JP2006247601A - Methanation method and apparatus - Google Patents

Methanation method and apparatus Download PDF

Info

Publication number
JP2006247601A
JP2006247601A JP2005070796A JP2005070796A JP2006247601A JP 2006247601 A JP2006247601 A JP 2006247601A JP 2005070796 A JP2005070796 A JP 2005070796A JP 2005070796 A JP2005070796 A JP 2005070796A JP 2006247601 A JP2006247601 A JP 2006247601A
Authority
JP
Japan
Prior art keywords
methane
seaweed
acid
solution
organic waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005070796A
Other languages
Japanese (ja)
Inventor
Toru Matsui
徹 松井
Toshiji Amano
寿二 天野
Hiromitsu Koike
洋潤 小池
Masayuki Onodera
正幸 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2005070796A priority Critical patent/JP2006247601A/en
Publication of JP2006247601A publication Critical patent/JP2006247601A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Fertilizers (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a methanation method capable of generating a larger amount of gas than a conventional methane fermentation method, and a methanation apparatus. <P>SOLUTION: The methanation method comprises the step of carrying out methane fermentation treatment after an organic waste material containing oils and fats, and protein is subjected to acid fermentation treatment under an aerobic condition. The methanation apparatus includes an acid fermentation treatment tank and a methane fermentation tank. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、メタン生成法及びメタン生成装置に関する。   The present invention relates to a methane production method and a methane production apparatus.

有機性廃棄物を嫌気状態でメタン菌により処理を行うと、消化ガス(メタンと二酸化炭素の混合ガス)が得られる。   When organic waste is treated with methane bacteria in an anaerobic state, digestive gas (a mixed gas of methane and carbon dioxide) is obtained.

牛乳等のトリグリセリド(TG)や脂肪酸(FA)を含むものを用いてメタン発酵を行うと次第にガス発生量が減少していく。   When methane fermentation is carried out using triglyceride (TG) or fatty acid (FA) such as milk, the amount of gas generated gradually decreases.

この原因の一つとしては、油脂が加水分解される過程で生じる高級脂肪酸がメタン発酵菌の作用を阻害すると考えられ、有機性廃水から油脂を分離除去し、上澄液をメタン発酵処理に供する方法が提案されている(特許文献1)。   One reason for this is that higher fatty acids produced during the hydrolysis of fats and oils are thought to inhibit the action of methane-fermenting bacteria, separating and removing fats and oils from organic wastewater, and subjecting the supernatant to methane fermentation treatment. A method has been proposed (Patent Document 1).

しかし、この方法では、多くの有機分がメタン発酵前に除去されてしまうため、発生ガス量が低下してしまう。   However, in this method, since a large amount of organic components are removed before methane fermentation, the amount of generated gas is reduced.

特開平8−66693号公報JP-A-8-66693

本発明は、ガスの発生を安定に継続させることができる、有機性廃棄物のメタン発酵法を提供することを目的とする。   An object of this invention is to provide the methane fermentation method of the organic waste which can continue generation | occurrence | production of gas stably.

また、本発明は、上記の方法を実施するための装置を提供することも目的とする。   Another object of the present invention is to provide an apparatus for carrying out the above method.

本発明者らは、上記課題を解決すべく鋭意努力した結果、以下のことを見出した。   As a result of diligent efforts to solve the above problems, the present inventors have found the following.

1.牛乳を基質としたメタン発酵を行うと、脱乳化されて生じた油脂で阻害が起こる。 1. When methane fermentation is performed using milk as a substrate, inhibition occurs due to fats and oils generated by demulsification.

2.牛乳を酸発酵(乳酸発酵に限定されない)させてからメタン発酵の基質とすると、脱乳化が起こらないで阻害が回避できる。 2. If milk is used as a substrate for methane fermentation after acid fermentation (not limited to lactic acid fermentation), inhibition can be avoided without demulsification.

3.しかし、長期的に、高濃度の酸発酵(乳酸発酵に限定されない)牛乳を基質とするとアンモニアによる阻害が起きる。 3. However, in the long term, when milk with a high concentration of acid fermentation (not limited to lactic acid fermentation) is used as a substrate, inhibition by ammonia occurs.

4.酸発酵(乳酸発酵に限定されない)牛乳を他の原料(例えば、アオサ)と混合することで、アンモニア濃度を低く保ち、アンモニアによる阻害を回避できる。 4). By mixing acid fermentation (not limited to lactic acid fermentation) milk with other raw materials (for example, Aosa), ammonia concentration can be kept low and inhibition by ammonia can be avoided.

5.さらに牛乳を酸発酵(乳酸発酵に限定されない)させてから、遠心分離などの方法で固形物(主に、酸によって変性したタンパク質)を取り除いた上清(乳清)はアンモニア濃度が低いため、これをメタン発酵の基質とするとアンモニアによる阻害がさらに回避できる。 5. Furthermore, after the milk is acid-fermented (not limited to lactic acid fermentation), the supernatant (whey) from which the solids (mainly proteins denatured by acid) are removed by a method such as centrifugation is low in ammonia concentration. If this is used as a substrate for methane fermentation, inhibition by ammonia can be further avoided.

本発明は、上記の知見により完成されたものである。   The present invention has been completed based on the above findings.

本発明の要旨は以下の通りである。   The gist of the present invention is as follows.

(1) 油脂とタンパク質を含む有機性廃棄物を嫌気的条件下で酸発酵処理した後、メタン発酵処理することを含む、メタン生成法。 (1) A method for producing methane, comprising subjecting organic waste containing fats and oils to an acid fermentation treatment under anaerobic conditions followed by a methane fermentation treatment.

(2) 酸発酵処理に用いる微生物が乳酸菌である(1)記載のメタン生成法。 (2) The methane production method according to (1), wherein the microorganism used for the acid fermentation treatment is a lactic acid bacterium.

(3) 酸発酵処理に用いる微生物が、Bacillus属又はLactobacillus属に属する(1)記載のメタン生成法。 (3) The method for producing methane according to (1), wherein the microorganism used for the acid fermentation treatment belongs to the genus Bacillus or the genus Lactobacillus .

(4) 酸発酵処理に用いる微生物が、Bacillus cereus OZ-6株(受託番号:FERM P-20381)、Lactobacillus sp. OZ-7株(受託番号:FERM P-20382)及びそれらの類縁菌種からなる群より選択される(3)記載のメタン生成法。 (4) Microorganisms used for acid fermentation treatment are Bacillus cereus OZ-6 strain (Accession No .: FERM P-20381), Lactobacillus sp. OZ-7 strain (Accession No .: FERM P-20382) and their related bacterial species. The method for producing methane according to (3), which is selected from the group consisting of:

(5) 油脂とタンパク質を含む有機性廃棄物が、哺乳動物の乳、鳥類の卵及びそれらを原料とする製品からなる群より選択される(1)〜(4)のいずれかに記載のメタン生成法。 (5) The methane according to any one of (1) to (4), wherein the organic waste containing fats and oils is selected from the group consisting of mammalian milk, avian eggs and products made from them. Generation method.

(6) 油脂とタンパク質を含む有機性廃棄物を嫌気的条件下で酸発酵処理する前、酸発酵処理した後又は酸発酵処理と同時に、前記有機性廃棄物よりも窒素含量が少ない有機性廃棄物を添加してから、メタン発酵処理する(1)〜(5)のいずれかに記載のメタン生成法。 (6) Organic waste with less nitrogen content than organic waste before or after acid fermentation treatment of organic waste containing fats and oils under anaerobic conditions The method for producing methane according to any one of (1) to (5), wherein a methane fermentation treatment is performed after adding the product.

(7) 油脂とタンパク質を含む有機性廃棄物よりも窒素含量が少ない有機性廃棄物が海藻である(6)記載のメタン生成法。 (7) The method for producing methane according to (6), wherein the organic waste having a lower nitrogen content than the organic waste containing fats and oils is seaweed.

(8) 海藻が、アオサ、マコンブ、オゴノリ、スサビノリ、ワカメ、アナアオサ、アマノリ、ツノマタ、ノコギリモク、クロヒトエグサ、ヤブレグサ、リボンアオサ、ボタンアオサ、ナガアオサ、スジアオノリ、ウスバアオノリ、ボウアオノリおよびトロロコンブからなる群より選択される少なくとも1種類の海藻である(7)記載のメタン生成法。 (8) The seaweed is selected from the group consisting of Aosa, Macombu, Ogonori, Susbinori, Wakame, Anaaaosa, Amanori, Tsunomata, Sawtooth Moku, Black human egusa, Yabregusa, Ribbon Aosa, Button Aosa, Nagaaoosa, Sueaonoori, Usubaaoori The method for producing methane according to (7), wherein the method is at least one kind of seaweed.

(9) 海藻が破砕処理されたものである(7)又は(8)記載のメタン生成法。 (9) The methane production method according to (7) or (8), wherein seaweed is crushed.

(10) 海藻がさらに熱処理されたものである(9)記載のメタン生成法。 (10) The method for producing methane according to (9), wherein the seaweed is further heat-treated.

(11) 油脂とタンパク質を含む有機性廃棄物を嫌気的条件下で酸発酵処理した後、生成した固形物を取り除いてから、メタン発酵処理する(1)〜(10)のいずれかに記載のメタン生成法。 (11) The organic waste containing fats and oils is subjected to an acid fermentation treatment under anaerobic conditions, and then the produced solid matter is removed, and then the methane fermentation treatment is performed according to any one of (1) to (10). Methane production method.

(12) 遠心分離又はフィルター除去により固形物を取り除く(11)記載のメタン生成法。 (12) The method for producing methane according to (11), wherein solids are removed by centrifugation or filter removal.

(13) 酸発酵処理槽と、メタン発酵処理槽とを備える、メタン生成装置。 (13) A methane generator comprising an acid fermentation treatment tank and a methane fermentation treatment tank.

(14) さらに、海藻を破砕するための手段を備える(13)記載のメタン生成装置。 (14) The methane generator according to (13), further comprising means for crushing seaweed.

(15) さらに、海藻を加熱するための手段と、海藻を熱処理するための槽とを備える(14)記載のメタン生成装置。 (15) The methane generator according to (14), further comprising means for heating the seaweed and a tank for heat-treating the seaweed.

(16) さらに、固液分離手段を備える(13)〜(15)のいずれかに記載のメタン生成装置。 (16) The methane generator according to any one of (13) to (15), further comprising solid-liquid separation means.

(17) (13)〜(15)のいずれかに記載のメタン生成装置で得られた消化ガスをコージェネレーション設備の燃料として用い、電気および熱エネルギーに変換するとともに、得られた熱を(1)〜(12)のいずれかに記載のメタン生成法に利用することを含む、メタン生成法。 (17) While using the digestion gas obtained with the methane production | generation apparatus in any one of (13)-(15) as a fuel of a cogeneration facility, while converting into electricity and heat energy, the obtained heat is (1 A method for producing methane, including use in the method for producing methane according to any one of (12) to (12).

(18) (13)〜(15)のいずれかに記載のメタン生成装置で得られた消化ガスをコージェネレーション設備の燃料として用い、電気および熱エネルギーに変換するとともに、得られた熱を(1)〜(12)のいずれかに記載のメタン生成法に利用するメタン生成装置。 (18) While using the digestion gas obtained with the methane production | generation apparatus in any one of (13)-(15) as a fuel of a cogeneration facility, while converting into electricity and heat energy, the obtained heat is (1 The methane production | generation apparatus utilized for the methane production | generation method in any one of ()-(12).

油脂とタンパク質を含む有機性廃棄物としては、哺乳動物の乳、鳥類の卵及びそれらを原料とする製品などを例示することができる。哺乳動物の乳としては、牛乳、山羊乳などを例示することができ、哺乳動物の乳を原料とする製品としては、バター、チーズ、ヨーグルト、脱脂粉乳などを例示することができる。鳥類の卵としては、家禽の卵などを例示することができ、鳥類の卵を原料とする製品としては、マヨネーズなどを例示することができる。   Examples of the organic waste containing fats and oils include mammalian milk, avian eggs and products made from them as raw materials. Examples of mammalian milk include cow milk and goat milk. Examples of products made from mammalian milk include butter, cheese, yogurt, and nonfat dry milk. Examples of avian eggs include poultry eggs, and examples of products made from avian eggs include mayonnaise.

油脂とタンパク質を含む有機性廃棄物よりも窒素含量が少ない有機性廃棄物としては、海藻などを例示することができる。   Seaweed etc. can be illustrated as an organic waste with less nitrogen content than the organic waste containing fats and oils and protein.

本明細書において、「酸発酵処理」とは、有機酸の生成を伴う発酵をいう。酸発酵は基本的に嫌気培養による。ただしメタン発酵のような厳密な(高度な)嫌気状態にする必要はない。酸化還元電位(ORP、または還元ポテンシャル)で100mV以下であれば問題ない。発酵とは、基質レベルのリン酸化によって、糖などの有機物を分解してエネルギーを獲得する反応をいう。   In the present specification, “acid fermentation treatment” refers to fermentation accompanied by the production of an organic acid. Acid fermentation is basically by anaerobic culture. However, it is not necessary to have a strict (advanced) anaerobic state like methane fermentation. There is no problem if the oxidation-reduction potential (ORP or reduction potential) is 100 mV or less. Fermentation refers to a reaction in which organic substances such as sugar are decomposed to acquire energy by phosphorylation at the substrate level.

「メタン発酵処理」とは、二酸化炭素あるいは酢酸を最終電子受容体としてエネルギーを得る反応であり、還元状態で行われ最終産物がメタンであるためにメタン発酵と呼ばれる。酢酸を最終電子受容体とする場合には二酸化炭素も生成する。反応を行う微生物はメタン生成菌あるいはメタン生成アーキアと呼ばれる。また、メタン発酵で生じるガス(メタンとCO2の混合ガス)はバイオガスあるいは消化ガスと呼ばれる。 The “methane fermentation treatment” is a reaction for obtaining energy using carbon dioxide or acetic acid as a final electron acceptor, and is called methane fermentation because it is performed in a reduced state and the final product is methane. Carbon dioxide is also produced when acetic acid is the final electron acceptor. The microorganism that performs the reaction is called a methanogen or methanogen archaea. A gas (mixed gas of methane and CO 2 ) generated by methane fermentation is called biogas or digestion gas.

牛乳を始めとする油脂とタンパク質を含む有機性廃棄物を基質とするメタン発酵においては、油脂による阻害とアンモニアによる阻害の2つが問題となっている。特定の理論に拘泥するわけではないが、本発明の原理は以下のように考えられる。   In methane fermentation using fats and oils such as milk and organic waste containing proteins as substrates, there are two problems: inhibition by fats and oils and inhibition by ammonia. Although not bound by a specific theory, the principle of the present invention is considered as follows.

1.油脂による阻害の回避
牛乳に含まれる油脂(トリグリセライド。グリセロール1分子に3分子の直鎖脂肪酸がエステル結合したもの)が脱乳化されて析出し、バター様となって培養液中に浮遊する。(脱乳化は牛乳からバターを作る原理である。)
1.Avoidance of inhibition by fats and oils Fats and oils contained in milk (triglyceride; one molecule of glycerol with an ester bond of three linear fatty acids) is de-emulsified and precipitates, becomes butter-like and floats in the culture medium . (Demulsification is the principle of making butter from milk.)

このバター様物質が微生物(メタン生成菌)固定化担体の表面に付着して、閉塞を起こす。固定化担体の多くは細孔を有したものや細い繊維状物質を折り重ねた構造で表面積を大きくして微生物と培養液の接触が効率よくなるように工夫されている。バター様物質はこの細孔などを塞ぐ。また、微生物(メタン生成菌)そのものの表面にも付着し、微生物菌体内への物質移動を阻害する。さらに油脂が微生物の細胞膜を破壊するとの報告もある。   This butter-like substance adheres to the surface of the microorganism (methanogen) immobilization carrier and causes clogging. Most of the immobilization carriers have a structure in which pores or thin fibrous materials are folded and the surface area is increased so that the contact between the microorganism and the culture solution is improved. Butter-like substances block these pores. It also adheres to the surface of the microorganism (methane producing bacteria) itself, and inhibits the mass transfer into the microorganism. There are also reports that oils and fats destroy the cell membranes of microorganisms.

牛乳を嫌気的な条件で酸発酵(多くは乳酸発酵。さらに酢酸発酵や酪酸発酵も起こる。)させると脱乳化が起こらない。そのためバター様物質による阻害は認められなくなる。   When milk is subjected to acid fermentation under anaerobic conditions (mostly lactic acid fermentation, and acetic acid fermentation and butyric acid fermentation also occur), demulsification does not occur. Therefore, the inhibition by the butter-like substance is not recognized.

2.アンモニアによる阻害の回避
牛乳にはタンパク質が含まれるため、牛乳を基質として長期のメタン発酵を行うとタンパク質が嫌気的に分解され、アンモニアが遊離する。アンモニアはメタン発酵を阻害する(アンモニウムイオンは阻害しない)。
2. Avoiding inhibition by ammonia Since milk contains protein, long-term methane fermentation using milk as a substrate results in anaerobic degradation of protein and liberation of ammonia. Ammonia inhibits methane fermentation (ammonium ions do not inhibit).

牛乳を嫌気的な条件で酸発酵させるとpHが下がるため、タンパク質の多くが変性して水に不溶となる。この変性タンパク質は遠心分離やフィルター除去などにより除くことができる。変性タンパク質を除いた液は乳清(ホエー)と一般的には呼ばれる。乳清には有機酸、アミノ酸、水溶性の高いタンパク質、糖類が含まれていると考えられる。アミノ酸はタンパク質が低pHによって変性する以前に分解したもの、水溶性の高いタンパク質は変性しても水溶性を保っているもの、糖類は発酵によって有機酸に変換されなかった残りと考えられる。また、アミノ酸、水溶性の高いタンパク質および糖類はもとの牛乳よりは低濃度である。   When milk is subjected to acid fermentation under anaerobic conditions, the pH is lowered, so that most of the protein is denatured and becomes insoluble in water. This denatured protein can be removed by centrifugation or filter removal. The liquid from which the denatured protein is removed is generally called whey. Whey is thought to contain organic acids, amino acids, highly water-soluble proteins, and sugars. Amino acids are considered to be proteins that have been degraded before denaturation with low pH, proteins that have high water solubility remain water-soluble even when they are denatured, and sugars that are not converted to organic acids by fermentation. In addition, amino acids, highly water-soluble proteins and saccharides are in lower concentrations than the original milk.

本発明により、従来のメタン発酵法よりも、多量のガスを有機性廃棄物から発生させることができるようになった。   According to the present invention, a larger amount of gas can be generated from organic waste than the conventional methane fermentation method.

以下、図面を参照しつつ、本発明のいくつかの実施態様を説明する。ここでは、油脂とタンパク質を含む有機性廃棄物として牛乳を用いる。   Hereinafter, some embodiments of the present invention will be described with reference to the drawings. Here, milk is used as an organic waste containing fats and oils.

1.図1は、本発明のメタン生成法を含む有機性廃棄物リサイクルのフロー図である。 1. FIG. 1 is a flow chart of organic waste recycling including the methane production method of the present invention.

本発明のメタン生成法において、油脂とタンパク質を含む有機性廃棄物(ここでは、牛乳)を嫌気的条件下で酸発酵処理した後、メタン発酵処理する。   In the methane production method of the present invention, an organic waste (in this case, milk) containing fats and oils is subjected to an acid fermentation treatment under anaerobic conditions, followed by a methane fermentation treatment.

牛乳を前処理槽にて酸発酵処理する。酸発酵処理は微生物により有機酸が生成されることができる処理であればよく、例えば、牛乳を微生物の生育に適した温度にまで加熱した後に、その溶液で有機酸生成のための微生物を培養するとよい。なお、微生物の培養を牛乳などの溶液中で行う場合には、溶液はアルカリ性溶液、酸性溶液、中性溶液のいずれであってもよい。微生物をアルカリ性溶液中で培養する場合には、微生物の培養開始時における溶液のpHは7.5以上とし、微生物を酸性溶液中で培養する場合には、微生物の培養開始時における溶液のpHは6.5以下とし、微生物を中性溶液中で培養する場合には、微生物の培養開始時における溶液のpHは6.5〜7.5の範囲内とするとよい。培養開始時のpHは、用いる微生物の最適生育pHに合わせるとさらに効果的である。溶液を所望のpHにするために、酸やアルカリの溶液(例えば、NaOH溶液、KOH溶液、Ca(OH)溶液、Mg(OH)溶液、NH溶液、HCl溶液、HNO溶液、HCO溶液)を添加するとよい。培養は静置、振とう、攪拌培養のいずれであってもよく、嫌気的条件下で行うとよいが、静置培養にて嫌気的条件下で行うことが好ましい。培養条件は用いる微生物に応じて最適化することが望ましい。培養は、10〜40℃の温度で、12時間以上行うとよい。培養は、回分法、連続法、半回分培養法、流加培養法のいずれであってもよい。 Milk is acid-fermented in a pretreatment tank. The acid fermentation treatment may be any treatment that allows organic acids to be produced by microorganisms. For example, after heating milk to a temperature suitable for the growth of microorganisms, the microorganisms for producing organic acids are cultured in the solution. Good. When the microorganism is cultured in a solution such as milk, the solution may be an alkaline solution, an acidic solution, or a neutral solution. When culturing microorganisms in an alkaline solution, the pH of the solution at the start of cultivation of microorganisms is 7.5 or more, and when culturing microorganisms in an acidic solution, the pH of the solution at the start of cultivation of microorganisms is When the microorganism is cultured in a neutral solution at a pH of 6.5 or less, the pH of the solution at the start of culturing the microorganism is preferably in the range of 6.5 to 7.5. It is more effective to adjust the pH at the start of the culture to the optimum growth pH of the microorganism to be used. In order to bring the solution to a desired pH, an acid or alkali solution (for example, NaOH solution, KOH solution, Ca (OH) 2 solution, Mg (OH) 2 solution, NH 3 solution, HCl solution, HNO 3 solution, H 2 CO 3 solution) may be added. Culture may be any of static culture, shaking culture, and stirring culture, and may be performed under anaerobic conditions, but is preferably performed under static anaerobic conditions. It is desirable to optimize the culture conditions according to the microorganism used. The culture is preferably performed at a temperature of 10 to 40 ° C. for 12 hours or more. The culture may be any of a batch method, a continuous method, a semi-batch culture method, and a fed-batch culture method.

酸発酵処理により、酢酸、乳酸、蟻酸、酪酸、プロピオン酸、ピルビン酸、グリオキシル酸、シュウ酸などの内少なくとも1種類以上の有機酸が生成する。なお、酸発酵処理により、生化学的に酢酸に変換しうる有機酸が少なくとも1種類生成することが必要である。   The acid fermentation treatment produces at least one organic acid such as acetic acid, lactic acid, formic acid, butyric acid, propionic acid, pyruvic acid, glyoxylic acid, and oxalic acid. In addition, it is necessary to produce | generate at least 1 type of organic acid which can be biochemically converted into an acetic acid by acid fermentation process.

微生物は、基質となる原料(ここでは、牛乳、海藻など)から有機酸を生成するものであれば、いかなるものであってもよい。微生物の種類としては、乳酸発酵系微生物、土壌系微生物、食品系微生物など、または、海に生息している微生物、例えば、海藻を採取した海域に生息している微生物、採取した海藻に付着している微生物などが挙げられる。具体的には、乳酸菌、Bacillus属、Lactobacillus属に属する微生物などが挙げられ、これらの中でも、Bacillus cereus OZ-6株、Lactobacillus sp. OZ-7株、それらの類縁菌種(16S-rDNAの塩基配列が98%以上一致する微生物)が好ましい。微生物はこれら単一な菌種を単独で用いても良いが、これらの微生物種が混在して有効に機能する混合微生物系でも良い。微生物の種母の量は、溶液1ml当り10細胞以上が望ましい。 The microorganism may be any microorganism as long as it produces an organic acid from a raw material (here, milk, seaweed, etc.) serving as a substrate. The types of microorganisms include lactic acid fermentation microorganisms, soil microorganisms, food microorganisms, etc., or microorganisms that inhabit the sea, for example, microorganisms that inhabit the sea area from which seaweeds are collected, or that adhere to the collected seaweeds. Such as microorganisms. Specific examples include microorganisms belonging to the genus Lactobacillus , Bacillus genus and Lactobacillus. Among these, Bacillus cereus OZ-6 strain, Lactobacillus sp. OZ-7 strain, and their related species (16S-rDNA base) Microorganisms whose sequences are 98% or more identical are preferred. These microorganisms may be used alone as a microorganism, or a mixed microorganism system in which these microorganisms are mixed and function effectively. The amount of microbial seed is preferably 10 5 cells or more per ml of the solution.

酸発酵処理した牛乳をメタン発酵槽にてメタン発酵させる。メタン発酵槽で生成した消化ガス(メタンガス、メタンガスと二酸化炭素との混合ガスなど)は、必要によりガス精製設備(図示せず)で硫化水素の除去(脱硫)を行った後、消化ガスは消化ガス利用設備(例えば、ガスエンジン、ガスタービン、燃料電池等これらの設備を含むコージェネレーション設備、ボイラなど)に送られて電気、熱エネルギーとして利用される。なお、図示はしないが、ガス精製設備の後に、ガス貯蔵設備(ガスタンク)を設置することが望ましい。必要に応じて、ガス圧縮機やドレン処理装置を用いる。コージェネレーション設備、ボイラを用いた場合には、得られる熱の全部または一部をメタン発酵槽の加熱、加温もしくは加熱、加温のための予熱の熱源として用いる。予熱の熱源としては、酸発酵処理槽からメタン発酵槽へ牛乳を移す際の冷却時に発生(回収)する熱も利用することができる。コージェネレーション設備、ボイラから得られる熱の一部を酸発酵処理槽、メタン発酵槽の加熱、加温に利用してもよい。これらの、熱利用を行うことで更にエネルギーの有効利用が図れる。また、消化ガスの利用法として、自動車、船の燃料に用いることもできる。   Milk subjected to acid fermentation is methane-fermented in a methane fermentation tank. Digestion gas produced in the methane fermentation tank (methane gas, mixed gas of methane gas and carbon dioxide, etc.) is removed with hydrogen sulfide (desulfurization) in a gas purification facility (not shown) if necessary, and then digested gas is digested. It is sent to a gas utilization facility (for example, a cogeneration facility including these facilities such as a gas engine, a gas turbine, and a fuel cell, a boiler, etc.) and used as electricity and thermal energy. Although not shown, it is desirable to install a gas storage facility (gas tank) after the gas purification facility. If necessary, a gas compressor or a drain treatment device is used. When a cogeneration facility or a boiler is used, all or part of the obtained heat is used as a heat source for preheating for heating, heating or heating, and heating of the methane fermentation tank. As a heat source for preheating, heat generated (recovered) at the time of cooling when transferring milk from the acid fermentation tank to the methane fermentation tank can also be used. A part of the heat obtained from the cogeneration facility and the boiler may be used for heating and heating the acid fermentation treatment tank and the methane fermentation tank. By using these heats, the energy can be used more effectively. Moreover, it can also use for the fuel of a motor vehicle and a ship as a utilization method of digestion gas.

メタン発酵が行われた後にメタン発酵槽に残った残さ(メタン発酵が行われた後の牛乳)は肥料、土壌改良資材などとして利用することができる。   The residue remaining in the methane fermenter after the methane fermentation is performed (milk after the methane fermentation is performed) can be used as a fertilizer, a soil improvement material, or the like.

メタン発酵は、酸発酵処理をした牛乳とともに嫌気状態でメタン生成菌を培養することにより行う。なお、メタン発酵法については、一般に行われているメタン発酵法と同様のものでよい。(参照文献:廃棄物のメタン発酵 サイエンティスト社 2000年)   Methane fermentation is performed by culturing methanogens in an anaerobic state with milk subjected to acid fermentation treatment. In addition, about the methane fermentation method, the thing similar to the methane fermentation method generally performed may be sufficient. (Reference: Methane fermentation of waste, Scientist 2000)

2.図2は、本発明のメタン生成法を含む別の有機性廃棄物リサイクルのフロー図である。 2. FIG. 2 is a flow diagram of another organic waste recycling that includes the methane production process of the present invention.

本発明のメタン生成法において、油脂とタンパク質を含む有機性廃棄物(ここでは、牛乳)を嫌気的条件下で酸発酵処理する前、酸発酵処理した後又は酸発酵処理と同時に、前記有機性廃棄物よりも窒素含量が少ない有機性廃棄物(ここでは、海藻)を添加してから、メタン発酵処理してもよい。   In the methane production method of the present invention, the organic waste (in this case, milk) containing fats and oils is subjected to an acid fermentation treatment under anaerobic conditions, after the acid fermentation treatment, or simultaneously with the acid fermentation treatment, the organic waste. After adding organic waste (here, seaweed) having a lower nitrogen content than waste, methane fermentation treatment may be performed.

まず、前処理手段により、アオサ、マコンブ、オゴノリ、スサビノリ、ワカメ、アナアオサ、アマノリ、ツノマタ、ノコギリモク、クロヒトエグサ、ヤブレグサ、リボンアオサ、ボタンアオサ、ナガアオサ、スジアオノリ、ウスバアオノリ、ボウアオノリ、トロロコンブなどの海藻を前処理する。海藻は、海、磯、浜辺などに自然に生息しているものであっても、養殖されているものであってもよい。養殖されている海藻については、食用、だし用に養殖されているものであっても、海域の富栄養化対策として養殖されいるものであってもよい。また、海藻は乾燥させたものでも良い。さらに、旨味成分やアルギン酸等の有効成分を抽出した海藻残さでもよい。本発明においては、これらの海藻を採取して、利用することができる。   First of all, by pretreatment means, Aosa, Macombu, Ogonori, Susbinori, Wakame, Anaaaosa, Amanori, Tsunomata, Sawtooth Moku, Black Hitusa, Yabregusa, Ribbon Aosa, Button Aosa, Nagaaosa, Suseoonori, Usu-Aoori To process. The seaweed may be naturally inhabited in the sea, coral, beach, or the like, or may be cultured. The seaweed that is cultivated may be cultivated for food or dashi, or may be cultivated as a countermeasure for eutrophication in the sea area. The seaweed may be dried. Furthermore, the seaweed residue which extracted effective ingredients, such as an umami | flavor ingredient and alginic acid, may be sufficient. In the present invention, these seaweeds can be collected and used.

例えば、前処理として、海藻をミル、カッターなどの破砕手段を用いて破砕もしくは粉砕し、次いで適当な液(例えば、中性水(pH6.5〜7.5)、アルカリ溶液(pH7.5以上)、酸溶液(pH6.5以下)など)で適当な濃度(例えば、海藻を乾燥重量で0.1〜15重量%含む濃度)に希釈する。中性水としては、純水、水道水、工業用水等を挙げることができる。アルカリ溶液としては、NaOH溶液、KOH溶液、Ca(OH)溶液、Mg(OH)溶液、NH溶液またはこれらの内少なくとも2種以上を混合した溶液などを挙げることができる。酸溶液としては、HCl溶液、HNO溶液、HSO溶液、HCO溶液またはこれらの内、少なくとも2種以上を混合した溶液などを挙げることができる。 For example, as a pretreatment, seaweed is crushed or crushed using a crushing means such as a mill or a cutter, and then an appropriate liquid (for example, neutral water (pH 6.5 to 7.5), alkaline solution (pH 7.5 or more), It is diluted to an appropriate concentration (for example, a concentration containing 0.1 to 15% by weight of seaweed by dry weight) with an acid solution (pH 6.5 or less). Neutral water includes pure water, tap water, industrial water, and the like. Examples of the alkaline solution include an NaOH solution, a KOH solution, a Ca (OH) 2 solution, an Mg (OH) 2 solution, an NH 3 solution, or a solution obtained by mixing at least two of these. Examples of the acid solution include an HCl solution, an HNO 3 solution, an H 2 SO 4 solution, an H 2 CO 3 solution, or a solution in which at least two of these are mixed.

海藻が骨格多糖類および粘性多糖類(例えば、セルロース、ヘミセルロース、グルクロノキシロラムナン硫酸、グルクロノキシロラムノガラクタン硫酸、アルギン酸、フコイダン、アガロース、ガラクタン、フノランなど)を多く含む場合には、前処理により得られた海藻溶液を熱処理するとよい。この熱処理により、海藻の骨格多糖類および粘性多糖類を低分子化する。熱処理は、海藻を加熱することにより海藻の骨格多糖類および粘性多糖類を低分子化させることができる処理であればよく、望ましくは50℃以上の温度にて加熱し、所定時間その温度を維持することで行う。なお、本反応は加水分解反応であるから、処理温度を高くすれば、処理時間を短くすることができる。熱処理は、いかなる装置を用いていかなる方法で行ってもよく、例えば、オートクレーブ、恒温槽、水浴、油浴、蒸気添加などを用いて行うことができる。熱処理は、好気的条件または嫌気的条件のいずれの条件下で行ってもよい。海藻をアルカリ溶液中で熱処理する場合には、熱処理開始時の溶液のpHは7.5以上とするとよい。海藻を酸溶液中で熱処理する場合には、熱処理開始時の溶液のpHは6.5以下とするとよい。溶液を所望のpHにするために、酸やアルカリの溶液(例えば、NaOH溶液、KOH溶液、Ca(OH)溶液、Mg(OH)溶液、NH溶液、HCl溶液、HNO溶液、HSO溶液、HCO溶液)を添加するとよい。海藻を中性溶液中で熱処理する場合には、純水、水道水、工業用水などをそのまま用い、熱処理開始時の溶液のpHが6.5〜7.5の範囲内のものを使用するとよい。 If seaweed contains a lot of skeletal polysaccharides and viscous polysaccharides (eg cellulose, hemicellulose, glucuronoxyloramnan sulfate, glucuronoxyloramnogalactan sulfate, alginic acid, fucoidan, agarose, galactan, funolan, etc.) The seaweed solution obtained by the treatment may be heat treated. This heat treatment reduces the molecular weight of the skeletal polysaccharide and viscous polysaccharide of seaweed. The heat treatment may be any treatment that can reduce the molecular weight of the seaweed skeletal polysaccharide and viscous polysaccharide by heating the seaweed, and is preferably heated at a temperature of 50 ° C. or higher and maintained at that temperature for a predetermined time. To do. Since this reaction is a hydrolysis reaction, the treatment time can be shortened by increasing the treatment temperature. The heat treatment may be performed by any method using any apparatus, for example, using an autoclave, a thermostatic bath, a water bath, an oil bath, steam addition, or the like. The heat treatment may be performed under aerobic conditions or anaerobic conditions. When seaweed is heat-treated in an alkaline solution, the pH of the solution at the start of heat treatment is preferably 7.5 or more. When seaweed is heat-treated in an acid solution, the pH of the solution at the start of heat treatment is preferably 6.5 or less. In order to bring the solution to a desired pH, an acid or alkali solution (for example, NaOH solution, KOH solution, Ca (OH) 2 solution, Mg (OH) 2 solution, NH 3 solution, HCl solution, HNO 3 solution, H 2 SO 4 solution, H 2 CO 3 solution) may be added. When heat-treating seaweed in a neutral solution, pure water, tap water, industrial water, etc. should be used as they are, and the solution having a pH of 6.5 to 7.5 at the start of heat treatment should be used. .

熱処理後の海藻における骨格多糖類および粘性多糖類の量は特に限定されない。なお、本明細書においては、骨格多糖類および粘性多糖類の低分子化の度合いを推定するのに、溶液中に溶け出した水溶性画分の量を指標としている。水溶性画分の量については、処理前の固形分の重量と処理後の溶液中の固形分の重量の差をとっている。   The amount of the skeletal polysaccharide and the viscous polysaccharide in the seaweed after the heat treatment is not particularly limited. In this specification, the amount of the water-soluble fraction dissolved in the solution is used as an index to estimate the degree of molecular weight reduction of the skeletal polysaccharide and the viscous polysaccharide. Regarding the amount of the water-soluble fraction, the difference between the weight of the solid before the treatment and the weight of the solid in the solution after the treatment is taken.

前処理、場合により、さらに熱処理された海藻溶液を前処理槽に添加する。海藻溶液が熱処理されている場合には、前処理槽で用いる微生物の生育に適した温度まで冷却した後、前処理槽に添加するとよい。以後の処理は図1の場合と同様である。   Pretreatment, and optionally further heat-treated seaweed solution is added to the pretreatment tank. When the seaweed solution is heat-treated, it may be added to the pretreatment tank after being cooled to a temperature suitable for the growth of microorganisms used in the pretreatment tank. The subsequent processing is the same as in FIG.

3.図3は、本発明のメタン生成法を含むさらにもう一つの有機性廃棄物リサイクルのフロー図である。 3. FIG. 3 is yet another organic waste recycling flow diagram that includes the methane production process of the present invention.

本発明のメタン生成法において、油脂とタンパク質を含む有機性廃棄物(ここでは、牛乳)を嫌気的条件下で酸発酵処理した後、生成した固形物を取り除いてから、メタン発酵処理してもよい。   In the methane production method of the present invention, an organic waste (in this case, milk) containing fats and oils is subjected to an acid fermentation treatment under anaerobic conditions, and then the produced solid matter is removed, followed by a methane fermentation treatment. Good.

牛乳は図1と同様に酸発酵処理される。その後、酸発酵処理された牛乳からは、固液分離手段により固形物が取り除かれる。   Milk is subjected to an acid fermentation treatment as in FIG. Thereafter, solid matter is removed from the milk subjected to the acid fermentation treatment by solid-liquid separation means.

固液分離の方法としては、遠心分離、フィルター除去などを例示することができる。   Examples of the solid-liquid separation method include centrifugation and filter removal.

固液分離手段としては、遠心分離機、デカンター、フィルタープレス、ろ過装置などを例示することができる。   Examples of the solid-liquid separation means include a centrifuge, a decanter, a filter press, and a filtration device.

固液分離後の固体は、肥料、土壌改良資材などとして利用することができる。   The solid after the solid-liquid separation can be used as a fertilizer, a soil improvement material, or the like.

固液分離後の液体は、メタン発酵槽にてメタン発酵処理される。以後の処理は図1の場合と同様である。   The liquid after solid-liquid separation is subjected to methane fermentation treatment in a methane fermentation tank. The subsequent processing is the same as in FIG.

以上、図面を参照しながら本発明を説明したが、当業者にとって自明な変更や改良がなされたものも、本発明の範囲内である。   Although the present invention has been described above with reference to the drawings, modifications and improvements obvious to those skilled in the art are also within the scope of the present invention.

以下、本発明を実施例によって具体的に説明する。なお、これらの実施例は、本発明を説明するためのものであって、本発明の範囲を限定するものではない。   Hereinafter, the present invention will be specifically described by way of examples. These examples are for explaining the present invention, and do not limit the scope of the present invention.

実施例1のメタン発酵法に用いた装置を図4に示す。牛乳は酸発酵槽に流入され、微生物とともに恒温槽(1)内で培養され、その結果、有機酸が生成した。有機酸を含有する酸発酵処理された牛乳はメタン発酵槽に流入され、担体に固定されているメタン生成菌とともに恒温槽(2)内で培養され、その結果、消化ガス(メタンガス、メタンガスと二酸化炭素との混合ガスなど)が生成した。生成した消化ガスをガス捕集器(生成したメタンガスを捕集するための手段)に捕集した。メタン生成菌として通常のメタン発酵で用いられている菌種を使用した。メタン生成菌の培養は、スターラーで培養液を攪拌しながら行った。培養液のpHはpHメーターで測定した。   The apparatus used for the methane fermentation method of Example 1 is shown in FIG. Milk was flowed into the acid fermenter and cultured in the thermostat (1) with the microorganisms, resulting in the production of organic acids. Milk fermented with acid fermentation containing organic acids flows into the methane fermenter and is cultured in a thermostat (2) with methanogens fixed to the carrier. As a result, digestion gas (methane gas, methane gas and A mixed gas with carbon). The produced digestion gas was collected in a gas collector (means for collecting the produced methane gas). As the methanogen, the bacterial species used in ordinary methane fermentation was used. The methanogen was cultured while stirring the culture solution with a stirrer. The pH of the culture solution was measured with a pH meter.

実施例2のメタン発酵法に用いた装置を図5に示す。牛乳を前処理及び熱処理された海藻とともに、酸発酵槽に流入した。その他の処理は実施例1と同様である。   The apparatus used for the methane fermentation method of Example 2 is shown in FIG. Milk was flowed into the acid fermenter along with pretreated and heat-treated seaweed. Other processes are the same as those in the first embodiment.

実施例3のメタン発酵法に用いた装置を図6に示す。牛乳の酸発酵処理は実施例1と同様である。有機酸を含有する酸発酵処理された牛乳を遠心分離機により固液分離した後、メタン発酵槽に流入した。その後の処理は実施例1と同様である。   The apparatus used for the methane fermentation method of Example 3 is shown in FIG. The acid fermentation treatment of milk is the same as in Example 1. The acid-fermented milk containing organic acid was solid-liquid separated by a centrifuge and then flowed into a methane fermentation tank. Subsequent processing is the same as in the first embodiment.

また、比較例及び実施例1〜3で用いたメタン発酵用の合成培地の組成は以下の通りである。   Moreover, the composition of the synthetic medium for methane fermentation used in Comparative Examples and Examples 1 to 3 is as follows.

Figure 2006247601
Figure 2006247601

比較例Comparative example

1.試験条件
容量600mlのガラス製リアクタ中に、牛乳600mlおよび少量の種菌(汚泥系)を加えた。微生物の固定担体として液中に多孔質の担体を設置した。マグネティックスターラで攪拌を行った。リアクタを恒温槽内に設置し、55℃に制御した。pHは約7.0〜8.3に制御した。発生ガスは水上置換で捕集した。試験開始から21日目に、牛乳400mlの入れ替えを行った。
1. Test conditions In a 600 ml glass reactor, 600 ml of milk and a small amount of inoculum (sludge system) were added. A porous carrier was placed in the liquid as a microorganism-fixing carrier. Stirring was performed with a magnetic stirrer. The reactor was installed in a thermostat and controlled at 55 ° C. The pH was controlled at about 7.0 to 8.3. The evolved gas was collected by water replacement. On the 21st day from the start of the test, 400 ml of milk was replaced.

2.実験結果
結果を図7に示す。図には試験開始からのガス発生量の積算値を示す。21日目にガス発生がほぼなくなったの確認した後、原料となる牛乳を入れ替えた。2回目の試験において、ガス発生量が激減した。試験後のリアクタ内に設置した担体の様子を図8に示す。写真からわかるように、担体表面に油状物質が大量に着いていた。ガス発生量の低下は、油状物質による微生物の被毒が原因と考えられる。
2. Experimental results The results are shown in FIG. The figure shows the integrated value of gas generation from the start of the test. On the 21st day, after confirming that gas generation was almost gone, the raw milk was replaced. In the second test, the amount of gas generated decreased drastically. The state of the carrier installed in the reactor after the test is shown in FIG. As can be seen from the photograph, a large amount of oily substance was deposited on the surface of the carrier. The decrease in gas generation is thought to be caused by the poisoning of microorganisms by oily substances.

牛乳を酸発酵処理した後、メタン発酵処理した。試験条件は以下の通りである。   Milk was acid-fermented and then methane-fermented. The test conditions are as follows.

1.試験条件(前処理1)
酸発酵処理
ガラス製リアクタ(1000ml)中で、市販の牛乳1000mlに発酵食品(魚介類の粕漬け)10gを添加し、軽く攪拌した後、恒温槽内(30℃)で48時間静置培養した。
1. Test conditions (Pretreatment 1)
Acid Fermentation Treatment In a glass reactor (1000 ml), 10 g of fermented food (seafood pickled in seafood) was added to 1000 ml of commercially available milk, stirred gently, and then statically cultured in a thermostat (30 ° C.) for 48 hours.

2.試験条件(メタン発酵処理)
容量1Lのガラス製リアクタ中に、微生物の固定担体として液中に多孔質の担体(約30cc)を設置した。マグネティックスターラで攪拌(約50rpm)を行った。リアクタを恒温槽内に設置し、55℃に制御した。pHは約7.5に制御した。
2. Test conditions (methane fermentation treatment)
In a 1 L glass reactor, a porous carrier (about 30 cc) was placed in the liquid as a microorganism-fixing carrier. Stirring (about 50 rpm) was performed with a magnetic stirrer. The reactor was installed in a thermostat and controlled at 55 ° C. The pH was controlled at about 7.5.

合成培地900ml(上記)に前処理液を100mlおよび少量の種菌(汚泥系)を加えた。その後、前処理液とメタン発酵液を100mlずつ入れ替える作業を適宜繰り返し、連続発酵試験を行った。発生ガスは水上置換で捕集した。リアクタ溶液中のアンモニア濃度は、島津製イオンクロマトグラフで測定した。リアクタ溶液中の有機酸濃度は、島津製液体クロマトグラフで測定した。   100 ml of the pretreatment liquid and a small amount of inoculum (sludge system) were added to 900 ml of the synthetic medium (above). Then, the operation | work which replaces 100 ml of pretreatment liquids and methane fermentation liquids was repeated suitably, and the continuous fermentation test was done. The evolved gas was collected by water replacement. The ammonia concentration in the reactor solution was measured with an ion chromatograph manufactured by Shimadzu. The organic acid concentration in the reactor solution was measured with a Shimadzu liquid chromatograph.

3.実験結果
結果を図9及び10に示す。油状物質による阻害は観察されなかった。バイオガスの発生は継続的であった。しかし、メタンの直接の基質である酢酸が蓄積した。これはメタン生成過程が何らかの阻害を受けていることを示す結果と考えられた。また、時間の経過とともに、アンモニア濃度が増加した(3000ppmを超えた)。
3. Experimental results The results are shown in FIGS. No inhibition by oil was observed. The generation of biogas was continuous. However, acetic acid, a direct substrate for methane, accumulated. This was thought to be a result indicating that the methane production process was somewhat disturbed. In addition, with the passage of time, the ammonia concentration increased (exceeding 3000 ppm).

海藻を前処理した後、牛乳と混合物し、酸発酵処理をした。その後、メタン発酵処理処理を行った。試験条件は以下の通りである。   After pre-treating seaweed, it was mixed with milk and subjected to acid fermentation. Thereafter, a methane fermentation treatment was performed. The test conditions are as follows.

1.試験条件(前処理2)
(1)海藻前処理
乾燥アオサをSHIBATA製 PERSONAL MILL SCM-40で粉砕した。粉砕したアオサ50gを水に加え(1000ml)、オートクレーブで121℃、15分間処理した。
1. Test conditions (Pretreatment 2)
(1) Seaweed pretreatment Dried seaweed was pulverized with PERSONAL MILL SCM-40 manufactured by SHIBATA. 50 g of ground Aosa was added to water (1000 ml) and treated in an autoclave at 121 ° C. for 15 minutes.

(2)海藻+牛乳の酸発酵処理
ガラス製リアクタ(1000ml)中で、市販の牛乳500mlと上記海藻処理液500mlを混合し、発酵食品(魚介類の粕漬け)10gを添加した。軽く攪拌した後、恒温槽内(30℃)で48時間静置培養した。
(2) Acid fermentation treatment of seaweed + milk In a glass reactor (1000 ml), 500 ml of commercially available milk and 500 ml of the seaweed treatment solution were mixed, and 10 g of fermented food (seafood pickled in seafood) was added. After gently stirring, the cells were statically cultured in a thermostatic chamber (30 ° C.) for 48 hours.

2.試験条件(メタン発酵処理)
容量1Lのガラス製リアクタ中に、微生物の固定担体として液中に多孔質の担体(約30cc)を設置した。マグネティックスターラで攪拌(約50rpm)を行った。リアクタを恒温槽内に設置し、55℃に制御した。pHは約7.5に制御した。
2. Test conditions (methane fermentation treatment)
In a 1 L glass reactor, a porous carrier (about 30 cc) was placed in the liquid as a microorganism-fixing carrier. Stirring (about 50 rpm) was performed with a magnetic stirrer. The reactor was installed in a thermostat and controlled at 55 ° C. The pH was controlled at about 7.5.

合成培地900ml(上記)に前処理液を100mlおよび少量の種菌(汚泥系)を加えた。その後、前処理液は培養80日までは100mlずつ入れ替える作業を適宜繰り返し、培養81日目以降は負荷量を増加させ150mlずつを入れ替える作業を行った。発生ガスは水上置換で捕集した。リアクタ溶液中のアンモニア濃度は、島津製イオンクロマトグラフで測定した。リアクタ溶液中の有機酸濃度は、島津製液体クロマトグラフで測定した。   100 ml of the pretreatment liquid and a small amount of inoculum (sludge system) were added to 900 ml of the synthetic medium (above). Thereafter, the pretreatment solution was appropriately replaced by 100 ml until the 80th day of culture, and after the 81st day of culture, the load was increased and 150 ml was replaced. The evolved gas was collected by water replacement. The ammonia concentration in the reactor solution was measured with an ion chromatograph manufactured by Shimadzu. The organic acid concentration in the reactor solution was measured with a Shimadzu liquid chromatograph.

3.実験結果
結果を図11及び12に示す。有機酸の蓄積が少なく、バイオガスの発生は旺盛であった。また、アンモニア濃度は2500ppm程度を保っていた。
3. Experimental results The results are shown in FIGS. There was little accumulation of organic acids, and biogas generation was vigorous. Further, the ammonia concentration was maintained at about 2500 ppm.

牛乳を酸発酵処理した後、遠心分離機にかけ、その上清(乳清)をメタン発酵処理した。試験条件は以下の通りである。   After the milk was subjected to an acid fermentation treatment, it was centrifuged and the supernatant (whey) was subjected to a methane fermentation treatment. The test conditions are as follows.

1.試験条件(前処理3)
酸発酵処理(乳清)
ガラス製リアクタ(1000ml)中で、市販の牛乳1000mlに発酵食品(魚介類の粕漬け)10gを添加した。軽く攪拌した後、恒温槽内(30℃)で48時間静置培養した。その後、静置培養した溶液を200mlの容器に入れ、3000rpm、30分間遠心処理し、上澄み(乳清)のみを回収した。
1. Test conditions (Pretreatment 3)
Acid fermentation treatment (whey)
In a glass reactor (1000 ml), 10 g of fermented food (seafood pickled in seafood) was added to 1000 ml of commercially available milk. After gently stirring, the cells were statically cultured in a thermostatic chamber (30 ° C.) for 48 hours. Thereafter, the statically cultured solution was placed in a 200 ml container, centrifuged at 3000 rpm for 30 minutes, and only the supernatant (whey) was collected.

2.試験条件(メタン発酵処理)
容量1Lのガラス製リアクタ中に、微生物の固定担体として液中に多孔質の担体(約30cc)を設置した。マグネティックスターラで攪拌(約50rpm)を行った。リアクタを恒温槽内に設置し、55℃に制御した。pHは約7.5に制御した。
2. Test conditions (methane fermentation treatment)
In a 1 L glass reactor, a porous carrier (about 30 cc) was placed in the liquid as a microorganism-fixing carrier. Stirring (about 50 rpm) was performed with a magnetic stirrer. The reactor was installed in a thermostat and controlled at 55 ° C. The pH was controlled at about 7.5.

前処理した牛乳で数ヶ月連続発酵試験を行ったものに、乳清を100ml加えて連続試験をした。発生ガスは水上置換で捕集した。リアクタ溶液中のアンモニア濃度は、島津製イオンクロマトグラフで測定した。リアクタ溶液中の有機酸濃度は、島津製液体クロマトグラフで測定した。   100 ml of whey was added to what was subjected to a continuous fermentation test for several months with pretreated milk, and a continuous test was performed. The evolved gas was collected by water replacement. The ammonia concentration in the reactor solution was measured with an ion chromatograph manufactured by Shimadzu. The organic acid concentration in the reactor solution was measured with a Shimadzu liquid chromatograph.

3.実験結果
結果を図13及び14に示す。バイオガスの発生は旺盛で、有機酸の蓄積量が減少していた。これは、有機酸がメタン+CO2に変換されているからと思われる。また、アンモニア濃度が低下していた。
3. Experimental results The results are shown in FIGS. The generation of biogas was vigorous, and the amount of organic acid accumulated was decreasing. This seems to be because the organic acids are converted to methane + CO 2. Further, the ammonia concentration was lowered.

発酵食品(魚介類の粕漬け)よりトリプトソイ寒天培地(pH5.5)、トリプトソイ寒天培地(pH7.3)およびLBS寒天培地(pH5.5)を用いて有機酸生産菌の分離を試みた。培養はCO2/H2雰囲気下で嫌気的に、30℃で7日間の培養を行った。OZ-1からOZ-15までの15菌株を単一コロニーとして得た。 We tried to isolate organic acid-producing bacteria from fermented food (seafood pickles) using tryptosoy agar medium (pH5.5), tryptosoy agar medium (pH7.3) and LBS agar medium (pH5.5). The culture was performed anaerobically in a CO 2 / H 2 atmosphere at 30 ° C. for 7 days. Fifteen strains from OZ-1 to OZ-15 were obtained as a single colony.

次に分離した15菌株を各々アオサ熱処理液(乾燥アオサ5%を蒸留水に懸濁させ、121℃、15分間のオートクレーブ処理したもの)に接種し、7日間、30℃で静置培養を行った。培養終了後の培養液をHPLCに供し、生産された有機酸を定量した。結果の一部を表2に示した。   Next, each of the 15 isolates was inoculated into Aosa heat treatment solution (5% dry Aosa suspended in distilled water and autoclaved at 121 ° C for 15 minutes), followed by stationary culture at 30 ° C for 7 days. It was. The culture solution after completion of the culture was subjected to HPLC, and the produced organic acid was quantified. A part of the results is shown in Table 2.

Figure 2006247601
Figure 2006247601

有機酸(乳酸)の生産量が顕著であったOZ-6株とOZ-7株の同定を行った。表3には代表的な菌学的諸性質を示した。   The OZ-6 and OZ-7 strains that produced significant amounts of organic acid (lactic acid) were identified. Table 3 shows typical mycological properties.

Figure 2006247601
Figure 2006247601

さらにOZ-6株とOZ-7株の16S-rDNAの塩基配列を解読し、結果をデーターベースに照合して分類学的な位置を決定した。その結果OZ-6株の16S-rDNAの塩基配列(533bp)はBacillus cereusの16S-rDNAの塩基配列と100%一致した。またOZ-7株の16S-rDNAの塩基配列(562bp)はLactobacillus fructivoransの16S-rDNAの塩基配列と98.9-99.1%一致した。 Furthermore, the 16S-rDNA base sequences of the OZ-6 and OZ-7 strains were decoded, and the results were collated with a database to determine the taxonomic position. As a result, the base sequence (533 bp) of 16S-rDNA of OZ-6 strain was 100% identical with the base sequence of 16S-rDNA of Bacillus cereus . Further, the base sequence (562 bp) of 16S-rDNA of the OZ-7 strain was 98.9-99.1% identical with the base sequence of 16S-rDNA of Lactobacillus fructivorans .

以上のことから、OZ-6株をBacillus cereusと同定した。また、OZ-7株はLactobacillus 属の細菌と同定した。 Based on the above, the OZ-6 strain was identified as Bacillus cereus . The OZ-7 strain was identified as a bacterium belonging to the genus Lactobacillus .

OZ-6株の16S-rDNAの塩基配列(533bp)を配列番号1に示す。OZ-7株の16S-rDNAの塩基配列(562bp)を配列番号2に示す。   The base sequence (533 bp) of 16S-rDNA of OZ-6 strain is shown in SEQ ID NO: 1. The base sequence (562 bp) of 16S-rDNA of OZ-7 strain is shown in SEQ ID NO: 2.

また、OZ-6株は、平成17年1月28日付けで独立行政法人産業技術総合研究所特許微生物寄託センター(IPOD)(茨城県つくば市東1−1−1)に受託番号FERM P-20381として寄託されている。OZ-7株は、平成17年1月28日付けで独立行政法人産業技術総合研究所特許微生物寄託センター(IPOD)(茨城県つくば市東1−1−1)に受託番号FERM P-20382として寄託されている。   In addition, OZ-6 shares were registered with the Patent Microorganism Deposit Center (IPOD) (1-1-1 East Tsukuba City, Ibaraki Prefecture) on January 28, 2005, under the accession number FERM P-20381. Has been deposited. The OZ-7 strain was deposited on January 28, 2005 at the National Institute of Advanced Industrial Science and Technology Patent Microorganism Depositary Center (IPOD) (1-1-1 East Tsukuba, Ibaraki) under the accession number FERM P-20382. Has been.

本発明により、従来のメタン発酵法よりも、多量のガスを有機性廃棄物から発生させることができるようになった。本発明のメタン生成法および装置により、有機性廃棄物をエネルギー源として有効利用することが可能となった。さらに、副産物として肥料も得ることができる。   According to the present invention, a larger amount of gas can be generated from organic waste than the conventional methane fermentation method. The methane production method and apparatus of the present invention makes it possible to effectively use organic waste as an energy source. Furthermore, fertilizer can also be obtained as a by-product.

本発明のメタン生成法を含む有機性廃棄物リサイクルのフロー図である。It is a flowchart of organic waste recycling including the methane production | generation method of this invention. 本発明のメタン生成法を含む別の有機性廃棄物リサイクルのフロー図である。It is a flowchart of another organic waste recycling including the methane production | generation method of this invention. 本発明のメタン生成法を含むさらにもう一つの有機性廃棄物リサイクルのフロー図である。It is a flowchart of another organic waste recycling including the methane production | generation method of this invention. 本発明のメタン生成装置の一例を示す。An example of the methane production | generation apparatus of this invention is shown. 本発明のメタン生成装置の別の一例を示す。Another example of the methane production | generation apparatus of this invention is shown. 本発明のメタン生成装置のさらにもう一つの例を示す。Another example of the methane production | generation apparatus of this invention is shown. 比較例の実験結果を示すグラフである。横軸の日数は、メタン発酵処理における培養日数である。縦軸はバイオガス量の積算値を示す。It is a graph which shows the experimental result of a comparative example. The number of days on the horizontal axis is the number of culture days in the methane fermentation treatment. The vertical axis represents the integrated value of the biogas amount. 比較例のリアクタ内に設置した担体の様子を示す。The mode of the support | carrier installed in the reactor of a comparative example is shown. 実施例1の実験結果を示すグラフである。上図はガス生成速度の時間変化を、下図は有機酸濃度の時間変化を示す。横軸の日数は、メタン発酵処理における培養日数である。4 is a graph showing experimental results of Example 1. The upper figure shows the time change of the gas generation rate, and the lower figure shows the time change of the organic acid concentration. The number of days on the horizontal axis is the number of culture days in the methane fermentation treatment. 実施例1における反応槽内のアンモニア濃度を示すグラフである。2 is a graph showing the ammonia concentration in the reaction tank in Example 1. FIG. 実施例2の実験結果を示すグラフである。上図はガス生成速度の時間変化を、下図は有機酸濃度の時間変化を示す。横軸の日数は、メタン発酵処理における培養日数である。6 is a graph showing experimental results of Example 2. The upper figure shows the time change of the gas generation rate, and the lower figure shows the time change of the organic acid concentration. The number of days on the horizontal axis is the number of culture days in the methane fermentation treatment. 実施例2における反応槽内のアンモニア濃度を示すグラフである。4 is a graph showing the ammonia concentration in the reaction tank in Example 2. 実施例3の実験結果を示すグラフである。上図はガス生成速度の時間変化を、下図は有機酸濃度の時間変化を示す。横軸の日数は、メタン発酵処理における培養日数である。10 is a graph showing experimental results of Example 3. The upper figure shows the time change of the gas generation rate, and the lower figure shows the time change of the organic acid concentration. The number of days on the horizontal axis is the number of culture days in the methane fermentation treatment. 実施例3における反応槽内のアンモニア濃度を示すグラフである。6 is a graph showing the ammonia concentration in the reaction tank in Example 3.

<配列番号1>
配列番号1は、OZ-6株の16S-rDNAの部分塩基配列(533bp)を示す。
<配列番号2>
配列番号2は、OZ-7株の16S-rDNAの部分塩基配列(562bp)を示す。
<SEQ ID NO: 1>
SEQ ID NO: 1 shows a partial base sequence (533 bp) of 16S-rDNA of OZ-6 strain.
<SEQ ID NO: 2>
SEQ ID NO: 2 shows the partial base sequence (562 bp) of 16S-rDNA of OZ-7 strain.

Claims (18)

油脂とタンパク質を含む有機性廃棄物を嫌気的条件下で酸発酵処理した後、メタン発酵処理することを含む、メタン生成法。 A method for producing methane, comprising subjecting organic waste containing fats and oils to acid fermentation under anaerobic conditions followed by methane fermentation. 酸発酵処理に用いる微生物が乳酸菌である請求項1記載のメタン生成法。 The method for producing methane according to claim 1, wherein the microorganism used in the acid fermentation treatment is a lactic acid bacterium. 酸発酵処理に用いる微生物が、Bacillus属又はLactobacillus属に属する請求項1記載のメタン生成法。 The method for producing methane according to claim 1, wherein the microorganism used in the acid fermentation treatment belongs to the genus Bacillus or the genus Lactobacillus . 酸発酵処理に用いる微生物が、Bacillus cereus OZ-6株(受託番号:FERM P-20381)、Lactobacillus sp. OZ-7株(受託番号:FERM P-20382)及びそれらの類縁菌種からなる群より選択される請求項3記載のメタン生成法。 Microorganisms used for acid fermentation treatment are Bacillus cereus OZ-6 strain (Accession No .: FERM P-20381), Lactobacillus sp. OZ-7 strain (Accession No .: FERM P-20382) and their related bacterial species 4. The method of producing methane according to claim 3, which is selected. 油脂とタンパク質を含む有機性廃棄物が、哺乳動物の乳、鳥類の卵及びそれらを原料とする製品からなる群より選択される請求項1〜4のいずれかに記載のメタン生成法。 The method for producing methane according to any one of claims 1 to 4, wherein the organic waste containing fats and oils is selected from the group consisting of mammalian milk, avian eggs and products made from them. 油脂とタンパク質を含む有機性廃棄物を嫌気的条件下で酸発酵処理する前、酸発酵処理した後又は酸発酵処理と同時に、前記有機性廃棄物よりも窒素含量が少ない有機性廃棄物を添加してから、メタン発酵処理する請求項1〜5のいずれかに記載のメタン生成法。 Organic waste containing fat and protein is added before or after acid fermentation under anaerobic conditions or at the same time as acid fermentation. Then, the methane production method according to any one of claims 1 to 5, wherein the methane fermentation treatment is performed. 油脂とタンパク質を含む有機性廃棄物よりも窒素含量が少ない有機性廃棄物が海藻である請求項6記載のメタン生成法。 The method for producing methane according to claim 6, wherein the organic waste having a lower nitrogen content than the organic waste containing fats and oils is seaweed. 海藻が、アオサ、マコンブ、オゴノリ、スサビノリ、ワカメ、アナアオサ、アマノリ、ツノマタ、ノコギリモク、クロヒトエグサ、ヤブレグサ、リボンアオサ、ボタンアオサ、ナガアオサ、スジアオノリ、ウスバアオノリ、ボウアオノリおよびトロロコンブからなる群より選択される少なくとも1種類の海藻である請求項7記載のメタン生成法。 The seaweed is selected from the group consisting of Aosa, Macombu, Ogonori, Sugobinori, Wakame, Anaaaosa, Amanori, Tsunomata, Sawtooth Moku, Black-faced Rabbit, Yabregusa, Ribbon Aosa, Button Aosa, Nagaaosa, Sueaonori, Usubaaoori, Touhou Aonori The method for producing methane according to claim 7, which is a kind of seaweed. 海藻が破砕処理されたものである請求項7又は8記載のメタン生成法。 The method for producing methane according to claim 7 or 8, wherein seaweed is crushed. 海藻がさらに熱処理されたものである請求項9記載のメタン生成法。 The method for producing methane according to claim 9, wherein the seaweed is further heat-treated. 油脂とタンパク質を含む有機性廃棄物を嫌気的条件下で酸発酵処理した後、生成した固形物を取り除いてから、メタン発酵処理する請求項1〜10のいずれかに記載のメタン生成法。 The methane production | generation method in any one of Claims 1-10 which perform the methane fermentation process after removing the produced | generated solid substance after carrying out the acid fermentation process of the organic waste containing fats and oils and anaerobic conditions. 遠心分離又はフィルター除去により固形物を取り除く請求項11記載のメタン生成法。 The method for producing methane according to claim 11, wherein the solid matter is removed by centrifugation or filter removal. 酸発酵処理槽と、メタン発酵処理槽とを備える、メタン生成装置。 A methane generator comprising an acid fermentation tank and a methane fermentation tank. さらに、海藻を破砕するための手段を備える請求項13記載のメタン生成装置。 Furthermore, the methane production | generation apparatus of Claim 13 provided with the means for crushing a seaweed. さらに、海藻を加熱するための手段と、海藻を熱処理するための槽とを備える請求項14記載のメタン生成装置。 Furthermore, the methane production | generation apparatus of Claim 14 provided with the means for heating a seaweed, and the tank for heat-treating a seaweed. さらに、固液分離手段を備える請求項13〜15のいずれかに記載のメタン生成装置。 Furthermore, the methane production | generation apparatus in any one of Claims 13-15 provided with a solid-liquid separation means. 請求項13〜15のいずれかに記載のメタン生成装置で得られた消化ガスをコージェネレーション設備の燃料として用い、電気および熱エネルギーに変換するとともに、得られた熱を請求項1〜12のいずれかに記載のメタン生成法に利用することを含む、メタン生成法。 The digested gas obtained by the methane generator according to any one of claims 13 to 15 is used as a fuel for a cogeneration facility, and is converted into electricity and thermal energy, and the obtained heat is converted to any one of claims 1 to 12. A method for producing methane, including use for the method for producing methane according to claim 1. 請求項13〜15のいずれかに記載のメタン生成装置で得られた消化ガスをコージェネレーション設備の燃料として用い、電気および熱エネルギーに変換するとともに、得られた熱を請求項1〜12のいずれかに記載のメタン生成法に利用するメタン生成装置。 The digested gas obtained by the methane generator according to any one of claims 13 to 15 is used as a fuel for a cogeneration facility, and is converted into electricity and thermal energy, and the obtained heat is converted to any one of claims 1 to 12. A methane generator used for the methane generation method according to claim 1.
JP2005070796A 2005-03-14 2005-03-14 Methanation method and apparatus Pending JP2006247601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005070796A JP2006247601A (en) 2005-03-14 2005-03-14 Methanation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005070796A JP2006247601A (en) 2005-03-14 2005-03-14 Methanation method and apparatus

Publications (1)

Publication Number Publication Date
JP2006247601A true JP2006247601A (en) 2006-09-21

Family

ID=37088631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005070796A Pending JP2006247601A (en) 2005-03-14 2005-03-14 Methanation method and apparatus

Country Status (1)

Country Link
JP (1) JP2006247601A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101767921A (en) * 2010-02-11 2010-07-07 中国水产科学研究院渔业机械仪器研究所 Method for processing slurry with enteromorpha as coagulant aid
JP2011031206A (en) * 2009-08-04 2011-02-17 Sumitomo Heavy Ind Ltd Wastewater treatment apparatus
CN102876727A (en) * 2012-10-24 2013-01-16 淮海工学院 Method for preparing methane by combined fermentation of enteromorpha and straw biomass
WO2013146853A1 (en) * 2012-03-30 2013-10-03 栗田工業株式会社 Method for treating fat-containing wastewater
JP2015054264A (en) * 2013-09-10 2015-03-23 住友重機械エンバイロメント株式会社 Anaerobic treatment equipment and anaerobic treatment method
CN110835210A (en) * 2019-10-28 2020-02-25 华中科技大学 Method and system for extracting sludge protein by using focused pulse electric field
JP7546623B2 (en) 2022-06-24 2024-09-06 水ing株式会社 Anaerobic treatment apparatus and anaerobic treatment method

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56501675A (en) * 1979-12-12 1981-11-19
JPS6138698A (en) * 1984-07-09 1986-02-24 コンパニイ・ジエネラル・デレクトリシテ Manufacture of methane by fermentation of seaweeds
JPS6480495A (en) * 1987-09-22 1989-03-27 Aqua Renaissance Gijutsu Methane fermentation process
JPH01184099A (en) * 1988-01-18 1989-07-21 Akua Runesansu Gijutsu Kenkyu Kumiai Fermenting method for methane
JPH02501369A (en) * 1987-05-07 1990-05-17 ジユリアン,アントニン Method for hydromechanical treatment of organic waste to prepare fermentable sludge and apparatus used therefor
JPH02251298A (en) * 1989-03-23 1990-10-09 Akua Runesansu Gijutsu Kenkyu Kumiai Methane fermentation apparatus
JPH03238091A (en) * 1990-02-15 1991-10-23 Ebara Infilco Co Ltd Methane fermentation
JPH0490897A (en) * 1990-08-03 1992-03-24 Snow Brand Milk Prod Co Ltd Anaerobic treatment of high concentration organic waste water
JPH0857496A (en) * 1994-08-19 1996-03-05 Toshiba Corp Anaerobic water treatment device
JPH0912387A (en) * 1995-04-26 1997-01-14 Shikoku Chem Corp Composting treatment agent
JPH09122683A (en) * 1995-10-31 1997-05-13 Kurita Water Ind Ltd Method for anaerobic treatment
JPH10156385A (en) * 1996-12-02 1998-06-16 Sumitomo Heavy Ind Ltd Treatment of organic waste water containing sulfuric acid radical
JPH10182273A (en) * 1996-12-19 1998-07-07 Kokubun Nojo Kk Liquid ferilizer, its production and device for therefor
JP2000271598A (en) * 1999-03-24 2000-10-03 Ebara Corp Anaerobic treatment method of organic sludge
JP2000271593A (en) * 1999-03-24 2000-10-03 Ebara Corp Anaerobic treatment method of grease-containing waste water
JP2001038378A (en) * 1999-07-29 2001-02-13 Sumitomo Heavy Ind Ltd Method and device for anaerobically treating organic waste water
JP2001229955A (en) * 2000-02-14 2001-08-24 Toto Ltd Power generation system
JP2001252687A (en) * 2000-03-10 2001-09-18 Kurita Water Ind Ltd Anaerobic treatment method for waste water from plant extraction
JP2003190993A (en) * 2001-12-27 2003-07-08 Toyo Clean Kagaku Kk Biological treatment for sludge
JP2003225697A (en) * 2002-02-01 2003-08-12 Ngk Insulators Ltd Anaerobic fermentation system of organic waste
JP2003269252A (en) * 2002-03-13 2003-09-25 Osaka Gas Co Ltd Energy supply method and energy supply system
JP2004174318A (en) * 2002-11-25 2004-06-24 Mitsubishi Heavy Ind Ltd Methane fermentation treatment apparatus and methane fermentation treatment method for garbage
WO2004067197A1 (en) * 2003-01-31 2004-08-12 Calpis Co., Ltd. Method of treating organic waste, agent for treating organic waste and microorganisms to be used therein
JP2004237246A (en) * 2003-02-07 2004-08-26 Babcock Hitachi Kk Methane fermentation treating apparatus and method
JP2004298678A (en) * 2003-03-28 2004-10-28 Asahi Breweries Ltd Microorganism group efficiently performing acid production in anaerobic treatment for sugar-based waste water
JP2004298688A (en) * 2003-03-28 2004-10-28 Mitsui Eng & Shipbuild Co Ltd Method for treating organic waste, biogas system and method for producing methane fermentation residual liquid concentrate
JP2004298677A (en) * 2003-03-28 2004-10-28 Asahi Breweries Ltd Anaerobic treatment method for sugar-based waste water
JP2004351308A (en) * 2003-05-28 2004-12-16 Tsukishima Kikai Co Ltd Vegetational biomass digestion system
JP2005161173A (en) * 2003-12-02 2005-06-23 Ebara Corp Method and apparatus for treating protein-containing wastewater by methane fermentation
JP2005245443A (en) * 2004-02-05 2005-09-15 Tokyo Gas Co Ltd Method for producing methane, method for treating sea weed, apparatus for producing methane and apparatus for treating sea weed

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56501675A (en) * 1979-12-12 1981-11-19
JPS6138698A (en) * 1984-07-09 1986-02-24 コンパニイ・ジエネラル・デレクトリシテ Manufacture of methane by fermentation of seaweeds
JPH02501369A (en) * 1987-05-07 1990-05-17 ジユリアン,アントニン Method for hydromechanical treatment of organic waste to prepare fermentable sludge and apparatus used therefor
JPS6480495A (en) * 1987-09-22 1989-03-27 Aqua Renaissance Gijutsu Methane fermentation process
JPH01184099A (en) * 1988-01-18 1989-07-21 Akua Runesansu Gijutsu Kenkyu Kumiai Fermenting method for methane
JPH02251298A (en) * 1989-03-23 1990-10-09 Akua Runesansu Gijutsu Kenkyu Kumiai Methane fermentation apparatus
JPH03238091A (en) * 1990-02-15 1991-10-23 Ebara Infilco Co Ltd Methane fermentation
JPH0490897A (en) * 1990-08-03 1992-03-24 Snow Brand Milk Prod Co Ltd Anaerobic treatment of high concentration organic waste water
JPH0857496A (en) * 1994-08-19 1996-03-05 Toshiba Corp Anaerobic water treatment device
JPH0912387A (en) * 1995-04-26 1997-01-14 Shikoku Chem Corp Composting treatment agent
JPH09122683A (en) * 1995-10-31 1997-05-13 Kurita Water Ind Ltd Method for anaerobic treatment
JPH10156385A (en) * 1996-12-02 1998-06-16 Sumitomo Heavy Ind Ltd Treatment of organic waste water containing sulfuric acid radical
JPH10182273A (en) * 1996-12-19 1998-07-07 Kokubun Nojo Kk Liquid ferilizer, its production and device for therefor
JP2000271593A (en) * 1999-03-24 2000-10-03 Ebara Corp Anaerobic treatment method of grease-containing waste water
JP2000271598A (en) * 1999-03-24 2000-10-03 Ebara Corp Anaerobic treatment method of organic sludge
JP2001038378A (en) * 1999-07-29 2001-02-13 Sumitomo Heavy Ind Ltd Method and device for anaerobically treating organic waste water
JP2001229955A (en) * 2000-02-14 2001-08-24 Toto Ltd Power generation system
JP2001252687A (en) * 2000-03-10 2001-09-18 Kurita Water Ind Ltd Anaerobic treatment method for waste water from plant extraction
JP2003190993A (en) * 2001-12-27 2003-07-08 Toyo Clean Kagaku Kk Biological treatment for sludge
JP2003225697A (en) * 2002-02-01 2003-08-12 Ngk Insulators Ltd Anaerobic fermentation system of organic waste
JP2003269252A (en) * 2002-03-13 2003-09-25 Osaka Gas Co Ltd Energy supply method and energy supply system
JP2004174318A (en) * 2002-11-25 2004-06-24 Mitsubishi Heavy Ind Ltd Methane fermentation treatment apparatus and methane fermentation treatment method for garbage
WO2004067197A1 (en) * 2003-01-31 2004-08-12 Calpis Co., Ltd. Method of treating organic waste, agent for treating organic waste and microorganisms to be used therein
JP2004237246A (en) * 2003-02-07 2004-08-26 Babcock Hitachi Kk Methane fermentation treating apparatus and method
JP2004298678A (en) * 2003-03-28 2004-10-28 Asahi Breweries Ltd Microorganism group efficiently performing acid production in anaerobic treatment for sugar-based waste water
JP2004298688A (en) * 2003-03-28 2004-10-28 Mitsui Eng & Shipbuild Co Ltd Method for treating organic waste, biogas system and method for producing methane fermentation residual liquid concentrate
JP2004298677A (en) * 2003-03-28 2004-10-28 Asahi Breweries Ltd Anaerobic treatment method for sugar-based waste water
JP2004351308A (en) * 2003-05-28 2004-12-16 Tsukishima Kikai Co Ltd Vegetational biomass digestion system
JP2005161173A (en) * 2003-12-02 2005-06-23 Ebara Corp Method and apparatus for treating protein-containing wastewater by methane fermentation
JP2005245443A (en) * 2004-02-05 2005-09-15 Tokyo Gas Co Ltd Method for producing methane, method for treating sea weed, apparatus for producing methane and apparatus for treating sea weed

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011031206A (en) * 2009-08-04 2011-02-17 Sumitomo Heavy Ind Ltd Wastewater treatment apparatus
CN101767921A (en) * 2010-02-11 2010-07-07 中国水产科学研究院渔业机械仪器研究所 Method for processing slurry with enteromorpha as coagulant aid
WO2013146853A1 (en) * 2012-03-30 2013-10-03 栗田工業株式会社 Method for treating fat-containing wastewater
JP2013208559A (en) * 2012-03-30 2013-10-10 Kurita Water Ind Ltd Method for treating oil-and-fat-containing wastewater
CN102876727A (en) * 2012-10-24 2013-01-16 淮海工学院 Method for preparing methane by combined fermentation of enteromorpha and straw biomass
CN102876727B (en) * 2012-10-24 2014-11-19 淮海工学院 Method for preparing methane by combined fermentation of enteromorpha and straw biomass
JP2015054264A (en) * 2013-09-10 2015-03-23 住友重機械エンバイロメント株式会社 Anaerobic treatment equipment and anaerobic treatment method
CN110835210A (en) * 2019-10-28 2020-02-25 华中科技大学 Method and system for extracting sludge protein by using focused pulse electric field
JP7546623B2 (en) 2022-06-24 2024-09-06 水ing株式会社 Anaerobic treatment apparatus and anaerobic treatment method

Similar Documents

Publication Publication Date Title
Ahmad et al. Treatment and utilization of dairy industrial waste: A review
Usmani et al. Valorization of dairy waste and by-products through microbial bioprocesses
Marone et al. Vegetable waste as substrate and source of suitable microflora for bio-hydrogen production
Alzate et al. Biochemical methane potential of microalgae biomass after lipid extraction
Sompong et al. Evaluation of methods for preparing hydrogen-producing seed inocula under thermophilic condition by process performance and microbial community analysis
Bao et al. Biohydrogen production by dark fermentation of starch using mixed bacterial cultures of Bacillus sp and Brevumdimonas sp.
US8722383B2 (en) PHA-producing bacteria
JP7326252B2 (en) Method and system for generating metabolites using hydrogen-rich C1-containing substrates
JP2006247601A (en) Methanation method and apparatus
CN108298701B (en) Low-biodegradability fermentation wastewater treatment method after anaerobic treatment
Kebbouche-Gana et al. Production of biosurfactant on crude date syrup under saline conditions by entrapped cells of Natrialba sp. strain E21, an extremely halophilic bacterium isolated from a solar saltern (Ain Salah, Algeria)
Sakarika et al. Production of microbial protein from fermented grass
Rigo et al. Application of different lipases as pretreatment in anaerobic treatment of wastewater
CN101384696B (en) Process for over-production of hydrogen
JP5386112B2 (en) Organic waste treatment methods
CN110205268A (en) One plant of microbacterium and its conversion reed straw hydrolysate prepare the application in microbial flocculant
JP5829015B2 (en) Methane gas production method using biomass containing oil and fat as raw material
JP2018008203A (en) Wet type methane fermentation system
JPH10337593A (en) Treatment method for organic waste liquid
JP5059100B2 (en) Hydrogen production method and apparatus, and microorganism immobilization support
JP2005245443A (en) Method for producing methane, method for treating sea weed, apparatus for producing methane and apparatus for treating sea weed
Chaudhary et al. Valorization of dairy wastes into wonder products by the novel use of microbial cell factories
Watanabe et al. Biohydrogen using leachate from an industrial waste landfill as inoculum
US20150175462A1 (en) Method for Promoting Production of Biogas Using Pancreatin in an Anaerobic Digestion Process
JPWO2016103949A1 (en) Method and apparatus for treating oil-containing wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121127