JPH091178A - Anaerobic treatment of high-concentration organic waste liquid - Google Patents

Anaerobic treatment of high-concentration organic waste liquid

Info

Publication number
JPH091178A
JPH091178A JP15616595A JP15616595A JPH091178A JP H091178 A JPH091178 A JP H091178A JP 15616595 A JP15616595 A JP 15616595A JP 15616595 A JP15616595 A JP 15616595A JP H091178 A JPH091178 A JP H091178A
Authority
JP
Japan
Prior art keywords
liquid
acid
treated
return
organic waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15616595A
Other languages
Japanese (ja)
Other versions
JP3275636B2 (en
Inventor
Sosuke Nishimura
総介 西村
Motoyuki Yoda
元之 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP15616595A priority Critical patent/JP3275636B2/en
Publication of JPH091178A publication Critical patent/JPH091178A/en
Application granted granted Critical
Publication of JP3275636B2 publication Critical patent/JP3275636B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE: To make efficient treatment by lessening the amt. of an alkali for neutralization and shortening the HRT in an acid forming vessel at the time of subjecting a high-concn. org. waste liquid to an anaerobic treatment by an upflow anaerobic sludge blanket (UASB) method. CONSTITUTION: The org. waste liquid having a CODcr concn. of >=8000mg/l from a liquid-to-be-treated introducing path 3 is introduced into an acid forming vessel 1 where the waste liquid is mixed with the return liquid returned from a return path 5 and the alkali supplied from an alkali supplying path 6 and is subjected to an acid forming treatment. At this time, the return liquid flow rate is so adjusted that the volumetric ratio of the liquid to be treated/the return liquid exceeds 3. The introducing amt. of the liquid to be treated is so adjusted that the HRT (the volume of the acid forming vessel/the flow rate of the liquid to be treated) of the liquid to be treated in the acid forming vessel 1 attains <=4 hours. The acid forming liquid is introduced into the lower part of a methane fermentation vessel 2 and is passed through a sludge blanket 12 in upward current flow, by which the liquid is subjected to methane fermentation. The treated liquid is partly returned as the return liquid into the acid forming vessel 1 and the balance thereof is discharged as the treated liquid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高濃度有機性排液を上
向流嫌気性スラッジブランケット(UASB)法により
嫌気性処理する高濃度有機性排液の嫌気性処理方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for anaerobic treatment of high-concentration organic waste liquid by anaerobic treatment of the high-concentration organic waste liquid by an upflow anaerobic sludge blanket (UASB) method.

【0002】[0002]

【従来の技術】有機性排液の嫌気性処理法として、固形
有機物および溶解性有機物を消化槽に投入し、長時間滞
留させて消化を行う旧来の嫌気性消化法に代り、溶解性
有機物のみを高負荷かつ高流速で嫌気性処理する高負荷
嫌気性処理法が行われている。この高負荷嫌気性処理法
は、消化速度の遅い固形有機物を分離して別途処理し、
消化速度の速い溶解性有機物のみを嫌気性処理によって
高負荷で高速処理する方法であり、小型の装置を用いて
効率よく処理を行うことができる。
2. Description of the Related Art As a method for anaerobic treatment of organic waste liquid, solid organic matter and soluble organic matter are put into a digestion tank and retained for a long time for digestion. Instead of the conventional anaerobic digestion method, only soluble organic matter is dissolved. A high-load anaerobic treatment method for treating anaerobically with a high load and a high flow rate is performed. This high-load anaerobic treatment method separates solid organic matter with a slow digestion rate and treats it separately,
This is a method in which only a soluble organic substance having a high digestion rate is treated at high speed with a high load by an anaerobic treatment, and the treatment can be efficiently performed using a small apparatus.

【0003】このような高負荷嫌気性処理法の代表的な
ものとして、上向流嫌気性スラッジブランケット(UA
SB)法がある。UASB法においては、酸生成工程お
よびメタン生成工程は通常別々の処理槽で行われ、酸生
成液を、グラニュール汚泥からなるスラッジブランケッ
トを形成したUASB型メタン発酵槽に上向流で高速に
通液して嫌気性処理を行っている。このように酸生成工
程とメタン生成工程とを二段階に分離する二相式で処理
を行うと、UASB型メタン発酵槽における有機酸生成
菌の大量発生が防止されるので、UASB型メタン発酵
槽でのグラニュール汚泥の沈降性が悪化するバルキング
現象が防止され、これにより高負荷でしかも安定性の高
い処理が可能となる。
A typical example of such a high-load anaerobic treatment method is an upflow anaerobic sludge blanket (UA).
SB) method. In the UASB method, the acid generation step and the methane generation step are usually performed in separate treatment tanks, and the acid generation liquid is passed through a UASB-type methane fermentation tank having a sludge blanket made of granulated sludge at high speed in an upward flow. Liquid is anaerobically treated. When the treatment is carried out in a two-phase system in which the acid production step and the methane production step are separated into two stages in this way, a large amount of organic acid-producing bacteria in the UASB-type methane fermentation tank is prevented from occurring. The bulking phenomenon that deteriorates the settling property of the granule sludge in the above step is prevented, which enables high-load and highly stable treatment.

【0004】二相式で嫌気性処理を行う場合、酸生成工
程では有機酸が生成するため酸生成槽の槽内液のpHが
低下し、このため酸生成菌の活性が阻害されて酸生成速
度が低下する場合がある。このため酸生成工程水にアル
カリを添加し、酸生成菌の活性を高く維持する操作が行
われているが、多量のアルカリが必要であり、コスト高
の原因になっている。
When the anaerobic treatment is carried out by the two-phase method, the pH of the solution in the acid producing tank is lowered because an organic acid is produced in the acid producing step, which inhibits the activity of the acid producing bacterium to produce the acid. It may slow down. For this reason, an operation of adding an alkali to the water in the acid-producing step to maintain the activity of the acid-producing bacterium at a high level is performed, but a large amount of alkali is required, which causes a high cost.

【0005】添加するアルカリの量を低減する方法とし
て、特公平3−7439号には、処理する有機性排液の
液量に対して0.5〜20倍量の酸生成液を酸生成槽の
前段に返送する方法が記載されている。しかし上記公報
には、二相式のUASB法においてメタン生成工程の処
理液を酸生成工程に返送することは記載されていない。
As a method of reducing the amount of alkali to be added, Japanese Patent Publication No. 3-7439 discloses that an acid generating solution is added in an amount of 0.5 to 20 times the amount of the organic waste liquid to be treated. The method of returning to the previous stage is described. However, the above publication does not describe returning the treatment liquid of the methane production step to the acid production step in the two-phase UASB method.

【0006】またWat. Res. Vol.28, No.2, pp.475-482
(1994) には、処理する有機性排液の液量に対して0.
5〜3倍量のメタン生成工程の処理液を酸生成槽に返送
する二相式のUASB法が記載されている。しかし、こ
の方法では返送量が少ないためアルカリ削減効果はそれ
程大きくない。
Also, Wat. Res. Vol.28, No.2, pp.475-482
(1994), the amount of organic waste liquid to be treated was 0.
A two-phase UASB method is described in which 5 to 3 times the amount of the treatment liquid in the methane production process is returned to the acid production tank. However, with this method, the amount of returned products is small, so the effect of reducing alkali is not so great.

【0007】ところで、上記従来の方法においては、処
理液を返送する嫌気性処理法において、酸生成槽におけ
る有機性排液のHRT(酸生成槽容量を有機性排液〔返
送液混合前の被処理液〕流量で除した値、以下排液ベー
スのHRTという場合がある)について、適切な値を検
討した報告はない。一方、処理液を返送しない場合の酸
生成槽におけるHRTは、有機性排液中のCODCr濃度
により決定されており、例えばCODCr濃度が3,00
0〜4,000mg/lの場合ではHRT 4時間、約
10,000mg/lの場合ではHRT 12時間、約
20,000mg/lの場合ではHRT 24時間を目
安(液温30〜40℃)として決定されている。有機性
排液のCODCr濃度が高くなるに従ってHRTが長くな
る理由は、酸生成槽中の有機酸濃度の上昇に伴うpH低
下により酸生成菌の有機酸生成速度および増殖速度が阻
害を受けるからである。このように従来の嫌気性処理法
では、酸生成槽におけるHRTは排液中のCODCr濃度
により決定されており、処理方法に応じた適切なHRT
の検討はなされていない。
By the way, in the above-mentioned conventional method, in the anaerobic treatment method for returning the treatment liquid, the HRT of the organic waste liquid in the acid generation tank (the capacity of the acid generation tank is adjusted to the organic waste liquid [return liquid before mixing) Treatment liquid] A value obtained by dividing by a flow rate, which may be referred to as a drainage-based HRT in the following), has not been reported as an appropriate value. On the other hand, the HRT in the acid generation tank when the treatment liquid is not returned is determined by the COD Cr concentration in the organic waste liquid, for example, the COD Cr concentration is 3,000.
HRT 4 hours in the case of 0 to 4,000 mg / l, HRT 12 hours in the case of approximately 10,000 mg / l, HRT 24 hours in the case of approximately 20,000 mg / l as a guideline (liquid temperature 30 to 40 ° C) It has been decided. The reason why the HRT becomes longer as the COD Cr concentration of the organic waste liquid becomes higher is that the organic acid production rate and the growth rate of the acid-producing bacterium are inhibited by the pH decrease accompanying the increase of the organic acid concentration in the acid production tank. Is. As described above, in the conventional anaerobic treatment method, the HRT in the acid production tank is determined by the COD Cr concentration in the effluent, and the HRT suitable for the treatment method is determined.
Has not been examined.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、中和
用のアルカリの添加量を削減することができ、しかも酸
生成槽の容量を小型化することができ、かつ酸生成槽に
おけるHRTを短くして効率よく処理することができる
高濃度有機性排液の嫌気性処理方法を提案することであ
る。
DISCLOSURE OF THE INVENTION An object of the present invention is to reduce the amount of alkali added for neutralization, to reduce the capacity of the acid generation tank, and to reduce the HRT in the acid generation tank. It is an object of the present invention to propose an anaerobic treatment method for high-concentration organic wastewater which can be treated efficiently by shortening the temperature.

【0009】[0009]

【課題を解決するための手段】本発明は、有機性排液を
酸生成槽に導入し、嫌気性下に酸生成菌と接触させて酸
を生成させる酸生成工程と、酸生成液を上向流嫌気性ス
ラッジブランケット型メタン発酵槽に導入し、メタン生
成菌を含むグラニュール汚泥からなるスラッジブランケ
ットに、グラニュール汚泥が流出しない範囲の上昇線速
度で嫌気性下に上向流で通液してメタンを生成させるメ
タン生成工程と、メタン生成工程の処理液の一部を返送
液として酸生成工程に返送する返送工程とを含む嫌気性
処理方法において、有機性排液のCODCr濃度が800
0mg/l以上であり、酸生成槽に導入する有機性排液
の液量に対する返送液の液量の比が3を超え、かつ酸生
成槽における有機性排液のHRTが4時間以下であるこ
とを特徴とする高濃度有機性排液の嫌気性処理方法であ
る。
According to the present invention, an organic effluent is introduced into an acid-producing tank and brought into contact with an acid-producing bacterium under anaerobic conditions to produce an acid. Introduced into a countercurrent anaerobic sludge blanket-type methane fermenter, a sludge blanket consisting of granule sludge containing methanogens is passed anaerobically under upward flow at an increasing linear velocity within the range where granule sludge does not flow out. In the anaerobic treatment method including a methane production step for producing methane to produce methane and a return step for returning a part of the treated solution of the methane production step to the acid production step as a return solution, the COD Cr concentration of the organic waste liquid is 800
0 mg / l or more, the ratio of the amount of the returned liquid to the amount of the organic waste liquid introduced into the acid generation tank exceeds 3, and the HRT of the organic waste liquid in the acid generation tank is 4 hours or less. An anaerobic treatment method for high-concentration organic drainage, which is characterized in that

【0010】本発明で被処理液として処理の対象となる
有機性排液は、溶解性有機物をCODCrとして8,00
0mg/l以上、好ましくは8,000〜40,000
mg/l含む排液であり、若干の固形有機物を含んでい
てもよい。多量の固形分を含む場合は、予め固液分離に
より固形有機物を除去したものを処理に供する。
The organic waste liquid to be treated as the liquid to be treated in the present invention is a soluble organic substance in the form of COD Cr of 8,000.
0 mg / l or more, preferably 8,000 to 40,000
It is a waste liquid containing mg / l, and may contain some solid organic matter. When a large amount of solid content is contained, solid organic matter is removed in advance by solid-liquid separation, and the solid organic matter is subjected to treatment.

【0011】本発明の酸生成工程では、上記有機性排液
を酸生成槽に導入するとともに、メタン生成工程の処理
液の一部を返送液として導入し、嫌気性下に槽内の酸生
成菌と混合して接触させ、有機物を分解して酸を生成さ
せる。このとき酸生成槽に導入する有機性排液と返送液
との比が、返送液/有機性排液(被処理液)の容量比
(以下、返送比という場合がある)で3を超え、好まし
くは3〜20となるように、有機性排液または返送液の
導入量を調整して処理する。返送比が3を超える条件で
処理することにより、中和に使用するアルカリの添加量
を大幅に削減することができるとともに、後述のように
排液ベースのHRTを短くして効率のよい処理を行うこ
とができる。
In the acid production step of the present invention, the organic waste liquid is introduced into the acid production tank, and a part of the treated liquid in the methane production step is introduced as a return liquid to generate acid in the tank under anaerobic conditions. It is mixed with bacteria and brought into contact with it to decompose organic substances and generate acids. At this time, the ratio of the organic effluent introduced into the acid production tank and the returned liquid exceeds 3 in the volume ratio of the returned liquid / organic effluent (treatment liquid) (hereinafter sometimes referred to as the return ratio), The amount of the organic drainage liquid or the return liquid introduced is preferably adjusted so as to be 3 to 20 for the treatment. By treating under a condition that the return ratio exceeds 3, it is possible to greatly reduce the amount of alkali used for neutralization, and to shorten the drainage-based HRT as described later for efficient treatment. It can be carried out.

【0012】本発明の方法では、酸生成槽における有機
性排液のHRT(排液ベースのHRT)は4時間以下、
好ましくは2.5〜4時間とする。従来の方法では、返
送液を酸生成槽に返送する場合は、返送しない場合に比
べて同等またはそれ以上の容積の酸生成槽を用いている
ため、排液ベースのHRTは排液のCODCr濃度の上昇
に従って必然的に長くなっていた。これに対して本発明
では、上記のように排液ベースのHRTを短くして処理
する。なお、HRTが短くなるので、酸生成槽の容量を
小型化することができる。
In the method of the present invention, the HRT of the organic waste liquid in the acid generation tank (HRT based on the waste liquid) is 4 hours or less,
It is preferably 2.5 to 4 hours. In the conventional method, when returning the return fluid to the acid generating tank, due to the use of acid production tank of equal or greater volume as compared with the case of not returning, the drainage base HRT's drainage COD Cr It became longer as the concentration increased. On the other hand, in the present invention, as described above, the drainage-based HRT is shortened for processing. Since the HRT becomes short, the capacity of the acid production tank can be reduced.

【0013】本発明の方法では、排液ベースのHRTの
上記のように短くしても酸生成速度は低下しない。これ
は、次のような理由によるためであると推測される。 (1)返送液中には酸生成槽内の槽内液と同程度の有機
酸生成菌が含まれているので、返送比を大きくしても酸
生成槽内の酸生成菌濃度はほとんど低下しない。 (2)返送比が大きいので、酸生成槽内の酸濃度の希釈
率が大きくなるとともにpHが上昇し、酸生成菌の阻害
が軽減され、これにより酸生成菌の活性が高く維持され
る。
The method of the present invention does not reduce the acid production rate by the above-described shortening of the drainage-based HRT. It is presumed that this is due to the following reasons. (1) Since the returned solution contains almost the same amount of organic acid-producing bacteria as the solution in the acid-producing tank, the concentration of acid-producing bacteria in the acid-producing tank is almost reduced even if the return ratio is increased. do not do. (2) Since the return ratio is large, the dilution ratio of the acid concentration in the acid generation tank increases and the pH rises, and the inhibition of acid-producing bacteria is reduced, whereby the activity of acid-producing bacteria is maintained high.

【0014】酸生成工程は、酸生成槽内の混合液中のC
ODCr濃度が2,000mg/l以下、好ましくは1,
500〜2,000mg/lの条件で行うので好まし
い。このような条件で酸生成処理を行うと、排液ベース
のHRTはもはやCODCr濃度には依存せず、4時間以
下のHRTで効率よく処理することができる。また酸生
成工程のpHは5〜7、好ましくは5.8〜6.2とす
るのが望ましい。pHの調整は水酸化ナトリウムなどの
アルカリを用いて行うことができる。
The acid production step is carried out by adding C to the mixed solution in the acid production tank.
The OD Cr concentration is 2,000 mg / l or less, preferably 1,
It is preferable to carry out under the condition of 500 to 2,000 mg / l. When the acid generation treatment is performed under such conditions, the effluent-based HRT can no longer depend on the COD Cr concentration and can be efficiently treated by the HRT for 4 hours or less. Further, it is desirable that the pH of the acid generation step is 5 to 7, preferably 5.8 to 6.2. The pH can be adjusted using an alkali such as sodium hydroxide.

【0015】上記のように酸生成工程を行った酸生成液
は、メタン生成菌を含むグラニュール汚泥からなるスラ
ッジブランケットを形成したUASB型メタン発酵槽に
導入し、上向流で通液してメタン生成工程を行う。酸生
成液の通液速度、すなわち上昇線速度を速くすればする
程返送液量を多くすることが可能になるが、速くなりす
ぎるとグラニュール汚泥が上向流に同伴して流出するの
で、その上限はグラニュール汚泥が流出しない速度に制
限される。通常、上昇線速度の上限値は2m/hr程度
である。従って、UASB型メタン発酵槽の上昇線速度
は0.5〜2m/hr、好ましくは1〜1.5m/hr
が適当である。またHRTは3〜48時間、好ましくは
4〜24時間程度が適当である。
The acid-producing solution that has been subjected to the acid-producing step as described above is introduced into a UASB-type methane fermentation tank in which a sludge blanket composed of granulated sludge containing methanogens is formed, and passed through in an upward flow. Perform the methane production process. It is possible to increase the amount of liquid to be returned as the flow rate of the acid generating liquid, that is, the higher the linear velocity of rising, is, but if it becomes too fast, the granule sludge will flow out along with the upward flow, The upper limit is limited to the speed at which granule sludge does not flow out. Usually, the upper limit of the rising linear velocity is about 2 m / hr. Therefore, the rising linear velocity of the UASB type methane fermentation tank is 0.5 to 2 m / hr, preferably 1 to 1.5 m / hr.
Is appropriate. Further, HRT is suitable for 3 to 48 hours, preferably 4 to 24 hours.

【0016】このようにしてメタン生成工程を行った処
理液は、その一部を返送液として前記返送比となるよう
に酸生成工程、例えば酸生成槽または酸生成槽に連絡す
る有機性排液導入路に返送する。残部は処理液として系
外に排出する。
The treated liquid which has been subjected to the methane production process in this way is an organic waste liquid which is communicated to the acid production process such as an acid production tank or an acid production tank so that a part of the treated liquid is used as a return liquid and the return ratio is the same. Return to the introduction route. The rest is discharged as a processing liquid out of the system.

【0017】[0017]

【実施例】以下、本発明を図面の実施例により説明す
る。図1は実施例の嫌気性処理装置を示す系統図であ
る。図において、1は酸生成槽、2はUASB型のメタ
ン発酵槽である。酸生成槽1は、被処理液導入路3から
溶解性有機物を含有する排液を導入して嫌気状態に維持
し、有機酸発酵を行うように構成されている。酸生成槽
1には、被処理液導入路3のほかに、メタン発酵槽2に
連絡する連絡路4、返送液路5およびアルカリ供給路6
が接続している。連絡路4にはポンプ7が設けられてい
る。また酸生成槽1には攪拌用のポンプ8を有する循環
路9が設けられている。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. FIG. 1 is a system diagram showing the anaerobic treatment apparatus of the embodiment. In the figure, 1 is an acid production tank and 2 is a UASB type methane fermentation tank. The acid production tank 1 is configured to introduce an effluent containing a soluble organic substance from the liquid to be treated introduction path 3 and maintain it in an anaerobic state to perform organic acid fermentation. In the acid production tank 1, in addition to the liquid to be treated introduction passage 3, a communication passage 4 for communicating with the methane fermentation tank 2, a return liquid passage 5 and an alkali supply passage 6
Is connected. A pump 7 is provided in the communication path 4. Further, the acid generation tank 1 is provided with a circulation path 9 having a pump 8 for stirring.

【0018】メタン発酵槽2は、内部にグラニュール汚
泥11によってスラッジブランケット12が形成され、
下部に酸生成液流入部13が設けられ、上部にガス固液
分離板14および処理液溢流部15が設けられている。
酸生成液流入部13には連絡路4が接続し、処理液溢流
部15には処理液排出路16が接続している。処理液排
出路16から返送液路5が分岐している。またメタン発
酵槽2の上部はガス室18が形成され、頂部にガス排出
路19が接続している。
In the methane fermentation tank 2, a sludge blanket 12 is formed by granule sludge 11 inside,
The acid generating liquid inflow portion 13 is provided in the lower portion, and the gas solid-liquid separation plate 14 and the processing liquid overflow portion 15 are provided in the upper portion.
The connecting passage 4 is connected to the acid generating liquid inflow portion 13, and the processing liquid discharge passage 16 is connected to the processing liquid overflow portion 15. The return liquid passage 5 is branched from the treatment liquid discharge passage 16. A gas chamber 18 is formed in the upper part of the methane fermentation tank 2, and a gas discharge path 19 is connected to the top.

【0019】上記の嫌気性処理装置による嫌気性処理方
法は、被処理液導入路3からCOD Cr濃度が8000m
g/l以上の有機性排液を酸生成槽1に導入し、返送液
路5から返送する返送液およびアルカリ供給路6から供
給するアルカリと混合し、ポンプ8により循環路9を通
して攪拌しながら嫌気状態に維持し、酸生成菌の作用に
より溶解性有機物を有機酸に転換する。被処理液中に若
干のSS成分が含まれている場合はここで嫌気的に可溶
化される。
Anaerobic treatment method using the above anaerobic treatment apparatus
The method is COD from the liquid introduction path 3 to be treated. CrConcentration is 8000m
Introduce an organic waste liquid of g / l or more into the acid generator tank 1 and return it
Return liquid returned from line 5 and alkali supply line 6
It is mixed with the alkali to be supplied, and pumped through circulation circuit 9.
To maintain the anaerobic state while stirring, and to the action of acid-producing bacteria.
Convert more soluble organics to organic acids. Young in the liquid to be treated
If it contains dried SS components, it is anaerobically soluble here.
Be transformed into

【0020】酸生成処理を行う際、返送比が前記値とな
るように返送液の流量を調整する。また排液ベースのH
RTが前記時間となるように、被処理液の導入量を調整
するか、または酸生成槽1の容量を小型化する。本発明
のように返送比を大きくすると返送液(メタン生成工程
処理液)中に含まれているアルカリ分がそれだけ多量に
酸生成槽1に供給されるので、アルカリの添加量が削減
でき、かつpHが上昇するとともに、大量の酸生成菌が
返送されるためHRTを短くしても効率よく酸生成処理
を行うことができる。
When performing the acid generation treatment, the flow rate of the returning liquid is adjusted so that the returning ratio becomes the above value. Also, drainage-based H
The amount of the liquid to be treated introduced is adjusted or the capacity of the acid generation tank 1 is reduced so that the RT becomes the time. When the return ratio is increased as in the present invention, the alkali component contained in the return liquid (methane treatment process liquid) is supplied to the acid generation tank 1 in such a large amount, so that the amount of alkali added can be reduced, and As the pH rises and a large amount of acid-producing bacteria are returned, the acid-producing treatment can be efficiently performed even if the HRT is shortened.

【0021】酸生成槽1で酸生成処理した酸生成液は、
ポンプ7により連絡路4から酸生成液流入部13を通し
てメタン発酵槽2の下部に導入し、メタン生成工程とし
て上向流でスラッジブランケット12を通過させる。こ
の際、酸生成液は嫌気性下にグラニュール汚泥11と接
触し、これより有機酸はグラニュール汚泥11に含まれ
る嫌気性微生物、特にメタン生成菌の作用により嫌気的
に分解されてメタンと炭酸ガスに転換する。メタン発酵
された反応液はガス固液分離板14においてガスと液体
と固体が分離され、分離液は処理液として処理液溢流部
15から溢流する。分離した固体は汚泥としてスラッジ
ブランケット12に沈降し、ガスはガス室18に上昇す
る。メタン発酵槽2内を上昇する槽内液の上昇線速度が
速すぎる場合、グラニュール汚泥11が完全に分離され
ずに処理液中に流出するので、上昇線速度は前記範囲と
する。
The acid-generating liquid that has been subjected to the acid-generating treatment in the acid-generating tank 1 is
It is introduced into the lower part of the methane fermentation tank 2 from the connecting path 4 by the pump 7 through the acid generation liquid inflow portion 13, and is passed through the sludge blanket 12 in an upward flow as a methane generation step. At this time, the acid-generating liquid contacts the granulated sludge 11 under anaerobic condition, and the organic acid is decomposed anaerobically by the action of the anaerobic microorganisms contained in the granulated sludge 11, in particular, methane-producing methane. Convert to carbon dioxide. The methane-fermented reaction liquid is separated into gas, liquid and solid by the gas solid-liquid separation plate 14, and the separated liquid overflows from the processing liquid overflow section 15 as a processing liquid. The separated solids settle as sludge on the sludge blanket 12, and the gas rises to the gas chamber 18. If the rising linear velocity of the in-tank liquid rising in the methane fermentation tank 2 is too high, the granulated sludge 11 is not completely separated and flows into the treatment liquid, so the rising linear velocity is within the above range.

【0022】処理液の一部は返送液として返送液路5か
ら酸生成槽1に返送し、残部は処理液排出路16から排
出する。メタン発酵槽2において発生するメタンガス等
の生成ガスはガス室18に集められ、ガス排出路19か
ら排出する。
A part of the treatment liquid is returned as a return liquid from the return liquid passage 5 to the acid production tank 1, and the rest is discharged from the treatment liquid discharge passage 16. Product gas such as methane gas generated in the methane fermentation tank 2 is collected in the gas chamber 18 and discharged from the gas discharge passage 19.

【0023】実施例1 図1の嫌気性処理装置により、グルコースを主成分とす
るCODCr濃度20,000mg/lの合成排水を被処
理液として、下記条件で嫌気性処理を行った。 被処理液流量:0.6 liter/hr 酸生成槽容量:1.5 liter 排液ベースのHRT:2.5時間 返送比:9 酸生成槽内液のpH:6.2(4%NaOH水溶液を用
いて調整) 酸生成処理温度:35℃ メタン発酵槽容量:25 liter メタン発酵処理温度:35℃ 嫌気性処理時間:立上げ完了後20日間
Example 1 The anaerobic treatment apparatus shown in FIG. 1 was used to perform anaerobic treatment under the following conditions using synthetic waste water containing glucose as a main component and having a COD Cr concentration of 20,000 mg / l as a liquid to be treated. Liquid to be treated flow rate: 0.6 liter / hr Acid production tank capacity: 1.5 liter Effluent-based HRT: 2.5 hours Return ratio: 9 Acid production tank liquid pH: 6.2 (4% NaOH aqueous solution) Acid production treatment temperature: 35 ° C Methane fermentation tank capacity: 25 liter Methane fermentation treatment temperature: 35 ° C Anaerobic treatment time: 20 days after completion of start-up

【0024】20日間の連続運転の結果、酸生成槽内液
の平均糖濃度は100mg/lであり、メタン発酵槽の
バルキング防止の観点から、十分に酸生成反応が進行し
たと結論できた。この時のアルカリ使用量は、表1に示
したとおり、負荷CODCrあたり64g−NaOH/k
g−CODであった。結果を表1にまとめて示す。
As a result of continuous operation for 20 days, the average sugar concentration in the liquid in the acid production tank was 100 mg / l, and it could be concluded that the acid production reaction proceeded sufficiently from the viewpoint of preventing bulking of the methane fermentation tank. As shown in Table 1, the amount of alkali used at this time was 64 g-NaOH / k per load COD Cr.
It was g-COD. The results are summarized in Table 1.

【0025】比較例1、2 返送比を3にした以外は実施例1と同様にして処理した
(比較例1)。その結果、酸生成槽内の糖濃度が500
mg/lを超え、表1に示したように、運転20日後の
メタン発酵槽内のグラニュール汚泥の濃度が運転開始時
の56,000mg/lから32,000mg/lにま
で低下し、汚泥の一部が処理液に流出する嫌気性バルキ
ング現象を起こして正常な処理が不可能となった。
Comparative Examples 1 and 2 Processing was performed in the same manner as in Example 1 except that the return ratio was set to 3 (Comparative Example 1). As a result, the sugar concentration in the acid production tank was 500.
As shown in Table 1, the concentration of granule sludge in the methane fermentation tank after 20 days of operation decreased from 56,000 mg / l at the start of operation to 32,000 mg / l, and sludge was exceeded. An anaerobic bulking phenomenon, in which part of the water was released into the processing solution, caused normal processing to become impossible.

【0026】このため、グラニュール汚泥を新しいもの
と入れ換えて、バルキング防止の観点から、酸生成槽内
液の糖濃度を100mg/lに保つために必要な酸生成
槽容量を実験的に求めたところ(比較例2)、返送比3
の条件で必要な酸生成槽容量は4.5 literであり、実
施例1に比べて3倍の酸生成槽容積であった。結果を表
1に示す。
Therefore, by replacing the granulated sludge with a new one, from the viewpoint of preventing bulking, the acid production tank capacity necessary to keep the sugar concentration in the acid production tank liquid at 100 mg / l was experimentally determined. However (Comparative Example 2), return ratio 3
The acid generator tank capacity required under the conditions was 4.5 liter, which was three times as large as that of Example 1. Table 1 shows the results.

【0027】[0027]

【表1】 [Table 1]

【0028】表1の結果から、実施例1のアルカリ使用
量は比較例2に比べて26%少なく、返送比を大きくす
ることによりアルカリ使用量をさらに低減できることが
わかる。
From the results shown in Table 1, it can be seen that the amount of alkali used in Example 1 is 26% smaller than that in Comparative Example 2, and the amount of alkali used can be further reduced by increasing the return ratio.

【0029】[0029]

【発明の効果】以上の通り、本発明は、二相式のUAS
B法による嫌気性処理方法において、返送比が3を超
え、かつ排液ベースのHRTが4時間以下の条件で、C
ODCr濃度が8,000mg/l以上の高濃度有機性排
液を処理するようにしたので、中和用のアルカリの添加
量を削減して、しかも小型の酸生成槽を用いて効率よく
嫌気性処理することができる。
As described above, the present invention is a two-phase UAS.
In the anaerobic treatment method by the B method, the return ratio exceeds 3, and the drain-based HRT is 4 hours or less, C
Since high-concentration organic wastewater with an OD Cr concentration of 8,000 mg / l or more is treated, the amount of alkali for neutralization is reduced, and a small acid generation tank is used to efficiently and anaerobically Can be sexually processed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の嫌気性処理装置の系統図である。FIG. 1 is a system diagram of an anaerobic treatment apparatus according to an embodiment.

【符号の説明】[Explanation of symbols]

1 酸生成槽 2 メタン発酵槽 3 被処理液導入路 4 連絡路 5 返送液路 6 アルカリ供給路 7、8 ポンプ 9 循環路 11 グラニュール汚泥 12 スラッジブランケット 13 酸生成液流入部 14 ガス固液分離板 15 処理液溢流部 16 処理液排出路 18 ガス室 19 ガス排出路 1 acid production tank 2 methane fermentation tank 3 treated liquid introduction passage 4 connecting passage 5 return liquid passage 6 alkali supply passage 7, 8 pump 9 circulation passage 11 granule sludge 12 sludge blanket 13 acid production liquid inlet 14 gas solid-liquid separation Plate 15 Processing liquid overflow 16 Processing liquid discharge path 18 Gas chamber 19 Gas discharge path

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 有機性排液を酸生成槽に導入し、嫌気性
下に酸生成菌と接触させて酸を生成させる酸生成工程
と、 酸生成液を上向流嫌気性スラッジブランケット型メタン
発酵槽に導入し、メタン生成菌を含むグラニュール汚泥
からなるスラッジブランケットに、グラニュール汚泥が
流出しない範囲の上昇線速度で嫌気性下に上向流で通液
してメタンを生成させるメタン生成工程と、 メタン生成工程の処理液の一部を返送液として酸生成工
程に返送する返送工程とを含む嫌気性処理方法におい
て、 有機性排液のCODCr濃度が8,000mg/l以上で
あり、酸生成槽に導入する有機性排液の液量に対する返
送液の液量の比が3を超え、かつ酸生成槽における有機
性排液のHRTが4時間以下であることを特徴とする高
濃度有機性排液の嫌気性処理方法。
1. An acid generation step of introducing an organic waste liquid into an acid generation tank and contacting it with an acid-producing bacterium under anaerobic conditions to generate an acid, and an acid-generating solution being an upflow anaerobic sludge blanket type methane. Introduced into a fermenter, sludge blanket consisting of granulated sludge containing methanogenic bacteria is passed anaerobically in an upward flow at an increasing linear velocity within the range where granulated sludge does not flow out to produce methane. In an anaerobic treatment method including a process and a return process in which a part of the treatment liquid of the methane production process is returned to the acid production process as a return liquid, the COD Cr concentration of the organic waste liquid is 8,000 mg / l or more. The ratio of the amount of the returned liquid to the amount of the organic waste liquid introduced into the acid generation tank exceeds 3, and the HRT of the organic waste liquid in the acid generation tank is 4 hours or less. Anaerobic concentration organic waste Processing method.
JP15616595A 1995-06-22 1995-06-22 Anaerobic treatment of high-concentration organic wastewater Expired - Fee Related JP3275636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15616595A JP3275636B2 (en) 1995-06-22 1995-06-22 Anaerobic treatment of high-concentration organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15616595A JP3275636B2 (en) 1995-06-22 1995-06-22 Anaerobic treatment of high-concentration organic wastewater

Publications (2)

Publication Number Publication Date
JPH091178A true JPH091178A (en) 1997-01-07
JP3275636B2 JP3275636B2 (en) 2002-04-15

Family

ID=15621779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15616595A Expired - Fee Related JP3275636B2 (en) 1995-06-22 1995-06-22 Anaerobic treatment of high-concentration organic wastewater

Country Status (1)

Country Link
JP (1) JP3275636B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10235391A (en) * 1997-02-25 1998-09-08 Kurita Water Ind Ltd Two-phase anaerobic wastewater treatment apparatus
JP2012076001A (en) * 2010-09-30 2012-04-19 Kuraray Co Ltd Anaerobic wastewater treatment apparatus
JP2013059730A (en) * 2011-09-14 2013-04-04 Swing Corp Method and device for anaerobic treatment of pulp mill waste water
CN103387286A (en) * 2013-07-31 2013-11-13 秦家运 STAIC high-efficiency anaerobic reactor
JP2019122884A (en) * 2018-01-12 2019-07-25 住友重機械エンバイロメント株式会社 Saccharide decomposition tank for use in treating effluent containing saccharide, saccharide decomposition treatment system, and saccharide decomposition treatment method
CN113620504A (en) * 2021-06-23 2021-11-09 浙江水美环保工程有限公司 Anaerobic treatment device for intensive pig raising wastewater

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10235391A (en) * 1997-02-25 1998-09-08 Kurita Water Ind Ltd Two-phase anaerobic wastewater treatment apparatus
JP2012076001A (en) * 2010-09-30 2012-04-19 Kuraray Co Ltd Anaerobic wastewater treatment apparatus
JP2013059730A (en) * 2011-09-14 2013-04-04 Swing Corp Method and device for anaerobic treatment of pulp mill waste water
CN103387286A (en) * 2013-07-31 2013-11-13 秦家运 STAIC high-efficiency anaerobic reactor
JP2019122884A (en) * 2018-01-12 2019-07-25 住友重機械エンバイロメント株式会社 Saccharide decomposition tank for use in treating effluent containing saccharide, saccharide decomposition treatment system, and saccharide decomposition treatment method
CN113620504A (en) * 2021-06-23 2021-11-09 浙江水美环保工程有限公司 Anaerobic treatment device for intensive pig raising wastewater

Also Published As

Publication number Publication date
JP3275636B2 (en) 2002-04-15

Similar Documents

Publication Publication Date Title
CN101643292A (en) Method for treating waste water from citric acid-production
CN104531783B (en) The method that copper sulphate joint alkaline pH promotes excess sludge anaerobic fermentation production short chain fatty acids
JP2010012446A (en) Fat and oil containing waste water treatment apparatus
JP3275351B2 (en) Anaerobic treatment of organic wastewater
JPH091178A (en) Anaerobic treatment of high-concentration organic waste liquid
CN106007171A (en) Integrated sludge reduction recycling and N2O emission reduction sewage treatment device and method for operating same
JP2006272252A (en) Method for treating nitrogen-containing organic drainage
JP2001347296A (en) Method and apparatus for treating sludge, and method and apparatus for treating sewage by utilizing the same
KR20070056260A (en) Carbon source preparing method for advanced biological treatment of sewage and wastewater
CN113060899B (en) Recycling method for generating carbon source by utilizing sludge resource of sewage plant
JP2531418B2 (en) Treatment method of beet sugar manufacturing wastewater
CN111847815B (en) Sludge D-type amino acid-inorganic acid combined cycle-jet conditioning method
JP4818594B2 (en) Organic acid generation method, organic acid generation apparatus, and wastewater treatment apparatus
JPH10118687A (en) Treatment method of organic wastewater
JP2001025789A (en) Treatment of organic waste liquid and device therefor
JP2002001384A (en) Treating method for organic waste water and treating apparatus for the same
JPH0490897A (en) Anaerobic treatment of high concentration organic waste water
JPH05253594A (en) Anaerobic treatment of waste water
JP3198674B2 (en) Method and apparatus for treating wastewater containing organic nitrogen
JP2005193122A (en) Anaerobic hydrogen fermentation treatment system
JPH0254160B2 (en)
JP2001252687A (en) Anaerobic treatment method for waste water from plant extraction
JPH05309400A (en) Anaerobic treatment apparatus
JP7150899B6 (en) Anaerobic treatment apparatus and anaerobic treatment method
JP3937625B2 (en) Biological treatment method for organic waste

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees