JPH03238091A - Methane fermentation - Google Patents

Methane fermentation

Info

Publication number
JPH03238091A
JPH03238091A JP2032347A JP3234790A JPH03238091A JP H03238091 A JPH03238091 A JP H03238091A JP 2032347 A JP2032347 A JP 2032347A JP 3234790 A JP3234790 A JP 3234790A JP H03238091 A JPH03238091 A JP H03238091A
Authority
JP
Japan
Prior art keywords
acid fermentation
acid
water
tank
fermentation tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2032347A
Other languages
Japanese (ja)
Other versions
JP2587301B2 (en
Inventor
Yutaka Yoneyama
豊 米山
Arata Mita
三田 新
Shunichi Shiono
俊一 塩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP3234790A priority Critical patent/JP2587301B2/en
Publication of JPH03238091A publication Critical patent/JPH03238091A/en
Application granted granted Critical
Publication of JP2587301B2 publication Critical patent/JP2587301B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To improve treating efficiency and device compactness by a method wherein the acid fermentation treating water equivalent to a part of the effective volume of an acid fermentation tank is left therein, the remainder is subjected to centrifugal separation for solid-liquid separation and the separated water is supplied into a methane fermentation tank for effecting fermentation. CONSTITUTION:The acid fermentation treating water equivalent to about 30-70% of the effective amt. of an acid fermentation tank 8, i.e., the mixed acid fermentation liq., is left in the acid fermentation tank 8, the remainder, about 70-30% of the mixed acid fermentation liq. 19, is subjected to centrifugal separation and the separated water 21 is supplied into a methane fermentation tank 9. In this way acid-forming bacteria are retained, the acid fermentation is stabilized and the pH of the liq. in the acid fermentation tank is adjusted. Moreover, the methane fermenting treatment of a high SS-containing org. waste water can be effected at a high speed and a low cost and this method is conductive to energy conservation and makes a waster water treating equipment compact.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は食品、化学、紙バルプ工業等より排出される有
機性廃水を対象としたメタン発酵処理法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a methane fermentation treatment method for organic wastewater discharged from food, chemical, pulp and paper industries, etc.

〔従来の技術〕[Conventional technology]

近年、メタン菌を高濃度に維持し高負荷処理を可能とし
たりアクタ−の開発が盛んであり、メタン発酵処理が注
目されている。
In recent years, there has been active development of actors that maintain methane bacteria at a high concentration and enable high-load processing, and methane fermentation processing is attracting attention.

メタン発酵処理を行う場合、廃水の性状II!11ら廃
水中に含まれる有機物の形態が重要な因子となる。
When performing methane fermentation treatment, properties of wastewater II! 11 The form of organic matter contained in wastewater is an important factor.

有機酸、アルコール、等の有機物は容易にメタン発酵処
理可能である。しかしながら、蛋白質、脂質等の有機物
を多く含む廃水のメタン発酵処理においては、酸発酵処
理が律速となるためメタン発酵槽の前段に酸発酵槽を設
けた二相処理法を適用する必要がある(第3図参照)。
Organic substances such as organic acids and alcohols can be easily subjected to methane fermentation treatment. However, in the methane fermentation treatment of wastewater containing a large amount of organic matter such as proteins and lipids, acid fermentation treatment becomes rate-limiting, so it is necessary to apply a two-phase treatment method in which an acid fermentation tank is installed before the methane fermentation tank ( (See Figure 3).

ところが、実際の処理設備では酸発酵槽を特別に設ける
ケースは少なく、調整槽を兼用する場合が多い。これは
調整槽において、液滞留時間を1〜2日間とるために酸
発酵が進行するためである。
However, in actual treatment facilities, there are few cases in which a special acid fermentation tank is provided, and the acid fermentation tank is often used also as a regulating tank. This is because the acid fermentation proceeds in the adjustment tank to allow the liquid residence time of 1 to 2 days.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、このような場合は溶解性の炭水化物、蛋
白質等を主に含む廃水であり、SSを多く含む廃水では
不十分である。
However, in such cases, wastewater mainly contains soluble carbohydrates, proteins, etc., and wastewater containing a large amount of SS is insufficient.

この原因としては、調整槽内の反応条件(p)I、水温
、酸生成菌量、液滞留時間等)を一定に保つことが出来
ないためである。
This is because the reaction conditions (p)I, water temperature, amount of acid-producing bacteria, liquid residence time, etc. in the adjustment tank cannot be kept constant.

また、SSを多く含む廃水では、酸発酵処理後でも処理
水中にSSが多く含まれるため、そのままの状態でメタ
ン発酵槽〔上向流嫌気性汚泥床法(Upflow An
aerobic Sludge Blanket Pr
ocess)以後UASBと記す。固定床等〕に通水す
るとUASBでは、スラッジベツド部でSSの蓄積が起
こり、グラニユール汚泥と共にスカムとなり系外に流出
することがしばしばある。一方、固定床法では濾材間に
SSの蓄積が多くなり、濾材閉塞が生じ、処理効率が低
下することが多くなる。また、調整槽の他に酸発酵槽を
別途に設けると付帯設備が多くなり、全体設備配置も大
きなものとなり高速メタン発酵処理のメリットが少なく
なる。
In addition, wastewater containing a large amount of SS contains a large amount of SS even after acid fermentation treatment, so it is necessary to use a methane fermentation tank [upflow anaerobic sludge bed method] without any treatment.
aerobic Sludge Blanket Pr
(occess) hereinafter referred to as UASB. In UASB, when water is passed through a fixed bed, etc., SS accumulates in the sludge bed, and often forms scum with granule sludge and flows out of the system. On the other hand, in the fixed bed method, a large amount of SS accumulates between filter media, resulting in filter media clogging, which often reduces treatment efficiency. Further, if an acid fermentation tank is provided separately in addition to the adjustment tank, the number of incidental equipment increases, the overall equipment layout becomes large, and the merits of high-speed methane fermentation treatment are reduced.

以上のように従来技術では二相処理を実際的なレベルで
効率的におこなった例はほとんどないと言える。
As described above, it can be said that there are almost no examples of two-phase processing being efficiently performed on a practical level in the prior art.

本発明の目的は、上記従来技術の欠点を解消し、酸性発
酵が必要で且つ特に、蛋白質等の生体高分子およびSS
量の大きな廃水系の処理において処理効率および装置の
コンパクト性を改善したメタン発酵処理方法を提供する
ことにある。
The purpose of the present invention is to eliminate the drawbacks of the above-mentioned prior art, which require acidic fermentation, and in particular, to solve the problems of biopolymers such as proteins and SS.
It is an object of the present invention to provide a methane fermentation treatment method that improves treatment efficiency and compactness of equipment in treating a large amount of wastewater.

[課題を解決するための手段] 本発明は、廃水を酸発酵槽に供給し、該廃水に含有され
る有機物を酸発酵することにより少なくとも低級脂肪酸
を含む低分子化合物を生成せしめた後に酸発酵処理水を
メタン発酵槽に導入してメタン発酵を行う処理法におい
て、酸発酵槽有効量の一部相当量の該酸発酵処理水を酸
発酵槽槽内に残し、該酸発酵処理水の残部を遠心分離し
て固形分と分離水に固液分離し、該分離水をメタン発酵
槽内に供給し、メタン発酵を行うメタン発酵処理方法で
あり、これにより上記目的を達成することができる。
[Means for Solving the Problems] The present invention provides wastewater to an acid fermenter, organic matter contained in the wastewater to acid fermentation to produce low molecular weight compounds containing at least lower fatty acids, and then acid fermentation. In a treatment method in which treated water is introduced into a methane fermentation tank to perform methane fermentation, an amount of the acid fermentation treated water corresponding to a part of the effective amount of the acid fermentation tank is left in the acid fermentation tank, and the remainder of the acid fermentation treated water is This is a methane fermentation treatment method in which methane fermentation is performed by centrifuging to separate solids into solids and separated water, and then supplying the separated water into a methane fermentation tank to carry out methane fermentation, thereby achieving the above object.

また、本発明における好まし態様としては、該固液分離
される該酸発酵処理水の量と同程度の量の廃水が酸発酵
槽に供給されることである。
Further, in a preferred embodiment of the present invention, an amount of wastewater comparable to the amount of the acid fermentation treated water to be subjected to solid-liquid separation is supplied to the acid fermenter.

例えば、酸発酵槽有効量の30〜70%相当量の酸発酵
処理水、即ち、酸発酵混合液(蛋白質、脂質等の発酵処
理前の廃水含有物、及び、アルコール、低級脂肪酸等の
発酵により生成した低分子化合物、BOD 、 SS等
からなる液)を酸発酵槽内に残し、残りの70〜30%
の酸発酵混合液を遠心分離し、分離水をメタン発酵槽に
供給するものである。
For example, an amount of acid fermentation-treated water equivalent to 30 to 70% of the effective amount of the acid fermenter, that is, an acid fermentation mixture (wastewater content before fermentation such as proteins and lipids, and fermentation of alcohol, lower fatty acids, etc.) The remaining 70-30% of the produced liquid (consisting of low molecular weight compounds, BOD, SS, etc.) is left in the acid fermenter.
The acid fermentation mixture is centrifuged and the separated water is supplied to the methane fermentation tank.

本発明において、廃水の酸発酵槽への供給と酸発酵槽か
ら固液分離工程さらにはメタン発酵工程への処理水の流
出・流入のタイ累ングの制?ff1lは、上記条件を満
足するならば特に限定されることはなく、自動的、半自
動的、手動的に制御され得る。また、廃水の酸発酵処理
工程、固液分離工程、メタン発酵処理工程の各処理工程
への廃液および各処理液の移動は連続的、回分的、半回
分的のいずれでも良い。
In the present invention, it is possible to control the tie-up of the supply of wastewater to the acid fermentation tank and the outflow/inflow of treated water from the acid fermentation tank to the solid-liquid separation process and further to the methane fermentation process. ff1l is not particularly limited as long as it satisfies the above conditions, and can be controlled automatically, semi-automatically, or manually. Further, the waste liquid and each treatment liquid may be transferred to each of the acid fermentation treatment process, solid-liquid separation process, and methane fermentation treatment process continuously, batchwise, or semi-batchwise.

特に、本発明において好ましい態様は、該固液分離され
る該酸発酵処理水の量と同程度の量の廃水が酸発酵槽に
供給されることである。この場合、酸発酵処理水の流出
と廃水の酸発酵槽への流入のタイピングを一致させるこ
とが好ましい。
In particular, a preferred embodiment of the present invention is that the same amount of wastewater as the amount of the acid fermentation treated water to be subjected to solid-liquid separation is supplied to the acid fermenter. In this case, it is preferable to match the type of outflow of the acid fermentation treated water and the inflow of waste water into the acid fermenter.

このための手段として、例えば、酸発酵槽の液位レベル
を検知することによりポンプのオン・オフ(on−of
f)運転を行うことが挙げられる。
As a means for this purpose, for example, the pump can be turned on and off by detecting the liquid level in the acid fermenter.
f) Driving.

酸発酵槽内の酸発酵処理水混合液は好ましくは少なくと
も30%以上、特に好ましくは50%〜60%を残すこ
とで酸生成菌の維持ならびに酸発酵処理の安定化を行い
、さらに酸発酵槽内p++を好ましくは、4.5〜6.
0に調整を行い、酸発酵処理の安定化を計ることができ
る。そのため、例えば、酸発酵槽内へのアルカリ、例え
ば、苛性ソーダ等の添加あるいはメタン発酵処理水の循
環等により調整することができる。また、槽内は水中攪
拌機等にて混合攪拌するのがよい。
The acid fermentation treated water mixture in the acid fermentation tank is preferably at least 30% or more, particularly preferably 50% to 60%, to maintain acid-producing bacteria and stabilize the acid fermentation treatment. The inner p++ is preferably 4.5 to 6.
It is possible to stabilize the acid fermentation treatment by adjusting the temperature to 0. Therefore, it can be adjusted, for example, by adding an alkali, such as caustic soda, into the acid fermentation tank or by circulating methane fermentation treated water. In addition, it is preferable to mix and stir the inside of the tank using an underwater stirrer or the like.

特に、本発明が好適な処理系は、酸発酵槽への流入廃水
のSS濃度が10.000mg/ 12以上ある場合で
ある。この場合、酸発酵処理水のSS濃度は、5,00
0mg/42以上になる場合が多く、また、酸発酵処理
水中には酢酸、プロピオン酸、酪酸、吉草酸等の揮発性
低級脂肪酸が多く含まれているため、酸発酵処理水は強
い臭気を放つものである。
In particular, the present invention is suitable for a treatment system in which the SS concentration in the wastewater flowing into the acid fermenter is 10.000 mg/12 or more. In this case, the SS concentration of the acid fermentation treated water is 5,00
In many cases, the concentration is 0 mg/42 or more, and since the acid fermentation treated water contains a lot of volatile lower fatty acids such as acetic acid, propionic acid, butyric acid, and valeric acid, the acid fermentation treated water has a strong odor. It is something.

しかして、本発明では酸発酵処理水を遠心分離し、過剰
のSSを除去して分離水のSS濃度を数千mg/lに低
減せしめることによりメタン発酵槽における処理効率を
改善すると共に該臭気を効果的に除去するものである。
Therefore, in the present invention, the acid fermentation treated water is centrifuged to remove excess SS and reduce the SS concentration in the separated water to several thousand mg/l, thereby improving the treatment efficiency in the methane fermentation tank and eliminating the odor. This effectively removes the

また、該固液分離された分離水は、メタン発酵槽流入前
に好ましくはpHを6.5前後に、アルカリあるいは、
該メタン発酵処理水を添加することにより調整すること
が好ましい。
In addition, the separated water subjected to the solid-liquid separation is preferably adjusted to a pH of around 6.5 before flowing into the methane fermentation tank, and then adjusted to an alkaline or
It is preferable to adjust by adding the methane fermentation treated water.

本発明によってメタン発酵処理された廃水は、所要によ
り更に別途設けられた処理工程、例えば、活性汚泥処理
、凝集沈澱処理、加圧浮上処理等に供され、基準の清澄
な処理水として放流される。
The wastewater subjected to the methane fermentation treatment according to the present invention is further subjected to separate treatment steps as required, such as activated sludge treatment, coagulation sedimentation treatment, pressure flotation treatment, etc., and is discharged as standard clear treated water. .

〔実施例〕〔Example〕

以下、本発明の実施例を添付図面(第1図)に基づいて
説明する。尚、本発明はこの実施例に限定されることは
なく当業者にできる種々の置き換え等の変更を包含する
Embodiments of the present invention will be described below with reference to the accompanying drawings (FIG. 1). It should be noted that the present invention is not limited to this embodiment, but includes various substitutions and changes that can be made by those skilled in the art.

原水18が酸発酵槽8に流入する。槽液位レベルは液位
レヘル計により表示され、酸発酵槽内の混合液量が槽有
効容量の30%〜70%、好ましくは50%〜60%に
なると、供給ポンプ13により遠心脱水機10に酸発酵
処理水19が供給される。
Raw water 18 flows into acid fermenter 8 . The tank liquid level is displayed by a liquid level gauge, and when the amount of mixed liquid in the acid fermentation tank reaches 30% to 70%, preferably 50% to 60% of the tank effective capacity, the centrifugal dehydrator 10 is activated by the supply pump 13. Acid fermentation treated water 19 is supplied to the tank.

酸発酵槽内は苛性ソーダ注入設備16、あるいはメタン
発酵処理水24を循環することでpHを4゜5〜6.0
好ましくはpH・5.0〜5.5に調整する。また、蒸
気加温設置J!29により槽内湯度は35〜40″Cに
制御する。また、酸発酵槽内では水中攪拌機31により
汚泥を混合する。
Inside the acid fermentation tank, the pH is maintained at 4°5 to 6.0 by circulating the caustic soda injection equipment 16 or the methane fermentation treated water 24.
Preferably, the pH is adjusted to 5.0 to 5.5. Also, steam heating installation J! 29 to control the hot water temperature in the tank to 35 to 40''C. In addition, in the acid fermentation tank, sludge is mixed by an underwater agitator 31.

酸発酵処理水19は供給ポンプ13により遠心脱水機1
0に供給され、遠心分離される。分離水21はpi調整
槽11に供給される。酸発酵処理水19のSS濃度が1
0,000mg#2以上と高い場合は、遠心脱水機10
の前でポリマー注入設備20によりカチオン系ポリマー
の添加を行う。添加量は酸発酵処理水対SS当たり0.
5〜1χ程度で良い。脱水ケーキ22は活性汚泥膜(I
lii2Bに供給され、安定化処理され余剰汚泥と共に
系外に排出される。また、酸発酵槽内のMLSSI度が
低い場合は(MLSS<5000mg/ l ) 、脱
水ケーキの一部は酸発酵槽に戻される。
The acid fermentation treated water 19 is sent to the centrifugal dehydrator 1 by the supply pump 13.
0 and centrifuged. The separated water 21 is supplied to the pi adjustment tank 11. SS concentration of acid fermentation treated water 19 is 1
If it is high (0,000mg #2 or more), use a centrifugal dehydrator 10
The cationic polymer is added by the polymer injection equipment 20 in front of. The amount added is 0.0% per SS to acid fermentation treated water.
Approximately 5 to 1χ is sufficient. The dewatered cake 22 is an activated sludge membrane (I
The sludge is supplied to lii2B, stabilized, and discharged from the system together with excess sludge. Also, if the MLSSI degree in the acid fermenter is low (MLSS<5000 mg/l), a part of the dehydrated cake is returned to the acid fermenter.

pH調整槽11にて分離水21は、苛性ソーダ注入設置
i’117、あるいはメタン発酵処理水を循環水26と
して利用することによりpH=6.5前後に調整される
。蒸気加温設備29により水温を35〜40°Cに調整
する。
In the pH adjustment tank 11, the pH of the separated water 21 is adjusted to around 6.5 by using caustic soda injection installation i'117 or by using methane fermentation treated water as the circulating water 26. The water temperature is adjusted to 35-40°C using steam heating equipment 29.

メタン発酵原水23は供給ポンプ14によりメタン発酵
槽9に供給される。メタン発酵槽9では酢酸等の揮発性
低級脂肪酸は、メタン菌により処理されメタンを70〜
80χ含む発生ガス27が生成され、発生ガスは、通常
ボイラーで燃焼し、蒸気に変換し熱源(主にプラント加
温用。)として有効利用される。また、余ったガスは、
余剰ガス燃焼装置で燃やす。メタン発酵槽9はUASB
法、固定床法、流動床が適用できる。
The methane fermentation raw water 23 is supplied to the methane fermentation tank 9 by the supply pump 14 . In the methane fermentation tank 9, volatile lower fatty acids such as acetic acid are processed by methane bacteria and methane is
Generated gas 27 containing 80χ is generated, and the generated gas is usually combusted in a boiler, converted to steam, and effectively used as a heat source (mainly for heating the plant). In addition, the remaining gas
Burn the surplus gas in a combustion device. Methane fermentation tank 9 is UASB
method, fixed bed method, and fluidized bed method can be applied.

尚、メタン発酵処理水は、処理水分配槽12により循環
水26および処理水25に分配され、循環水26は所望
により酸発酵槽、pH調整槽に送られ、処理水25は、
活性汚泥設備28に供給され更に処理に付される。
The methane fermentation treated water is distributed into circulating water 26 and treated water 25 by the treated water distribution tank 12, the circulating water 26 is sent to an acid fermentation tank and a pH adjustment tank as required, and the treated water 25 is
The sludge is supplied to activated sludge equipment 28 for further treatment.

以下、上記フローを実廃水(ビール工場の高濃度有機性
廃水)に適用した処理例を示す。
An example of treatment in which the above flow is applied to actual wastewater (highly concentrated organic wastewater from a beer factory) will be shown below.

表−1に原水性状を示す。本廃水は、ビール工場の中で
高BOD濃度の酵母、麦かすしぼり液等である。廃水B
 OD 20.000〜40.000mg/ 1である
Table 1 shows the raw water properties. This wastewater is yeast, wheat residue, etc. with high BOD concentration in the beer factory. Wastewater B
OD is 20.000-40.000mg/1.

表−2に酸発酵槽における反応条件を示す。槽有効容量
の50%以上になると供給ポンプ13がオン(on)に
なる。
Table 2 shows the reaction conditions in the acid fermenter. When the effective capacity of the tank reaches 50% or more, the supply pump 13 is turned on.

表−3に酸発酵処理水の性状を示す。原水SSの約50
χは可溶化している。溶解性BODの70〜80%を揮
発性低級脂肪酸が占めており、酸発酵が順調に進んでい
る。
Table 3 shows the properties of the acid fermentation treated water. About 50 raw water SS
χ is solubilized. Volatile lower fatty acids account for 70-80% of the soluble BOD, and acid fermentation is proceeding smoothly.

表−1原水性状 表−2 酸発酵における反応条件 表−3酸発酵処理水性状 上記酸発酵処理水を遠心脱水処理した分離水性状はBO
D12.000〜25.000II1g/ 1、SS 
1,000〜3,000であった。
Table 1 Raw water properties Table 2 Reaction conditions for acid fermentation Table 3 Acid fermentation treated water properties Separated water obtained by centrifugal dehydration of the above acid fermentation treated water has BO
D12.000~25.000II1g/1, SS
It was 1,000-3,000.

この液にUASB処理水の循環液を混合した液(UAS
B原水)をIIAsB槽にて処理を行った。第2図に処
理成績を示す。液通水後、BOD負荷を徐々にに上げた
。約10日経過後、BOD負荷10kg/m・dてUA
SB原水BOD 1,300 mg#!に対しUASB
処理水BOD 500mg#2、BOD除去率96%以
上の良好な結果を示している。その後も約3ケ月間安定
した処理成績が得られている。
This liquid is mixed with the circulating liquid of UASB treated water (UASB
B raw water) was treated in the IIAsB tank. Figure 2 shows the treatment results. After water flow, the BOD load was gradually increased. After about 10 days, UA with BOD load of 10 kg/m・d
SB raw water BOD 1,300 mg#! against UASB
Treated water BOD 500mg #2 shows good results with a BOD removal rate of 96% or more. After that, stable treatment results were obtained for about 3 months.

本法を適用せずに従来法を用いた場合は、高SSが含ま
れる本廃水では処理不能となった。すなわち、本法の適
用により、高BOD 、 SS廃水に対しても高負荷な
メタン発酵処理の実現が可能となったと言える。
When the conventional method was used without applying this method, it became impossible to treat this wastewater containing high SS. In other words, it can be said that by applying this method, it has become possible to realize high-load methane fermentation treatment even for high BOD and SS wastewater.

〔発明の効果〕 以上のように、高SSを含む有機廃水に本発明を適用す
ることで、高速のメタン発酵処理が可能となった。
[Effects of the Invention] As described above, by applying the present invention to organic wastewater containing high SS, high-speed methane fermentation treatment has become possible.

しかも、本発明は低コストで省エネルギー的に実施でき
、コンパクトな廃水処理設備になり、工業的に価値の高
いものである。
Moreover, the present invention can be implemented at low cost and in an energy-saving manner, resulting in a compact wastewater treatment facility, and is of high industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

1 2 第1図は、本発明の一実施例を説明するためのフローシ
ートを示す図、第2図は、本発明の実施例の結果を示す
グラフである。第3図は、従来の有機廃水処理の一例を
説明するためのフローシートを示す図である。 符号の説明 1.8:酸発酵槽 2,9:メタン発酵槽10:遠心脱
水機 11pH調整槽 13:酸発酵処理水供給ポンプ 16.17:  苛性ソーダ注入設備 2■:分離水2
2:脱水ケーキ  24:メタン発酵処理水28:活性
汚泥設備 29:蒸気加熱設備券 8、叶懇時埼 9;メタン襞a%槽 10家IすIIL水鐵“ 11、PH桶誉樺 12、熟捏氷/7)記譜 13:ぼV:#!慈理都杖忰ホ・シフ゛14;メ9S/
膚1を糟弧IHす!ン7′15、洟イ會し〜1し計 16:苛()tリータ゛シ主人1隻4甑17:l/ 18・ 取未 19;酸瞥IIS処理七 20、寸(リマー〉主入録庫 21:倚1電本 22;駁氷チー斗 23;X9ン窄9藺り電未 24; メタン箒1隊処冑水、 25:飢理七 26:鴫壇水 27z竪生山・・ス 28:第4・主シSk録庫 31、水+攪特磯・
1 2 FIG. 1 is a diagram showing a flow sheet for explaining one embodiment of the present invention, and FIG. 2 is a graph showing the results of the embodiment of the present invention. FIG. 3 is a diagram showing a flow sheet for explaining an example of conventional organic wastewater treatment. Explanation of symbols 1.8: Acid fermentation tank 2, 9: Methane fermentation tank 10: Centrifugal dehydrator 11 pH adjustment tank 13: Acid fermentation treated water supply pump 16.17: Caustic soda injection equipment 2 ■: Separated water 2
2: Dehydrated cake 24: Methane fermentation treated water 28: Activated sludge equipment 29: Steam heating equipment ticket 8, Kano Konjisaki 9; Methane fold a% tank 10 Isu IIL Suitetsu" 11, PH Oke Homare 12, Mature ice / 7) Notation 13: BO V: #!
The skin 1 is the arc IH! 7'15, 1st meeting - 1 total 16: 1 ship, 1 ship, 17: l/18, 19 unreceived; 720, 20, main storage with IIS processing 21: 倚1 den book 22; Piao Chi-to 23; : 4th Main Sk Recording Room 31, Water + Stirring Tokiso・

Claims (2)

【特許請求の範囲】[Claims] (1)廃水を酸発酵槽に供給し、該廃水に含有される有
機物を酸発酵することにより少なくとも低級脂肪酸を含
む低分子化合物を生成せしめた後に酸発酵処理水をメタ
ン発酵槽に導入してメタン発酵を行う処理法において、
酸発酵槽有効容量の一部相当量の該酸発酵処理水を酸発
酵槽槽内に残し、該酸発酵処理水の残部を遠心分離して
固形分と分離水に固液分離し、該分離水をメタン発酵槽
内に供給し、メタン発酵を行うメタン発酵処理方法。
(1) Wastewater is supplied to an acid fermentation tank, organic matter contained in the wastewater is acid-fermented to produce low-molecular compounds containing at least lower fatty acids, and then the acid-fermented water is introduced into the methane fermentation tank. In a treatment method that performs methane fermentation,
A portion of the acid fermentation treated water equivalent to a part of the effective capacity of the acid fermentation tank is left in the acid fermentation tank tank, and the remainder of the acid fermentation treated water is centrifuged to perform solid-liquid separation into solid content and separated water. A methane fermentation treatment method in which water is supplied into a methane fermentation tank and methane fermentation occurs.
(2)該固液分離される該酸発酵処理水の量と同程度の
量の廃水が酸発酵槽に供給されることを特徴とする請求
項1記載のメタン発酵処理方法。
(2) The methane fermentation treatment method according to claim 1, wherein an amount of wastewater comparable to the amount of the acid fermentation treated water to be separated into solid and liquid is supplied to the acid fermentation tank.
JP3234790A 1990-02-15 1990-02-15 Methane fermentation treatment method Expired - Lifetime JP2587301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3234790A JP2587301B2 (en) 1990-02-15 1990-02-15 Methane fermentation treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3234790A JP2587301B2 (en) 1990-02-15 1990-02-15 Methane fermentation treatment method

Publications (2)

Publication Number Publication Date
JPH03238091A true JPH03238091A (en) 1991-10-23
JP2587301B2 JP2587301B2 (en) 1997-03-05

Family

ID=12356426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3234790A Expired - Lifetime JP2587301B2 (en) 1990-02-15 1990-02-15 Methane fermentation treatment method

Country Status (1)

Country Link
JP (1) JP2587301B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033781A (en) * 2001-07-24 2003-02-04 Sanki Eng Co Ltd System for methane gas production
JP2006247601A (en) * 2005-03-14 2006-09-21 Tokyo Gas Co Ltd Methanation method and apparatus
JP2008080274A (en) * 2006-09-28 2008-04-10 Kurita Water Ind Ltd Biological treatment apparatus
JP2010194491A (en) * 2009-02-26 2010-09-09 Yanmar Co Ltd Wastewater treatment apparatus
JP2011230007A (en) * 2010-04-23 2011-11-17 Tokyo Electric Power Co Inc:The Sewage treatment system
JP2012236115A (en) * 2011-05-09 2012-12-06 Eco Power Corp Methane fermentation system
WO2023171006A1 (en) * 2022-03-08 2023-09-14 株式会社サピエナント Organic matter treatment system and organic matter treatment method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100883676B1 (en) * 2008-07-17 2009-02-18 김현욱 Apparatus for the two phase anaerobicdigestion
JP6385872B2 (en) * 2015-03-27 2018-09-05 住友重機械エンバイロメント株式会社 Water treatment system and water treatment method
KR102311041B1 (en) * 2019-03-27 2021-10-12 문성우 A circulation type biogas production facility through inorganic acid control

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528657A (en) * 1975-07-09 1977-01-22 Hitachi Ltd Method for the anaerobic digestion of organic waste liquor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528657A (en) * 1975-07-09 1977-01-22 Hitachi Ltd Method for the anaerobic digestion of organic waste liquor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033781A (en) * 2001-07-24 2003-02-04 Sanki Eng Co Ltd System for methane gas production
JP2006247601A (en) * 2005-03-14 2006-09-21 Tokyo Gas Co Ltd Methanation method and apparatus
JP2008080274A (en) * 2006-09-28 2008-04-10 Kurita Water Ind Ltd Biological treatment apparatus
JP2010194491A (en) * 2009-02-26 2010-09-09 Yanmar Co Ltd Wastewater treatment apparatus
JP2011230007A (en) * 2010-04-23 2011-11-17 Tokyo Electric Power Co Inc:The Sewage treatment system
JP2012236115A (en) * 2011-05-09 2012-12-06 Eco Power Corp Methane fermentation system
WO2023171006A1 (en) * 2022-03-08 2023-09-14 株式会社サピエナント Organic matter treatment system and organic matter treatment method

Also Published As

Publication number Publication date
JP2587301B2 (en) 1997-03-05

Similar Documents

Publication Publication Date Title
Valladão et al. Enzymatic pre-hydrolysis applied to the anaerobic treatment of effluents from poultry slaughterhouses
KR100943315B1 (en) Apparatus and method for treating organic sludge using thermal hydrolysis and high-temperature anaerobic digestion
CN101759316B (en) Method for treating wastewater containing molasses alcohol
US5540839A (en) Process for degrading organic matter
Hamdi Effects of agitation and pretreatment on the batch anaerobic digestion of olive mil
US4666605A (en) Methane fermentation process for treating evaporator condensate from pulp making system
JPS5864200A (en) Anaerobic digestion of cellulose-containing waste matter
WO2006035594A1 (en) Method and apparatus for biologically treating wastewater containing fats and oils
US4559142A (en) Split feed for the anaerobic biological purification of wastewater
JPH06504202A (en) Method and apparatus for biological treatment of solid organic materials
JPH03238091A (en) Methane fermentation
JP2002153897A (en) Method and device for treating organic discharged water
JPH04326998A (en) Treatment of organic sludge
EP2917156B1 (en) Method of increasing the production of biogas from a waste activated sludge
JP2009018211A (en) Treatment apparatus of livestock excretions
JPH0584499A (en) Method for methane-fermenting kraft pulp waste water
JP3275351B2 (en) Anaerobic treatment of organic wastewater
JP2006218344A (en) Method and apparatus for treating water containing fats and fatty oils, and method and apparatus for treating organic waste material
JPH10192889A (en) Method for treating organic drainage
CN103771613A (en) Pretreatment method of cellulosic ethanol production wastewater
JP3846138B2 (en) Method and apparatus for anaerobic treatment of liquid containing starch particles
JPS63116800A (en) Treatment of sludge and waste water or the like
NL8400764A (en) METHOD FOR PRODUCING METHANE FROM SOLID VEGETABLE MATERIAL
JP2009248041A (en) Method and system for methane fermentation treatment of wood waste
JP3781216B2 (en) Anaerobic sludge digestion method and device enabling re-digestion of persistent organic substances in anaerobic digested sludge

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 14