestive sludge from the intermediate temperature digester is diluted with the organic waste liquid, so that the flocculant becomes effective. Moreover, the amount of treated sludge in the solid-liquid separation means can be reduced. The solid-liquid separation by this solid-liquid separation means is performed in order to keep the liquid level in the digestion tank constant (so as not to overflow) when introducing the organic waste liquid into the treatment system. It is necessary to discharge separation water (solid-liquid separation treated water) having the same volume as the effluent from the solid-liquid separation means. Generally, the SS concentration of organic waste liquid is lower than the SS concentration of digested sludge. Therefore, when separating the mixed liquid of organic waste liquid and digested sludge by solid-liquid separation and taking out the separated water in the same volume as the amount of organic waste liquid introduced, the separated water is separated into the organic waste liquid by solid-liquid separation of only the digested sludge. The amount of sludge to be treated by the solid-liquid separation means is smaller than in the case where the same volume as the amount introduced is taken out. This makes it possible to employ a smaller apparatus as the solid-liquid separation means. Moreover, since the amount of sludge to be processed is small, it contributes to energy saving.

また、汚泥分画装置として前記固液分離装置を用い、固液分離を行うときと、汚泥分画を行うときとに分けた運転を行ってもよい。   Further, the solid-liquid separation device may be used as the sludge fractionation device, and the operation may be divided into when solid-liquid separation is performed and when sludge fractionation is performed.

以下に図面を参照して本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

まず、図1〜8を参照して参考例及び本発明のフローについて説明する。図1〜6は参考例を示し、図7、8はそれぞれ本発明の有機性廃液の嫌気性消化処理方法及び装置の実施の形態を示す系統図であり、図1〜8において、同一機能を奏する部材には、同一符号を付してある。 First, a reference example and the flow of the present invention will be described with reference to FIGS. 1 to 6 show reference examples, and FIGS. 7 and 8 are system diagrams showing embodiments of an organic anaerobic digestion treatment method and apparatus of the present invention, respectively. In FIGS. The same symbols are attached to the members to be played.

[図1の有機性廃液の嫌気性消化処理装置]
図1において、有機性汚泥(有機性廃液)は高温消化槽1に導入され、45〜95℃にて嫌気性消化処理される。この高温消化槽1の消化汚泥の一部が中温消化槽2に導入され、25〜40℃にて嫌気性消化処理される。この中温消化槽2の消化汚泥の一部を引き抜き、固液分離装置3で濃縮する。固液分離装置3からの液分は系外に取り出される。濃縮された汚泥は、返送配管4を介して中温消化槽2へ返送される。
[Anaerobic digestion treatment equipment for organic waste liquid in Fig. 1]
In FIG. 1, organic sludge (organic waste liquid) is introduced into the high-temperature digestion tank 1 and subjected to anaerobic digestion at 45 to 95 ° C. A part of the digested sludge in the high-temperature digester 1 is introduced into the intermediate-temperature digester 2 and subjected to anaerobic digestion at 25 to 40 ° C. A part of the digested sludge in the intermediate temperature digester 2 is extracted and concentrated by the solid-liquid separator 3. The liquid component from the solid-liquid separator 3 is taken out of the system. The concentrated sludge is returned to the intermediate temperature digester 2 through the return pipe 4.

また、中温消化槽2からの消化汚泥の一部を配管5で引き抜いて、改質装置6で改質する。改質汚泥は、返送配管7を介して高温嫌気性消化槽1に返送する。   Further, a part of the digested sludge from the intermediate temperature digester 2 is pulled out by the pipe 5 and reformed by the reformer 6. The modified sludge is returned to the high temperature anaerobic digester 1 through the return pipe 7.

この参考例では、高温消化槽1からの消化汚泥の残部を配管9を介して汚泥分画装置10に導入し、重力沈降、遠心分離などにより、有機性浮遊物質の割合の低い汚泥と、有機性浮遊物質の高い汚泥に分画する。そして、有機性浮遊物質の割合の高い汚泥を配管11,7を介して高温消化槽1に返送し、有機性遊物質の割合の低い汚泥を系外に排出する。なお、汚泥は配管11のみを介して高温消化槽1へ返送されてもよい。この汚泥分画装置10としては、分画効果の点で遠心分離装置が好ましい。 In this reference example , the remainder of the digested sludge from the high-temperature digester 1 is introduced into the sludge fractionator 10 via the pipe 9, and the sludge having a low ratio of organic suspended solids and organic matter are separated by gravity sedimentation, centrifugation, etc. It is fractionated into sludge with a high concentration of volatile suspended solids. Then, sludge having a high ratio of organic suspended solids is returned to the high-temperature digestion tank 1 through the pipes 11 and 7, and sludge having a low ratio of organic floating substances is discharged out of the system. The sludge may be returned to the high temperature digester 1 only through the pipe 11. As the sludge fractionating device 10, a centrifugal separator is preferable in terms of fractionation effect.

前述の通り、汚泥を構成する有機物の主成分である微生物の密度は1.0g/mよりわずかに大きい程度であるのに対して、無機分の主成分である土砂成分のSiOやAlの密度は2〜4g/m程度であり、汚泥分画装置10によって、微生物に対して土砂成分などの割合が高く有機性浮遊物質の割合の低い汚泥と、その逆で有機性浮遊物質の割合の高い汚泥に分画することができる。 As described above, the density of microorganisms, which are the main components of the organic matter constituting the sludge, is slightly higher than 1.0 g / m 3 , whereas the earth and sand components, SiO 2 and Al, which are the main components of the inorganic content. The density of 2 O 3 is about 2 to 4 g / m 3 , and the sludge fractionator 10 makes sludge having a high ratio of sediment components and low organic suspended solids to microorganisms, and vice versa. It can be fractionated into sludge with a high proportion of suspended solids.

汚泥分画装置10として遠心分離装置を用いる場合、遠心分離装置における処理流量、処理時間やかける遠心力については、導入する汚泥の濃度や無機物の割合などによって適宜設定するものであり、特に限定されない。また、回分式でも連続式でもよい。   When a centrifugal separator is used as the sludge fractionator 10, the processing flow rate, processing time, and centrifugal force applied in the centrifugal separator are appropriately set according to the concentration of sludge to be introduced, the ratio of inorganic substances, etc., and are not particularly limited. . Moreover, a batch type or a continuous type may be sufficient.

高温消化槽1では改質された中温消化槽の汚泥が処理されることから、汚泥の有機性浮遊物質の割合は、一般に中温消化槽2より低い。従って、この参考例のように高温消化槽1の汚泥を分画処理した場合には、より有機性浮遊物質の割合の低い汚泥が得られやすく、後段の脱水処理におけるケーキの含水率が低下して処分すべきケーキ量を減少させることができる。 Since the sludge of the modified intermediate temperature digester is processed in the high temperature digester 1, the ratio of organic suspended solids in the sludge is generally lower than that of the intermediate temperature digester 2. Therefore, when the sludge in the high-temperature digestion tank 1 is fractionated as in this reference example , sludge with a lower ratio of organic suspended solids is easily obtained, and the moisture content of the cake in the subsequent dehydration treatment is reduced. The amount of cake to be disposed of can be reduced.

なお、汚泥分画装置10により分画された有機性浮遊物質の割合の高い汚泥は、汚泥を引き抜いた高温消化槽1に返送するのが好ましいが、高温消化槽1、中温消化槽2の両方に返送してもよい。   In addition, it is preferable to return the sludge fractionated by the sludge fractionation apparatus 10 to the high-temperature digestion tank 1 from which the sludge has been extracted, but both the high-temperature digestion tank 1 and the intermediate-temperature digestion tank 2 are used. You may return it to

汚泥分画装置10で分画された有機性浮遊物質の割合の低い汚泥は、配管12を介して余剰消化汚泥として系外に引き抜かれる。この余剰消化汚泥の引き抜きは、消化槽1,2の汚泥(TS)濃度を2〜12%特に4〜8%に維持するように行うのが好ましい。   The sludge fractionated by the sludge fractionator 10 and having a low ratio of organic suspended solids is drawn out of the system as excess digested sludge via the pipe 12. The excess digested sludge is preferably extracted so as to maintain the sludge (TS) concentration in the digesters 1 and 2 at 2 to 12%, particularly 4 to 8%.

[図2〜4の有機性廃液の嫌気性消化処理装置]
図2では有機性廃液は中温消化槽2に供給され、高温消化槽1には改質装置6からの改質汚泥と、汚泥分画装置10からの高有機性浮遊物質汚泥のみが導入されている。その他の構成は図1と同様であり、同一符号は同一部分を示している。
[Anaerobic digestion treatment equipment of organic waste liquid of FIGS. 2-4]
In FIG. 2, the organic waste liquid is supplied to the intermediate temperature digester 2, and only the reformed sludge from the reformer 6 and the highly organic suspended solids sludge from the sludge fractionator 10 are introduced into the high temperature digester 1. Yes. The other structure is the same as that of FIG. 1, and the same code | symbol has shown the same part.

図3では、有機性廃液は中温消化槽2と固液分離装置3の双方に供給され、図4では有機性廃液は固液分離装置3に供給されている。その他の構成は図1と同様であり、同一符号は同一部分を示している。   In FIG. 3, the organic waste liquid is supplied to both the intermediate temperature digester 2 and the solid-liquid separator 3, and in FIG. 4, the organic waste liquid is supplied to the solid-liquid separator 3. The other structure is the same as that of FIG. 1, and the same code | symbol has shown the same part.

[図5〜8の有機性廃液の嫌気性消化処理装置]
図5〜8では、中温消化槽2から改質装置6に送られる中温消化汚泥の一部が汚泥分画装置10に導入されている。この汚泥分画装置10で分画された高有機性浮遊物質汚泥は、配管11,4を介して中温消化槽4に返送されている。
[Anaerobic digestion treatment equipment of organic waste liquid of FIGS. 5-8]
5 to 8, a part of the intermediate temperature digested sludge sent from the intermediate temperature digester 2 to the reformer 6 is introduced into the sludge fractionator 10. The high organic soluble suspended solids sludge fractionated in the sludge fraction 10 is returned to the mesophilic digester 4 via a pipe 11, 4.

図5〜8はそれぞれ図1〜4に対応するものであり、図5では有機性廃液を高温消化槽1に導入し、図6では有機性廃液を中温消化槽2に導入し、図7では有機性廃液を中温消化槽2及び固液分離装置3の双方に導入し、図8では有機性廃液を固液分離装置3に導入している。   FIGS. 5 to 8 correspond to FIGS. 1 to 4, respectively. In FIG. 5, the organic waste liquid is introduced into the high temperature digestion tank 1, in FIG. 6, the organic waste liquid is introduced into the intermediate temperature digestion tank 2, and in FIG. The organic waste liquid is introduced into both the intermediate-temperature digestion tank 2 and the solid-liquid separator 3, and the organic waste liquid is introduced into the solid-liquid separator 3 in FIG.

その他の構成は図1〜4と同一である。   Other configurations are the same as those in FIGS.

一般に、中温消化槽2では、高温消化槽1で残留する溶解性有機成分がメタンガスに転換し除去されている。従って、中温消化槽2からの消化汚泥の一部を汚泥分画装置10に送ることにより、固液分離装置3での脱水処理における凝集剤の必要量を、高温消化槽1から汚泥を汚泥分画装置10に送って分画処理する場合に比べ少なくすることができる。 Generally, in the intermediate temperature digestion tank 2, soluble organic components remaining in the high temperature digestion tank 1 are converted to methane gas and removed. Thus, the sludge by sending a portion of the digested sludge from the mesophilic digester 2 into sludge fraction 10, the required amount of flocculant in the dewatering process in the solid-liquid separator 3, the sludge from the hot digestion tank 1 This can be reduced compared to the case where the image is sent to the fractionation device 10 for fractionation processing.

汚泥分画装置により分画された有機性浮遊物質の割合の高い汚泥は、汚泥を引き抜いた中温消化槽2に返送する The sludge having a high organic suspended solid fraction fractionated by the sludge fractionator is returned to the intermediate temperature digestion tank 2 from which the sludge has been extracted .

[処理対象廃液]
本発明において処理の対象となる有機性廃液は、嫌気性消化処理によって減量化される有機物を含有する廃液であり、固形物を含むスラリー状のものでも、固形物を含まない液状のものでも良い。また、難生物分解性の有機物、無機物、セルロース、紙、綿、ウール、布、し尿中の固形物などが含有されていても良い。このような有機性廃液としては下水、下水初沈汚泥、し尿、浄化槽汚泥、食品工場の排水や残渣、ビール廃酵母、その他の産業廃液、これらの廃液を処理した際に生じる余剰汚泥等の有機性汚泥が挙げられる。
[Treatment waste liquid]
The organic waste liquid to be treated in the present invention is a waste liquid containing an organic substance that is reduced by anaerobic digestion treatment, and may be a slurry containing a solid or a liquid containing no solid. . In addition, non-biodegradable organic substances, inorganic substances, cellulose, paper, cotton, wool, cloth, solid matter in human waste may be contained. Examples of such organic waste liquid include sewage, sewage initial sedimentation sludge, human waste, septic tank sludge, wastewater and residue from food factories, beer waste yeast, other industrial waste liquids, and surplus sludge generated when these waste liquids are treated. Natural sludge.

[消化槽1,2の構成]
高温消化槽1及び中温消化槽2では、嫌気性微生物を含む汚泥の存在下に、このような有機性廃液をメタン発酵させて処理する。嫌気性微生物を含む汚泥は酸生成菌とメタン生成菌を含む。嫌気性消化工程において有機性物質は嫌気性微生物により液化→低分子化→有機酸生成→メタン生成のステップによりメタンガスに転換され、処理される。
[Configuration of digesters 1 and 2]
In the high-temperature digestion tank 1 and the intermediate-temperature digestion tank 2, such organic waste liquid is treated by methane fermentation in the presence of sludge containing anaerobic microorganisms. Sludge containing anaerobic microorganisms contains acid-producing bacteria and methanogens. In the anaerobic digestion process, organic substances are converted to methane gas and processed by anaerobic microorganisms through the steps of liquefaction → low molecular weight → organic acid production → methane production.

高温消化槽1では、55℃付近に最適温度がある高温メタン生成菌が主として保持され、中温消化槽2では35℃付近に最適温度を有する中温メタン生成菌が主として保持されている。中温メタン生成菌は増殖が遅いためSRTを長くする、即ち、嫌気性消化槽を大きくする必要があるが、比較的低温での処理が可能なため加温及び保温のための設備を簡易にすることができる。これに対し、高温メタン生成菌の場合は加温及び保温の設備が必要になるが、増殖が速いためSRTが短くて良く、嫌気性消化槽を小さくすることができる。   In the high-temperature digestion tank 1, high-temperature methane-producing bacteria having an optimum temperature around 55 ° C. are mainly held, and in the intermediate-temperature digestion tank 2, medium-temperature methane-producing bacteria having an optimum temperature around 35 ° C. are mainly held. Since mesophilic methanogens grow slowly, it is necessary to lengthen the SRT, that is, to increase the size of the anaerobic digester. However, since treatment at a relatively low temperature is possible, facilities for warming and heat insulation are simplified. be able to. On the other hand, in the case of a high-temperature methanogen, heating and heat insulation facilities are required, but since the growth is fast, the SRT may be short, and the anaerobic digester can be made small.

高温消化槽1は、蒸気の吹き込み、温水の導入、熱交換器への汚泥の循環などにより槽内が前記温度になるように加温される。中温消化槽は、通常、高温消化槽の流出液と前記有機性廃液の導入により、槽内温度を前述の値に保つことができるが、加温、または冷却してもよい。   The high-temperature digestion tank 1 is heated so that the inside of the tank reaches the above temperature by blowing steam, introducing hot water, circulating sludge to the heat exchanger, and the like. The intermediate temperature digestion tank can maintain the temperature in the tank at the above-mentioned value by introducing the effluent of the high temperature digestion tank and the organic waste liquid, but may be heated or cooled.

嫌気性消化槽での汚泥滞留時間(SRT)は、高温消化槽1で5日以上、好ましくは10〜30日であり、中温消化槽2では10日以上、好ましくは15〜50日である。各嫌気性消化槽1,2内のSS濃度は20,000〜120,000mg/L(2〜12%)、好ましくは40,000〜80,000mg/L(4〜8%)である。   The sludge residence time (SRT) in the anaerobic digester is 5 days or more, preferably 10-30 days in the high-temperature digester 1, and is 10 days or more, preferably 15-50 days in the medium-temperature digester 2. The SS concentration in each anaerobic digester 1 and 2 is 20,000 to 120,000 mg / L (2 to 12%), preferably 40,000 to 80,000 mg / L (4 to 8%).

なお、SRTを長くすればするほど汚泥の分解率は高くなるが、槽の容量が大きくなってしまう。消化槽内SS濃度を高くすればするほど同じ滞留時間でも改質処理される汚泥量が増え、分解率が高まるが、槽内の撹拌混合、汚泥の固液分離が難しくなる。   Note that the longer the SRT, the higher the sludge decomposition rate, but the larger the tank capacity. As the SS concentration in the digestion tank is increased, the amount of sludge to be reformed increases even in the same residence time and the decomposition rate increases, but stirring and mixing in the tank and solid-liquid separation of sludge become difficult.

[固液分離装置3の構成]
消化汚泥を濃縮するための固液分離装置3としては、消化汚泥を固液分離して濃縮することができるものであれば良く、遠心分離装置、浮上分離装置、沈殿槽、膜分離装置、濾過装置などを用いることができるが、遠心分離装置が好ましい。
[Configuration of Solid-Liquid Separator 3]
The solid-liquid separation device 3 for concentrating the digested sludge may be any device capable of concentrating the digested sludge by solid-liquid separation, such as a centrifugal separator, a flotation separator, a sedimentation tank, a membrane separator, and filtration. Although an apparatus etc. can be used, a centrifuge is preferable.

中温消化槽2から固液分離装置3へ引き抜く消化汚泥の1日当りの引き抜き量は、中温消化槽2内の保有汚泥の1/60〜1/10程度が好ましい。   The daily withdrawal amount of the digested sludge extracted from the intermediate temperature digester 2 to the solid-liquid separator 3 is preferably about 1/60 to 1/10 of the retained sludge in the intermediate temperature digester 2.

なお、固液分離装置3は、大気と遮断した状態で運転するのが好ましく、例えば、濃縮機を密閉状態にして濃縮することにより汚泥と酸素との接触を制限すると、嫌気性菌を生かしたまま嫌気性消化槽に返送でき、嫌気性消化槽の生菌数保持、増加が容易となり、消化効率を向上させることができる。   In addition, it is preferable to operate the solid-liquid separation device 3 in a state cut off from the atmosphere. For example, when the contact between the sludge and oxygen is restricted by concentrating the concentrator in a sealed state, the anaerobic bacteria are utilized. It can be returned to the anaerobic digestion tank as it is, and it becomes easy to maintain and increase the number of viable bacteria in the anaerobic digestion tank, thereby improving the digestion efficiency.

本発明では、中温消化槽2からの消化汚泥に凝集剤、好ましくは高分子凝集剤を添加してから固液分離装置3に導入する。このように凝集剤を添加して消化汚泥中のSS分を凝集させることにより、固液分離装置3での濃縮倍率を高め、清澄な分離液を得ることができる。また、固液分離装置3からの固形分の系外流出を抑えて汚泥有機成分の減量、メタンガスへの転換を促進することができる。 In the present invention, a flocculant, preferably a polymer flocculant, is added to the digested sludge from the intermediate temperature digester 2 and then introduced into the solid-liquid separator 3. Thus, by adding the flocculant and aggregating the SS component in the digested sludge, the concentration factor in the solid-liquid separator 3 can be increased, and a clear separation liquid can be obtained. Moreover, the outflow of the solid content from the solid-liquid separator 3 can be suppressed, and the reduction of sludge organic components and the conversion to methane gas can be promoted.

なお、高温消化槽で残留する溶解性有機成分は固液分離に必要となる凝集剤添加量を増加させるが、中温消化槽においてこれらの溶解性有機成分がメタンガスに転換し除去される。そのため、凝集剤添加量をそれほど多くすることなく、中温消化槽2からの消化汚泥を良好に凝集処理することができる。   The soluble organic components remaining in the high-temperature digester increase the amount of flocculant added necessary for solid-liquid separation, but these soluble organic components are converted to methane gas and removed in the intermediate-temperature digester. Therefore, the digested sludge from the intermediate temperature digester 2 can be satisfactorily coagulated without increasing the amount of the flocculant added so much.

この凝集処理の効果を高めるために、固液分離装置3の前段に混合槽を設け、この混合槽において、又はこの混合槽に流入する消化汚泥に対して、凝集剤を添加するようにしてもよい。   In order to enhance the effect of this flocculation treatment, a mixing tank is provided in the front stage of the solid-liquid separator 3, and a flocculant is added to this mixing tank or to the digested sludge flowing into this mixing tank. Good.

凝集剤としては、有機系、無機系のいずれか、またはそれら両方を用いてもよいが、添加量が少なくてよいこと、消化槽内で分解されて蓄積しにくいことから有機系の高分子凝集剤、特にカチオン性、または両性高分子凝集剤が好ましい。   As the flocculant, either organic or inorganic, or both of them may be used. However, since the addition amount may be small and it is difficult to decompose and accumulate in the digester, organic polymer aggregation Agents, particularly cationic or amphoteric polymer flocculants are preferred.

固液分離装置3における消化汚泥の濃縮の程度は、用いる濃縮機の性能にもよるが、通常、TS(固形物)濃度4〜8%程度の消化汚泥を、8〜20%程度のペースト状ないし高粘性の液状に濃縮する程度であることが好ましい。   The degree of concentration of digested sludge in the solid-liquid separator 3 depends on the performance of the concentrator used, but usually digested sludge having a TS (solid matter) concentration of about 4 to 8% is paste-like about 8 to 20%. It is preferable that the liquid is concentrated to a highly viscous liquid.

固液分離装置3の濃縮分離液は処理水としてそのまま下水道等へ放流することができるが、好気性生物処理、その他の後処理を行った後放流しても良い。   The concentrated separation liquid of the solid-liquid separation device 3 can be discharged as treated water as it is to a sewer or the like, but may be discharged after aerobic biological treatment or other post-treatment.

固液分離した際の濃縮汚泥は、中温消化槽2に返送する。中温消化槽2に返送することによって、中温消化槽2の汚泥滞留時間を長くし、増殖が遅い中温嫌気性微生物を槽内に維持することができる。 Concentrated sludge at the time of solid-liquid separation, return to Atsushi Naka digester 2. By returning to the intermediate-temperature digestion tank 2, the sludge residence time of the intermediate-temperature digestion tank 2 can be lengthened, and the intermediate-temperature anaerobic microorganisms with slow growth can be maintained in the tank.

また、第5〜8図のように、中温消化槽2に返送される濃縮消化汚泥に対し、汚泥分画装置からの高有機性浮遊物質汚泥を混合して中温消化槽に返送することが好ましいが、別々に中温消化槽2に導入するようにしてもよい。 Also, as in the fifth to eighth view, to concentrate digested sludge is returned to the mesophilic digester 2, it is returned to the mesophilic digester by mixing a high organic soluble suspended solids sludge from the sludge fractionator Although it is preferable, it may be separately introduced into the intermediate temperature digester 2.

濃縮汚泥を前記有機性廃液や、上水、工水、その他有機性廃液の生物処理水などと混合した後、中温消化槽に返送してもよい。 The concentrated sludge may be mixed with the organic waste liquid , clean water, industrial water, biological treatment water of other organic waste liquid, etc., and then returned to the intermediate temperature digester.

中温消化槽2から取り出されて固液分離装置3に送られる消化汚泥を、第3,7図のようにこの装置(嫌気性消化処理装置)に供給される有機性廃液の一部、または第4,8図のようにこの装置に供給される有機性廃液の全部と混合して希釈した後、固液分離を行い、有機性廃液中の固形分を含んだ濃縮汚泥を嫌気性消化槽に返送してもよい。消化汚泥が有機性廃液によって希釈されることにより、凝集剤が効きやすくなるほか、固液分離装置3での処理汚泥量を少なくすることができる。   The digested sludge taken out from the intermediate temperature digester 2 and sent to the solid-liquid separator 3 is part of the organic waste liquid supplied to this device (anaerobic digester) as shown in FIGS. 4 and 8, after mixing and diluting with all of the organic waste liquid supplied to this device, solid-liquid separation is performed, and the concentrated sludge containing the solid content in the organic waste liquid is put into the anaerobic digester. You may return it. By diluting the digested sludge with the organic waste liquid, the flocculant becomes effective, and the amount of the treated sludge in the solid-liquid separator 3 can be reduced.

消化槽1,2での無機成分や難生物分解性有機成分の蓄積を防ぐため、汚泥分画装置10の低有機性浮遊物質汚泥を系外に排出しているが、必要に応じ高温消化槽1または中温消化槽2の消化汚泥、固液分離装置3の濃縮汚泥の一部を余剰消化汚泥として排出し、脱水、焼却、埋立等の処分を行ってもよい。   In order to prevent the accumulation of inorganic components and hardly biodegradable organic components in the digestion tanks 1 and 2, the low-organic suspended solids sludge of the sludge fractionator 10 is discharged out of the system. A part of the digested sludge of the 1 or the intermediate temperature digester 2 and the concentrated sludge of the solid-liquid separator 3 may be discharged as surplus digested sludge and disposed of such as dehydration, incineration, and landfill.

[改質装置6の構成]
改質装置6では、消化槽2から引き抜いた嫌気性消化汚泥をオゾン処理、熱処理、ミルによる破砕、酸/アルカリ処理などによって改質する。このような改質処理を行うことにより、嫌気性消化汚泥中の菌体は死滅し、その他の難分解性有機成分とともに易生物分解性に改質される。これら易生物分解性成分が嫌気性消化槽で消化されることで、処理系からより多くの有機成分が減量され、メタンガスが回収されるようになる。
[Configuration of reformer 6]
In the reformer 6, the anaerobic digested sludge extracted from the digester 2 is reformed by ozone treatment, heat treatment, milling, acid / alkali treatment, or the like. By performing such a modification treatment, the cells in the anaerobic digested sludge are killed and modified to be readily biodegradable together with other hardly decomposable organic components. By digesting these readily biodegradable components in the anaerobic digester, more organic components are reduced from the treatment system, and methane gas is recovered.

改質装置としてオゾン処理装置を採用した場合、このオゾン処理装置では、中温消化槽2からの消化汚泥をオゾンと接触させることにより改質する。オゾン処理のpHは4〜10、オゾンの使用量は通常オゾン処理される消化汚泥のVSSあたり0.01〜0.08g−O/g−VSS、好ましくは0.02〜0.05g−O/g−VSSとするのが好ましい。 When an ozone treatment device is employed as the reforming device, the ozone treatment device is modified by bringing digested sludge from the intermediate temperature digestion tank 2 into contact with ozone. The pH of the ozone treatment is 4 to 10, and the amount of ozone used is usually 0.01 to 0.08 g-O 3 / g-VSS, preferably 0.02 to 0.05 g-O per digested sludge treated with ozone. 3 / g-VSS is preferable.

一日当たりに改質処理する消化汚泥量は高温消化槽1及び中温消化槽2の全保有有機固形物(VSS)量の1/10以下、好ましくは1/100〜1/15、より好ましくは1/50〜1/30に相当する量とするのが好ましい。一日当たりの改質処理量をこのような量にすることにより、嫌気性消化処理に必要な微生物量を消化槽1,2で保持することができ、嫌気性消化処理の効率を高く保つことができる。   The amount of digested sludge to be modified per day is 1/10 or less, preferably 1/100 to 1/15, more preferably 1 of the total amount of organic solids (VSS) in the high-temperature digester 1 and the intermediate-temperature digester 2. An amount corresponding to / 50 to 1/30 is preferable. By setting the amount of modification treatment per day to such an amount, the amount of microorganisms necessary for anaerobic digestion treatment can be maintained in the digestion tanks 1 and 2, and the efficiency of the anaerobic digestion treatment can be kept high. it can.

なお、オゾン使用量を多くすればするほど分解性は向上するが、徐々に頭打ちになるため(倍にすれば倍分解するものではない)、0.02〜0.05g−O/g−VSSが効率的である。また、改質処理する汚泥量を多くすればするほど生物分解を受ける餌が増えるが、同時に餌を分解する微生物量が減るため、トータルで見た汚泥の分解率はある範囲にピークがある。また、分解汚泥量あたりのオゾン消費量は、改質処理量が少ないほど少なくて済むことから、多少分解率が下がっても改質処理量を少なくした方が効率的な場合がある。 In addition, although the decomposability improves as the amount of ozone used is increased, it gradually reaches a peak (not doubled when doubled), so 0.02 to 0.05 g-O 3 / g- VSS is efficient. In addition, as the amount of sludge to be modified increases, the amount of feed that undergoes biodegradation increases. At the same time, the amount of microorganisms that decompose the feed decreases, so the sludge decomposition rate as a whole has a peak within a certain range. Further, since the ozone consumption per degraded sludge amount is smaller as the reforming treatment amount is smaller, it may be more efficient to reduce the reforming treatment amount even if the decomposition rate is somewhat lowered.

本発明では、改質する消化汚泥中温消化槽2から引き抜く中温消化槽2では高温消化槽1で残留する溶解性有機成分が分解されて、生物分解性の有機成分がより少なくなっており、難分解性の有機成分、微生物菌体の改質を効率的に行うことができる。 In the present invention, the digested sludge to be modified is extracted from the intermediate temperature digester 2 . In the intermediate temperature digestion tank 2, the soluble organic components remaining in the high temperature digestion tank 1 are decomposed to reduce the amount of biodegradable organic components. Can be done.

改質した後の汚泥、各図の通り、高温消化槽1に返送する。高温消化槽1に返送することによって、改質した汚泥の分解を中温よりも消化速度の高い高温消化で速やかに行うことができる。 Sludge after reforming, as each figure, it returns to the high temperature digester 1. By returning to the high-temperature digestion tank 1, the reformed sludge can be quickly decomposed by high-temperature digestion with a digestion rate higher than the intermediate temperature.

なお、本発明において、改質処理は、何らオゾン処理装置に限定されず、汚泥細胞を変性、破壊して微生物によって資化されやすい形態に改質することができるものであれば良く、オゾン処理の他、例えば過酸化水素等の酸化力の強い酸化剤や、酸、アルカリなどによる化学的処理、超音波処理、ミルによる磨砕のような物理的処理、熱的処理等の各種の方法を単独で或いは2種以上を組み合わせて採用することができる。   In the present invention, the modification treatment is not limited to an ozone treatment apparatus, and any treatment can be used as long as it can denature and destroy sludge cells and can be modified to a form that is easily assimilated by microorganisms. In addition, various methods such as chemical treatment with strong oxidizing power such as hydrogen peroxide, chemical treatment with acid, alkali, etc., ultrasonic treatment, physical treatment such as grinding with mill, thermal treatment, etc. It can be employed alone or in combination of two or more.

[汚泥分画装置10の構成]
汚泥分画装置10は、前記嫌気性消化槽から引き抜いた汚泥を、重力沈降、遠心分離などにより、有機性浮遊物質の割合の低い汚泥と、有機性浮遊物質の高い汚泥に分画し、有機性浮遊物質の割合の高い汚泥を嫌気性消化槽に返送し、有機性浮遊物質の割合の低い汚泥を系外に排出する装置であり、分画効果の点で遠心分離機が好ましい。
[Configuration of Sludge Fractionation Device 10]
The sludge fractionation apparatus 10 fractionates the sludge extracted from the anaerobic digestion tank into sludge having a low ratio of organic suspended solids and sludge having a high organic suspended solid content by gravity sedimentation, centrifugation, etc. Is a device that returns sludge having a high proportion of volatile suspended matter to an anaerobic digester and discharges sludge having a low proportion of organic suspended matter to the outside of the system, and a centrifugal separator is preferred in terms of fractionation effect.

遠心分離機における処理流量、処理時間やかける遠心力については、導入する汚泥の濃度や無機物の割合などによって適宜設定するものであり、特に限定されない。また、遠心分離機は回分式でも連続式でもよい。   The processing flow rate, processing time, and centrifugal force applied in the centrifuge are appropriately set depending on the concentration of sludge to be introduced, the ratio of inorganic substances, and the like, and are not particularly limited. The centrifuge may be a batch type or a continuous type.

また、汚泥分画装置として前記固液分離装置を用い、固液分離を行うときと、汚泥分画を行うときとに分けた運転を行ってもよい。   Further, the solid-liquid separation device may be used as the sludge fractionation device, and the operation may be divided into when solid-liquid separation is performed and when sludge fractionation is performed.

本発明では、嫌気性消化槽で発生する消化ガス(メタンガス)を有効利用して、消化槽の加温や、改質手段、汚泥分画装置の運転等に必要な動力の一部又は全部を賄うことも好ましい。   In the present invention, the digestion gas (methane gas) generated in the anaerobic digester is effectively used, and part or all of the power required for heating the digester, reforming means, operation of the sludge fractionator, etc. It is also preferable to cover.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

比較例1]
有機性廃液として、下水処理場より採取した混合生汚泥(平均TS濃度40g/L、TVS/TS比0.83)を、第1図の装置(高温消化槽1及び中温消化槽2の容積は各々0.9m。固液分離装置3は遠心分離機。)を用い、下記条件にて処理した。
[ Comparative Example 1]
As organic waste liquid, mixed raw sludge (average TS concentration 40 g / L, TVS / TS ratio 0.83) collected from the sewage treatment plant is used, and the volume of the high-temperature digester 1 and the intermediate-temperature digester 2 is as follows. Each was 0.9 m 3, and the solid-liquid separation device 3 was a centrifuge.

消化槽1,2の種汚泥として、それぞれ下水処理場の嫌気性消化槽から採取した高温消化汚泥、中温消化汚泥を用いた。   High temperature digested sludge and medium temperature digested sludge collected from the anaerobic digester of the sewage treatment plant were used as seed sludge for the digesters 1 and 2, respectively.

約6ヶ月間運転したところ、槽内濃度はほぼ一定で推移するようになり、系が定常に達したと考えられた。その後の6ヶ月間における運転実績を表1に示す。   After operating for about 6 months, the concentration in the tank became almost constant, and the system was considered to have reached a steady state. Table 1 shows the operation results for the subsequent six months.

高温消化槽1の温度:53℃
中温消化槽2の温度:37℃
投入汚泥量:60L/day(高温消化槽1及び中温消化槽2に半量ずつ投入)
改質装置6:オゾン処理装置
オゾン濃度:150mg/NL
オゾン処理汚泥量:36L/day
オゾン反応率:0.03g−O/g−TVS
固液分離:中温消化槽2から引き抜いた汚泥に0.2%に溶解したカチオンポリマー
を、遠心分離後の上澄液のSS濃度が1,000mg/L以下となるよう
に添加し、遠心力2,000Gで約2.5倍に遠心分離した。この分離液
を系外に排出した。残り(濃縮汚泥)は中温消化槽2に戻した。
High temperature digester 1 temperature: 53 ° C
Medium temperature digester 2 temperature: 37 ° C
Input sludge amount: 60 L / day (add half amount to high temperature digester 1 and medium temperature digester 2)
Reformer 6: Ozone treatment device Ozone concentration: 150mg / NL
Ozone treatment sludge amount: 36L / day
Ozone reaction rate: 0.03 g-O 3 / g-TVS
Solid-liquid separation: Cationic polymer dissolved in 0.2% in sludge extracted from the intermediate temperature digester 2
The SS concentration of the supernatant after centrifugation is 1,000 mg / L or less.
And centrifuged about 2.5 times with a centrifugal force of 2,000 G. This separation liquid
Was discharged out of the system. The rest (concentrated sludge) was returned to the intermediate temperature digester 2.

消化汚泥の引き抜き:中温消化槽2のTS濃度が6%超えないように汚泥分画装置1
0の濃縮汚泥(低有機性浮遊物質汚泥)を配管12から適宜引
き抜いた。
Extraction of digested sludge: Sludge fractionator 1 so that the TS concentration in the intermediate temperature digester 2 does not exceed 6%
0 concentrated sludge (low organic suspended solids sludge) is appropriately pulled from the pipe 12
I pulled it out.

引き抜き汚泥の脱水:引き抜いた汚泥を下水二次処理水で5倍に希釈したものに対し
、0.2%に溶解したカチオンポリマーを適宜添加して、面圧
9.8kPa、圧搾時間5minの条件での圧搾脱水試験に供
し、脱水ケーキの含水率を求めた。
Dewatering of drawn sludge: For diluted sludge diluted 5 times with secondary sewage water
Then, a cationic polymer dissolved in 0.2% is added as appropriate to obtain a surface pressure.
Used for compression dehydration test under conditions of 9.8 kPa and pressing time 5 min.
The water content of the dehydrated cake was determined.

[実施例1]
第8図の装置を用い、中温消化槽2からの消化汚泥の一部を汚泥分画装置(実施例1と同一の遠心分離機。遠心減量及び濃縮倍率と同一)10で分画し、濃縮汚泥(高有機性浮遊物質汚泥)を中温消化槽2に供給するようにした他は比較例1と同一条件にて同一の有機性廃液(混合生汚泥)を処理した。
[Example 1]
Using the apparatus shown in FIG. 8, a portion of the digested sludge from the intermediate temperature digester 2 is fractionated with a sludge fractionator (same centrifuge as in Example 1. Same as centrifugal reduction and concentration ratio) 10 and concentrated. other sludge (high organic soluble suspended solids sludge) was then supplied to the mesophilic digester 2 was treated the same organic wastewater in Comparative example 1 under the same conditions (mixed raw sludge).

[比較例2]
図9の装置(汚泥分画装置としての遠心濃縮機20からの高有機性浮遊物質汚泥と、固液分離後の濃縮汚泥をそれぞれ消化槽1Aに返送。それ以外のフローは第5図と同一。)で、消化槽1A,2Aをいずれも37℃に維持した。その他の条件は比較例1と同一とした。
[Comparative Example 2]
The high organic soluble suspended solids sludge from centrifugal concentrator 20 of the apparatus (as sludge fractionator 9, return the concentrated sludge after solid-liquid separation in each digester 1A. The other flows and FIG. 5 Identical), both digesters 1A and 2A were maintained at 37 ° C. Other conditions were the same as those in Comparative Example 1.

[比較例
比較例において、消化槽1,2をいずれも53℃に維持した。その他の条件は比較例1と同一とした。
[Comparative Example 3 ]
In Comparative Example 2 , both digesters 1 and 2 were maintained at 53 ° C. Other conditions were the same as those in Comparative Example 1.

各消化槽1,2の種汚泥として、下水処理場より採取した消化汚泥を用い、約6ヶ月運転した後の、系が定常に達したと見られる約6ヶ月間における運転実績を表1に示す。   Table 1 shows the operation results for about 6 months when the system seems to have reached the steady state after operating for about 6 months using the digested sludge collected from the sewage treatment plant as the seed sludge for each digestion tank 1 and 2. Show.

なお、表1における消化率は、(1−引抜汚泥量/投入汚泥量)×100%である。

Figure 0004148286
In addition, the digestibility in Table 1 is (1−drawn sludge amount / input sludge amount) × 100%.
Figure 0004148286

[考察]
表1の通り、比較例1,実施例1では、比較例に比べ、少ないオゾン使用量で、高い消化率、メタンガス化率が得られ、また、比較例に比べ、固液分離時や脱水時に低い凝集剤添加率で、高いメタンガス化率が得られた。
[Discussion]
As shown in Table 1, in Comparative Example 1 and Example 1 , a high digestibility and methane gasification rate can be obtained with a smaller amount of ozone used than in Comparative Example 2, and compared with Comparative Example 3 , A high methane gasification rate was obtained with a low coagulant addition rate during dehydration.

機性廃液の嫌気性消化処理装置の参考例を示す系統図である。 Reference Example anaerobic digestion apparatus organic wastewater is a system diagram showing a. 機性廃液の嫌気性消化処理装置の参考例を示す系統図である。 Reference Example anaerobic digestion apparatus organic wastewater is a system diagram showing a. 機性廃液の嫌気性消化処理装置の参考例を示す系統図である。 Reference Example anaerobic digestion apparatus organic wastewater is a system diagram showing a. 機性廃液の嫌気性消化処理装置の参考例を示す系統図である。 Reference Example anaerobic digestion apparatus organic wastewater is a system diagram showing a. 機性廃液の嫌気性消化処理装置の参考例を示す系統図である。 Reference Example anaerobic digestion apparatus organic wastewater is a system diagram showing a. 機性廃液の嫌気性消化処理装置の参考例を示す系統図である。 Reference Example anaerobic digestion apparatus organic wastewater is a system diagram showing a. 本発明の有機性廃液の嫌気性消化処理装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the anaerobic digestion processing apparatus of the organic waste liquid of this invention. 本発明の有機性廃液の嫌気性消化処理装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the anaerobic digestion processing apparatus of the organic waste liquid of this invention. 比較例の有機性廃液の嫌気性消化処理装置を示す系統図である。It is a systematic diagram which shows the anaerobic digestion processing apparatus of the organic waste liquid of the comparative examples 2 and 3. FIG.

符号の説明Explanation of symbols

1 高温消化槽
2 中温消化槽
3 固液分離装置
6 オゾン処理装置などの改質装置
10 汚泥分画装置
DESCRIPTION OF SYMBOLS 1 High temperature digestion tank 2 Medium temperature digestion tank 3 Solid-liquid separation device 6 Reformers, such as an ozone treatment device 10 Sludge fractionation device

Claims (5)

該嫌気性消化槽としての、処理温度45〜95℃の高温消化槽及び該高温消化槽の流出液が導入される処理温度25〜40℃の中温消化槽と、
該中温消化槽からの消化汚泥の一部を改質する改質手段と、
該改質手段からの改質汚泥を前記高温消化槽に返送する改質汚泥返送手段と、
該中温消化槽からの消化汚泥を濃縮する固液分離手段と、
該固液分離手段に導入される液に凝集剤を添加する凝集剤添加手段と、
該固液分離手段からの濃縮汚泥を前記中温消化槽へ返送する濃縮汚泥返送手段と、
前記中温消化槽からの消化汚泥の一部を有機性浮遊物質の割合の低い汚泥と、有機性浮遊物質の割合の高い汚泥とに分画し、有機性浮遊物質の割合の低い汚泥を系外に排出する汚泥分画手段と、
該汚泥分画手段で分画された有機性浮遊物質の割合の高い高有機性浮遊物質汚泥を該中温消化槽に返送する高有機性浮遊物質汚泥返送手段と、
を有する有機性廃液の嫌気性消化処理装置であって、
有機性廃液が前記固液分離手段にのみ導入されることを特徴とする有機性廃液の嫌気性消化処理装置。
As the anaerobic digester, a high-temperature digester with a treatment temperature of 45 to 95 ° C and a medium-temperature digester with a treatment temperature of 25 to 40 ° C into which the effluent of the high-temperature digester is introduced,
Reforming means for reforming a part of the digested sludge from the intermediate temperature digester,
Modified sludge return means for returning the modified sludge from the reforming means to the high-temperature digestion tank;
Solid-liquid separation means for concentrating the digested sludge from the intermediate temperature digester,
A flocculant addition means for adding a flocculant to the liquid introduced into the solid-liquid separation means;
Concentrated sludge return means for returning the concentrated sludge from the solid-liquid separation means to the intermediate temperature digestion tank;
A portion of the digested sludge from the medium temperature digestion tank is divided into sludge having a low ratio of organic suspended solids and sludge having a high ratio of organic suspended solids, and sludge having a low ratio of organic suspended solids is excluded from the system. Sludge fractionation means to be discharged into
High organic suspended solids sludge return means for returning high organic suspended solids sludge having a high proportion of organic suspended solids fractionated by the sludge fractionating means to the intermediate temperature digester,
An anaerobic digestion treatment apparatus for organic waste liquid having
An organic waste liquid anaerobic digestion treatment apparatus, wherein the organic waste liquid is introduced only into the solid-liquid separation means.
該嫌気性消化槽としての、処理温度45〜95℃の高温消化槽及び該高温消化槽の流出液が導入される処理温度25〜40℃の中温消化槽と、
該中温消化槽からの消化汚泥の一部を改質する改質手段と、
該改質手段からの改質汚泥を前記高温消化槽に返送する改質汚泥返送手段と、
該中温消化槽からの消化汚泥を濃縮する固液分離手段と、
該固液分離手段に導入される液に凝集剤を添加する凝集剤手添加段と、
該固液分離手段からの濃縮汚泥を前記中温消化槽へ返送する濃縮汚泥返送手段と、
前記中温消化槽からの消化汚泥の一部を有機性浮遊物質の割合の低い汚泥と、有機性浮遊物質の割合の高い汚泥とに分画し、有機性浮遊物質の割合の低い汚泥を系外に排出する汚泥分画手段と、
該汚泥分画手段で分画された有機性浮遊物質の割合の高い高有機性浮遊物質汚泥を該中温消化槽に返送する高有機性浮遊物質汚泥返送手段と、
を有する有機性廃液の嫌気性消化処理装置であって、
有機性廃液が前記中温消化槽及び固液分離手段の双方にのみ導入されることを特徴とする有機性廃液の嫌気性消化処理装置。
As the anaerobic digester, a high-temperature digester with a treatment temperature of 45 to 95 ° C and a medium-temperature digester with a treatment temperature of 25 to 40 ° C into which the effluent of the high-temperature digester is introduced,
Reforming means for reforming a part of the digested sludge from the intermediate temperature digester,
Modified sludge return means for returning the modified sludge from the reforming means to the high-temperature digestion tank;
Solid-liquid separation means for concentrating the digested sludge from the intermediate temperature digester,
A flocculant manual addition stage for adding the flocculant to the liquid introduced into the solid-liquid separation means;
Concentrated sludge return means for returning the concentrated sludge from the solid-liquid separation means to the intermediate temperature digestion tank;
A portion of the digested sludge from the medium temperature digestion tank is divided into sludge having a low ratio of organic suspended solids and sludge having a high ratio of organic suspended solids, and sludge having a low ratio of organic suspended solids is excluded from the system. Sludge fractionation means to be discharged into
High organic suspended solids sludge return means for returning high organic suspended solids sludge having a high proportion of organic suspended solids fractionated by the sludge fractionating means to the intermediate temperature digester,
An anaerobic digestion treatment apparatus for organic waste liquid having
An apparatus for anaerobic digestion of organic waste liquid, wherein the organic waste liquid is introduced only into both the intermediate temperature digestion tank and the solid-liquid separation means.
請求項1又は2において、前記改質手段による改質処理がオゾン処理であることを特徴とする有機性廃液の嫌気性消化処理装置。   3. The organic waste liquid anaerobic digestion apparatus according to claim 1, wherein the reforming process by the reforming means is an ozone process. 請求項1ないし3のいずれか1項において、前記汚泥分画装置が、遠心力を利用して有機性浮遊物質の割合の低い汚泥と有機性浮遊物質の割合の高い汚泥に分画する装置であることを特徴とする有機性廃液の嫌気性消化処理装置。   The sludge fractionation device according to any one of claims 1 to 3, wherein the sludge fractionation device is a device for fractionating into sludge having a low ratio of organic suspended solids and sludge having a high ratio of organic suspended solids using centrifugal force. An apparatus for anaerobic digestion of organic liquid waste, characterized by being. 請求項1ないし4のいずれか1項の嫌気性消化処理装置を用いた有機性廃液の嫌気性消化処理方法。   An anaerobic digestion treatment method for organic waste liquid using the anaerobic digestion treatment apparatus according to any one of claims 1 to 4.
JP2006225578A 2006-01-20 2006-08-22 Method and apparatus for anaerobic digestion treatment of organic waste liquid Active JP4148286B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006225578A JP4148286B2 (en) 2006-08-22 2006-08-22 Method and apparatus for anaerobic digestion treatment of organic waste liquid
PCT/JP2006/324474 WO2007083456A1 (en) 2006-01-20 2006-12-07 Method and apparatus for anaerobic digestion treatment of organic waste liquid
TW95148179A TWI414489B (en) 2006-01-20 2006-12-21 Anaerobic digestion treatment method of organic waste solution and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006225578A JP4148286B2 (en) 2006-08-22 2006-08-22 Method and apparatus for anaerobic digestion treatment of organic waste liquid

Publications (2)

Publication Number Publication Date
JP2008049228A JP2008049228A (en) 2008-03-06
JP4148286B2 true JP4148286B2 (en) 2008-09-10

Family

ID=39233763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006225578A Active JP4148286B2 (en) 2006-01-20 2006-08-22 Method and apparatus for anaerobic digestion treatment of organic waste liquid

Country Status (1)

Country Link
JP (1) JP4148286B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114315073B (en) * 2021-12-15 2023-05-16 福建龙净环保股份有限公司 Starting method of anaerobic digestion reactor

Also Published As

Publication number Publication date
JP2008049228A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
WO2006035594A1 (en) Method and apparatus for biologically treating wastewater containing fats and oils
JP5211769B2 (en) Biological treatment method and treatment apparatus for organic waste liquid
JP4075946B2 (en) Method and apparatus for anaerobic digestion treatment of organic waste liquid
JP2007252968A (en) Method and apparatus for treating waste water
JP2002361293A (en) Method and apparatus for reducing volume of organic sludge
JPH10192889A (en) Method for treating organic drainage
JP2003024972A (en) Biological treatment method for organic sewage and apparatus therefor
WO2007083456A1 (en) Method and apparatus for anaerobic digestion treatment of organic waste liquid
JP3977174B2 (en) Sludge treatment method and apparatus for reducing generation amount of excess sludge
JP4457391B2 (en) Organic sludge treatment method and treatment apparatus
CN101360687A (en) Method and apparatus for anaerobic digestion of organic waste liquid
JP4148286B2 (en) Method and apparatus for anaerobic digestion treatment of organic waste liquid
JPH09206786A (en) Anaerobic treatment and apparatus therefor
JP4507712B2 (en) Anaerobic digester for organic waste liquid
JP5061551B2 (en) Biological treatment equipment for organic waste liquid
JPH0739895A (en) Treating method and device for waste liquid containing organic solid content
JP4192491B2 (en) Organic waste processing apparatus and processing method
JP4525161B2 (en) Anaerobic treatment equipment
JPH04326994A (en) Methane fermentation method and apparatus
JP2004041953A (en) Method and equipment for treating organic waste water
JP2006075730A (en) Anaerobic treatment device
JP3781216B2 (en) Anaerobic sludge digestion method and device enabling re-digestion of persistent organic substances in anaerobic digested sludge
JP3672091B2 (en) Organic wastewater treatment method and equipment
JP3969144B2 (en) Biological treatment method and biological treatment apparatus
JP2006281087A (en) Processing method of organic waste

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4148286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140704

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250