JP2006281087A - Processing method of organic waste - Google Patents

Processing method of organic waste Download PDF

Info

Publication number
JP2006281087A
JP2006281087A JP2005104199A JP2005104199A JP2006281087A JP 2006281087 A JP2006281087 A JP 2006281087A JP 2005104199 A JP2005104199 A JP 2005104199A JP 2005104199 A JP2005104199 A JP 2005104199A JP 2006281087 A JP2006281087 A JP 2006281087A
Authority
JP
Japan
Prior art keywords
anaerobic digestion
separation
solid
liquid
organic waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005104199A
Other languages
Japanese (ja)
Inventor
Masashi Moro
正史 師
Hironori Inokawa
弘徳 猪川
Noriaki Ishibashi
憲明 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2005104199A priority Critical patent/JP2006281087A/en
Publication of JP2006281087A publication Critical patent/JP2006281087A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which is capable of independently controlling the retention time of a soluble component such as ammonia, microorganisms such as methane producing bacteria and a recalcitrant solid material and of efficiently processing the draining liquid containing a recalcitrant substance. <P>SOLUTION: The processing method of the organic waste comprises a step of conducting the anaerobic digestion of the organic waste and a step of solid-liquid separating the effluent from the anaerobic digestion step and a step of concentrating the separation liquid solid-liquid separated and feeding back the same to the anaerobic digestion step. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、難分解性物質を含む被処理物質の嫌気性消化法を用いた処理方法に関する。   The present invention relates to a treatment method using an anaerobic digestion method of a substance to be treated containing a hardly decomposable substance.

有機性廃棄物は従来、含水率を調節した後、焼却処理するなどの方法で処分されてきたが、地球環境保全の観点から、メタン等の有価物を回収するための生物反応処理方法が広く利用され始めている。生物反応処理方法は温和な条件で処理が可能な反面、処理に時間がかかり設備が大規模化すること、被処理物が生物的に難分解な物質を含む場合は処理が難しいなどの問題点がある。   Conventionally, organic waste has been disposed of by incineration after adjusting the moisture content, but from the viewpoint of global environmental conservation, there are a wide range of biological reaction treatment methods for recovering valuable materials such as methane. It is starting to be used. Biological reaction processing methods can be processed under mild conditions, but the processing takes time and the equipment becomes large-scale, and when the object to be processed contains biologically difficult-to-decompose substances, the processing is difficult. There is.

生ゴミは固形物を多く含む有機性廃棄物であるが、こうした廃棄物の嫌気性処理においては、固形物を破砕し、石、ビニール袋、金属断片のような発酵不適物はスクリーンや除さ手段によってこれらを除去した後に嫌気性処理を行っている(特許文献1参照)。また、貝殻や卵の殻など、前処理手段で除去できないものは、嫌気性処理の過程で下部より重力沈降によって除く、あるいは酸発酵槽と嫌気性消化槽の間にスクリーンや脱水機などの夾雑物分離手段を用いて除去を行っている(特許文献2参照)。   Garbage is an organic waste that contains a lot of solids. However, in anaerobic treatment of such waste, solids are crushed, and unsuitable materials such as stones, plastic bags, and metal fragments are screened and removed. Anaerobic treatment is performed after removing these by means (see Patent Document 1). Also, shells and eggshells that cannot be removed by pretreatment means are removed by gravity sedimentation from the bottom during the anaerobic treatment, or a screen or dehydrator is mixed between the acid fermentation tank and the anaerobic digester. The removal is performed using the object separation means (see Patent Document 2).

コーヒー粕やビール生産工程から生じる有機性廃棄物等は難分解性物質を含むが、この難分解性物質は石、ポリ袋や貝殻、卵の殻のように完全に分解が困難なものではなく、分解可能な物質と難分解物が物理的に不可分な状態に結合したものである。従って、これらの廃棄物を前述のように事前に固液分離したうえで嫌気性処理を行った場合には、利用可能な有機物が減少することにより、メタン等の有価物の発生が減少する恐れがある。   Organic waste generated from coffee brewers and beer production processes contain persistent substances, which are not difficult to completely decompose like stones, plastic bags, shells and egg shells. , A decomposable substance and a hardly decomposable substance are combined in a physically inseparable state. Therefore, when anaerobic treatment is performed after solid-liquid separation of these wastes in advance as described above, there is a risk that the generation of valuable materials such as methane may be reduced due to a decrease in usable organic matter. There is.

一方、メタン発酵槽に難分解性物質を導入した場合には、完全に分解することは不可能であるので、未分解の固形物が蓄積し、デッドボリュームとなってメタン発酵槽の容積効率を低下させる。これを避けるために、固形分の蓄積を防ぐために最適な割合で引き抜く方法が知られている(特許文献1参照)。この方法ではメタン生成菌も引き抜かれ、結果として嫌気性消化槽の分解効率が低下するという別の問題を生じる。また、可溶化槽と嫌気性消化槽の間に固液分離装置を導入する場合も考えられるが、可溶化槽のpHは4.0〜5.0程度であり、こうした条件下では微生物やこれが生産する酵素による有機物の分解速度が極めて遅いため、汚泥滞留時間に見合った有機物の分解が得られないことが知られている。これらのことから、コーヒー粕やビール生産工程から生ずる廃棄物には嫌気性消化法の適用が困難とされている。適用した場合には装置の大型化を余儀なくされる。   On the other hand, when a hardly decomposable substance is introduced into the methane fermenter, it cannot be completely decomposed, so undecomposed solids accumulate, resulting in dead volume and increasing the volumetric efficiency of the methane fermenter. Reduce. In order to avoid this, a method of drawing out at an optimum rate in order to prevent accumulation of solid content is known (see Patent Document 1). In this method, methanogenic bacteria are also extracted, resulting in another problem that the decomposition efficiency of the anaerobic digester is lowered. In addition, there may be a case where a solid-liquid separator is introduced between the solubilization tank and the anaerobic digestion tank, but the pH of the solubilization tank is about 4.0 to 5.0. It is known that the decomposition rate of organic matter corresponding to the sludge residence time cannot be obtained because the decomposition rate of the organic matter by the enzyme to be produced is extremely slow. For these reasons, it is considered difficult to apply the anaerobic digestion method to the waste generated from the coffee lees and the beer production process. When applied, the apparatus must be enlarged.

別の問題として、メタン生成菌は高濃度のアンモニアによって阻害されることがある。被処理物や嫌気性処理過程において新たに発生したアンモニアは特許文献3に開示されるように、膜分離工程によって分離液に含まれる溶解性成分と固形分を分離することで除去する方法が好ましい。しかし、難分解性の固形物が含まれる嫌気性消化工程流出液を膜分離で処理した場合には、固形分が摩擦によって分離膜を損耗する結果、該方法が利用できないためアンモニア濃度を所定レベルに維持できないという問題点がある。
特開平11−197639号公報 特開平11−77005号公報 特許第3442288号公報
Another problem is that methanogens can be inhibited by high concentrations of ammonia. As disclosed in Patent Document 3, it is preferable to remove the soluble matter and solids contained in the separation liquid by separating the solid components from the object to be treated and the ammonia newly generated in the anaerobic treatment process as disclosed in Patent Document 3. . However, when anaerobic digestion process effluent containing persistent solids is treated by membrane separation, the solid content will wear out the separation membrane due to friction, and as a result, the method cannot be used. There is a problem that it cannot be maintained.
JP-A-11-197639 JP-A-11-77005 Japanese Patent No. 3442288

本発明は上記問題が発生する根本的な原因が、アンモニアなどの溶解性成分、メタン生成菌などの微生物、難分解性の固形物それぞれの滞留時間を独立して調節できないことにあるとの認識から、溶解性成分、メタン生成菌などの微生物、難分解性の固形物の滞留時間を独立して調節でき、難分解性物質を含む排水を効率よく処理できる方法を提供する。   The present invention recognizes that the root cause of the above problem is that the residence time of each of soluble components such as ammonia, microorganisms such as methanogens and persistent solids cannot be adjusted independently. From the above, it is possible to independently adjust the residence time of soluble components, microorganisms such as methanogens, and hardly decomposable solids, and to provide a method capable of efficiently treating waste water containing hardly decomposable substances.

上記課題を達成するために、請求項1の発明は、有機性廃棄物を嫌気性消化する工程と、前記嫌気性消化工程からの流出液を固液分離する工程と、前記固液分離された分離液を濃縮して前記嫌気性消化工程に返送する工程とを有することを特徴とする。
請求項2の発明は、有機性廃棄物の嫌気性消化法による処理方法において、嫌気性消化工程からの流出液を第1の分離方法によって固形分を分離し、次に第2の分離方法によって微生物を分離して、前記嫌気性消化行程へ返送する返送量を調節することを特徴とする。
請求項3の発明は、請求項2に記載の処理方法において、前記第1の分離方法は、スクリーンまたはメッシュで分離することを特徴とする。
請求項4の発明は、請求項2に記載の処理方法において、前記第2の分離方法は、分離膜で分離することを特徴とする。
In order to achieve the above-mentioned object, the invention of claim 1 is the step of anaerobically digesting organic waste, the step of solid-liquid separation of the effluent from the anaerobic digestion step, and the solid-liquid separation. And a step of concentrating the separated liquid and returning it to the anaerobic digestion step.
The invention of claim 2 is a treatment method by anaerobic digestion of organic waste, wherein the effluent from the anaerobic digestion step is separated into solids by the first separation method, and then by the second separation method. The microorganisms are separated and the return amount to be returned to the anaerobic digestion step is adjusted.
A third aspect of the present invention is the processing method according to the second aspect, wherein the first separation method is performed by a screen or a mesh.
According to a fourth aspect of the present invention, in the processing method according to the second aspect, the second separation method is separated by a separation membrane.

本発明によれば、嫌気性消化槽のメタン生成菌の濃度を所定レベルに維持することができ、難分解性の固形分を系外に排出できると共に、溶解性成分であるアンモニアを所定レベル以下に調節できる。これらの結果、易分解性物質と難分解性物質が物理的に分離できない状態で結合したものを効率的に分離処理ができる。   According to the present invention, the concentration of the methanogen in the anaerobic digestion tank can be maintained at a predetermined level, and the hard-to-decompose solid content can be discharged out of the system, and ammonia as a soluble component is below a predetermined level. Can be adjusted. As a result, it is possible to efficiently separate the easily decomposable substance and the hardly decomposable substance that are combined in a state where they cannot be physically separated.

以下、図面を参照して本発明の1実施形態を詳細に説明する。図1は本発明の実施形態の一つである嫌気性処理方法の工程図である。図1において有機性廃棄物等であるコーヒー粕等(1)は希釈液(2)と共に可溶化槽1に投入される。このとき加えられる希釈液は清水でもよいし、固液分離装置流出水や固液分離装置から得られた固形物を脱水したときに得られた分離水、膜分離処理からの分離水及びそれをさらに通常の方法で処理した水であっても良い。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a process diagram of an anaerobic treatment method according to one embodiment of the present invention. In FIG. 1, coffee grounds (1) which are organic wastes etc. are thrown into the solubilization tank 1 together with the diluent (2). The diluting liquid added at this time may be fresh water, separated water obtained when the solid matter obtained from the solid-liquid separator effluent water or the solid-liquid separator is dehydrated, separated water from the membrane separation treatment, and Furthermore, the water processed by the normal method may be sufficient.

可溶化槽1では通性メタン生成菌が分解性の脂質やタンパク、糖質に作用して、炭素数が概ね6以下の低分子に分解される。ビニール袋、金属片、貝殻や卵の殻などの比重が大きい夾雑物が含まれる場合には、可溶化槽1の底部から引き抜くのが良い。分解された低分子と難分解性の固形分を含む可溶化槽1からの流出水は嫌気性消化槽2に導入され、さらに難分解性の固形分の低分子化が進むと共に、低分子化された有機物質はメタンと炭酸ガス等に分解される。又、生成したガス成分は系外に導かれ、燃料等の用途に用いられる。   In the solubilization tank 1, facultative methanogens act on degradable lipids, proteins, and carbohydrates to be decomposed into low molecules having approximately 6 or less carbon atoms. When impurities such as a plastic bag, a metal piece, a shell or an egg shell are included, the solubilization tank 1 is preferably pulled out from the bottom. The effluent water from the solubilization tank 1 containing the decomposed low molecule and the hardly decomposable solid content is introduced into the anaerobic digestion tank 2, and the molecular weight of the hard decomposed solid content is further reduced. The organic material is decomposed into methane and carbon dioxide. Further, the generated gas component is led out of the system and used for applications such as fuel.

嫌気性消化槽から引き抜かれた余剰汚泥12は、公知の方法により処分または再利用され、又、引き抜かれた流出液はスクリーンやメッシュを有する固液分離装置3によって分離され、固形分13はさらに脱水するなどして廃棄または再利用される。ここで、用いられるスクリーンの目幅やメッシュの孔径は、含まれる固形物の粒子系を勘案して適宜決定されるが、実施例のコーヒー粕の場合は0.1〜2mm程度が好ましく、さらには0.4〜0.5mm程度のスクリーンが好ましいが、周知の通りコーヒー粕ひとつをとってもいずれの細かさにも砕くことができることから、固形物の直径と同等から3倍程度で0.1mm以上である最適な直径とする選定方法が好ましい。   The surplus sludge 12 drawn out from the anaerobic digester is disposed or reused by a known method, and the drawn out effluent is separated by a solid-liquid separation device 3 having a screen or a mesh. It is discarded or reused by dehydration. Here, the mesh width of the screen used and the pore size of the mesh are appropriately determined in consideration of the particle system of the solid matter contained, but in the case of the coffee grinder of the example, about 0.1 to 2 mm is preferable. Is preferably a screen of about 0.4 to 0.5 mm, but as is well known, since it can be crushed to any fineness even with a single coffee grinder, it is equal to or more than 3 times the diameter of the solid matter and is 0.1 mm or more A method of selecting the optimum diameter is preferable.

固液分離装置により脱水された難分解性固形物13は系外に排出され、該固液分離装置から排出された分離液は、溶解性成分と微生物を含むが、これを膜分離手段4によって分離する。分離液にはアンモニア等の溶解性成分が含まれる。膜を通過しなかった濃縮物の一部15は嫌気性消化槽2に返送される。この処理により、効果的に阻害物であるアンモニアが除去されることは公知文献のとおりである。また、濃縮物の返送工程によって、メタン生成菌を中心とする微生物が好ましい濃度に維持される。その余の濃縮物14については、そのまま又は更に濃縮・脱水の工程を経て廃棄または再利用される。   The hardly decomposable solid 13 dehydrated by the solid-liquid separation device is discharged out of the system, and the separation liquid discharged from the solid-liquid separation device contains soluble components and microorganisms, which are separated by the membrane separation means 4. To separate. The separation liquid contains a soluble component such as ammonia. A portion 15 of the concentrate that has not passed through the membrane is returned to the anaerobic digester 2. It is known in the literature that ammonia, which is an inhibitory substance, is effectively removed by this treatment. Moreover, the microorganisms, mainly methanogens, are maintained at a preferred concentration by the return process of the concentrate. The remaining concentrate 14 is discarded or reused as it is or through a further concentration / dehydration process.

この濃縮・脱水の工程は、前記固液分離工程からのものと併せて行っても良い。膜分離手段としては実施例ではサブミクロンレベルの細孔を有する有機平膜が用いられているが、これに限らず中空糸膜やスパイラル膜などのほか、セラミック膜を用いても良い。膜は目詰まりを防止するためにエアレーションによって洗浄しても良いし、ダイナミック膜を形成してもよく、被処理物に合わせて適宜選ばれる。   This concentration / dehydration step may be performed together with the solid-liquid separation step. As the membrane separation means, an organic flat membrane having submicron level pores is used in the embodiments, but the present invention is not limited to this, and a ceramic membrane may be used in addition to a hollow fiber membrane or a spiral membrane. In order to prevent clogging, the film may be washed by aeration or a dynamic film may be formed, and is appropriately selected according to the object to be processed.

上記実施形態の1実施例を以下に示す。コーヒー粕20トン、茶粕1トン、汚泥0.8トンを希釈水19トンと共に可溶化槽1に投入し滞留時間3日で可溶化を行う。前記可溶化工程の排出液を嫌気消化槽2に導入し、55℃、汚泥滞留時間15日の条件で嫌気消化を行う。この結果3.4トンのメタンと二酸化炭素を含むバイオガスが得られ系外に排出される。このガスに含まれるメタンを上記ボイラで燃焼することにより61,700MJ/日の熱量が得られる。この熱を用いて嫌気性消化槽の加熱を行うが、なお640kg/時間の余剰蒸気があり、系外の様々な用途に利用可能である。こうしたエネルギーが得られることはこれまで適用が難しかった難分解性物質の処理に嫌気消化法を適用することの大きなメリットである。   An example of the above embodiment is shown below. 20 tons of coffee bowl, 1 ton of tea bowl and 0.8 ton of sludge are put into the solubilization tank 1 together with 19 tons of diluted water and solubilized in a residence time of 3 days. The effluent from the solubilization step is introduced into the anaerobic digestion tank 2, and anaerobic digestion is performed under conditions of 55 ° C and sludge residence time of 15 days. As a result, 3.4 tons of biogas containing methane and carbon dioxide is obtained and discharged out of the system. A calorific value of 61,700 MJ / day can be obtained by burning methane contained in this gas in the boiler. Although this heat is used to heat the anaerobic digester, there is still 640 kg / hour of surplus steam, which can be used for various purposes outside the system. Obtaining such energy is a great merit of applying the anaerobic digestion method to the treatment of hardly decomposable substances that have been difficult to apply until now.

嫌気性消化槽2の流出液は、固液分離装置3の一例として、スクリュープレス脱水装置を用いて脱水され、9トン/日の難分解性固形物13が系外に排出され、公知の方法により処分又は再利用される。本実施例ではスクリュープレス脱水装置を用いたが、微生物を分離液に含み、固形物を分離できるものであれば何でも良い。特にスクリーンを有する固液分離装置3が好ましい。固液分離装置3の分離液は膜分離槽4に導入される。膜分離槽4では平均孔径0.4μm(マイクロメートル)の細孔を持つ有機平膜が表面洗浄のための散気装置と共に浸漬されている。   The effluent of the anaerobic digestion tank 2 is dehydrated using a screw press dehydrator as an example of the solid-liquid separator 3, and 9 tons / day of hardly decomposable solids 13 are discharged out of the system. Is disposed of or reused. In this embodiment, a screw press dewatering device is used, but any device can be used as long as it contains microorganisms in the separation liquid and can separate solids. In particular, the solid-liquid separation device 3 having a screen is preferable. The separation liquid of the solid-liquid separation device 3 is introduced into the membrane separation tank 4. In the membrane separation tank 4, an organic flat membrane having pores with an average pore diameter of 0.4 μm (micrometer) is immersed together with an air diffuser for surface cleaning.

膜分離装置からはアンモニアをはじめとする溶解性成分が溶解した膜透過液が12.8トン/日分離される。本実施例では有機平膜が使用されているが、中空糸膜やスパイラル膜などの形態やセラミック膜や金属膜などどのような材質の膜でも構わない。さらにバイオガスを散気する散気装置を持つことが好ましいが本処理方法に必須ではない。さらに被処理物によってはダイナミック膜を形成することにより良好な結果が得られることもある。膜分離槽からはメタン生成菌を含む濃縮された汚泥が嫌気性消化槽に返流される。本実施例では嫌気性消化槽2に返流しているが、可溶化槽1でも構わない。嫌気性消化槽2からは余剰汚泥12が1日に15.5トン引き抜かれ公知の方法により処分または再利用される。   A membrane permeation solution in which soluble components such as ammonia are dissolved is separated from the membrane separation device by 12.8 tons / day. In this embodiment, an organic flat membrane is used. However, any material such as a hollow fiber membrane or a spiral membrane, a ceramic membrane or a metal membrane may be used. Furthermore, although it is preferable to have an air diffuser that diffuses biogas, it is not essential for this treatment method. In addition, depending on the object to be processed, good results may be obtained by forming a dynamic film. From the membrane separation tank, the concentrated sludge containing methanogens is returned to the anaerobic digestion tank. In this embodiment, the flow is returned to the anaerobic digestion tank 2, but the solubilization tank 1 may be used. 15.5 tons of excess sludge 12 is extracted from the anaerobic digestion tank 2 per day and disposed or reused by a known method.

該処理方法により嫌気性消化槽2の体積を減ずることができることを示す第2の実施例は以下の通りである。コーヒー粕を可溶化槽1、嫌気消化槽2および膜分離槽4で構成される対応する処理方法を用いて処理を行った場合、嫌気消化槽2における汚泥滞留時間(SRT)を15日として有機物を51%分解するのに必要な嫌気消化槽2の容量は投入原料の30日分必要となる。これに対して可溶化槽1、嫌気消化槽2、固液分離装置3及び膜分離槽4を用いて処理を行う場合、SRTを10日としても有機物を前記対照プロセスとほぼ同等の47%が分解され、このとき嫌気性消化槽2の容積は投入原料の15日分となる。これらの比較から嫌気性消化槽2の容積を半分に減ずることが可能である。   A second embodiment showing that the volume of the anaerobic digester 2 can be reduced by the treatment method is as follows. When the coffee lees are treated using the corresponding treatment method comprising the solubilization tank 1, the anaerobic digestion tank 2, and the membrane separation tank 4, the sludge residence time (SRT) in the anaerobic digestion tank 2 is set to 15 days, and the organic matter The capacity of the anaerobic digestion tank 2 necessary for decomposing 51% is required for 30 days of the input raw material. On the other hand, when processing is performed using the solubilization tank 1, the anaerobic digestion tank 2, the solid-liquid separation apparatus 3 and the membrane separation tank 4, the organic matter is 47% which is almost equivalent to the control process even if the SRT is set to 10 days. At this time, the volume of the anaerobic digester 2 becomes 15 days of the input raw material. From these comparisons, the volume of the anaerobic digester 2 can be reduced to half.

本発明の実施形態の一つである嫌気性処理方法の工程図である。It is process drawing of the anaerobic processing method which is one of the embodiment of this invention.

符号の説明Explanation of symbols

1・・・可溶化槽、2・・・嫌気性消化槽、3・・・固液分離装置、4・・・膜分離槽、12・・・余剰汚泥、13・・・難分解性固形物、14・・・その余の濃縮物、15・・・濃縮物の一部。 DESCRIPTION OF SYMBOLS 1 ... Solubilization tank, 2 ... Anaerobic digestion tank, 3 ... Solid-liquid separator, 4 ... Membrane separation tank, 12 ... Excess sludge, 13 ... Refractory solid substance , 14 ... the remaining concentrate, 15 ... a part of the concentrate.

Claims (4)

有機性廃棄物を嫌気性消化する工程と,
前記嫌気性消化工程からの流出液を固液分離する工程と
前記固液分離された分離液を濃縮して前記嫌気性消化工程に返送する工程と
を有することを特徴とする有機性廃棄物の処理方法。
Anaerobic digestion of organic waste,
A step of solid-liquid separation of the effluent from the anaerobic digestion step, and a step of concentrating the solid-liquid separated separation solution and returning it to the anaerobic digestion step. Processing method.
有機性廃棄物の嫌気性消化法による処理方法において、
嫌気性消化工程からの流出液を第1の分離方法によって固形分を分離し、次に第2の分離方法によって微生物を分離して、前記嫌気性消化行程へ返送する返送量を調節することを特徴とする処理方法。
In the treatment method of organic waste by anaerobic digestion method,
Separating the solids from the effluent from the anaerobic digestion step by the first separation method, then separating the microorganisms by the second separation method, and adjusting the return amount to be returned to the anaerobic digestion step Characteristic processing method.
請求項2に記載の処理方法において、
前記第1の分離方法は、スクリーンまたはメッシュで分離することを特徴とする処理方法。
The processing method according to claim 2,
The first separating method is a processing method characterized by separating with a screen or a mesh.
請求項2に記載の処理方法において、
前記第2の分離方法は、分離膜で分離することを特徴とする処理方法。
The processing method according to claim 2,
The second separation method is characterized in that separation is performed with a separation membrane.
JP2005104199A 2005-03-31 2005-03-31 Processing method of organic waste Pending JP2006281087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005104199A JP2006281087A (en) 2005-03-31 2005-03-31 Processing method of organic waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005104199A JP2006281087A (en) 2005-03-31 2005-03-31 Processing method of organic waste

Publications (1)

Publication Number Publication Date
JP2006281087A true JP2006281087A (en) 2006-10-19

Family

ID=37403546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005104199A Pending JP2006281087A (en) 2005-03-31 2005-03-31 Processing method of organic waste

Country Status (1)

Country Link
JP (1) JP2006281087A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012011265A (en) * 2010-06-29 2012-01-19 Takuma Co Ltd Methane fermentation residue dehydration system
CN102933508A (en) * 2010-06-04 2013-02-13 富康科技株式会社 Method and apparatus for producing bio-gas employing technology for improving quality of raw material fed thereto
JP6990359B1 (en) 2021-01-25 2022-01-12 Jfeエンジニアリング株式会社 Methane fermentation equipment and methods for organic waste

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024661A (en) * 1998-07-15 2000-01-25 Kubota Corp Methane fermentation method
JP2004174288A (en) * 2002-11-22 2004-06-24 Mitsubishi Heavy Ind Ltd Methane fermentation treatment apparatus and methane fermentation processing method for garbage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024661A (en) * 1998-07-15 2000-01-25 Kubota Corp Methane fermentation method
JP2004174288A (en) * 2002-11-22 2004-06-24 Mitsubishi Heavy Ind Ltd Methane fermentation treatment apparatus and methane fermentation processing method for garbage

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102933508A (en) * 2010-06-04 2013-02-13 富康科技株式会社 Method and apparatus for producing bio-gas employing technology for improving quality of raw material fed thereto
JP2012011265A (en) * 2010-06-29 2012-01-19 Takuma Co Ltd Methane fermentation residue dehydration system
JP6990359B1 (en) 2021-01-25 2022-01-12 Jfeエンジニアリング株式会社 Methane fermentation equipment and methods for organic waste
JP2022113185A (en) * 2021-01-25 2022-08-04 Jfeエンジニアリング株式会社 Organic waste methane fermentation apparatus and method

Similar Documents

Publication Publication Date Title
KR101312809B1 (en) Complex method of foodwaste leachate using the pulpwastewater engineering
JP2000015231A (en) Method for methane fermentation of organic waste
JP4707637B2 (en) Organic waste treatment apparatus and organic waste treatment method
JPH11197636A (en) Method for treatment of organic waste
KR101977701B1 (en) Apparatus for treating anaerobic digestion of organic waste and method thereof
JP4864339B2 (en) Organic waste processing apparatus and processing method
JP3835927B2 (en) Organic waste treatment methods
KR100903062B1 (en) Processing unit for organic waste materials and method thereof
JP2006281087A (en) Processing method of organic waste
JP3276139B2 (en) Organic waste treatment method
JPH11319782A (en) Methane fermentation process
JPH11300323A (en) Treatment of organic waste
JP2000153259A (en) Methane fermentation method of easily degradable organic waste
JP2000015230A (en) Method for removing ammonia
JPH11197639A (en) Treatment of organic waste
JP2004249233A (en) Method for treating organic waste
JP2004230273A (en) Method for treating organic waste
JPH11221548A (en) Treatment of organic waste
JP2001179288A (en) Method and apparatus for anaerobically treating starch- containing liquid
JP3970163B2 (en) Organic waste treatment method and apparatus
JPH04326994A (en) Methane fermentation method and apparatus
JP3276138B2 (en) Organic waste treatment
CA2259943A1 (en) Method for optimizing and improving the space load of fermentation reactors
CN104651413A (en) Recycling treatment method and system for kitchen waste
JP2000015228A (en) Method for fermenting organic waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100611