JP2001179288A - Method and apparatus for anaerobically treating starch- containing liquid - Google Patents

Method and apparatus for anaerobically treating starch- containing liquid

Info

Publication number
JP2001179288A
JP2001179288A JP37327899A JP37327899A JP2001179288A JP 2001179288 A JP2001179288 A JP 2001179288A JP 37327899 A JP37327899 A JP 37327899A JP 37327899 A JP37327899 A JP 37327899A JP 2001179288 A JP2001179288 A JP 2001179288A
Authority
JP
Japan
Prior art keywords
starch
liquid
treatment
tank
anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP37327899A
Other languages
Japanese (ja)
Other versions
JP3846138B2 (en
Inventor
Mikio Kitagawa
幹夫 北川
Yoshimi Taguchi
佳美 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP37327899A priority Critical patent/JP3846138B2/en
Publication of JP2001179288A publication Critical patent/JP2001179288A/en
Application granted granted Critical
Publication of JP3846138B2 publication Critical patent/JP3846138B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus, for anaerobically treating starch-containing liquid, capable of anaerobically treating the whole of a starch particle-containing liquid efficiently at a high rate under high load. SOLUTION: A starch particle-containing liquid 11 is separated into starch particles 45 and a starch separated liquid 13 in a sedimentation tank 1 and a starch particle concentrate 12 containing starch particles 45 is introduced into a liquefying treatment tank 2 and hydrochloric acid 16 and stem 15 are blown in the starch particle concentrate 12 to hold the concentrate 12 to pH 4.6-5.4 at 50-70 deg.C for 3-5 hr to liquefy starch particles. Next, the treated liquid us introduced into an acid forming tank 3 while modified protein is separated in a flocculation tank 7 and a solid-liquid separator 8 to be mixed with the starch separated liquid 13 and an anaerobic state is kept to form an organic acid by acid producing bacteria and the acid formed liquid is introduced into a methane fermentation tank 4 to be passed through a sludge blanket 37 as an ascending flow and the organic acid is anaerobically decomposed by methane producing bacteria to be converted to methane and carbon dioxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は澱粉粒子含有液を嫌
気性処理する方法および装置に関し、特に馬鈴薯や甘薯
等から澱粉を製造する工程から排出される澱粉製造排水
の処理に適した澱粉粒子含有液の嫌気性処理方法および
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for anaerobic treatment of a starch particle-containing liquid, and more particularly to a starch particle-containing liquid suitable for treating starch-producing effluent discharged from a step of producing starch from potato, sweet potato or the like. The present invention relates to a method and an apparatus for anaerobic treatment of a liquid.

【0002】[0002]

【従来の技術】澱粉は、一般的に馬鈴薯や甘薯などの原
料をすりつぶして冷水にさらした後、澱粉粒子を回収
し、これを脱水、乾燥、精製して製造されている。この
ような澱粉製造工程から排出される排水は、未回収の微
細澱粉粒子や破砕した薯滓、析出した蛋白質を主とする
SSが500〜5000mg/l程度含まれ、BODは
2000〜30000mg/l程度の高濃度排水であ
り、BOD負荷量は1日当たり数千kg以上に達し、非
常に汚濁負荷量の多い排水である。また、馬鈴薯澱粉に
代表されるように、澱粉製造期間は年間数か月間と短期
間に集中している。
2. Description of the Related Art Generally, starch is produced by grinding raw materials such as potatoes and sweet potatoes, exposing the raw materials to cold water, collecting starch particles, dehydrating, drying and purifying the starch particles. The wastewater discharged from such a starch manufacturing process contains about 500 to 5000 mg / l of SS mainly composed of unrecovered fine starch particles, crushed potato scum, and precipitated protein, and has a BOD of 2000 to 30000 mg / l. This is a wastewater with a very high concentration of pollution, a BOD load of several thousand kg or more per day, and a very high pollution load. Further, as represented by potato starch, the starch production period is concentrated for a few months and a short time per year.

【0003】従来の澱粉製造排水の処理方法は、活性汚
泥処理に代表される好気性処理が主流であるが、非常に
負荷量が多いことから大容量の曝気槽、好気性ラグーン
を必要とし、多大な建設費、維持管理費となっている。
さらに、発生する余剰汚泥処理や、排水貯槽、曝気槽等
から発生する臭気対策が大きな課題となっている。好気
性処理に代る方法としては嫌気性処理がある。この嫌気
性処理法の中には、排水の全体を消化槽に滞留させて嫌
気性消化(メタン発酵)を行う嫌気性消化法があるが、
長い滞留時間を必要とするため大容量の消化槽を必要と
するという問題点がある。
The conventional method of treating wastewater for producing starch is mainly aerobic treatment represented by activated sludge treatment, but requires a large-capacity aeration tank and aerobic lagoon due to a very large load. The construction and maintenance costs are enormous.
Further, the treatment of excess sludge generated and the measures against odor generated from a drainage storage tank, an aeration tank, and the like have become major issues. Anaerobic treatment is an alternative to aerobic treatment. Among these anaerobic treatment methods, there is an anaerobic digestion method in which the entire wastewater is retained in a digestion tank to perform anaerobic digestion (methane fermentation).
There is a problem that a large capacity digestion tank is required because a long residence time is required.

【0004】最近、これらの処理法の問題点を解決する
ため、UASB(Upflow Anaerobic
Sludge Blanket・・・・上向流式嫌気性スラ
ッジブランケット)方式、流動床方式、固定床方式など
に代表される高負荷型嫌気性処理の適用が検討されてい
る。この方法は嫌気性微生物をスラッジブランケット、
固定床等に高密度で集積した汚泥に、主として溶解性B
ODを含む被処理液を高負荷かつ高流速で接触させるこ
とにより効率よく有機物を分解する方法である。
Recently, in order to solve the problems of these processing methods, a UASB (Upflow Anaerobic) has been proposed.
An application of a high-load anaerobic treatment typified by a sludge blanket method, an upward flow anaerobic sludge blanket method, a fluidized bed method, a fixed bed method, and the like is being studied. This method removes anaerobic microorganisms into sludge blankets,
It is mainly soluble B in sludge accumulated at high density on fixed beds.
This is a method for efficiently decomposing organic substances by contacting a liquid to be treated containing OD with a high load and a high flow rate.

【0005】ところが、この嫌気性処理方法で澱粉製造
排水を処理する場合、前もって排水中のSS成分を除去
しておく必要があり、またSS成分を含めた排水全体を
処理すると処理性能が低下する。その原因は、澱粉製造
排水中に含まれている微細な澱粉粒子の嫌気性分解速度
が非常に遅いためである。このため、前もって沈殿槽や
原水槽で澱粉粒子を含むSSを除去し、澱粉粒子の少な
い排水を高負荷型嫌気性処理することが行われている。
However, when the starch production wastewater is treated by this anaerobic treatment method, it is necessary to remove the SS component in the wastewater in advance, and if the entire wastewater including the SS component is treated, the treatment performance deteriorates. . This is because the anaerobic decomposition rate of the fine starch particles contained in the starch production wastewater is extremely slow. For this reason, SS containing starch particles is removed in advance in a sedimentation tank or a raw water tank, and wastewater with a small amount of starch particles is subjected to high-load anaerobic treatment.

【0006】しかし、このような従来の高負荷型嫌気性
処理では前もって分離したSSを別途処理する必要があ
り、このSSは農地へ還元したり、埋立処理が行われて
いるが、貯留段階で発生する悪臭が大きな問題となって
いる。また農地へ還元する場合は窒素過多、病害発生源
などの問題もある。このため、澱粉粒子を分離除去する
ことなく、澱粉製造排水全体を高負荷で嫌気性処理する
ことができる方法が要望されている。
[0006] However, in such conventional high-load anaerobic treatment, it is necessary to separately treat the SS separated in advance, and this SS is returned to farmland or landfilled. The generated odor is a major problem. In addition, when returning to farmland, there are problems such as excess nitrogen and disease sources. For this reason, there is a demand for a method capable of performing anaerobic treatment of the entire starch production wastewater at a high load without separating and removing the starch particles.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、澱粉
粒子含有液を高負荷かつ高速で効率よく嫌気性処理する
ことができる澱粉粒子含有液の嫌気性処理方法および装
置を提供することである。
An object of the present invention is to provide a method and an apparatus for anaerobic treatment of a starch particle-containing liquid which can efficiently and efficiently perform anaerobic treatment of a starch particle-containing liquid at a high load and at a high speed. is there.

【0008】[0008]

【課題を解決するための手段】本発明は次の澱粉粒子含
有液の嫌気性処理方法および装置である。 (1) 澱粉粒子含有液をpH4.6〜5.4、温度5
0〜70℃で液化処理する液化処理工程と、液化処理液
を嫌気性微生物を含む汚泥の存在下に嫌気性処理する嫌
気性処理工程とを有する澱粉粒子含有液の嫌気性処理方
法。 (2) 澱粉粒子含有液を澱粉粒子濃縮液と澱粉分離液
とに分離する濃縮分離工程と、前記澱粉粒子濃縮液をp
H4.6〜5.4、温度50〜70℃で液化処理する液
化処理工程と、液化処理液および前記澱粉分離液を導入
し、嫌気性微生物を含む汚泥の存在下に嫌気性処理する
嫌気性処理工程とを有する澱粉粒子含有液の嫌気性処理
方法。 (3) 澱粉粒子含有液または濃縮液をpH4.6〜
5.4、温度50〜70℃で液化処理する液化処理装置
と、少なくとも液化処理液を導入し、嫌気性微生物を含
む汚泥の存在下に嫌気性処理する嫌気性反応槽とを有す
る澱粉粒子含有液の嫌気性処理装置。
The present invention provides the following anaerobic treatment method and apparatus for a starch particle-containing liquid. (1) A starch particle-containing solution was prepared at pH 4.6 to 5.4 and at a temperature of 5.
An anaerobic treatment method for a starch particle-containing liquid, comprising: a liquefaction treatment step of liquefaction treatment at 0 to 70 ° C; and an anaerobic treatment step of anaerobic treatment of the liquefaction treatment liquid in the presence of sludge containing anaerobic microorganisms. (2) a concentration separation step of separating the starch particle-containing solution into a starch particle concentrate and a starch separation solution;
A liquefaction treatment step of liquefaction treatment at a temperature of 4.6 to 5.4 and a temperature of 50 to 70 ° C., and an anaerobic treatment in which the liquefaction treatment liquid and the starch separation liquid are introduced and subjected to anaerobic treatment in the presence of sludge containing anaerobic microorganisms An anaerobic treatment method for a starch particle-containing liquid having a treatment step. (3) The starch particle-containing liquid or the concentrated liquid is adjusted to pH 4.6 to
5.4. Starch particle-containing having a liquefaction treatment device for liquefaction treatment at a temperature of 50 to 70 ° C. and an anaerobic reaction tank for introducing at least a liquefaction treatment solution and performing anaerobic treatment in the presence of sludge containing anaerobic microorganisms Anaerobic treatment device for liquids.

【0009】本発明で処理対象とする澱粉粒子含有液
は、澱粉粒子を含有する排水であり、蛋白質や脂質など
が含まれていてもよい。通常澱粉を含む植物から澱粉を
分離して製造する工程から排出される澱粉製造排水であ
る。このような澱粉粒子含有液としては、馬鈴薯澱粉製
造工程から排出される澱粉製造排水が典型的であるが、
くず、その他の植物からの澱粉製造排水であってもよ
い。馬鈴薯澱粉製造工程から排出される排水としては、
BODが30000mg/l付近、SSが5000mg
/l付近の高濃度のデカンター排水と、BODが200
0mg/l付近、SSが500mg/l付近のハイドロ
サイクロン排水に大別されるが、本発明ではどちらの排
水も処理することができる。またこれらの排水を混合し
て処理することもできる。澱粉粒子はハイドロサイクロ
ン排水に多く含まれており、時にはSSの大部分が澱粉
粒子であるハイドロサイクロン排水もあるが、本発明は
このようなハイドロサイクロン排水の処理にも好適に適
用することができる。
The starch particle-containing liquid to be treated in the present invention is waste water containing starch particles, and may contain proteins, lipids and the like. This is a starch production wastewater discharged from a process of separating and producing starch from a plant containing starch. As such a starch particle-containing liquid, starch production wastewater discharged from a potato starch production step is typical,
Waste water from starch production from other plants may be used. The wastewater discharged from the potato starch production process includes:
BOD is around 30000mg / l, SS is 5000mg
/ L high concentration decanter drainage and BOD of 200
The water is roughly classified into hydrocyclone wastewater of around 0 mg / l and SS of around 500 mg / l. In the present invention, both wastewaters can be treated. Further, these wastewaters can be mixed and treated. Starch particles are contained in a large amount in the hydrocyclone wastewater, and sometimes there is also a hydrocyclone wastewater in which most of the SS is starch particles, but the present invention can be suitably applied to the treatment of such a hydrocyclone wastewater. .

【0010】本発明の液化処理工程は、生物汚泥を用い
ずに物理化学的に澱粉粒子を液化処理する工程であり、
澱粉粒子含有液をpH4.6〜5.4、好ましくは4.
6〜5.0、温度50〜70℃、好ましくは60〜70
℃に保持し、澱粉粒子を液化処理する。この液化処理に
より澱粉粒子は加水分解される。液化処理には、澱粉粒
子含有液を上記pHおよび温度に調整することができる
pH調整手段および加熱手段を備えた装置を使用するこ
とができる。
[0010] The liquefaction treatment step of the present invention is a step of liquefying starch particles physicochemically without using biological sludge.
The starch particle-containing solution is adjusted to pH 4.6 to 5.4, preferably 4.
6-5.0, temperature 50-70 ° C, preferably 60-70
C. and liquefy the starch particles. This liquefaction treatment hydrolyzes the starch particles. For the liquefaction treatment, an apparatus equipped with a pH adjusting means and a heating means capable of adjusting the pH and temperature of the starch particle-containing liquid can be used.

【0011】澱粉粒子含有液中の澱粉粒子は上記pHお
よび温度に保持されることにより、通常3〜5時間でほ
ぼ完全に液化される。ここで液化されるとは、顕微鏡観
察において澱粉の粒子が観察されなくなり、またヨウ素
・澱粉反応による呈色反応が認められなくなることを意
味する。澱粉粒子はほぼ完全に液化されるのが好ましい
が、一部液化しないで残留してもよい。
[0011] The starch particles in the starch particle-containing liquid are almost completely liquefied in 3 to 5 hours by maintaining the above pH and temperature. Here, being liquefied means that starch particles are no longer observed under a microscope and no color reaction due to iodine-starch reaction is observed. Preferably, the starch particles are almost completely liquefied, but may remain partially without liquefaction.

【0012】pHを前記範囲に調整するには、塩酸、硫
酸等の鉱酸;水酸化ナトリウム等のアルカリなどが使用
できる。澱粉製造排水の場合は通常pHは中性付近にあ
るので、通常酸を添加してpHを調整する。この場合、
後工程の嫌気性処理における硫化水素発生低減の観点か
ら、塩酸が好ましい。また温度を前記範囲に調整するに
は、後工程の嫌気性処理で発生するメタンガスを利用す
ることができ、例えばメタンガスを燃焼させて蒸気を発
生させ、これを被処理液中に吹き込んで加熱することが
できる。
To adjust the pH to the above range, mineral acids such as hydrochloric acid and sulfuric acid; alkalis such as sodium hydroxide can be used. In the case of starch-producing effluent, the pH is usually around neutral, so that the pH is usually adjusted by adding an acid. in this case,
Hydrochloric acid is preferred from the viewpoint of reducing the generation of hydrogen sulfide in the anaerobic treatment in the subsequent step. In order to adjust the temperature to the above range, methane gas generated in anaerobic treatment in a later step can be used. For example, methane gas is burned to generate steam, which is blown into the liquid to be processed and heated. be able to.

【0013】液化処理のpHが4.6未満の場合、被処
理液中の蛋白質が酸変性してゲル状となる割合が多くな
り、このためゲルに包含される澱粉粒子の量も多くなっ
て液化効率が低下し、好ましくない。またpHが5.4
を超える場合は澱粉粒子の液化反応速度が低下し、好ま
しくない。液化処理の温度が70℃を超えると、蛋白質
が熱変性してゲル状となる割合が多くなり、上記と同様
に液化効率が低下し、好ましくない。また温度が50℃
未満の場合は澱粉粒子の液化反応速度が低下し、好まし
くない。
When the pH of the liquefaction treatment is less than 4.6, the ratio of the protein in the liquid to be treated being acid-denatured to become a gel increases, and therefore the amount of starch particles included in the gel also increases. The liquefaction efficiency is undesirably reduced. PH 5.4
If it exceeds, the liquefaction reaction rate of the starch particles decreases, which is not preferable. When the temperature of the liquefaction treatment exceeds 70 ° C., the rate of heat denaturation of the protein and the formation of a gel increases, and the liquefaction efficiency decreases similarly to the above, which is not preferable. The temperature is 50 ℃
If it is less than 1, the liquefaction reaction rate of the starch particles decreases, which is not preferable.

【0014】液化処理する被処理液は、不溶性の澱粉粒
子を主とし、蛋白質、脂質なども含むSSを10000
mg/l以上、好ましくは10000〜20000mg
/lの濃度で含んでいるものが望ましい。澱粉製造排水
中のSS濃度は通常500〜5000mg/l程度であ
るので、液化処理工程の前に濃縮分離工程を設け、澱粉
粒子を濃縮した澱粉粒子濃縮液について液化処理を行う
のが好ましい。澱粉粒子濃縮液を液化処理することによ
り、液化装置の小型化、pH調整剤の低減、加熱エネル
ギーの低減などが可能となる。
The liquid to be subjected to the liquefaction treatment is mainly composed of insoluble starch particles, and contains 10000 SS containing proteins and lipids.
mg / l or more, preferably 10,000 to 20,000 mg
/ L is desirable. Since the SS concentration in the starch production wastewater is usually about 500 to 5000 mg / l, it is preferable to provide a concentration separation step before the liquefaction treatment step, and perform liquefaction treatment on the starch particle concentrated liquid in which the starch particles are concentrated. By liquefying the concentrated starch particles, it is possible to reduce the size of the liquefaction apparatus, reduce the amount of the pH adjuster, reduce the heating energy, and the like.

【0015】本発明において必要に応じて液化処理工程
の前に設けられる濃縮分離工程は、澱粉粒子含有液を澱
粉粒子濃縮液と澱粉分離液とに分離する工程である。濃
縮分離工程は、液中から固形分を分離または濃縮できる
公知の装置または手段を用いて行うことができ、例えば
デカンター型遠心分離機、分離板型遠心分離機、沈降分
離による沈殿槽、ろ布等を用いたろ過分離装置などが使
用可能である。例えば、沈殿槽を用いて澱粉粒子含有液
を分離する場合、2〜4時間の滞留時間で沈降分離する
ことができる。濃縮分離工程で得られた澱粉粒子濃縮液
は前記液化処理に供し、澱粉分離液は後述の嫌気性処理
に供する。
In the present invention, the concentration separation step provided before the liquefaction treatment step as necessary is a step of separating the starch particle-containing liquid into a starch particle concentrated liquid and a starch separation liquid. The concentration separation step can be performed using a known device or means capable of separating or concentrating a solid content from a liquid, for example, a decanter centrifuge, a separation plate centrifuge, a sedimentation tank by sedimentation, a filter cloth. For example, a filtration / separation device using such a method can be used. For example, when a starch particle-containing liquid is separated using a precipitation tank, sedimentation and separation can be performed with a residence time of 2 to 4 hours. The concentrated starch particle concentrate obtained in the concentration separation step is subjected to the liquefaction treatment, and the starch separation liquid is subjected to the anaerobic treatment described later.

【0016】本発明の嫌気性処理工程は、前記液化処理
した液化処理液を嫌気性微生物を含む汚泥の存在下に嫌
気性処理する工程である。濃縮分離工程を設けた場合
は、通常液化処理液と濃縮分離工程で得られた澱粉分離
液とを嫌気性処理するのが好ましいが、液化処理液だけ
を嫌気性処理することもできる。
The anaerobic treatment step of the present invention is a step of anaerobically treating the liquefied liquified liquid in the presence of sludge containing anaerobic microorganisms. When the concentration separation step is provided, it is generally preferable to perform anaerobic treatment on the liquefaction treatment liquid and the starch separation liquid obtained in the concentration separation step, but it is also possible to perform anaerobic treatment on only the liquefaction treatment liquid.

【0017】嫌気性処理を行うに際し、液化処理液中に
ゲル化析出した蛋白質が多量に含まれている場合は、析
出した蛋白質を除去した蛋白質分離液について嫌気性処
理するのが好ましい。これにより、後工程の嫌気性処理
の過程で発生するアンモニア性窒素によるメタン生成菌
の阻害を防止して、高負荷型嫌気性処理を行う場合でも
効率よく処理することができる。
In performing the anaerobic treatment, when a large amount of gelled and precipitated protein is contained in the liquefied liquid, it is preferable to perform anaerobic treatment on the protein separated liquid from which the precipitated protein has been removed. Thus, it is possible to prevent the methanogenic bacteria from being inhibited by ammonia nitrogen generated in the post-anaerobic treatment process, and to efficiently perform the high-load anaerobic treatment.

【0018】蛋白質の除去を行うには、デカンター型遠
心分離機が適しているが、他の分離板型遠心分離機、加
圧浮上分離、沈降分離、ろ布等を用いたろ過分離装置な
どが使用可能である。分離した蛋白質は栄養価が高いた
め、必要により乾燥を行い、家畜/家禽等の飼料に有効
利用でき、また肥料としての活用もできる。
A decanter-type centrifuge is suitable for removing proteins, but other separator-type centrifuges, pressurized flotation, sedimentation, and filtration devices using a filter cloth and the like are also available. Can be used. Since the separated protein has a high nutritional value, it is dried if necessary, and can be effectively used as feed for livestock and poultry, and can also be used as fertilizer.

【0019】嫌気性処理は、公知の装置により公知の方
法で行うことができるが、UASB、流動床、固定床等
を利用した高負荷型嫌気性処理を行うのが好ましい。高
負荷型嫌気性処理では溶解性有機物が処理の対象とな
り、固形物は前もって除去することが好ましく、前記蛋
白質の分離の際他の固形物も除去される。液化処理液か
ら蛋白質を分離しない場合は、別途固形分を除去する工
程を設けるのが好ましい。高負荷型嫌気性処理はメタン
生成菌を高濃縮した状態で嫌気性処理槽に保持し、被処
理液と高負荷かつ高速で接触させて短時間で嫌気性処理
を行う方式の処理方法である。
The anaerobic treatment can be performed by a known method using a known apparatus, but it is preferable to perform a high-load anaerobic treatment using a UASB, a fluidized bed, a fixed bed, or the like. In high-load anaerobic treatment, soluble organic matter is to be treated, and solid matter is preferably removed in advance, and other solid matter is also removed when the protein is separated. If the protein is not separated from the liquefaction treatment solution, it is preferable to provide a separate step of removing solids. The high-load anaerobic treatment is a method in which the methane-producing bacterium is highly concentrated and held in an anaerobic treatment tank, and the anaerobic treatment is performed in a short time by contacting the liquid to be treated with a high load at a high speed. .

【0020】UASB方式はメタン生成菌を含む汚泥を
高濃縮して形成したグラニュール汚泥からなるスラッジ
ブランケットに被処理液を上向流で高速に通液して接触
させ処理する方式のものである。流動床方式は砂等の担
体を担持させて流動床を形成し、被処理液と接触させる
方式のものである。固定床方式は担体に汚泥を形成した
固定床に被処理液を通液して接触させる方式のものであ
る。いずれも汚泥を高濃度の状態で保持することによ
り、高負荷かつ高速での処理を可能とする。
The UASB method is a method in which a liquid to be treated is brought into contact with a sludge blanket made of granulated sludge formed by highly concentrating sludge containing methane-producing bacteria in an upward flow at a high speed to treat the sludge blanket. . The fluidized bed system is a system in which a carrier such as sand is carried to form a fluidized bed and brought into contact with the liquid to be treated. The fixed bed system is a system in which the liquid to be treated is brought into contact with a fixed bed in which sludge is formed on a carrier. In any case, by maintaining sludge in a high concentration state, high-load and high-speed treatment can be performed.

【0021】嫌気性処理は酸生成菌により有機物を有機
酸に分解する酸生成工程と、メタン生成菌により有機酸
をメタンに分解するメタン生成工程とからなり、本発明
ではこれらを同時に行う一相式でもよいが、酸生成工程
とメタン生成工程とを別工程にして、メタン生成工程前
段で酸生成菌により可溶化澱粉から有機酸を生成させた
後、メタン生成菌を高濃度で保持するUASB方式など
により、高負荷で有機酸からメタン生成を行う二相式
が、処理速度、メタン生成量の点から好ましい。一相
式、二相式いずれの場合もメタン生成菌を利用する嫌気
性処理は30〜38℃、好ましくは35〜36℃、BO
D濃度2000〜30000mg/l、好ましくは30
00〜6000mg/lで嫌気状態に保つことにより、
メタン生成菌の活性を高くして効率よく処理を行うこと
ができる。
The anaerobic treatment comprises an acid generation step of decomposing organic substances into organic acids by acid-producing bacteria, and a methane generation step of decomposing organic acids into methane by methane-producing bacteria. A UASB that separates the acid generation step and the methane generation step from each other, generates an organic acid from the solubilized starch by the acid generation bacterium in the first stage of the methane generation step, and then retains the methanogen at a high concentration A two-phase system in which methane is produced from an organic acid under a high load by a method or the like is preferable from the viewpoint of a processing speed and a methane production amount. Anaerobic treatment using methanogens at 30 to 38 ° C., preferably 35 to 36 ° C., for both the one-phase type and the two-phase type
D concentration 2000 to 30000 mg / l, preferably 30
By keeping the anaerobic state at 00-6000 mg / l,
The treatment can be performed efficiently by increasing the activity of the methanogen.

【0022】嫌気性処理工程における負荷はBOD負荷
として5〜20kg/m3/d、好ましくは10〜15
kg/m3/dとするのが望ましい。BOD負荷が上記
範囲にある場合、より高水質の処理水をより効率よく得
ることができる。
The load in the anaerobic treatment step is 5 to 20 kg / m 3 / d as BOD load, preferably 10 to 15 kg / m 3 / d.
It is desirable that the pressure be kg / m 3 / d. When the BOD load is in the above range, higher quality treated water can be obtained more efficiently.

【0023】嫌気性処理により澱粉その他の溶解性有機
物が分解され、メタンおよび炭酸ガスが発生する。ここ
で発生するガスは回収して液化処理工程の加熱のための
燃料として利用することができる。処理液はそのまま、
または必要により他の低濃度排水や工業用水等で希釈し
て下水道等に放流することもできるし、他の低濃度排水
とともに好気性処理することにより、残留する有機物を
分解することもできる。
The anaerobic treatment decomposes starch and other soluble organic substances to generate methane and carbon dioxide. The gas generated here can be recovered and used as fuel for heating in the liquefaction process. The processing solution is
Alternatively, if necessary, it can be diluted with other low-concentration wastewater or industrial water and discharged to a sewer or the like, or can be subjected to aerobic treatment together with other low-concentration wastewater to decompose the remaining organic matter.

【0024】このように、本発明は澱粉粒子を液化処理
工程において液化することにより、液化処理液を嫌気性
処理することが可能となり、従来の方法のように澱粉粒
子を農地に還元したり、埋立処理する必要はなくなり、
澱粉製造排水全体を高負荷かつ高速で効率よく嫌気性処
理することができる。このため、農地還元、埋立処理す
る場合に発生する臭気を防止できる。また本発明は液化
処理装置を設置することにより、既存の嫌気性処理設備
で実施することが可能であるので、低コストでの処理が
可能である。さらに高負荷での高度な処理が可能であ
り、また澱粉製造排水処理全体における発生メタンガス
量が増大し、有効利用も可能になる。
As described above, according to the present invention, the starch particles are liquefied in the liquefaction treatment step, whereby the liquefied liquid can be subjected to anaerobic treatment, and the starch particles can be reduced to agricultural land as in the conventional method. There is no need to landfill,
The whole starch production wastewater can be efficiently anaerobic treated at high load and at high speed. Therefore, it is possible to prevent the odor generated when the land is returned to the farmland and landfilled. In addition, the present invention can be carried out with existing anaerobic treatment equipment by installing a liquefaction treatment apparatus, so that treatment can be performed at low cost. Further, advanced treatment under high load is possible, and the amount of methane gas generated in the entire wastewater treatment for starch production is increased, so that effective use is possible.

【0025】[0025]

【作用】澱粉粒子の嫌気性反応は、次の3段階の反応で
進行することがわかった。 1)第1反応 結晶状態の澱粉粒子を可容化澱粉に転換させる液化反
応。 2)第2反応 可溶化澱粉から酢酸およびプロピオン酸等の有機酸を生
成させる有機酸生成反応。 3)第3反応 有機酸からメタンガスを発生させるメタン生成反応。
It has been found that the anaerobic reaction of starch particles proceeds in the following three steps. 1) First reaction A liquefaction reaction for converting crystalline starch particles into solubilized starch. 2) Second reaction An organic acid generating reaction for generating organic acids such as acetic acid and propionic acid from the solubilized starch. 3) Third reaction A methane generation reaction for generating methane gas from an organic acid.

【0026】上記一連の反応に要する時間の中では、第
1反応である液化反応の時間が最も長く、pHが中性付
近、液温36℃付近の嫌気性条件下では3〜4日間を要
することがわかった。第2反応である有機酸生成反応
は、液化反応が十分に進行している場合には4〜12時
間で進行する。また第3反応であるメタン生成反応は、
有機酸生成反応が十分に進行している場合にはBOD負
荷10kg/m3/d以上の高負荷処理も可能である。
Among the times required for the above series of reactions, the time of the liquefaction reaction as the first reaction is the longest, and it takes 3 to 4 days under anaerobic conditions in which the pH is around neutral and the liquid temperature is around 36 ° C. I understand. The organic acid generation reaction, which is the second reaction, proceeds in 4 to 12 hours when the liquefaction reaction has sufficiently proceeded. The third reaction, the methane production reaction,
When the organic acid generation reaction has sufficiently proceeded, a high load treatment with a BOD load of 10 kg / m 3 / d or more is also possible.

【0027】本発明では、液化処理工程を設け、pH
4.6〜5.4、温度50〜70℃で液化処理すること
により、3〜5時間程度で液化反応がほぼ完全に進行す
る。このため、澱粉粒子を分離して農地に還元したり、
埋立処理する必要はなくなり、澱粉製造排水全体を高負
荷かつ高速で効率よく嫌気性処理することができる。
In the present invention, a liquefaction treatment step is provided,
By performing liquefaction at 4.6 to 5.4 and a temperature of 50 to 70 ° C, the liquefaction reaction proceeds almost completely in about 3 to 5 hours. For this reason, starch particles are separated and returned to farmland,
The need for landfill treatment is eliminated, and the entire starch production wastewater can be efficiently and anaerobically treated at high load and at high speed.

【0028】[0028]

【発明の効果】本発明の澱粉粒子含有液の嫌気性処理方
法は、澱粉粒子含有液または澱粉粒子濃縮液をpH4.
6〜5.4、温度50〜70℃で液化処理したのち嫌気
性処理しているので、澱粉粒子を別途処理することな
く、澱粉粒子含有液全体を高負荷かつ高速で効率よく嫌
気性処理することができる。本発明の澱粉粒子含有液の
嫌気性処理装置は、澱粉粒子濃縮液をpH4.6〜5.
4、温度50〜70℃で液化処理する液化処理装置を有
しているので、澱粉粒子を別途処理することなく、澱粉
粒子含有液全体を高負荷かつ高速で効率よく嫌気性処理
することができる。
According to the anaerobic treatment method for a starch particle-containing liquid of the present invention, a starch particle-containing liquid or a starch particle concentrated liquid having a pH of 4.
Since anaerobic treatment is performed after liquefaction treatment at 6 to 5.4 at a temperature of 50 to 70 ° C., the entire starch particle-containing liquid is efficiently subjected to anaerobic treatment at a high load, at a high speed, without separately treating the starch particles. be able to. The apparatus for anaerobic treatment of a starch particle-containing liquid according to the present invention uses the starch particle concentrate at a pH of 4.6 to 5.5.
4. Since there is a liquefaction treatment device for liquefaction at a temperature of 50 to 70 ° C., the entire starch particle-containing liquid can be efficiently subjected to anaerobic treatment at a high load, at a high speed, and without a separate treatment of the starch particles. .

【0029】[0029]

【発明の実施の形態】本発明の実施形態を図面により説
明する。図1は、実施形態の澱粉粒子含有液の嫌気性処
理装置を示す系統図である。図1において、1は沈殿
槽、2は液化処理槽、3は酸生成槽、4はUASB方式
のメタン発酵槽、5はガス貯槽、6はボイラ、7は凝集
槽、8は固液分離機である。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram illustrating an apparatus for anaerobic treatment of a starch particle-containing liquid according to an embodiment. In FIG. 1, 1 is a sedimentation tank, 2 is a liquefaction treatment tank, 3 is an acid generation tank, 4 is a UASB methane fermentation tank, 5 is a gas storage tank, 6 is a boiler, 7 is a coagulation tank, and 8 is a solid-liquid separator. It is.

【0030】沈殿槽1には原水路11、濃縮液路12お
よび澱粉分離液路13が接続している。液化処理槽2に
は、濃縮液路12、液化処理液路14、水蒸気供給路1
5およびpH調整剤供給路16が接続し、沈殿槽1で沈
降分離した澱粉粒子濃縮液を濃縮液路12から導入し、
槽内液のpHが4.6〜5.4、好ましくは4.6〜
5.0、液温が50〜70℃、好ましくは60〜70℃
となるようにpHおよび温度を保持して液化処理するよ
うに構成されている。
The settling tank 1 is connected to a raw water channel 11, a concentrated liquid channel 12, and a starch separated liquid channel 13. The liquefaction processing tank 2 has a concentrated liquid path 12, a liquefaction processing liquid path 14, a steam supply path 1
5 and the pH adjusting agent supply path 16 are connected, and the concentrated starch particles separated and settled in the precipitation tank 1 are introduced from the concentrated liquid path 12,
The pH of the solution in the tank is 4.6 to 5.4, preferably 4.6 to 5.4.
5.0, liquid temperature 50-70 ° C, preferably 60-70 ° C
The liquefaction process is performed while maintaining the pH and temperature so that

【0031】凝集槽7には液化処理液路14、連絡路2
1および凝集剤供給路22が接続し、内部には撹拌器2
3が設けられている。固液分離機8には連絡路21、2
6および蛋白質排出路27が接続している。28は脱水
機、29は蛋白質回収路である。
The coagulation tank 7 has a liquefaction treatment liquid path 14 and a communication path 2.
1 and a coagulant supply path 22 are connected, and a stirrer 2 is
3 are provided. The solid-liquid separator 8 has communication paths 21 and 2
6 and the protein discharge channel 27 are connected. 28 is a dehydrator and 29 is a protein recovery path.

【0032】酸生成槽3には、澱粉分離液路13、連絡
路26、酸生成液路31が接続し、内部には撹拌器32
が設けられている。メタン発酵槽4には酸生成液路31
が下部に接続し、処理水路35およびガス排出路36が
上部に接続し、内部にはスラッジブランケット37が形
成されている。酸生成槽3とメタン発酵槽4とで嫌気性
反応槽を構成している。ガス貯槽5にはガス排出路36
および連絡路41が接続している。ボイラ6には連絡路
41、水蒸気供給路15、給水路42および排水路43
が接続している。
The acid generation tank 3 is connected with a starch separation liquid path 13, a communication path 26, and an acid generation liquid path 31, and has a stirrer 32 inside.
Is provided. Acid production liquid passage 31
Is connected to a lower portion, a treatment water passage 35 and a gas discharge passage 36 are connected to an upper portion, and a sludge blanket 37 is formed inside. The acid production tank 3 and the methane fermentation tank 4 constitute an anaerobic reaction tank. The gas storage tank 5 has a gas discharge path 36.
And the communication path 41 are connected. The boiler 6 has a communication channel 41, a steam supply channel 15, a water supply channel 42, and a drain channel 43.
Is connected.

【0033】図1の嫌気性処理装置で澱粉粒子含有液を
処理するには、原水として澱粉粒子含有液を原水路11
から沈殿槽1に導入し、重力沈降により澱粉粒子45と
澱粉分離液とに分離する。澱粉粒子45を含む澱粉粒子
濃縮液は濃縮液路12から液化処理槽2に導入して液化
処理し、澱粉分離液は澱粉分離液路13から酸生成槽3
に導入して有機酸を生成させる。
In order to treat the starch particle-containing liquid with the anaerobic treatment apparatus shown in FIG.
Into the sedimentation tank 1 and separated by gravity sedimentation into starch particles 45 and a starch separation liquid. The starch particle concentrate containing the starch particles 45 is introduced into the liquefaction tank 2 from the concentrate path 12 to be liquefied, and the starch separated liquid is passed from the starch separation path 13 to the acid generation tank 3.
To produce an organic acid.

【0034】液化処理槽2では澱粉粒子45を含む澱粉
粒子濃縮液を濃縮液路12から導入し、pH調整剤供給
路16から槽内液のpHが前記pHとなるように塩酸を
供給するとともに、水蒸気供給路15から槽内液の液温
が前記温度となるように水蒸気を吹き込んで液化処理す
る。通常3〜5時間で、澱粉粒子45はほぼ完全に液化
される。水蒸気は、給水路42からボイラ6に送った給
水をガス貯槽5からの燃料ガスの燃焼により加熱して発
生させる。濃縮水は、排水路43から排出する。
In the liquefaction treatment tank 2, a concentrated starch particle solution containing starch particles 45 is introduced from the concentrated liquid passage 12, and hydrochloric acid is supplied from the pH adjusting agent supply passage 16 so that the pH of the liquid in the tank becomes the above-mentioned pH. Then, liquefaction is performed by blowing steam from the steam supply path 15 so that the temperature of the liquid in the tank becomes the above-mentioned temperature. Usually, in 3 to 5 hours, the starch particles 45 are almost completely liquefied. The water vapor is generated by heating water supplied from the water supply channel 42 to the boiler 6 by burning fuel gas from the gas storage tank 5. The concentrated water is discharged from the drain 43.

【0035】液化処理液は液化処理液路14から凝集槽
7に導入し、凝集剤供給路22から凝集剤を供給し、撹
拌器23で撹拌して凝集を行いフロックを形成させる。
この凝集処理液は連絡路21から固液分離機8に導入し
て固液分離する。この蛋白質分離液は連絡路26から酸
生成槽3に導入し、分離固形分は蛋白質排出路27から
脱水機28に送り、脱水して回収蛋白質として蛋白質回
収路29から回収する。固液分離機8としてはデカンタ
ー型の固液分離機が用いられるが、他の固液分離機でも
よい。
The liquefaction treatment liquid is introduced into the flocculation tank 7 from the liquefaction treatment liquid path 14, and the flocculant is supplied from the flocculant supply path 22, and is stirred by the stirrer 23 to form floc.
This coagulation treatment liquid is introduced into the solid-liquid separator 8 through the communication path 21 to perform solid-liquid separation. The separated protein solution is introduced into the acid generating tank 3 through the communication path 26, and the separated solid is sent from the protein discharge path 27 to the dehydrator 28, where it is dehydrated and recovered from the protein recovery path 29 as recovered protein. Although a decanter-type solid-liquid separator is used as the solid-liquid separator 8, another solid-liquid separator may be used.

【0036】酸生成槽3では、固液分離機8で分離した
蛋白質分離液および沈殿槽1で分離した澱粉分離液を導
入し、嫌気性を維持して撹拌器32で緩やかに撹拌しな
がら酸生成菌を含む槽内液と混合し、有機酸生成を行
う。これにより、槽内の有機物は酸生成菌により分解さ
れ有機酸が生成する。
In the acid generating tank 3, the protein separated liquid separated in the solid-liquid separator 8 and the starch separated liquid separated in the precipitation tank 1 are introduced, and while the anaerobic condition is maintained, the acid is stirred slowly with the stirrer 32. The organic acid is generated by mixing with the liquid in the tank containing the producing bacteria. Thereby, the organic matter in the tank is decomposed by the acid-producing bacteria to produce an organic acid.

【0037】有機酸生成液は酸生成液路31からメタン
発酵槽4の下部に導入し、上向流でスラッジブランケッ
ト37を通過させる。このとき、透過液は嫌気性下にグ
ラニュール汚泥と接触し、これにより有機酸はグラニュ
ール汚泥に含まれるメタン生成菌の作用により嫌気的に
分解されてメタンと二酸化炭素に転換される。メタン発
酵処理液は処理水として処理水路35から排出する。発
生ガスはガス排出路36からガス貯槽5に導入し、水蒸
気発生用の燃料ガスとして利用するまで貯溜する。
The organic acid producing liquid is introduced into the lower part of the methane fermentation tank 4 from the acid producing liquid passage 31 and passes through the sludge blanket 37 in an upward flow. At this time, the permeated liquid comes into contact with the granular sludge under anaerobic conditions, whereby the organic acid is anaerobically decomposed and converted into methane and carbon dioxide by the action of methane-producing bacteria contained in the granular sludge. The methane fermentation treatment liquid is discharged from the treatment water passage 35 as treatment water. The generated gas is introduced from the gas discharge path 36 into the gas storage tank 5 and stored until it is used as a fuel gas for generating steam.

【0038】図1の装置において、凝集槽7は省略する
ことができる。また液化処理槽2において析出する蛋白
質の量が少ない場合は、凝集槽7および脱水機8は省略
することができる。またUASB方式などの高負荷型嫌
気性処理装置の代わりに浮遊式のメタン発酵槽を使用す
ることもでき、この場合も凝集槽7および脱水機8は省
略することができる。さらに沈殿槽1を省略して、原水
を直接液化処理槽2に導入して液化処理することもでき
る。
In the apparatus shown in FIG. 1, the coagulation tank 7 can be omitted. When the amount of protein precipitated in the liquefaction treatment tank 2 is small, the coagulation tank 7 and the dehydrator 8 can be omitted. In addition, a floating methane fermentation tank can be used instead of a high-load anaerobic treatment apparatus such as a UASB method. In this case, the coagulation tank 7 and the dehydrator 8 can be omitted. Further, the precipitation tank 1 may be omitted, and the raw water may be directly introduced into the liquefaction treatment tank 2 for liquefaction treatment.

【0039】[0039]

【実施例】実施例1 図1の装置により、澱粉製造排水を嫌気性処理した。た
だし、凝集槽7は省略した。すなわち、馬鈴薯澱粉製造
工程から排出されるデカンター排水とハイドロサイクロ
ン排水との混合排水について、嫌気性処理を行った。上
記デカンター排水はBODが30000mg/l付近、
SSが5000mg/l付近であり、ハイドロサイクロ
ン排水はBODが2000mg/l付近、SSが500
mg/l付近であり、粒子状の澱粉はハイドロサイクロ
ン排水に多く含まれている。処理対象の混合排水はデカ
ンター排水をハイドロサイクロン排水で10倍に希釈し
た混合排水であり、この混合排水のSSは1000mg
/l、BODは4800〜5000mg/lである(表
1参照)。上記混合排水を、滞留時間4時間の原水槽を
兼ねた沈殿槽1(初沈槽)でSSの約80%を沈降分離
し、澱粉粒子濃縮液と澱粉分離液とを得た。これらのS
SおよびBODを表1に示す。
EXAMPLE 1 The starch production wastewater was anaerobically treated by the apparatus shown in FIG. However, the coagulation tank 7 was omitted. That is, anaerobic treatment was performed on mixed wastewater of decanter wastewater and hydrocyclone wastewater discharged from the potato starch production process. The decanter wastewater has a BOD of around 30,000 mg / l,
SS is around 5000 mg / l, BOD is around 2000 mg / l and SS is 500
It is around mg / l, and the particulate starch is contained in a large amount in the hydrocyclone wastewater. The mixed wastewater to be treated is a mixed wastewater obtained by diluting the decanter wastewater with hydrocyclone wastewater ten times, and the SS of this mixed wastewater is 1000 mg.
/ L, BOD is 4800-5000 mg / l (see Table 1). About 80% of the SS was settled and separated from the mixed wastewater in a sedimentation tank 1 (initial sedimentation tank) also serving as a raw water tank with a residence time of 4 hours to obtain a starch particle concentrated liquid and a starch separated liquid. These S
Table 1 shows S and BOD.

【0040】上記澱粉粒子濃縮液は液化処理槽2へ導入
し、pH5.0、液温60℃、滞留時間4時間の条件で
液化処理した。この液化処理液は、SSが2000〜3
000mg/lであったが、ヨウ素・澱粉反応による呈
色反応では青色の呈色は観察されず、また顕微鏡観察で
も澱粉粒子は認められなかった。液化処理液のSSの主
体は、SSの有機態窒素の測定結果から、蛋白質がゲル
化析出したものであることが明らかとなった。上記液化
処理液は固液分離機8(小型遠心分離機)により、ゲル
化析出した蛋白質を除去した。得られたゲル化蛋白質分
離液はSSが200〜300mg/l、BODが140
00〜23000mg/lであった。回収スラッジには
蛋白質が35〜40%含まれていた。
The concentrated starch particle liquid was introduced into the liquefaction tank 2 and liquefied under the conditions of pH 5.0, liquid temperature of 60 ° C. and residence time of 4 hours. This liquefaction treatment liquid has an SS of 2000 to 3
Although it was 000 mg / l, no blue color was observed in the color reaction by the iodine-starch reaction, and no starch particles were observed by microscopic observation. From the measurement result of the organic nitrogen of SS, it was clarified that the main component of SS in the liquefaction treatment liquid was protein precipitated by gelation. The liquefied solution was subjected to solid-liquid separator 8 (small centrifugal separator) to remove gelled and precipitated proteins. The resulting gelled protein separation solution had an SS of 200 to 300 mg / l and a BOD of 140
It was 00-23000 mg / l. The recovered sludge contained 35 to 40% protein.

【0041】ゲル化蛋白質分離液は沈殿槽1で得られた
澱粉分離液と混合し、この混合液を酸生成槽3に導入
し、pH6.3〜6.7、温度33〜35℃、滞留時間
6時間の条件で有機酸生成を行った。得られた有機酸生
成液(メタン発酵槽導入液)のSSは200〜250m
g/l、BODは4300〜4700mg/lであり、
BOD成分の60〜75%は酢酸、プロピオン酸、乳
酸、酪酸等の有機酸とエタノールであり、十分な有機酸
生成反応が進行していた。
The gelled protein separation liquid is mixed with the starch separation liquid obtained in the precipitation tank 1, and this mixed liquid is introduced into the acid generation tank 3, where the pH is 6.3 to 6.7, the temperature is 33 to 35 ° C., and the retention time is 30 minutes. Organic acid generation was performed under the conditions of 6 hours. The SS of the obtained organic acid generation liquid (the methane fermentation tank introduction liquid) is 200 to 250 m.
g / l, BOD is 4300-4700 mg / l,
60 to 75% of the BOD component is an organic acid such as acetic acid, propionic acid, lactic acid, and butyric acid and ethanol, and a sufficient organic acid generation reaction has progressed.

【0042】上記有機酸生成液はUASB方式のメタン
発酵槽4に導入して上向流で通液し、メタン発酵処理し
た。メタン発酵槽4の滞留時間は、沈殿槽1の分離液量
に対して8時間に設定し、槽内pHは6.8〜7.3、
液温は35〜36℃に調整した。計算上のメタン発酵槽
4のBOD負荷量は13〜14kg/m3/dの高負荷
に達した。メタン発酵処理液(処理水)はBODが30
0〜350mg/lであり、発生ガス量はメタン発酵槽
4容量当たり8.5〜9倍に達した。なお、発生ガス中
の炭酸ガス含有量は20%であった。結果を表1に示
す。
The organic acid-producing liquid was introduced into a UASB-type methane fermentation tank 4 and passed therethrough in an upward flow to be subjected to methane fermentation. The residence time of the methane fermentation tank 4 was set to 8 hours with respect to the amount of the separated liquid in the precipitation tank 1, and the pH in the tank was 6.8 to 7.3.
The liquid temperature was adjusted to 35 to 36 ° C. The calculated BOD load of the methane fermenter 4 reached a high load of 13-14 kg / m 3 / d. BOD of methane fermentation treatment liquid (treated water) is 30
0 to 350 mg / l, and the amount of generated gas reached 8.5 to 9 times per 4 volumes of the methane fermenter. The content of carbon dioxide in the generated gas was 20%. Table 1 shows the results.

【0043】[0043]

【表1】 [Table 1]

【0044】実施例2 実施例1において、ゲル化蛋白質分離液に澱粉分離液を
混合することなく、ゲル化蛋白質分離液を単独で有機酸
生成処理した。酸生成槽3の滞留時間は24時間、メタ
ン発酵槽4の滞留時間は48時間とした。他の条件は実
施例1と同じである。有機酸生成液(メタン発酵槽導入
液)のBOD濃度は12000〜21000mg/l、
メタン発酵槽4のBOD負荷量は6〜10.5kg/m
3/dであり、実施例1の負荷量に比べて3/4〜1/
2に設定した。結果を表2に示す。
Example 2 In Example 1, the gelled protein separated solution was treated with an organic acid alone without mixing the starch separated solution with the gelled protein separated solution. The residence time in the acid production tank 3 was 24 hours, and the residence time in the methane fermentation tank 4 was 48 hours. Other conditions are the same as in the first embodiment. The BOD concentration of the organic acid producing liquid (the methane fermentation tank introduction liquid) is 12000 to 21000 mg / l,
BOD load of methane fermenter 4 is 6 to 10.5kg / m
3 / d, which is 3/4 to 1 / compared to the load of the first embodiment.
Set to 2. Table 2 shows the results.

【0045】[0045]

【表2】 [Table 2]

【0046】実施例2のメタン発酵処理液(処理水)の
SSおよびBODは実施例1に比べて高く、このまま放
流できない場合は、さらに好気性処理する。
The SS and BOD of the methane fermentation solution (treated water) of Example 2 are higher than those of Example 1, and if the methane fermentation solution cannot be discharged as it is, further aerobic treatment is performed.

【0047】参考例1 実施例2で得られた有機酸生成液を市水で5倍に希釈し
(BOD=2400〜4200mg/l)、この希釈液
をメタン発酵槽4に導入してBOD負荷量2.4〜4.
2kg/m3/d(滞留時間24時間)でメタン発酵処
理を行ったところ、メタン発酵処理液(処理水)のBO
Dは実施例1と同等の300〜350mg/lが得られ
た。
Reference Example 1 The organic acid production solution obtained in Example 2 was diluted 5 times with city water (BOD = 2400 to 4200 mg / l), and this diluted solution was introduced into the methane fermentation tank 4 to load the BOD. Amount 2.4-4.
When the methane fermentation treatment was performed at 2 kg / m 3 / d (residence time: 24 hours), the BO of the methane fermentation treatment liquid (treated water) was
As for D, 300 to 350 mg / l equivalent to that of Example 1 was obtained.

【0048】比較例1 実施例1において、沈殿槽1で得られた澱粉分離液を単
独で有機酸生成を行った。酸生成槽3の条件は実施例1
と同じである。得られた有機酸生成液をメタン発酵槽4
(滞留時間8時間)に導入し、メタン発酵処理を行っ
た。その結果、メタン発酵槽4の負荷量は10〜10.
5kg/m3/d、発生ガス量はメタン発酵槽4容量当
たり6.5〜6.9倍、メタン発酵処理液のBODは実
施例1と同等な300〜350mg/lであった。結果
を表3に示す。
Comparative Example 1 In Example 1, the starch separated solution obtained in the precipitation tank 1 was used alone to produce an organic acid. Example 1 is the condition of the acid generation tank 3.
Is the same as The obtained organic acid solution is supplied to the methane fermenter 4
(Residence time: 8 hours), and methane fermentation treatment was performed. As a result, the load of the methane fermenter 4 is 10 to 10.
5 kg / m 3 / d, the generated gas amount was 6.5 to 6.9 times per 4 volumes of the methane fermentation tank, and the BOD of the methane fermentation treatment liquid was 300 to 350 mg / l, which is equivalent to that of Example 1. Table 3 shows the results.

【0049】[0049]

【表3】 [Table 3]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の澱粉粒子含有液の嫌気性処理
装置を示す系統図である。
FIG. 1 is a system diagram illustrating an apparatus for anaerobic treatment of a starch particle-containing liquid according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1 沈殿槽 2 液化処理槽 3 酸生成槽 4 メタン発酵槽 5 ガス貯槽 6 ボイラ 7 凝集槽 8 固液分離機 11 原水路 12 濃縮液路 13 澱粉分離液路 14 液化処理液路 15 水蒸気供給路 16 pH調整剤供給路 21、26、41 連絡路 22 凝集剤供給路 23、32 撹拌器 27 蛋白質排出路 28 脱水機 29 蛋白質回収路 31 酸生成液路 35 処理水路 36 ガス排出路 37 スラッジブランケット 42 給水路 43 排水路 45 澱粉粒子 Reference Signs List 1 sedimentation tank 2 liquefaction treatment tank 3 acid generation tank 4 methane fermentation tank 5 gas storage tank 6 boiler 7 coagulation tank 8 solid-liquid separator 11 raw water passage 12 concentrated liquid passage 13 starch separation liquid passage 14 liquefaction treatment liquid passage 15 steam supply passage 16 pH adjuster supply path 21, 26, 41 Communication path 22 Coagulant supply path 23, 32 Stirrer 27 Protein discharge path 28 Dehydrator 29 Protein recovery path 31 Acid generation liquid path 35 Treatment water path 36 Gas discharge path 37 Sludge blanket 42 Water supply Channel 43 Drainage channel 45 Starch particles

フロントページの続き Fターム(参考) 4D040 AA02 AA12 AA13 AA14 AA61 AA62 AA63 4D059 AA06 AA30 BA12 BK12 CA07 CA27 Continued on the front page F term (reference) 4D040 AA02 AA12 AA13 AA14 AA61 AA62 AA63 4D059 AA06 AA30 BA12 BK12 CA07 CA27

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 澱粉粒子含有液をpH4.6〜5.4、
温度50〜70℃で液化処理する液化処理工程と、 液化処理液を嫌気性微生物を含む汚泥の存在下に嫌気性
処理する嫌気性処理工程とを有する澱粉粒子含有液の嫌
気性処理方法。
1. A starch particle-containing liquid having a pH of 4.6 to 5.4,
An anaerobic treatment method for a starch particle-containing liquid, comprising: a liquefaction treatment step of liquefaction treatment at a temperature of 50 to 70 ° C; and an anaerobic treatment step of anaerobic treatment of the liquefaction treatment liquid in the presence of sludge containing anaerobic microorganisms.
【請求項2】 澱粉粒子含有液を澱粉粒子濃縮液と澱粉
分離液とに分離する濃縮分離工程と、 前記澱粉粒子濃縮液をpH4.6〜5.4、温度50〜
70℃で液化処理する液化処理工程と、 液化処理液および前記澱粉分離液を導入し、嫌気性微生
物を含む汚泥の存在下に嫌気性処理する嫌気性処理工程
とを有する澱粉粒子含有液の嫌気性処理方法。
2. A concentration separation step of separating a starch particle-containing liquid into a starch particle concentrate and a starch separation liquid; and said starch particle concentrate at a pH of 4.6 to 5.4 and a temperature of 50 to 50%.
Anaerobic treatment of starch particle-containing liquid comprising: a liquefaction treatment step of liquefaction treatment at 70 ° C .; and an anaerobic treatment step of introducing the liquefaction treatment liquid and the starch separation liquid and anaerobic treatment in the presence of sludge containing anaerobic microorganisms. Sex treatment method.
【請求項3】 澱粉粒子含有液または濃縮液をpH4.
6〜5.4、温度50〜70℃で液化処理する液化処理
装置と、 少なくとも液化処理液を導入し、嫌気性微生物を含む汚
泥の存在下に嫌気性処理する嫌気性反応槽とを有する澱
粉粒子含有液の嫌気性処理装置。
3. A starch particle-containing solution or a concentrated solution having a pH of 4.
Starch having a liquefaction treatment device for liquefaction treatment at 6-5.4 and a temperature of 50-70 ° C., and an anaerobic reaction tank for introducing at least a liquefaction treatment solution and performing anaerobic treatment in the presence of sludge containing anaerobic microorganisms Anaerobic treatment device for particle-containing liquid.
JP37327899A 1999-12-28 1999-12-28 Method and apparatus for anaerobic treatment of liquid containing starch particles Expired - Fee Related JP3846138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37327899A JP3846138B2 (en) 1999-12-28 1999-12-28 Method and apparatus for anaerobic treatment of liquid containing starch particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37327899A JP3846138B2 (en) 1999-12-28 1999-12-28 Method and apparatus for anaerobic treatment of liquid containing starch particles

Publications (2)

Publication Number Publication Date
JP2001179288A true JP2001179288A (en) 2001-07-03
JP3846138B2 JP3846138B2 (en) 2006-11-15

Family

ID=18501895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37327899A Expired - Fee Related JP3846138B2 (en) 1999-12-28 1999-12-28 Method and apparatus for anaerobic treatment of liquid containing starch particles

Country Status (1)

Country Link
JP (1) JP3846138B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005125202A (en) * 2003-10-22 2005-05-19 Sumitomo Heavy Ind Ltd Organic waste water treatment apparatus
JP2008229600A (en) * 2007-03-19 2008-10-02 Koshimizucho Nogyo Kyodo Kumiai Waste treatment method in potato starch production process
JP2009050800A (en) * 2007-08-28 2009-03-12 Mitsubishi Kakoki Kaisha Ltd Apparatus and method for treating organic waste
JP2009183910A (en) * 2008-02-08 2009-08-20 Kurita Water Ind Ltd Method and apparatus for treating water containing organic substance
JP2011230007A (en) * 2010-04-23 2011-11-17 Tokyo Electric Power Co Inc:The Sewage treatment system
JP2012081403A (en) * 2010-10-08 2012-04-26 Swing Corp Organic wastewater treatment apparatus and treating method
JP2012126622A (en) * 2010-12-17 2012-07-05 Takenaka Doboku Co Ltd Method for processing decanter liquid into liquid fertilizer using super deep layer aerating tank
CN111792784A (en) * 2020-07-15 2020-10-20 安徽省环境科学研究院 Sweet potato starch wastewater treatment device with layering function and treatment method thereof
CN114772849A (en) * 2022-04-19 2022-07-22 安徽能泰高科环保技术有限公司 Be used for abluent effluent treatment plant of sweet potato processing

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005125202A (en) * 2003-10-22 2005-05-19 Sumitomo Heavy Ind Ltd Organic waste water treatment apparatus
JP2008229600A (en) * 2007-03-19 2008-10-02 Koshimizucho Nogyo Kyodo Kumiai Waste treatment method in potato starch production process
JP2009050800A (en) * 2007-08-28 2009-03-12 Mitsubishi Kakoki Kaisha Ltd Apparatus and method for treating organic waste
JP2009183910A (en) * 2008-02-08 2009-08-20 Kurita Water Ind Ltd Method and apparatus for treating water containing organic substance
JP2011230007A (en) * 2010-04-23 2011-11-17 Tokyo Electric Power Co Inc:The Sewage treatment system
JP2012081403A (en) * 2010-10-08 2012-04-26 Swing Corp Organic wastewater treatment apparatus and treating method
JP2012126622A (en) * 2010-12-17 2012-07-05 Takenaka Doboku Co Ltd Method for processing decanter liquid into liquid fertilizer using super deep layer aerating tank
CN111792784A (en) * 2020-07-15 2020-10-20 安徽省环境科学研究院 Sweet potato starch wastewater treatment device with layering function and treatment method thereof
CN111792784B (en) * 2020-07-15 2022-08-09 安徽省生态环境科学研究院 Sweet potato starch wastewater treatment device with layering function and treatment method thereof
CN114772849A (en) * 2022-04-19 2022-07-22 安徽能泰高科环保技术有限公司 Be used for abluent effluent treatment plant of sweet potato processing

Also Published As

Publication number Publication date
JP3846138B2 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
WO2006035594A1 (en) Method and apparatus for biologically treating wastewater containing fats and oils
JP3846131B2 (en) Anaerobic treatment method for starch production wastewater
KR20140032362A (en) Anaerobic processing method and device
JP2000015231A (en) Method for methane fermentation of organic waste
JP3846138B2 (en) Method and apparatus for anaerobic treatment of liquid containing starch particles
JPH11197636A (en) Method for treatment of organic waste
JP3835927B2 (en) Organic waste treatment methods
JPH10192889A (en) Method for treating organic drainage
JP4376539B2 (en) Method and apparatus for treating organic wastewater or sludge
JP2006281035A (en) Apparatus and method for treating organic waste
JP4409928B2 (en) Organic waste treatment methods
KR100750502B1 (en) Organic livestock sewage treatment apparatus and organic livestock sewage treatment method
JP2000015230A (en) Method for removing ammonia
WO2005005328A1 (en) Method of utilizing recovered magnesium ammonium phosphate and apparatus therefor
JP2000153259A (en) Methane fermentation method of easily degradable organic waste
JP4457391B2 (en) Organic sludge treatment method and treatment apparatus
JP3970163B2 (en) Organic waste treatment method and apparatus
JP2002224686A (en) Anaerobic treatment method and equipment for starch particle-containing liquid
JPH0739895A (en) Treating method and device for waste liquid containing organic solid content
WO2007083456A1 (en) Method and apparatus for anaerobic digestion treatment of organic waste liquid
US20160264444A1 (en) Thermal treatment system and method for efficient processing of organic material
JPS6325839B2 (en)
JP2003164840A (en) Method and apparatus for treating organic matter
JP2006281087A (en) Processing method of organic waste
JP4010733B2 (en) Organic wastewater treatment method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060814

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140901

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees