JP2009183910A - Method and apparatus for treating water containing organic substance - Google Patents

Method and apparatus for treating water containing organic substance Download PDF

Info

Publication number
JP2009183910A
JP2009183910A JP2008028461A JP2008028461A JP2009183910A JP 2009183910 A JP2009183910 A JP 2009183910A JP 2008028461 A JP2008028461 A JP 2008028461A JP 2008028461 A JP2008028461 A JP 2008028461A JP 2009183910 A JP2009183910 A JP 2009183910A
Authority
JP
Japan
Prior art keywords
water
tank
organic substance
containing water
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008028461A
Other languages
Japanese (ja)
Other versions
JP4893647B2 (en
Inventor
Takayuki Mizunari
隆之 水成
Katsura Kitatsuji
桂 北辻
Noboru Fujiwara
昇 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2008028461A priority Critical patent/JP4893647B2/en
Publication of JP2009183910A publication Critical patent/JP2009183910A/en
Application granted granted Critical
Publication of JP4893647B2 publication Critical patent/JP4893647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/58Reaction vessels connected in series or in parallel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/06Means for pre-treatment of biological substances by chemical means or hydrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Clinical Laboratory Science (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce thermal energy for heating and alkali consumption for pH maintenance required in an anaerobic treatment. <P>SOLUTION: High temperature blow water discharged from a boiler 13 is added to water containing an organic substance introduced to an anaerobic biological reactor 10 and thus the thermal energy for heating the water containing the organic substance can be saved. The anaerobic biological reactor 10 can comprise a methane fermentation tank 12 storing granule sludge and an acid formation tank 11 connected to each other in series. By employing the granule sludge, a high-load, high-speed operation is made possible. The alkali consumption for neutralizing the pH lowered by acid formation can be decreased by adding the blow water to the acid formation tank 11 or the upstream side thereof. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、有機物含有水を嫌気的に処理する生物処理方法および装置に関し、特に、グラニュール汚泥を保持する反応槽内に有機物含有水を導入して嫌気的に生物処理する嫌気性生物処理方法および装置に関する。   The present invention relates to a biological treatment method and apparatus for anaerobically treating organic material-containing water, and in particular, anaerobic biological treatment method for introducing an organic matter-containing water into a reaction tank holding granule sludge and performing anaerobic biological treatment. And device.

有機物含有水の生物処理法は、メタン発酵を行う嫌気性処理と、増殖速度が速い好気性微生物を用いる好気性処理とに大別される。嫌気性処理は、有機物濃度が高い有機物含有水の処理に適しておりメタンガスが得られるため、近年、高濃度の有機物含有水を排出する食品工場等での採用が増えている。   Biological treatment methods for organic matter-containing water are roughly classified into anaerobic treatments in which methane fermentation is performed and aerobic treatments in which aerobic microorganisms having a high growth rate are used. Anaerobic treatment is suitable for treatment of organic substance-containing water having a high organic substance concentration, and methane gas is obtained. In recent years, the use of anaerobic treatment is increasing in food factories that discharge high concentration of organic substance-containing water.

嫌気性処理方法には、浮遊性汚泥を用いる方法と微生物が粒状化したグラニュール汚泥を用いる方法とがある。グラニュール汚泥は高密度で沈降性が大きいため、グラニュール汚泥を用いれば高負荷高速処理が可能である。グラニュール汚泥を用いる嫌気性処理は、UASB(Upflow Anaerobic Sludge Blanket…上向流嫌気性スラッジブランケット)法と呼ばれる。UASBでは、グラニュール汚泥で形成したスラッジブランケットを保持する反応槽内に有機物含有水を導入し上向流通液することで、スラッジブランケットと接触させる。同様にグラニュール汚泥を用いる高負荷高速嫌気性処理法として、スラッジブランケットを高展開率で展開させるEGSB法(Expanded Granule Sludge Blanket)も知られている。   The anaerobic treatment method includes a method using floating sludge and a method using granulated sludge in which microorganisms are granulated. Granule sludge has a high density and a large sedimentation property, so that high-load high-speed treatment is possible using granule sludge. Anaerobic treatment using granular sludge is called UASB (Upflow Anaerobic Sludge Blanket) method. In UASB, organic substance-containing water is introduced into a reaction tank holding a sludge blanket formed of granule sludge, and the mixture is brought into contact with the sludge blanket by flowing upward. Similarly, an EGSB method (Expanded Granule Sludge Blanket) in which a sludge blanket is developed at a high expansion rate is also known as a high-load high-speed anaerobic treatment method using granular sludge.

グラニュール汚泥を用いるUASB法等において、有機物含有水を安定的かつ良好に処理するためには、グラニュール汚泥を維持、増殖させることが重要である。反応槽内にグラニュール汚泥を維持、増殖させることができないと、処理性能は徐々に低下し、やがて処理不能に陥ることもある。   In the UASB method using granular sludge, etc., it is important to maintain and propagate the granular sludge in order to stably and satisfactorily treat organic-containing water. If the granule sludge cannot be maintained and propagated in the reaction tank, the treatment performance gradually decreases and may eventually become untreatable.

反応槽にグラニュール汚泥を安定的に維持、増殖させるため、種々の検討が行われている。例えば特許文献1には、嫌気性生物反応槽に導入される原水にカルシウム化合物または鉄塩を添加することでグラニュール汚泥の浮上を防止する方法が記載されている。   Various studies have been conducted to stably maintain and propagate granular sludge in the reaction tank. For example, Patent Document 1 describes a method of preventing granule sludge from floating by adding a calcium compound or an iron salt to raw water introduced into an anaerobic biological reaction tank.

また、嫌気性汚泥の微生物活性の低下を防止して処理を安定させるため、生物処理槽に導入する有機物含有水は適宜、加温される。この場合、有機物含有水を嫌気性微生物の至適温度に加温するために熱エネルギーを与える必要があるので処理コストが上昇する。さらに、グラニュール汚泥を用いた処理において、有機物含有水に含まれる固形有機物を除去して酸生成を行ってからメタン発酵をさせる場合、酸生成の過程でpHが低下するので中和用のアルカリ添加が必要となる。
特開平8−141590号公報
Moreover, in order to prevent the microbial activity of anaerobic sludge from decreasing and stabilize the treatment, the organic substance-containing water introduced into the biological treatment tank is appropriately heated. In this case, since it is necessary to give heat energy in order to heat organic substance containing water to the optimal temperature of anaerobic microorganisms, processing cost rises. Furthermore, in the treatment using granule sludge, when methane fermentation is carried out after removing solid organic substances contained in organic substance-containing water and performing methane fermentation, the pH is lowered during the process of acid generation, so an alkali for neutralization. Addition is required.
JP-A-8-141590

嫌気性処理を安定的に行うための上述した薬剤添加や被処理水の加温は処理コストの上昇を招く。このため、安価な手段で嫌気性処理を安定化させることが求められている。本発明は、嫌気性処理を行う際の加温やpH維持のためのコストを低下させることを目的とする。   The above-described chemical addition and warming of the water to be treated for stably performing the anaerobic treatment increase the treatment cost. For this reason, it is required to stabilize the anaerobic treatment by an inexpensive means. An object of this invention is to reduce the cost for the heating and pH maintenance at the time of anaerobic treatment.

本発明者らは、ボイラから排出される濃縮排水(ボイラブロー水)を有機物含有水に添加することで上記課題を解決でき、さらに、ボイラブロー水の性状によってはこれを有機物含有水に添加することで嫌気性微生物の活性を高め、増殖を促進できる場合があることを見出し、本発明を完成させた。具体的には、本発明は以下を提供する。   The present inventors can solve the above problems by adding concentrated waste water (boiler blow water) discharged from the boiler to the organic matter-containing water, and depending on the properties of the boiler blow water, by adding this to the organic matter-containing water, The present inventors have found that there are cases where the activity of anaerobic microorganisms can be increased and growth can be promoted, and the present invention has been completed. Specifically, the present invention provides the following.

(1)有機物含有水とボイラブロー水とを、嫌気性生物反応槽に導入して嫌気性生物処理する有機物含有水の処理方法。
(2)前記ボイラブロー水は、リン酸を含む(1)に記載の有機物含有水の処理方法。
(3)前記ボイラブロー水は、pHが10以上12以下である(1)または(2)に記載の有機物含有水の処理方法。
(4)前記ボイラブロー水は、リン酸および/または水酸化カリウムが添加されたボイラ用水がブローされたものである(1)から(3)のいずれかに記載の有機物含有水の処理方法。
(5)前記嫌気性生物反応槽は、酸生成槽、およびグラニュール汚泥を保持するメタン発酵槽を含む(1)から(4)のいずれかに記載の有機物含有水の処理方法。
(6)前記ボイラブロー水は、前記酸生成槽またはその上流で前記有機物含有水に添加される(5)に記載の有機物含有水の処理方法。
(7)嫌気性生物反応槽を含む有機物含有水の処理装置であって、
有機物含有水とボイラブロー水とを前記嫌気性生物反応槽に導入する被処理液路を含む有機物含有水の処理装置。
(8)前記嫌気性生物反応槽は、酸生成槽、およびグラニュール汚泥を保持するメタン発酵槽を含む(7)に記載の有機物含有水の処理装置。
(9)前記被処理液路は、前記酸生成槽に接続された原水管、および前記原水管または前記酸生成槽に接続されたブロー配管を含む(8)に記載の有機物含有水の処理装置。
(1) A method for treating organic matter-containing water in which organic matter-containing water and boiler blow water are introduced into an anaerobic biological reaction tank to treat anaerobic organisms.
(2) The said boiler blow water is a processing method of the organic substance containing water as described in (1) containing phosphoric acid.
(3) The said boiler blow water is a processing method of the organic substance containing water as described in (1) or (2) whose pH is 10-12.
(4) The method for treating organic substance-containing water according to any one of (1) to (3), wherein the boiler blow water is obtained by blowing boiler water to which phosphoric acid and / or potassium hydroxide is added.
(5) The method for treating organic substance-containing water according to any one of (1) to (4), wherein the anaerobic biological reaction tank includes an acid generation tank and a methane fermentation tank holding granule sludge.
(6) The said boiler blow water is a treatment method of the organic substance containing water as described in (5) added to the said organic substance containing water in the said acid production tank or the upstream.
(7) An organic matter-containing water treatment apparatus including an anaerobic biological reaction tank,
An apparatus for treating organic matter-containing water comprising a liquid passage for introducing organic matter-containing water and boiler blow water into the anaerobic biological reaction tank.
(8) The said anaerobic biological reaction tank is a processing apparatus of the organic substance containing water as described in (7) containing the methane fermentation tank which hold | maintains an acid production tank and a granular sludge.
(9) The treatment liquid channel includes the raw water pipe connected to the acid generation tank and the blow pipe connected to the raw water pipe or the acid generation tank. .

本発明によれば、嫌気性処理に適した温度に被処理水を加温するために要する熱エネルギーの使用量を低減できる。また、本発明によれば酸生成の際のpH低下を回避するために添加するアルカリの使用量を低減できる。よって、本発明によれば嫌気性処理を行う際の加温やpH維持のためのコストを低下させることができる。さらに、本発明によれば、従来、下水放流等するために排水として処理する必要があったボイラブロー水を活用し、嫌気性処理を安定化させることもできる。   ADVANTAGE OF THE INVENTION According to this invention, the usage-amount of the heat energy required in order to warm a to-be-processed water to the temperature suitable for anaerobic processing can be reduced. Moreover, according to this invention, the usage-amount of the alkali added in order to avoid the pH fall at the time of acid production | generation can be reduced. Therefore, according to the present invention, it is possible to reduce costs for heating and maintaining pH when anaerobic treatment is performed. Furthermore, according to the present invention, it is possible to stabilize the anaerobic treatment by utilizing boiler blow water that has conventionally been required to be treated as waste water for discharging sewage.

以下、本発明について図面を用いて説明する。図1は、本発明の第1実施形態に係る有機物含有水の嫌気性処理装置(以下、単に「処理装置」という)1の模式図である。本実施形態では、嫌気性生物処理工程を酸生成工程とメタン発酵工程とに分けており、嫌気性生物反応槽10は、酸生成を行う酸生成槽11とメタン発酵を行うメタン発酵槽12とが直列接続されて構成されている。酸生成槽11には原水管21が接続され、酸生成槽11とメタン発酵槽12とは、送液管22および循環液管23で互いに接続されている。メタン発酵槽12には、処理水を取り出す処理水管24と、発生したメタンガスを取り出すガス管25が接続されている。   The present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram of an anaerobic treatment apparatus (hereinafter simply referred to as “treatment apparatus”) 1 of organic substance-containing water according to a first embodiment of the present invention. In this embodiment, the anaerobic biological treatment process is divided into an acid generation process and a methane fermentation process, and the anaerobic biological reaction tank 10 includes an acid generation tank 11 that performs acid generation, and a methane fermentation tank 12 that performs methane fermentation. Are connected in series. A raw water pipe 21 is connected to the acid generation tank 11, and the acid generation tank 11 and the methane fermentation tank 12 are connected to each other by a liquid feeding pipe 22 and a circulating liquid pipe 23. The methane fermentation tank 12 is connected with a treated water pipe 24 for taking out treated water and a gas pipe 25 for taking out generated methane gas.

酸生成槽11には酸生成菌が保持されている。一方、メタン発酵槽12には粒状のグラニュール汚泥が保持されている。送液管22はメタン発酵槽12下部に接続され、送液管22から送られた液はメタン発酵槽12内を上向きで流れる。メタン発酵槽12上部には気固液分離装置(GSS)が設けられ、GSSの頂部はメタン発酵槽12内の液面から突出する。ガス管25は、メタン発酵槽12上部に接続され、処理水管24はGSSの内側に連絡している。   The acid producing tank 11 holds acid producing bacteria. On the other hand, granular granule sludge is held in the methane fermentation tank 12. The liquid feeding pipe 22 is connected to the lower part of the methane fermentation tank 12, and the liquid sent from the liquid feeding pipe 22 flows upward in the methane fermentation tank 12. A gas-solid-liquid separator (GSS) is provided at the top of the methane fermentation tank 12, and the top of the GSS protrudes from the liquid level in the methane fermentation tank 12. The gas pipe 25 is connected to the upper part of the methane fermentation tank 12, and the treated water pipe 24 communicates with the inside of the GSS.

メタン発酵槽12内において、GSSが設置されている部分は気固液分離部分であり、その下部は反応部であり、反応部ではグラニュール汚泥が展開してスラッジブランケットが形成される。グラニュール汚泥は、嫌気性微生物を含む微生物が自己造粒して平均粒径0.5〜3.0mm程度の粒状になった汚泥であり沈降性に優れる。反応部の液は一部が循環液管23から取り出されて酸生成槽11に循環され、一部はGSSで気固液分離される。GSS内部で気固液分離された液は処理水管24から取り出される。   In the methane fermentation tank 12, the part where the GSS is installed is a gas-solid-liquid separation part, and the lower part is a reaction part. In the reaction part, granular sludge is developed to form a sludge blanket. Granule sludge is sludge in which microorganisms containing anaerobic microorganisms are self-granulated to form particles having an average particle size of about 0.5 to 3.0 mm, and has excellent sedimentation properties. A part of the liquid in the reaction section is taken out from the circulating liquid pipe 23 and circulated to the acid generation tank 11, and a part thereof is gas-solid separated by GSS. The liquid that has been gas-solid-liquid separated inside the GSS is taken out from the treated water pipe 24.

本発明では、有機物含有水にボイラから排出されたブロー水(ボイラブロー水)を添加して嫌気性生物処理を行う。ボイラブロー水は、嫌気性生物反応槽10またはその前段で有機物含有水に添加されればよい。本実施形態ではボイラブロー水は酸生成槽11の前段で有機物含有水に添加するよう構成している。具体的には、ボイラ13と接続されボイラブロー水が排出されるブロー配管31を原水管21に接続している。原水管21およびブロー配管31は、有機物含有水とボイラブロー水との混合液を嫌気性生物反応槽10に導入する被処理液路を構成している。   In the present invention, anaerobic biological treatment is performed by adding blow water (boiler blow water) discharged from the boiler to the organic substance-containing water. The boiler blow water may be added to the organic substance-containing water in the anaerobic biological reaction tank 10 or in the preceding stage. In the present embodiment, the boiler blow water is configured to be added to the organic substance-containing water at the front stage of the acid generation tank 11. Specifically, a blow pipe 31 connected to the boiler 13 and discharging boiler blow water is connected to the raw water pipe 21. The raw water pipe 21 and the blow pipe 31 constitute a treatment liquid path for introducing a mixed liquid of organic substance-containing water and boiler blow water into the anaerobic biological reaction tank 10.

以下、この処理装置1を用いた有機物含有水の処理方法について説明する。処理対象となる有機物含有水としては食品製造過程で排出されるような高濃度有機物含有水が挙げられ、有機物濃度がCODcr500〜30,000mg/L、特に1,000〜20,000mg/L程度の有機物含有水は好適な処理対象となる。   Hereinafter, the processing method of organic substance containing water using this processing device 1 is explained. The organic matter-containing water to be treated includes high-concentration organic matter-containing water that is discharged in the food production process, and the organic matter concentration is about 500 to 30,000 mg / L, particularly about 1,000 to 20,000 mg / L. Organic matter-containing water is a suitable treatment target.

有機物含有水は原水管21から酸生成槽11に送り、その途中で原水管21に接続されたブロー配管31を介してボイラブロー水を添加する。給水管30からボイラ13に給水される水には、清缶剤、脱酸素剤、復水処理剤等の水処理薬品が添加される。ボイラ用水に添加されたこれら薬剤はボイラ水系を循環する間に濃縮され、ボイラブロー水はpH10〜12程度のアルカリ性を示す。また、ボイラ13から排出されたボイラブロー水は60〜95℃程度と高温であり、下水等に廃棄する場合は、種々の手段により中和および冷却処理する必要がある。   The organic substance-containing water is sent from the raw water pipe 21 to the acid generation tank 11, and boiler blow water is added through a blow pipe 31 connected to the raw water pipe 21 in the middle thereof. Water treatment chemicals such as a cleansing agent, an oxygen scavenger, and a condensate treatment agent are added to the water supplied to the boiler 13 from the water supply pipe 30. These chemicals added to the boiler water are concentrated while circulating in the boiler water system, and the boiler blow water exhibits an alkalinity of about pH 10-12. Moreover, the boiler blow water discharged | emitted from the boiler 13 is as high as about 60-95 degreeC, and when discarding in a sewage etc., it is necessary to neutralize and cool by various means.

本発明は、従来、酸添加による中和処理や熱交換による冷却処理が必要であったボイラブロー水を、嫌気性生物処理を安定化させる添加剤として利用する。本発明で有機物含有水に添加されるボイラブロー水には、少なくともリン酸を含むことが求められ、リン酸濃度は5〜100mg/Lであることが好ましい。ボイラブロー水はさらに1質量%以上の水酸化カリウムを含み、温度は60〜95℃、pHは10〜12であることが好ましい。また、ボイラブロー水には糖類、窒素分、タンニンも含まれていることが好ましい。   The present invention utilizes boiler blow water, which conventionally required neutralization treatment by acid addition and cooling treatment by heat exchange, as an additive for stabilizing anaerobic biological treatment. It is calculated | required that the boiler blow water added to organic substance containing water by this invention contains phosphoric acid at least, and it is preferable that phosphoric acid concentration is 5-100 mg / L. The boiler blow water preferably further contains 1% by mass or more of potassium hydroxide, the temperature is preferably 60 to 95 ° C., and the pH is preferably 10 to 12. Moreover, it is preferable that saccharides, nitrogen content, and tannin are also contained in boiler blow water.

一方でキレート剤または界面活性剤を含むボイラブロー水は本発明では使用を避ける。特に、エチレンジアミン四酢酸(EDTA)は、グラニュール汚泥の活性を低下させるため、本発明で使用するボイラブロー水はEDTAやNTA(ニトリル三酢酸)等のキレート剤を実質的に含まない(キレート剤濃度が3mg/L未満)ことが好ましい。本発明では、ボイラブロー水が上記性状となるようにボイラ用水に添加する水処理薬品を選択し、嫌気性生物処理を安定化させる剤として得られたボイラブロー水を利用するとよい。   On the other hand, boiler blow water containing a chelating agent or a surfactant is avoided in the present invention. In particular, ethylenediaminetetraacetic acid (EDTA) reduces the activity of granular sludge, so the boiler blow water used in the present invention does not substantially contain a chelating agent such as EDTA or NTA (nitrile triacetic acid) (chelating agent concentration). Is less than 3 mg / L). In this invention, it is good to select the water treatment chemical | medical agent added to boiler water so that boiler blow water may become the said property, and to utilize the boiler blow water obtained as an agent which stabilizes anaerobic biological treatment.

ボイラブロー水の添加量は、熱エネルギー利用の観点上、全量とすることが好ましい。ボイラブロー水の添加位置は本実施形態に限定されない。例えば、酸生成槽11の前に原水槽や固形物を分離する沈殿槽を設けている場合、原水槽や沈殿槽、またはこれらの槽を接続する配管の途中に添加してもよい。あるいは、酸生成槽11内の液にボイラブロー水を添加してもよい。ボイラブロー水を酸生成槽11、または酸生成槽11より上流に添加する場合には、ボイラブロー水を酸生成槽11での酸生成の際に要するpH調整剤(アルカリ)として利用できるうえ、酸生成での熱エネルギー利用を図ることができる。また、メタン発酵槽12またはその前でボイラブロー水を添加してもよい。具体的には、送液管22にブロー配管31を接続して酸生成槽11の後段であってメタン発酵槽12の手前でボイラブロー水を添加してもよく、メタン発酵槽12に添加してもよい。   The amount of boiler blow water added is preferably the total amount from the viewpoint of utilization of thermal energy. The addition position of boiler blow water is not limited to this embodiment. For example, when the precipitation tank which isolate | separates a raw | natural water tank and a solid substance is provided before the acid production tank 11, you may add in the middle of the piping which connects a raw | natural water tank, a precipitation tank, or these tanks. Alternatively, boiler blow water may be added to the liquid in the acid generation tank 11. When boiler blow water is added upstream from the acid generation tank 11 or the acid generation tank 11, the boiler blow water can be used as a pH adjuster (alkali) required for acid generation in the acid generation tank 11, and acid generation Use of heat energy can be achieved. Moreover, you may add boiler blow water in the methane fermenter 12 or in front of it. Specifically, the blow pipe 31 may be connected to the liquid feeding pipe 22 to add the boiler blow water after the acid generation tank 11 and before the methane fermentation tank 12, or to the methane fermentation tank 12. Also good.

また、酸生成槽11を省略して同一の反応槽で酸生成とメタン発酵とを行う構成とした装置で本発明を実施することもできる。この場合は、酸生成とメタン発酵とを行う同一の反応槽または前でボイラブロー水を有機物含有水に添加すればよい。   In addition, the present invention can be implemented with an apparatus in which the acid generation tank 11 is omitted and acid generation and methane fermentation are performed in the same reaction tank. In this case, the boiler blow water may be added to the organic substance-containing water in the same reaction tank in which acid generation and methane fermentation are performed or in front.

このように、有機物含有水にボイラブロー水を添加して嫌気性生物処理することで、以下のメリットが得られる。まず、酸生成に伴うpH低下に対するpH調整にボイラブロー水を利用できる。よって、従来、酸発酵の際に必要とされたアルカリの使用量を低減し、かつ、ボイラブロー水を下水等に排出する場合に必要とされる中和処理を不要にできる。   Thus, the following merit is acquired by adding boiler blow water to organic substance containing water and performing anaerobic biological treatment. First, boiler blow water can be used for pH adjustment with respect to pH reduction accompanying acid generation. Therefore, conventionally, the amount of alkali used for acid fermentation can be reduced, and neutralization treatment required when discharging boiler blow water into sewage or the like can be eliminated.

また、高温のボイラブロー水を有機物含有水に添加することで有機物含有水が加温されるので嫌気性微生物、特にグラニュール汚泥の生物活性を高くできる。すなわち、嫌気性生物反応槽10を加温するコストを低減して生物活性を高めることができるとともに、ボイラブロー水を下水等に排出する場合に必要とされる冷却処理を不要にできる。   Moreover, since the organic substance-containing water is heated by adding high-temperature boiler blow water to the organic substance-containing water, the biological activity of anaerobic microorganisms, particularly granule sludge can be increased. That is, it is possible to increase the biological activity by reducing the cost of heating the anaerobic biological reaction tank 10, and to eliminate the cooling process required when the boiler blow water is discharged into sewage or the like.

ここで、熱エネルギーロスを回避し嫌気性処理を安定化させるため、ボイラブロー水の温度が低下しないようにして嫌気性生物反応槽10に添加することが好ましい。ボイラブロー水の温度低下を抑制して嫌気性生物反応槽10に添加する方法としては、ボイラブロー水を送水する配管(ここではブロー配管31)を保温材で保温する方法が挙げられる。また、ボイラから排出されたボイラブロー水を直接、嫌気性生物反応槽に送らない場合、すなわち、一時的に貯留槽に貯留してポンプアップして送水するような場合は、貯留槽も保温材で保温するとよい。さらに、貯留槽は必要最小限の容量としてボイラブロー水の貯留槽内での滞留時間を短くするとよい。   Here, in order to avoid thermal energy loss and stabilize the anaerobic treatment, it is preferable to add to the anaerobic biological reactor 10 so that the temperature of the boiler blow water does not decrease. As a method of suppressing the temperature drop of boiler blow water and adding it to the anaerobic biological reaction tank 10, there is a method of keeping the temperature of a pipe (here, blow pipe 31) for feeding boiler blow water with a heat insulating material. In addition, when the boiler blow water discharged from the boiler is not sent directly to the anaerobic biological reaction tank, that is, when temporarily storing in the storage tank and pumping up the water, the storage tank should also be a heat insulating material. Keep warm. Furthermore, it is good to shorten the residence time in the storage tank of boiler blow water as a minimum required capacity | capacitance of a storage tank.

酸生成槽11では、ボイラブロー水が添加された有機物含有水を酸生成菌により処理して有機酸を生成する。ブロー配管31は原水管21のみならず酸生成槽11にも接続し、酸生成槽11内の液のpHを調整するために適宜、酸生成槽11にもボイラブロー水を添加するようにしてもよい。酸生成した液は送液管22を介して酸生成槽11からメタン発酵槽12に送る。   In the acid production tank 11, the organic material-containing water to which the boiler blow water is added is treated with acid producing bacteria to produce an organic acid. The blow pipe 31 is connected not only to the raw water pipe 21 but also to the acid generation tank 11, and in order to adjust the pH of the liquid in the acid generation tank 11, boiler blow water may be added to the acid generation tank 11 as appropriate. Good. The acid-generated liquid is sent from the acid generation tank 11 to the methane fermentation tank 12 via the liquid feeding pipe 22.

メタン発酵槽12では、酸生成された液を上向流で通液することで槽内に保持されているグラニュール汚泥を展開させ、スラッジブランケットを形成する。これにより有機物含有水とグラニュール汚泥との接触効率が高くなる。このため、高さ5〜7m程度のメタン発酵槽内に高さ3〜5m程度のスラッジブランケットを展開させるUASBでは、汚泥負荷0.1〜0.7kg−CODcr/kg−VSS/day程度、通液速度0.3〜1.5m/h程度の高負荷高速処理が可能である。高さ7〜20m程度のメタン発酵槽内に高さ5〜18m程度のスラッジブランケットを展開させるEGSBでは、汚泥負荷0.1〜1.0kg−CODcr/kg−VSS/day、通液速度3〜10m/h程度の処理ができる。   In the methane fermentation tank 12, the sludge blanket is formed by developing the granular sludge retained in the tank by passing the acid-generated liquid in an upward flow. Thereby, the contact efficiency of organic substance containing water and granule sludge becomes high. For this reason, in a UASB in which a sludge blanket having a height of about 3 to 5 m is deployed in a methane fermentation tank having a height of about 5 to 7 m, a sludge load of about 0.1 to 0.7 kg-CODcr / kg-VSS / day is passed through. High-load high-speed processing at a liquid speed of about 0.3 to 1.5 m / h is possible. In the EGSB in which a sludge blanket having a height of about 5 to 18 m is developed in a methane fermentation tank having a height of about 7 to 20 m, a sludge load of 0.1 to 1.0 kg-CODcr / kg-VSS / day, a flow rate of 3 to Processing at about 10 m / h is possible.

メタン発酵槽12に対する有機物負荷は5〜30kg−CODcr/m/day、特に8〜20kg−CODcr/m/dayが好ましい。嫌気性生物反応槽10はいずれも酸素が供給されない嫌気的条件で運転し、槽内液の温度を25〜40℃、特に30〜38℃とすることが好ましい。本発明では、有機物含有水にボイラブロー水を添加して嫌気性生物反応槽10に送る液を加温することで、嫌気性生物反応槽10を上記温度にするために要する熱エネルギーを節約する。 The organic load on the methane fermenter 12 is preferably 5 to 30 kg-CODcr / m 3 / day, and particularly preferably 8 to 20 kg-CODcr / m 3 / day. The anaerobic biological reaction tank 10 is preferably operated under anaerobic conditions in which oxygen is not supplied, and the temperature of the liquid in the tank is preferably 25 to 40 ° C, particularly 30 to 38 ° C. In the present invention, the boiler blow water is added to the organic substance-containing water and the liquid sent to the anaerobic biological reaction tank 10 is heated, thereby saving the thermal energy required to bring the anaerobic biological reaction tank 10 to the above temperature.

メタン発酵槽12内では、酸生成槽11で生成された有機酸がグラニュール汚泥の働きにより分解され、メタンを含むガスが発生する。メタン発酵槽12で生成されたガスおよび増殖した汚泥を含む混合液は、GSS内部で気固液分離され、ガスはガス管25からメタン発酵槽12外に取り出される。また、汚泥が分離され清澄化された液分は、処理水管24からメタン発酵槽12外に取り出される。処理水は、後段に設けた好気性生物処理装置(図示せず)等によりさらに処理してもよい。   In the methane fermentation tank 12, the organic acid produced | generated by the acid production tank 11 is decomposed | disassembled by the function of granule sludge, and the gas containing methane is generated. The mixed solution containing the gas generated in the methane fermentation tank 12 and the grown sludge is gas-solid-liquid separated inside the GSS, and the gas is taken out from the gas pipe 25 to the outside of the methane fermentation tank 12. In addition, the liquid component from which sludge has been separated and clarified is taken out of the methane fermentation tank 12 from the treated water pipe 24. The treated water may be further treated by an aerobic biological treatment apparatus (not shown) provided at a later stage.

また、メタン発酵槽12内の液は、循環液管23から取り出して酸生成槽11に循環させる。本実施形態では循環液管23から分注管23Bを分岐させ、メタン発酵槽12から循環させる液の一部を、分注管23Bを介して送液管22に注入している。   Further, the liquid in the methane fermentation tank 12 is taken out from the circulation liquid pipe 23 and circulated in the acid generation tank 11. In this embodiment, the dispensing pipe 23B is branched from the circulating liquid pipe 23, and a part of the liquid circulated from the methane fermentation tank 12 is injected into the liquid feeding pipe 22 via the dispensing pipe 23B.

〈実施例1〉
以下、実施例に基づき本発明をさらに詳しく説明する。実施例では、図1に示す処理装置1を模して図2に示す実験装置2を作成した。被処理水として表1に示す性状の有機物含有水に表2に示す性状のボイラブロー水を添加して嫌気性生物処理した。
<Example 1>
Hereinafter, the present invention will be described in more detail based on examples. In the example, an experimental apparatus 2 shown in FIG. 2 was created by imitating the processing apparatus 1 shown in FIG. As the water to be treated, the anaerobic biological treatment was performed by adding the boiler blow water having the properties shown in Table 2 to the organic substance-containing water having the properties shown in Table 1.

なお、表において、TOCは全有機物態炭素濃度、CODcrは化学的酸素消費量で示される有機物濃度、NH-Nはアンモニア態窒素濃度、PO-Pはリン酸濃度、SSは浮遊性物質濃度を意味している。また、pH8.3に調整するために必要な酸消費量で示されるアルカリ度をpアルカリ、pH4.8に調整するために必要な酸消費量で示されるアルカリ度をmアルカリと表示している。
In the table, TOC is the total organic carbon concentration, CODcr is the organic concentration indicated by chemical oxygen consumption, NH 4 -N is the ammonia nitrogen concentration, PO 4 -P is the phosphoric acid concentration, and SS is the floating substance. Means concentration. Further, the alkalinity indicated by the acid consumption required for adjusting to pH 8.3 is indicated as p alkali, and the alkalinity indicated by the acid consumption required for adjusting to pH 4.8 is indicated as m alkali. .

酸生成槽11は、容量500mLの三角フラスコで構成し、ヒータHの上に載置して適宜、加温した。メタン発酵槽12は、内径10cm、高さ50mでGSSが設置された部分を除く反応部の容量は3L、GSS部を含めた部分の容量は4Lである。   The acid generation tank 11 was constituted by a 500 mL Erlenmeyer flask, placed on the heater H, and appropriately heated. The methane fermentation tank 12 has an inner diameter of 10 cm, a height of 50 m, a reaction part excluding a part where the GSS is installed, and a capacity of the part including the GSS part is 4L.

酸生成槽11には、CODcr負荷72g−CODcr/L/dayで有機物含有水を通水した。また、メタン発酵槽12から取り出した槽内液を3〜4mL/分で酸生成槽11に循環させ、ボイラブロー水を添加した。ボイラブロー水の添加割合は、RUN1では循環水に対して2質量%の割合とし、RUN2では10質量%の割合とした。ボイラブロー水の温度は80℃であったが、酸生成槽11内部の液温が35℃となるよう、適宜ヒータHで加温した。また、酸生成槽11内の液のpHを測定するためにpH計Pを設け、その値が7になるように適宜、濃度1%の水酸化ナトリウム溶液をアルカリ添加管33から酸生成槽11に添加した。   Water containing organic matter was passed through the acid generation tank 11 at a CODcr load of 72 g-CODcr / L / day. Moreover, the liquid in the tank taken out from the methane fermentation tank 12 was circulated to the acid generation tank 11 at 3 to 4 mL / min, and boiler blow water was added. The addition ratio of boiler blow water was 2% by mass with respect to circulating water in RUN1, and 10% by mass in RUN2. Although the temperature of boiler blow water was 80 degreeC, it heated with the heater H suitably so that the liquid temperature inside the acid production | generation tank 11 might be set to 35 degreeC. Further, a pH meter P is provided to measure the pH of the liquid in the acid generation tank 11, and a sodium hydroxide solution having a concentration of 1% is appropriately added from the alkali addition pipe 33 so that the value becomes 7. Added to.

メタン発酵槽12は、CODcr負荷12g−CODcr/L/day、汚泥負荷0.4g−CODcr/g−Vss/day(汚泥保持量30g−VSS)で運転した。   The methane fermentation tank 12 was operated with a CODcr load of 12 g-CODcr / L / day and a sludge load of 0.4 g-CODcr / g-Vss / day (sludge retention amount 30 g-VSS).

RUN1、RUN2とも、通水開始前にメタン発酵槽11内のグラニュール汚泥を取り出し、2種類の基質を与えて培養し、活性を調べた。2種類の基質はそれぞれ、酢酸基質、および有機酸混合(酢酸、酪酸およびプロピオン酸の混合)基質とした。また、RUN1では通水開始から14日後に、RUN2では通水開始から28日後にメタン発酵槽11内のグラニュール汚泥を取り出して、上記2種類の基質それぞれを与えた場合の活性を調べるとともに、その粒径を測定し平均粒径を求めた。   For both RUN1 and RUN2, the granular sludge in the methane fermentation tank 11 was taken out before the start of water flow, was cultured with two kinds of substrates, and the activity was examined. The two types of substrates were an acetic acid substrate and an organic acid mixed (mixed of acetic acid, butyric acid and propionic acid) substrate, respectively. In addition, in RUN1, after 14 days from the start of water flow, in RUN2, after 28 days from the start of water flow, the granule sludge in the methane fermentation tank 11 is taken out, and the activity when each of the above two types of substrates is given is examined. The particle size was measured and the average particle size was determined.

実施例1のRUN1では、メタン発酵槽12内のグラニュール汚泥の活性は、酢酸基質の場合、通水前が0.22kg−CODcr/kg−vss/day、通水開始から14日後で0.27kg−CODcr/kg−vss/dayであった。また、有機酸混合基質の場合は、通水前が0.38kg−CODcr/kg−vss/day、通水開始から14日後で0.52kg−CODcr/kg−vss/dayであった。グラニュール汚泥の平均粒径は、通水開始時は1.8mmであり、通水開始から14日後も1.8mmであった。   In the RUN 1 of Example 1, the activity of the granular sludge in the methane fermentation tank 12 is 0.22 kg-CODcr / kg-vss / day before the water flow and 0. It was 27 kg-CODcr / kg-vss / day. Further, in the case of the organic acid mixed substrate, it was 0.38 kg-CODcr / kg-vss / day before water passage, and 0.52 kg-CODcr / kg-vss / day 14 days after the start of water passage. The average particle size of the granular sludge was 1.8 mm at the start of water flow and was 1.8 mm 14 days after the start of water flow.

実施例1のRUN2では、メタン発酵槽12内のグラニュール汚泥の活性は、酢酸基質の場合、通水前はRUN1と同じ、通水開始から28日後が0.28kg−CODcr/kg−vss/dayであった。また、有機酸混合基質の場合は、通水前はRUN1と同じ、通水開始から28日後は0.53kg−CODcr/kg−vss/dayであった。グラニュール汚泥の平均粒径は、通水開始時はRUN1と同じで通水開始から28日後は2.1mmであった。   In RUN2 of Example 1, the activity of the granular sludge in the methane fermentation tank 12 is the same as that of RUN1 before passing water in the case of an acetic acid substrate, and is 0.28 kg-CODcr / kg-vss / 28 days after the start of passing water. It was a day. Further, in the case of the organic acid mixed substrate, it was the same as RUN1 before water passage, and was 0.53 kg-CODcr / kg-vss / day after 28 days from the start of water passage. The average particle size of the granular sludge was the same as RUN1 at the start of water flow and was 2.1 mm after 28 days from the start of water flow.

〈実施例2〉
実施例2として、実施例1で用いたボイラブロー水に代えて、アクリル酸ポリマーをさらに含むボイラブロー水を用いた。その他の条件は実施例1と同様にして試験を行ったところ、実施例2のRUN1では、メタン発酵槽12内のグラニュール汚泥の活性は、酢酸基質の場合、通水前が0.25kg−CODcr/kg−vss/day、通水開始から14日後で0.27kg−CODcr/kg−vss/dayであった。また、有機酸混合基質の場合は、通水前が0.37kg−CODcr/kg−vss/day、通水開始から14日後で0.48kg−CODcr/kg−vss/dayであった。グラニュール汚泥の平均粒径は、通水開始時は1.8mmであり、通水開始から14日後は2.0mmであった。
<Example 2>
As Example 2, instead of the boiler blow water used in Example 1, boiler blow water further containing an acrylic acid polymer was used. When other conditions were tested in the same manner as in Example 1, in RUN 1 of Example 2, the activity of granular sludge in the methane fermentation tank 12 was 0.25 kg- CODcr / kg-vss / day was 0.27 kg-CODcr / kg-vss / day 14 days after the start of water flow. Further, in the case of the organic acid mixed substrate, it was 0.37 kg-CODcr / kg-vss / day before water passage and 0.48 kg-CODcr / kg-vss / day 14 days after the start of water passage. The average particle size of the granular sludge was 1.8 mm at the start of water flow and 2.0 mm after 14 days from the start of water flow.

実施例2のRUN2では、メタン発酵槽12内のグラニュール汚泥の活性は、酢酸基質の場合、通水前はRUN1と同じで、通水開始から28日後が0.28kg−CODcr/kg−vss/dayであった。また、有機酸混合基質の場合は、通水前はRUN1と同じ、通水開始から28日後は0.50kg−CODcr/kg−vss/dayであった。グラニュール汚泥の平均粒径は、通水開始時はRUN1と同じで通水開始から28日後は2.1mmであった。   In the RUN 2 of Example 2, the activity of the granular sludge in the methane fermentation tank 12 is the same as that of the RUN 1 before the water flow in the case of the acetic acid substrate, and 0.28 kg-CODcr / kg-vss after 28 days from the start of the water flow. / Day. Further, in the case of the organic acid mixed substrate, it was the same as RUN1 before water passage, and was 0.50 kg-CODcr / kg-vss / day after 28 days from the start of water passage. The average particle size of the granular sludge was the same as RUN1 at the start of water flow and was 2.1 mm after 28 days from the start of water flow.

〈参考例1〉
参考例1として、実施例1で用いたボイラブロー水に代えて、リン酸イオンを含まない代わりにアクリル酸ポリマーを含むボイラブロー水を用いた。その他の条件は実施例1と同様にして試験を行ったところ、参考例1のRUN1では、メタン発酵槽12内のグラニュール汚泥の活性は、酢酸基質の場合、通水前が0.22kg−CODcr/kg−vss/day、通水開始から14日後で0.28kg−CODcr/kg−vss/dayであった。また、有機酸混合基質の場合は、通水前が0.35kg−CODcr/kg−vss/day、通水開始から14日後で0.40kg−CODcr/kg−vss/dayであった。グラニュール汚泥の平均粒径は、通水開始時は1.8mmであり、通水開始から14日後も1.8mmであった。
<Reference Example 1>
As Reference Example 1, instead of the boiler blow water used in Example 1, boiler blow water containing an acrylic acid polymer was used instead of not containing phosphate ions. When other conditions were tested in the same manner as in Example 1, in RUN 1 of Reference Example 1, the activity of the granular sludge in the methane fermentation tank 12 was 0.22 kg- CODcr / kg-vss / day was 0.28 kg-CODcr / kg-vss / day 14 days after the start of water flow. Further, in the case of the organic acid mixed substrate, it was 0.35 kg-CODcr / kg-vss / day before water passage and 0.40 kg-CODcr / kg-vss / day 14 days after the start of water passage. The average particle size of the granular sludge was 1.8 mm at the start of water flow and was 1.8 mm 14 days after the start of water flow.

参考例1のRUN2では、メタン発酵槽12内のグラニュール汚泥の活性は、酢酸基質の場合、通水前はRUN1と同じで、通水開始から28日後も0.28kg−CODcr/kg−vss/dayであった。また、有機酸混合基質の場合は、通水前はRUN1と同じ、通水開始から28日後は0.51kg−CODcr/kg−vss/dayであった。グラニュール汚泥の平均粒径は、通水開始時はRUN1と同じで通水開始から28日後も1.8mmであった。   In RUN2 of Reference Example 1, the activity of the granular sludge in the methane fermentation tank 12 is the same as that of RUN1 before passing water in the case of an acetic acid substrate, and 0.28 kg-CODcr / kg-vss 28 days after the start of passing water. / Day. Moreover, in the case of the organic acid mixed substrate, it was the same as RUN1 before water flow, and was 0.51 kg-CODcr / kg-vss / day after 28 days from the start of water flow. The average particle diameter of the granular sludge was the same as RUN1 at the start of water flow and was 1.8 mm 28 days after the start of water flow.

〈参考例2〉
参考例2として、実施例1で用いたボイラブロー水に代えて、リン酸イオンを含まずキレート剤(EDTA)を含むボイラブロー水を用いた。その他の条件は実施例1と同様にして試験を行ったところ、参考例2のRUN1では、メタン発酵槽12内のグラニュール汚泥の活性は、酢酸基質の場合、通水前が0.24kg−CODcr/kg−vss/dayであったのに、通水開始から14日後は0.21kg−CODcr/kg−vss/dayとなった。また、有機酸混合基質の場合は、通水前が0.38kg−CODcr/kg−vss/dayであったのに、通水開始から14日後には0.30kg−CODcr/kg−vss/dayになった。グラニュール汚泥の平均粒径は、通水開始時は1.8mmあったのが、通水開始から14日後には1.7mmになった。
<Reference Example 2>
As Reference Example 2, instead of the boiler blow water used in Example 1, boiler blow water containing no chelate agent (EDTA) but no phosphate ions was used. When other conditions were tested in the same manner as in Example 1, in RUN 1 of Reference Example 2, the activity of granular sludge in the methane fermentation tank 12 was 0.24 kg- Although it was CODcr / kg-vss / day, it became 0.21 kg-CODcr / kg-vss / day 14 days after the start of water flow. Further, in the case of the organic acid mixed substrate, it was 0.38 kg-CODcr / kg-vss / day before water passage, but 0.30 kg-CODcr / kg-vss / day after 14 days from the start of water passage. Became. The average particle diameter of the granular sludge was 1.8 mm at the start of water flow, but became 1.7 mm after 14 days from the start of water flow.

比較例1のRUN2では、メタン発酵槽12内のグラニュール汚泥の活性は、酢酸基質の場合、通水前はRUN1と同じで、通水開始から28日後は0.18kg−CODcr/kg−vss/dayまで低下した。また、有機酸混合基質の場合は、通水前はRUN1と同じ、通水開始から28日後は0.20kg−CODcr/kg−vss/dayになった。グラニュール汚泥の平均粒径は、通水開始時はRUN1と同じで通水開始から28日後は1.7mmであった。   In the RUN 2 of Comparative Example 1, the activity of the granular sludge in the methane fermentation tank 12 is the same as that of the RUN 1 before passing water in the case of an acetic acid substrate, and 0.18 kg-CODcr / kg-vss after 28 days from the start of passing water. / Day. Moreover, in the case of the organic acid mixed substrate, it was 0.20 kg-CODcr / kg-vss / day, the same as RUN1 before water flow, and 28 days after the start of water flow. The average particle diameter of the granular sludge was the same as RUN1 at the start of water flow and was 1.7 mm after 28 days from the start of water flow.

〈ブランク〉
ブランクとして、実施例1で用いたボイラブロー水に代えて、80℃に加温した純水を用いた。その他の条件は実施例1と同様にして試験を行ったところ、ブランクのRUN1では、メタン発酵槽12内のグラニュール汚泥の活性は、酢酸基質の場合、通水前が0.22kg−CODcr/kg−vss/dayであったのに、通水開始から14日後は0.20kg−CODcr/kg−vss/dayとなった。また、有機酸混合基質の場合は、通水前が0.38kg−CODcr/kg−vss/dayであったのに、通水開始から14日後には0.35kg−CODcr/kg−vss/dayになった。グラニュール汚泥の平均粒径は、通水開始時は1.8mmあり通水開始から14日後も1.8mmであった。
<blank>
Instead of the boiler blow water used in Example 1, pure water heated to 80 ° C. was used as a blank. When other conditions were tested in the same manner as in Example 1, in the case of blank RUN1, the activity of the granular sludge in the methane fermentation tank 12 was 0.22 kg-CODcr / Although it was kg-vss / day, it became 0.20 kg-CODcr / kg-vss / day 14 days after the start of water flow. Further, in the case of the organic acid mixed substrate, 0.38 kg-CODcr / kg-vss / day before the water flow was 0.35 kg-CODcr / kg-vss / day after 14 days from the start of the water flow. Became. The average particle diameter of the granular sludge was 1.8 mm at the start of water flow and was 1.8 mm 14 days after the start of water flow.

ブランクのRUN2では、メタン発酵槽12内のグラニュール汚泥の活性は、酢酸基質の場合、通水前はRUN1と同じで、通水開始から28日後は0.21kg−CODcr/kg−vss/dayであった。また、有機酸混合基質の場合は、通水前はRUN1と同じ、通水開始から28日後は0.35kg−CODcr/kg−vss/dayになった。グラニュール汚泥の平均粒径は、通水開始時はRUN1と同じで通水開始から28日後も1.8mmであった。   In the case of blank RUN2, the activity of granule sludge in the methane fermenter 12 is the same as that of RUN1 before passing water in the case of an acetic acid substrate, and 0.21 kg-CODcr / kg-vss / day after 28 days from the start of passing water. Met. Moreover, in the case of the organic acid mixed substrate, it was 0.35 kg-CODcr / kg-vss / day, the same as RUN1 before water flow, and 28 days after the start of water flow. The average particle diameter of the granular sludge was the same as RUN1 at the start of water flow and was 1.8 mm 28 days after the start of water flow.

表2に、実施例1、2、参考例1、2、およびブランクで有機物含有水に添加したボイラブロー水または純水の性状を示す。
Table 2 shows the properties of boiler blow water or pure water added to the organic-containing water in Examples 1 and 2, Reference Examples 1 and 2, and blanks.

実施例1、2、参考例1、2およびブランクにおけるグラニュール活性について、酢酸基質で測定した場合の結果を図3に示し、有機酸基質で測定した場合の結果を図4に示す。両図において、(A)はRUN1の結果を示し、(B)はRUN2の結果を示す。また実施例1、2、参考例1、2およびブランクのRUN1およびRUN2におけるグラニュールの平均粒径の変化を表3に示す。
About the granule activity in Example 1, 2, Reference Example 1, 2, and a blank, the result at the time of measuring with an acetic acid substrate is shown in FIG. 3, and the result at the time of measuring with an organic acid substrate is shown in FIG. In both figures, (A) shows the result of RUN1, and (B) shows the result of RUN2. Table 3 shows changes in the average particle diameter of granules in Examples 1 and 2, Reference Examples 1 and 2, and RUN1 and RUN2 of the blank.

さらに実施例1、2、参考例1、2およびブランクについて、28日間の実験期間中に使用した中和用アルカリの総使用量および被処理水加温用電力の総使用量を表4に示す。
Furthermore, about Example 1, 2, Reference Example 1, 2, and a blank, the total usage-amount of the alkali for neutralization used during the experiment period of 28 days and the total usage-amount of the electric power for to-be-processed water heating are shown in Table 4. .

表4に示すように、実施例1、2および参考例1、2では、中和用アルカリの使用量および電力使用量を低減できた。また、図3および図4に示すように、ボイラブロー水がキレート剤を含まない場合は、ボイラブロー水を有機物含有水に添加することで、アルカリ使用量および電力使用量を低減できるのみならず、グラニュール活性を高めることができることが示された。さらに、表3に示すように、ボイラブロー水がリン酸を含む場合は、嫌気性微生物の増殖を促進できることが示された。   As shown in Table 4, in Examples 1 and 2 and Reference Examples 1 and 2, it was possible to reduce the amount of neutralizing alkali used and the amount of power used. Moreover, as shown in FIG. 3 and FIG. 4, when boiler blow water does not contain a chelating agent, by adding boiler blow water to organic substance-containing water, not only the amount of alkali used and the amount of power used can be reduced, but also granulated It was shown that the activity can be increased. Furthermore, as shown in Table 3, it was shown that the growth of anaerobic microorganisms can be promoted when the boiler blow water contains phosphoric acid.

本発明は、有機物含有水の処理に好適に用いることができる。   The present invention can be suitably used for the treatment of organic substance-containing water.

本発明の一実施形態に係る有機物含有水の嫌気性処理装置の模式図。The schematic diagram of the anaerobic processing apparatus of the organic substance containing water which concerns on one Embodiment of this invention. 実験に用いた嫌気性処理装置の模式図。The schematic diagram of the anaerobic processing apparatus used for experiment. 実験結果を示すグラフ図。The graph which shows an experimental result. 実験結果を示すグラフ図。The graph which shows an experimental result.

符号の説明Explanation of symbols

1、2 嫌気性処理装置
10 嫌気性生物反応槽
11 酸生成槽
12 メタン発酵槽
13 ボイラ
21 原水管(被処理液路)
31 ブロー配管(被処理液路)
1, 2 Anaerobic treatment device 10 Anaerobic biological reaction tank 11 Acid production tank 12 Methane fermentation tank 13 Boiler 21 Raw water pipe (treated liquid channel)
31 Blow piping (treated liquid path)

Claims (9)

有機物含有水とボイラブロー水とを、嫌気性生物反応槽に導入して嫌気性生物処理する有機物含有水の処理方法。   An organic matter-containing water treatment method in which organic matter-containing water and boiler blow water are introduced into an anaerobic biological reaction tank to treat anaerobic organisms. 前記ボイラブロー水は、リン酸を含む請求項1に記載の有機物含有水の処理方法。   The said boiler blow water is a processing method of the organic substance containing water of Claim 1 containing phosphoric acid. 前記ボイラブロー水は、pHが10以上12以下である請求項1または2に記載の有機物含有水の処理方法。   The method for treating organic substance-containing water according to claim 1 or 2, wherein the boiler blow water has a pH of 10 or more and 12 or less. 前記ボイラブロー水は、リン酸および/または水酸化カリウムが添加されたボイラ用水がブローされたものである請求項1から3のいずれかに記載の有機物含有水の処理方法。   The method for treating organic substance-containing water according to any one of claims 1 to 3, wherein the boiler blow water is obtained by blowing boiler water to which phosphoric acid and / or potassium hydroxide is added. 前記嫌気性生物反応槽は、酸生成槽、およびグラニュール汚泥を保持するメタン発酵槽を含む請求項1から4のいずれかに記載の有機物含有水の処理方法。   The said anaerobic biological reaction tank is a processing method of the organic substance containing water in any one of Claim 1 to 4 containing the methane fermentation tank holding an acid production tank and granule sludge. 前記ボイラブロー水は、前記酸生成槽またはその上流で前記有機物含有水に添加される請求項5に記載の有機物含有水の処理方法。   The said boiler blow water is a treatment method of the organic substance containing water of Claim 5 added to the said organic substance containing water in the said acid production tank or the upstream. 嫌気性生物反応槽を含む有機物含有水の処理装置であって、
有機物含有水とボイラブロー水とを前記嫌気性生物反応槽に導入する被処理液路を含む有機物含有水の処理装置。
An organic matter-containing water treatment apparatus including an anaerobic biological reaction tank,
An apparatus for treating organic matter-containing water comprising a liquid passage for introducing organic matter-containing water and boiler blow water into the anaerobic biological reaction tank.
前記嫌気性生物反応槽は、酸生成槽、およびグラニュール汚泥を保持するメタン発酵槽を含む請求項7に記載の有機物含有水の処理装置。   The said anaerobic biological reaction tank is a processing apparatus of the organic substance containing water of Claim 7 containing the methane fermentation tank which hold | maintains an acid production tank and granule sludge. 前記被処理液路は、前記酸生成槽に接続された原水管、および前記原水管または前記酸生成槽に接続されたブロー配管を含む請求項8に記載の有機物含有水の処理装置。   The treatment liquid channel according to claim 8, wherein the liquid channel to be treated includes a raw water pipe connected to the acid generation tank, and a blow pipe connected to the raw water pipe or the acid generation tank.
JP2008028461A 2008-02-08 2008-02-08 Method and apparatus for treating water containing organic matter Active JP4893647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008028461A JP4893647B2 (en) 2008-02-08 2008-02-08 Method and apparatus for treating water containing organic matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008028461A JP4893647B2 (en) 2008-02-08 2008-02-08 Method and apparatus for treating water containing organic matter

Publications (2)

Publication Number Publication Date
JP2009183910A true JP2009183910A (en) 2009-08-20
JP4893647B2 JP4893647B2 (en) 2012-03-07

Family

ID=41067735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008028461A Active JP4893647B2 (en) 2008-02-08 2008-02-08 Method and apparatus for treating water containing organic matter

Country Status (1)

Country Link
JP (1) JP4893647B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012205991A (en) * 2011-03-29 2012-10-25 Kurita Water Ind Ltd Treatment apparatus of organic wastewater
JP2018167177A (en) * 2017-03-29 2018-11-01 大阪瓦斯株式会社 Wastewater treatment method and wastewater treatment apparatus
CN115611441A (en) * 2021-06-28 2023-01-17 中国石油化工股份有限公司 Mobile high-temperature biochemical device and working method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101425104B1 (en) 2012-07-27 2014-07-31 민예지 System for producing biogas using substitution reaction in pretreatment process of anaerobic fermentation to improve biogas production from organic wastes, production method thereof and biogas produced by the method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001129590A (en) * 1999-10-29 2001-05-15 Kurita Water Ind Ltd Method for anaerobic treatment of waste water from starch production
JP2001179288A (en) * 1999-12-28 2001-07-03 Kurita Water Ind Ltd Method and apparatus for anaerobically treating starch- containing liquid
JP2007187392A (en) * 2006-01-13 2007-07-26 Daikin Ind Ltd Waste heat recovery system
JP2007262567A (en) * 2006-03-03 2007-10-11 Hakuto Co Ltd Boiler corrosion-inhibiting method
JP2007319835A (en) * 2006-06-05 2007-12-13 Idemitsu Kosan Co Ltd Wastewater treatment method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001129590A (en) * 1999-10-29 2001-05-15 Kurita Water Ind Ltd Method for anaerobic treatment of waste water from starch production
JP2001179288A (en) * 1999-12-28 2001-07-03 Kurita Water Ind Ltd Method and apparatus for anaerobically treating starch- containing liquid
JP2007187392A (en) * 2006-01-13 2007-07-26 Daikin Ind Ltd Waste heat recovery system
JP2007262567A (en) * 2006-03-03 2007-10-11 Hakuto Co Ltd Boiler corrosion-inhibiting method
JP2007319835A (en) * 2006-06-05 2007-12-13 Idemitsu Kosan Co Ltd Wastewater treatment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012205991A (en) * 2011-03-29 2012-10-25 Kurita Water Ind Ltd Treatment apparatus of organic wastewater
JP2018167177A (en) * 2017-03-29 2018-11-01 大阪瓦斯株式会社 Wastewater treatment method and wastewater treatment apparatus
CN115611441A (en) * 2021-06-28 2023-01-17 中国石油化工股份有限公司 Mobile high-temperature biochemical device and working method thereof

Also Published As

Publication number Publication date
JP4893647B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
Yellezuome et al. Mitigation of ammonia inhibition in anaerobic digestion of nitrogen-rich substrates for biogas production by ammonia stripping: A review
Liu et al. Optimization and evaluation of an air-recirculated stripping for ammonia removal from the anaerobic digestate of pig manure
JP5261977B2 (en) Anaerobic treatment method and anaerobic treatment apparatus
KR20130003522A (en) Treatment system for waste water
CN105693030B (en) A kind of bamboo wood carbonized waste water treatment system and method
La et al. Ammonia nitrogen removal and recovery from swine wastewater by microwave radiation
JP4893647B2 (en) Method and apparatus for treating water containing organic matter
JP2010247115A (en) Anaerobic treatment apparatus equipped with evaporative concentration means for methane fermentation treated water, and anaerobic treatment method using the same
JP5202833B2 (en) Biogas purification system
JP5797150B2 (en) Magnesium ammonium phosphate production suppression system and methane fermentation system
JP5143358B2 (en) Organic waste treatment method and apparatus
JP2006272252A (en) Method for treating nitrogen-containing organic drainage
JP2011143365A (en) Method and apparatus for treating wastewater
CN103449591A (en) High-concentration ammonia nitrogen wastewater treatment device
CN207002529U (en) Pyrazolone production wastewater treatment device
JP5773381B2 (en) Ammonia removing apparatus, organic waste processing apparatus and processing method using the same
CN107473519A (en) A kind of biochemical processing method of ultrahigh concentration ammonia nitrogen waste water
JP5250444B2 (en) Anaerobic biological treatment method and anaerobic biological treatment apparatus
JP2009066558A (en) Biogas system
JP2006218422A (en) Process for treating organic waste and apparatus for the same
KR101269379B1 (en) Treatment method for wastewater
CN203382549U (en) High-concentration ammonia-nitrogen wastewater treatment device
JP2006075779A (en) Sludge volume reduction device and method, and organic waste water treatment system
KR100990661B1 (en) Anaerobic digestion system
KR100752332B1 (en) Composting system for sewage sludge using by autothermal thermophilic aerobic digestion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

R150 Certificate of patent or registration of utility model

Ref document number: 4893647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250