JPH0490897A - Anaerobic treatment of high concentration organic waste water - Google Patents

Anaerobic treatment of high concentration organic waste water

Info

Publication number
JPH0490897A
JPH0490897A JP2205124A JP20512490A JPH0490897A JP H0490897 A JPH0490897 A JP H0490897A JP 2205124 A JP2205124 A JP 2205124A JP 20512490 A JP20512490 A JP 20512490A JP H0490897 A JPH0490897 A JP H0490897A
Authority
JP
Japan
Prior art keywords
organic
reaction
acid
anaerobic treatment
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2205124A
Other languages
Japanese (ja)
Inventor
Shunichi Akama
俊一 赤間
Hiroyuki Tanaka
宏行 田中
Yoshiaki Shibuya
吉昭 渋谷
Hitoyo Nakayama
仲山 一十四
Shokei Chiba
千葉 正兄
Itsuo Aoshika
青鹿 伍雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AKUASU KK
Snow Brand Milk Products Co Ltd
Original Assignee
AKUASU KK
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AKUASU KK, Snow Brand Milk Products Co Ltd filed Critical AKUASU KK
Priority to JP2205124A priority Critical patent/JPH0490897A/en
Publication of JPH0490897A publication Critical patent/JPH0490897A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To enhance treatment effect by providing a front stage effectively solubilizing org. suspended matter and a post-stage forming an org. acid and setting the environments matched with the treatment conditions of both stages. CONSTITUTION:Raw water is conditioned in a raw water tank 2 having a stirrer 1 and sent to reaction tanks 4, 4', 4'' by a raw water pump 3. The temps. of the reaction tanks are kept constant and raw water is uniformly stirred by the stirrers 5, 5', 5'' of the reaction tanks. Gas vent lines 6, 6', 6'' are provided to the reaction tanks and the inflow raw water is treated for a definite time to be discharged to a treated water tank 7 as treated water. In the methane fermentation of high concn. org. waste water treated in a conventional acid forming process, org. suspended matter is gradually accumulated in a reaction tank and can not be stably treated but, when high concn. org. waste water is subjected to acid forming treatment according to this method, high concn. waste water treatment wherein TOC is about 2700mg/l and a removal rate is about 81.3% can be performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高濃度の有機性懸、濁物を含む高濃度有機性排
水の嫌気性処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an anaerobic treatment method for highly concentrated organic wastewater containing highly concentrated organic suspensions and turbid substances.

(従来の技術〕 廃棄孔を主成分とする排水に代表されるような高濃度の
有機性懸濁物を含む有機性排水は、有機物濃度が高濃度
であるために、そのままの状態では活性汚泥法等の好気
性処理方法の適用は難しい。
(Prior art) Organic wastewater containing a high concentration of organic suspended solids, such as wastewater mainly composed of wastewater, has a high concentration of organic matter, so if left as is, it will turn into activated sludge. It is difficult to apply aerobic treatment methods such as

そこで従来は、凝集沈殿等の前処理により排水中の懸濁
物を取り除くか、もしくは希釈により有機物濃度を低く
するかして、排水中の有機物を減少させる操作を行うこ
とにより対応してきた。
Conventionally, this has been dealt with by reducing the amount of organic matter in the wastewater by removing suspended matter in the wastewater through pretreatment such as coagulation and sedimentation, or by lowering the concentration of organic matter through dilution.

しかし、こうした排水の発生量は増大する一途にあり、
処理設備スペースや処理コストの増大および前処理で発
生する分前濃縮物を処理するに当っての産業廃棄物に関
する環境問題等、種々の問題がクローズアップされてき
ている。
However, the amount of wastewater generated continues to increase.
Various problems have been brought into focus, such as increases in processing equipment space and processing costs, and environmental problems related to industrial waste when processing pre-concentrates generated in pre-processing.

こうした問題に対して、近年高濃度・高負荷型の排水を
処理する技術として、また一方ではエネルギー回収の立
場から嫌気性処理技術の開発が進められ、高濃度有機性
排水へのメタン発酵技術の通用が考えられ始めた。
In response to these problems, in recent years, anaerobic treatment technology has been developed as a technology for treating high-concentration and high-load wastewater, and on the other hand from the standpoint of energy recovery, and methane fermentation technology for high-concentration organic wastewater has been developed. I started thinking about how it could be used.

高濃度有機性排水とくに高濃度の有機性懸濁物を含む排
水は、そのままの状態では基質として微生物がメタン発
酵するのに利用しに<<、予め何等かの処理をして有機
性懸濁物を可溶化・低分子化し、かつ酢酸に代表される
ような揮発性有機酸に転化して微生物が責化しやすい状
態にしなければならない。
Highly concentrated organic wastewater, especially wastewater containing highly concentrated organic suspended matter, cannot be used as a substrate for microorganisms to ferment methane if left as is. It is necessary to solubilize and reduce the molecular weight of substances, and convert them into volatile organic acids such as acetic acid, so that they can be easily attacked by microorganisms.

多くの嫌気性処理方法の中で、二相式嫌気性処理方法は
排水中に含まれる炭水化物、タンパク質および脂質等の
有機物を揮発性有機酸等の中間生成物ムこ分解する酸生
成工程と、この中間生成物をガス化するメタン発酵工程
との二段階よりなり、高濃度有機性排水の嫌気性処理に
通していると考えられる。
Among many anaerobic treatment methods, the two-phase anaerobic treatment method includes an acid generation step in which organic substances such as carbohydrates, proteins and lipids contained in wastewater are decomposed into intermediate products such as volatile organic acids; This process consists of two steps, including a methane fermentation process in which this intermediate product is gasified, and is thought to be used for anaerobic treatment of highly concentrated organic wastewater.

ところが、高濃度の有機性懸濁物を含む有機性排水に対
してこの二相式嫌気性処理方法をそのまま適用しようと
しても、従来の段階的処理による酸生成工程では有機性
懸濁物の可溶化、低分子化が進行しにくく、懸濁物を溶
解して揮発性有機酸に転化するには充分な時間をかける
ことが必要であった。
However, even if this two-phase anaerobic treatment method is applied directly to organic wastewater containing a high concentration of organic suspended matter, the conventional step-by-step acid generation process is unable to contain organic suspended matter. It is difficult to proceed with solubilization and molecular weight reduction, and it is necessary to take a sufficient amount of time to dissolve the suspended matter and convert it into a volatile organic acid.

そして有機性懸濁物の溶解が不十分な場合、とくに廃棄
乳を主成分とする排水では反応槽上部に多量の脂肪分や
油分を含むスカムが発注・蓄積し、次工程への送水ライ
ンを閉塞する等の問題が生しる。
If organic suspensions are insufficiently dissolved, especially in wastewater whose main component is waste milk, scum containing large amounts of fat and oil will build up and accumulate in the upper part of the reaction tank, causing the water supply line to the next process to be blocked. Problems such as blockage occur.

このように高濃度有機性廃水、とくに高濃度の有機性懸
濁物を含む排水においては、酸生成工程での有機性懸濁
物の可溶化・低分子化が嫌気性処理全体の処理速度を律
速すると考えられるので、この酸生成工程における有機
性懸濁物の可溶化促進および処理効率向上のために幾つ
かの改良提案がなされている。
In this way, in high-concentration organic wastewater, especially in wastewater containing high-concentration organic suspended matter, the solubilization and low-molecularization of organic suspended matter in the acid generation process increases the overall treatment speed of anaerobic treatment. Since this is thought to be rate-limiting, several improvement proposals have been made to promote solubilization of organic suspensions and improve treatment efficiency in this acid production step.

例えば酸生成工程において、担体に固定化した微生物を
用いて処理する方法や、また特開昭57−48396号
公報に示されているように、酸生成工程の温度を後段の
メタン発酵工程の20〜40℃より高い45〜65℃と
することにより、酸生成を促進しようとする方法がある
For example, in the acid production process, there is a method in which microorganisms immobilized on a carrier are used for treatment, and as shown in Japanese Patent Application Laid-open No. 57-48396, the temperature in the acid production process is lowered to 20% in the subsequent methane fermentation process. There is a method of promoting acid production by increasing the temperature to 45 to 65°C, which is higher than ~40°C.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが従来提案のこれらの方法を用いても、と(に高
濃度の有機性懸濁物を含む排水、たとえばTOCが25
00■/1以上であって、そのうちの30%以上が孔径
0,45μmの濾材を通過しない固形懸濁物であるよう
な高濃度の有機性排水においては、有機性懸濁物の可溶
化・低分子化が十分には進行せず、酸生成工程本来の有
機酸の生成反応はなお活発とはいい難く、満足できるも
のではなかった。
However, even if these conventionally proposed methods are used, wastewater containing a high concentration of organic suspended matter, such as a TOC of 25
00■/1 or more and 30% or more of which is solid suspension that does not pass through a filter medium with a pore size of 0.45 μm. The reduction in molecular weight did not proceed sufficiently, and the organic acid production reaction, which is the original process of the acid production process, was still not very active, and was not satisfactory.

そこで本発明は、酸生成工程における有機性懸濁物の可
溶化・低分子化と有機酸の生成という二つの機能を共に
かつ効率よく促進することができる嫌気性処理方法を提
供することを目的とした。
Therefore, an object of the present invention is to provide an anaerobic treatment method that can simultaneously and efficiently promote the two functions of solubilizing and reducing the molecular weight of organic suspensions and generating organic acids in the acid generation process. And so.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は高濃度の有機物を含有する排水を酸生成工程と
それに続くメタン醗酵工程とからなる嫌気性醗酵法によ
り処理するに当り、該酸生成工程を複数の反応槽を用い
て、pHを5.5〜7.5に調整しかつ高温発酵域とし
た懸濁有機物の可溶化の促進を主とする前段反応段階と
、pHを5.5〜7゜5に調整しかつ中温発酵域とした
有機酸の生成の促進を主とする後段反応段階とに分けて
実施することを特徴とする高濃度有機性排水の嫌気性処
理方法である。
In the present invention, when wastewater containing a high concentration of organic matter is treated by an anaerobic fermentation method consisting of an acid generation step and a subsequent methane fermentation step, the acid generation step is performed using a plurality of reaction tanks to reduce the pH to 5. The first reaction stage mainly promotes the solubilization of suspended organic matter, and the pH was adjusted to 5.5 to 7.5 and the temperature was set to a high temperature fermentation range. This is an anaerobic treatment method for high-concentration organic wastewater, which is characterized in that it is carried out separately with a subsequent reaction stage that mainly promotes the production of organic acids.

さらに本発明においては、上記のように酸生成工程を前
後の二段階に分離して実施するに当って、前段反応には
充填材を装入した反応槽を用い、後段反応には充填材の
ない反応槽を用いることによって更に反応効率を高める
ことができる。この際に反応槽に充填する充填材として
は、排水の生物学的処理において一般的に使用されるも
の、例えばPVCのチップ、アンスラサイト、活性炭、
ゼオライト、濾材、ネット、レンガ、天然多孔質物質等
を挙げることができる。
Furthermore, in the present invention, when carrying out the acid production step separately into two stages, as described above, a reaction tank filled with a filler is used for the first stage reaction, and a reaction tank filled with a filler is used for the second stage reaction. The reaction efficiency can be further increased by using a reaction tank without the above. At this time, the filler to be filled into the reaction tank is one commonly used in biological treatment of wastewater, such as PVC chips, anthracite, activated carbon,
Zeolites, filter media, nets, bricks, natural porous materials, etc. may be mentioned.

また本発明において酸生成工程で用いられる複数の反応
槽の配列は、全ての槽を直列に接続してもよいが少なく
とも1槽を並列に接続してもよく、両者ともに有機性懸
濁物の可溶化を促進する段階の反応槽と、有機酸の生成
を促進する段階の反応槽の間に、本発明の処理条件移行
のための中間槽を設けるようにしてもよい。
In addition, in the arrangement of the plurality of reaction tanks used in the acid generation step in the present invention, all the tanks may be connected in series, or at least one tank may be connected in parallel, and both may contain organic suspensions. An intermediate tank may be provided between the reaction tank in the step of promoting solubilization and the reaction tank in the step of promoting the production of organic acid, for transferring the treatment conditions of the present invention.

なお、廃棄乳を主成分とする排水とは、牛乳、ヨーグル
ト、アイスクリーム等の乳製品製造に関連して、製品の
売れ残り廃棄物および製品製造時に排出される高濃度有
機性排水を主成分とするものを指すものである。
In addition, wastewater mainly composed of waste milk refers to wastewater mainly composed of unsold product waste and highly concentrated organic wastewater discharged during product manufacturing related to the production of dairy products such as milk, yogurt, and ice cream. It refers to something that does.

〔作 用〕[For production]

高濃度の有機性懸濁物を含む有機性排水において、従来
からの方法である二相式嫌気処理法の酸生成工程を反応
槽が1槽で温度を中温発酵域とし、pHを調整しないで
実施する場合には、懸濁物の可溶化が急速には進行せず
、同時に有機酸の生成も緩慢である。そして反応槽が1
槽である場合においては、例えば温度を高温発酵域とし
て、pHを調整したり、また中温発酵域としてpHを調
整せず、反応槽内に充填材を充填したりして水温および
pH等の処理条件をいかに変化しても、懸濁物の可溶化
および有機酸の生成を共に、かつ十分に進めることはで
きない。
For organic wastewater containing a high concentration of organic suspensions, the acid generation process of the two-phase anaerobic treatment method, which is a conventional method, uses a single reaction tank, the temperature is in the meso-temperature fermentation range, and the pH is not adjusted. When carried out, the solubilization of the suspension does not proceed rapidly and at the same time the formation of organic acids is slow. And the reaction tank is 1
In the case of a tank, for example, the temperature is set in the high temperature fermentation range and the pH is adjusted, or the pH is not adjusted in the medium temperature fermentation range and a filler is filled in the reaction tank to process water temperature, pH, etc. No matter how the conditions are changed, the solubilization of the suspension and the production of the organic acid cannot proceed simultaneously and sufficiently.

これに対して、反応槽数を複数槽とする酸生成工程では
、本発明に従って有機性懸濁物を効果的に可溶化する前
段階と有機酸を生成する後段階とに分け、各処理条件に
合わせた環境を設定することにより、処理効果を向上さ
せることができる。
On the other hand, in the acid generation process using multiple reaction vessels, according to the present invention, the process is divided into a pre-stage to effectively solubilize the organic suspended matter and a post-stage to generate the organic acid. By setting the environment to suit the environment, processing effects can be improved.

本発明において用いる反応槽数は、処理性能に対する設
備のイニシャルコストを考えると2〜4槽が適当である
The appropriate number of reaction tanks used in the present invention is 2 to 4, considering the initial cost of equipment relative to treatment performance.

反応槽数が複数槽である酸生成工程における前段反応段
階での有機性懸濁物の可溶化に関して、温度条件が高温
発酵域すなわち45〜60℃を下回る場合には有機性懸
濁物を効果的に熔解することができず、また高温発酵域
を上回る場合には加温のためのコストが高くなり、経済
性に欠ける。
Regarding the solubilization of organic suspensions in the first reaction stage of the acid production process in which the number of reaction vessels is multiple, if the temperature conditions are below the high temperature fermentation range, that is, 45 to 60°C, the organic suspensions are not effective. If the temperature exceeds the high temperature fermentation range, the cost for heating becomes high and it is not economical.

前段反応段階において反応槽内に充填材を充填しない場
合には有機性懸濁物の溶解が効率よく進行しない。従っ
て、前段反応段階の反応槽の温度を高温発酵域とする条
件下でさらに可溶化を促進するためには、槽内に充填材
を充填することが有効である。
If the reaction tank is not filled with a filler in the first reaction stage, the dissolution of the organic suspension will not proceed efficiently. Therefore, in order to further promote solubilization under conditions where the temperature of the reaction tank in the first reaction stage is in the high temperature fermentation range, it is effective to fill the tank with a filler.

酸生成工程の後段反応段階において、pHを中和しない
ままに反応を進めた場合には他の条件をいかに変化させ
ても有機酸を高濃度に生成することはできず、有機酸生
成量は低い。活発な有機酸生成を行うためにはpHを5
.5〜7.5の範囲内に維持する必要がある。また反応
温度においても高温発酵域にある場合には、有@酸の生
成は従来法よりかえって低下し、かつ処理コストも高く
なる。
In the latter reaction stage of the acid production process, if the reaction proceeds without neutralizing the pH, it will not be possible to produce a high concentration of organic acid no matter how other conditions are changed, and the amount of organic acid produced will decrease. low. In order to actively generate organic acids, the pH should be set to 5.
.. It is necessary to maintain it within the range of 5 to 7.5. Furthermore, if the reaction temperature is in the high temperature fermentation range, the production of @acid will be lower than in the conventional method, and the processing cost will also be higher.

また中温発酵域すなわち25〜45℃を下回る場合、酸
の生成量は一般に減少する。なお、有機酸の生成に関し
て充填材は存在しない方が効率が高い。
Further, in the mesotemperature fermentation range, that is, below 25 to 45°C, the amount of acid produced generally decreases. Note that the absence of filler is more efficient in producing organic acids.

以上のように、本発明の方法においては酸生成工程の処
理条件を前段の有機性懸濁物の可溶化に効果的な条件お
よび後段の揮発有機酸の生成に好適な条件にそれぞれ設
定したものであり、前段と後段との条件を逆にした場合
には全く効果がない。
As described above, in the method of the present invention, the treatment conditions of the acid generation step are set to conditions effective for solubilizing the organic suspension in the first stage and conditions suitable for the generation of volatile organic acids in the second stage. Therefore, if the conditions of the first stage and the second stage are reversed, there is no effect at all.

〔実施例〕〔Example〕

以下図面を参照して本発明の詳細な説明する。 The present invention will be described in detail below with reference to the drawings.

図−1及び図−2に複槽式及び単槽式酸生成工程実験装
置の概要をそれぞれ示す。
Figures 1 and 2 show the outlines of the double-tank and single-tank acid production process experimental equipment, respectively.

原水は撹拌装置1を有する原水槽2にて調整され、原水
ポンプ3により反応槽4.4’、4“へ送られる。反応
槽は温度を一定に保つようになっており、反応槽撹拌機
5.5’、5“によりそれぞれ均一に撹拌される。反応
槽にはガス抜きライン6.6’、6′′が設けられ、流
入した原水は押し出し流れにより、一定時間後に処理水
として処理水槽7へ流出する。
Raw water is adjusted in a raw water tank 2 equipped with a stirring device 1, and sent to reaction tanks 4, 4' and 4'' by a raw water pump 3.The temperature of the reaction tank is kept constant, and the reaction tank stirrer 5.5' and 5" are used to uniformly stir the mixture. The reaction tank is provided with degassing lines 6.6', 6'', and the inflowing raw water flows out into the treated water tank 7 as treated water after a certain period of time due to the extrusion flow.

これらの実験装置を用いて廃棄乳を主成分とする高濃度
有機性排水(以下原水という)の連続通水試験を行い、
以下のような処理条件下での懸濁物質の熔解状態および
有機酸生成状態を調べた。
Using these experimental devices, we conducted a continuous water flow test of highly concentrated organic wastewater (hereinafter referred to as raw water) whose main component is waste milk.
The state of dissolution of suspended solids and the state of organic acid production were investigated under the following treatment conditions.

反応槽中pH;必要に応し、30%水酸化ナトリウム溶
液を用いて調整した。
pH in the reaction tank: Adjusted using 30% sodium hydroxide solution if necessary.

反応槽内温度:35℃または55℃ 充填材の有無:シリコーンゴムスポンジの破片を反応槽
容積の20%程度充填した(有と表示した場合)。
Temperature inside the reaction tank: 35°C or 55°C Presence or absence of filler: Pieces of silicone rubber sponge were filled to an extent of 20% of the volume of the reaction tank (if indicated as present).

反応槽数  二部後段の区別がないときは合計数を、ま
た前段と後段とに分けたときはそれぞれの数を表示した
Number of reaction vessels: When there is no distinction between the two stages and the second stage, the total number is shown, and when the reactor is divided into the first stage and the second stage, the number of each is shown.

表−1に原水水質を示す。Table 1 shows the raw water quality.

3.4  15000  16000   56.7S
S :懸濁浮遊物 TOC:全有機態炭素 TOC溶存率:TOCに対する溶存前TOCの割合 原水はTOC負荷量で0.64kg/’/日の割合で通
水し、反応槽内の滞留時間は25日とした。
3.4 15000 16000 56.7S
S: Suspended substances TOC: Total organic carbon TOC dissolution rate: Ratio of TOC before dissolution to TOC Raw water is passed through at a rate of 0.64 kg/'/day with a TOC loading amount, and the residence time in the reaction tank is It was set as the 25th.

ここでいうTOC負荷量とは反応槽容量in?当たり1
日に流入する原水TOC量である。
The TOC load amount here is the reaction tank capacity in? 1 hit
This is the amount of raw water TOC flowing into the water per day.

これらの装置における個々の反応槽内での滞留時間が等
しくなるように調整して運転した結果の懸濁物可溶化状
態および有機酸の生成状態を表−2に示した。なお同表
中、SS除去率とは流入SSに対する除去SSの割合を
、有機物の溶解率とは流入非溶解性TOCに対する減少
した非溶解性TOCの割合を、有機酸濃度とは酢酸、プ
ロピオン酸、酪酸、イソ酪酸、吉草酸、イソ吉草酸およ
びカプロン酸の量を等モルの酢酸量に換算した合計量を
、また有機酸転換率とはTOCに対する有機酔態炭素の
割合を、それぞれ意味している。
Table 2 shows the suspension solubilization state and the organic acid production state as a result of operating these devices by adjusting the residence time in each reaction tank to be equal. In the same table, the SS removal rate is the ratio of removed SS to the inflowing SS, the organic matter dissolution rate is the ratio of decreased insoluble TOC to the inflowing insoluble TOC, and the organic acid concentration is the ratio of acetic acid and propionic acid. , the total amount of butyric acid, isobutyric acid, valeric acid, isovaleric acid, and caproic acid converted into equimolar amounts of acetic acid, and the organic acid conversion rate means the ratio of organic alcoholic carbon to TOC, respectively. ing.

これらの結果から、複数槽を直列に結合しただけでは有
機性懸濁物の効率的な有機酸への転化はできないこと、
また前段と後段の反応条件がそれぞれ本発明の条件と合
致したとき(試験坐6)に、特に優れた結果が得られる
ことがわかる。
These results show that it is not possible to efficiently convert organic suspensions to organic acids simply by connecting multiple tanks in series.
Furthermore, it can be seen that particularly excellent results are obtained when the reaction conditions of the first and second stages each match the conditions of the present invention (Test 6).

(実施例2〕 前記図−1および図−2に示す酸生成工程実験装置を有
する嫌気性処理装置を用いて、廃棄孔を主成分とする高
濃度有機性排水(実施例]の原水)の嫌気性処理試験を
実施し、従来からある二相式嫌気性処理方法C図−2で
示される酸生成工程を有する)と本発明法(図−1で示
される酸生成工程を有する)との処理性能を比較した。
(Example 2) Using an anaerobic treatment equipment having the acid production process experimental equipment shown in Figures 1 and 2 above, high concentration organic wastewater (raw water of Example) containing waste pores as its main component was treated. An anaerobic treatment test was conducted to compare the conventional two-phase anaerobic treatment method C (which has the acid generation step shown in Figure 2) and the method of the present invention (which has the acid generation step shown in Figure 1). The processing performance was compared.

メタン発酵は浮遊式汚泥法を用いて、液温35℃で行な
い、得られた処理水を2時間静置してその上澄水を採取
し、水質の比較を行なった。その結果を表−3に示す。
Methane fermentation was carried out using a floating sludge method at a liquid temperature of 35°C, and the resulting treated water was allowed to stand for 2 hours, and its supernatant water was collected and the water quality was compared. The results are shown in Table-3.

従来法   16000    0.0本法 81.3 TOC除去率:流入水TOCに対する除去T。Conventional method 16000 0.0 method 81.3 TOC removal rate: T removed relative to influent TOC.

Cの割合 従来からの酸生成工程で処理した高濃度有機性排水のメ
タン発酵では、有機性懸濁物が反応槽内に徐々に蓄積し
、安定して処理することができなかったのに対して、本
性に従って高濃度有機性排水を酸生成処理した場合には
、処理水TOC2700■/1、除去率81゜3%の高
濃度排水処理が可能であった。
In contrast, in methane fermentation of highly concentrated organic wastewater treated with conventional acid production processes, organic suspended matter gradually accumulated in the reaction tank and could not be treated stably. Therefore, when highly concentrated organic wastewater was subjected to acid production treatment according to its nature, it was possible to treat highly concentrated wastewater with a TOC of 2700/1 and a removal rate of 81.3%.

〔発明の効果〕〔Effect of the invention〕

以上の実験からも明らかなように、本発明によれば酸生
成工程前段では効果的に有機性懸濁物の可溶化・低分子
化が進行し、後段では活発な揮発性有機酸の生成を行わ
れる。従って酸生成工程の処理効率の増加により、嫌気
性処理設備の小規模化やランニングコストの削減が可能
である。
As is clear from the above experiments, according to the present invention, organic suspended matter is effectively solubilized and reduced in molecular weight in the first stage of the acid generation process, and active volatile organic acids are actively generated in the second stage. It will be done. Therefore, by increasing the processing efficiency of the acid generation process, it is possible to downsize the anaerobic treatment equipment and reduce running costs.

【図面の簡単な説明】[Brief explanation of drawings]

図−1は本発明の酸生成工程を実施するための装置であ
り、 図−2は従来既知の酸生成工程処理装置の一例である。 1・・・撹拌装置、2・・・原水槽、3・・・原水ポン
プ、4.4’、4′・・・反応槽、5.5’、5″′・
・・撹拌機、6・・・ガス抜きライン、7・・・処理水
槽。
FIG. 1 shows an apparatus for carrying out the acid generation process of the present invention, and FIG. 2 shows an example of a conventionally known acid generation process treatment apparatus. 1... Stirring device, 2... Raw water tank, 3... Raw water pump, 4.4', 4'... Reaction tank, 5.5', 5'''.
... Stirrer, 6... Gas venting line, 7... Treated water tank.

Claims (4)

【特許請求の範囲】[Claims] (1)高濃度の有機物を含有する排水を酸生成工程とそ
れに続くメタン醗酵工程とからなる嫌気性醗酵法により
処理するに当り、該酸生成工程を複数の反応槽を用いて
、pHを5.5〜7.5に調整しかつ高温発酵域とした
懸濁有機物の可溶化の促進を主とする前段反応段階と、
pHを5.5〜7.5に調整しかつ中温発酵域とした有
機酸の生成の促進を主とする後段反応段階とに分けて実
施することを特徴とする高濃度有機性排水の嫌気性処理
方法。
(1) When treating wastewater containing a high concentration of organic matter by an anaerobic fermentation method consisting of an acid generation step followed by a methane fermentation step, the acid generation step is performed using multiple reaction vessels to reduce the pH to 5. A first reaction stage that mainly promotes solubilization of suspended organic matter in a high temperature fermentation region adjusted to .5 to 7.5;
Anaerobic treatment of high-concentration organic wastewater, characterized in that the pH is adjusted to 5.5 to 7.5 and the reaction is carried out in a meso-temperature fermentation region, with a subsequent reaction stage mainly focused on promoting the production of organic acids. Processing method.
(2)前段反応段階には充填材を装入した反応槽を用い
、後段反応段階には充填材のない反応槽を用いる請求項
(1)記載の嫌気性処理方法。
(2) The anaerobic treatment method according to claim (1), wherein a reaction tank charged with a filler is used in the first reaction stage, and a reaction tank without a filler is used in the second reaction stage.
(3)高温発酵域が45〜60℃であり、中温発酵域が
25〜45℃である請求項(1)または(2)記載の嫌
気性処理方法。
(3) The anaerobic treatment method according to claim (1) or (2), wherein the high temperature fermentation range is 45 to 60°C, and the medium temperature fermentation range is 25 to 45°C.
(4)高濃度有機性排水が乳製品製造時の廃棄乳分を主
成分としたものである請求項(1)ないし(3)のいづ
れかに記載の嫌気性処理方法。
(4) The anaerobic treatment method according to any one of claims (1) to (3), wherein the highly concentrated organic wastewater is mainly composed of waste milk from the production of dairy products.
JP2205124A 1990-08-03 1990-08-03 Anaerobic treatment of high concentration organic waste water Pending JPH0490897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2205124A JPH0490897A (en) 1990-08-03 1990-08-03 Anaerobic treatment of high concentration organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2205124A JPH0490897A (en) 1990-08-03 1990-08-03 Anaerobic treatment of high concentration organic waste water

Publications (1)

Publication Number Publication Date
JPH0490897A true JPH0490897A (en) 1992-03-24

Family

ID=16501827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2205124A Pending JPH0490897A (en) 1990-08-03 1990-08-03 Anaerobic treatment of high concentration organic waste water

Country Status (1)

Country Link
JP (1) JPH0490897A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1015595A (en) * 1996-07-08 1998-01-20 Mitsubishi Heavy Ind Ltd Treatment of waste water
JP2001017990A (en) * 1999-07-07 2001-01-23 Ebara Corp Anaerobic treatment of oil and fat-containing waste water
AT413985B (en) * 2004-01-09 2006-08-15 Landfrisch Molkerei Registrier METHOD AND DEVICE FOR CONVERSION AND UTILIZATION OF BY-PRODUCTS OF THE MILK-PROCESSING INDUSTRY
JP2006247601A (en) * 2005-03-14 2006-09-21 Tokyo Gas Co Ltd Methanation method and apparatus
JP2012120959A (en) * 2010-12-07 2012-06-28 Matsuo Kensetsu Kogyo Kk Waste milk treatment apparatus and method
WO2014156216A1 (en) * 2013-03-27 2014-10-02 栗田工業株式会社 Anaerobic treatment method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1015595A (en) * 1996-07-08 1998-01-20 Mitsubishi Heavy Ind Ltd Treatment of waste water
JP2001017990A (en) * 1999-07-07 2001-01-23 Ebara Corp Anaerobic treatment of oil and fat-containing waste water
AT413985B (en) * 2004-01-09 2006-08-15 Landfrisch Molkerei Registrier METHOD AND DEVICE FOR CONVERSION AND UTILIZATION OF BY-PRODUCTS OF THE MILK-PROCESSING INDUSTRY
JP2006247601A (en) * 2005-03-14 2006-09-21 Tokyo Gas Co Ltd Methanation method and apparatus
JP2012120959A (en) * 2010-12-07 2012-06-28 Matsuo Kensetsu Kogyo Kk Waste milk treatment apparatus and method
WO2014156216A1 (en) * 2013-03-27 2014-10-02 栗田工業株式会社 Anaerobic treatment method
JPWO2014156216A1 (en) * 2013-03-27 2017-02-16 栗田工業株式会社 Anaerobic treatment method

Similar Documents

Publication Publication Date Title
WO2006035594A1 (en) Method and apparatus for biologically treating wastewater containing fats and oils
CN104591498B (en) Kitchen sewage treatment process
JP2010012446A (en) Fat and oil containing waste water treatment apparatus
JP4542764B2 (en) Organic wastewater treatment equipment
JPH0490897A (en) Anaerobic treatment of high concentration organic waste water
JP3152357B2 (en) Anaerobic treatment method and apparatus for high-concentration organic wastewater containing organic suspended matter
JPH09276887A (en) Method for treating organic sewage and apparatus therefor
JP5801769B2 (en) Method and apparatus for anaerobic digestion treatment of organic wastewater
JP2587301B2 (en) Methane fermentation treatment method
JP5873736B2 (en) Organic wastewater treatment method and treatment apparatus
JP2001347296A (en) Method and apparatus for treating sludge, and method and apparatus for treating sewage by utilizing the same
JPH05277493A (en) Method for treatment of waste water containing oil
JP2000271593A (en) Anaerobic treatment method of grease-containing waste water
JPH0218915B2 (en)
JP2001179288A (en) Method and apparatus for anaerobically treating starch- containing liquid
JP3275636B2 (en) Anaerobic treatment of high-concentration organic wastewater
JP2001079584A (en) Cleaning method of organic waste water
JP2002224686A (en) Anaerobic treatment method and equipment for starch particle-containing liquid
JP3781216B2 (en) Anaerobic sludge digestion method and device enabling re-digestion of persistent organic substances in anaerobic digested sludge
JPH05253594A (en) Anaerobic treatment of waste water
JPH10249384A (en) Treatment of concentrated suspended matter-containing waste water
JP3198674B2 (en) Method and apparatus for treating wastewater containing organic nitrogen
JPH01119398A (en) Water treatment equipment
JP4010733B2 (en) Organic wastewater treatment method and apparatus
JP2004330153A (en) Methane fermentation treating method and apparatus