WO2023171006A1 - Organic matter treatment system and organic matter treatment method - Google Patents

Organic matter treatment system and organic matter treatment method Download PDF

Info

Publication number
WO2023171006A1
WO2023171006A1 PCT/JP2022/035241 JP2022035241W WO2023171006A1 WO 2023171006 A1 WO2023171006 A1 WO 2023171006A1 JP 2022035241 W JP2022035241 W JP 2022035241W WO 2023171006 A1 WO2023171006 A1 WO 2023171006A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
solid
separated
organic matter
alkaline
Prior art date
Application number
PCT/JP2022/035241
Other languages
French (fr)
Japanese (ja)
Inventor
成樹 松本
Original Assignee
株式会社サピエナント
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サピエナント filed Critical 株式会社サピエナント
Publication of WO2023171006A1 publication Critical patent/WO2023171006A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/06Treatment of sludge; Devices therefor by oxidation
    • C02F11/08Wet air oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • C02F11/127Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering by centrifugation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to an organic matter treatment system and an organic matter treatment method.
  • an object of the present invention is to reduce the amount of alkaline solution used when hydrolyzing organic matter contained in sludge, excrement, or residue containing water-soluble organic matter. .
  • the organic matter treatment system includes a first solid-liquid separation means for separating organic matter contained in at least one of sludge, excrement, or residue containing water-soluble organic matter into solid and liquid; a hydrolysis means that generates an alkaline hydrolyzed liquid by adding an alkaline substance to the first separated solid separated by the solid-liquid separation means and hydrolyzing the first separated solid; It has an anaerobic fermentation means for generating biogas by anaerobically fermenting the separated first separated liquid and the liquid containing the alkaline hydrolyzed liquid.
  • the anaerobic fermentation means may have an acid fermenter at the front stage that promotes acid fermentation.
  • the anaerobic fermentation means further includes a second solid-liquid separation means for separating the alkaline hydrolyzed liquid produced by the hydrolysis means into solid and liquid, and the anaerobic fermentation means separates the first separated liquid and the second solid-liquid separation.
  • Biogas may be generated by anaerobically fermenting the second separated liquid separated by the means.
  • the anaerobic fermentation means includes a first anaerobic fermentation means for anaerobically fermenting the first separated liquid or an aerobic processing means for aerobically processing the first separated liquid, and a second anaerobic fermentation means for anaerobically fermenting the second separated liquid.
  • the alkaline substance may be potassium hydroxide
  • the second separated liquid may contain more potassium than the first separated liquid.
  • the organic matter treatment system further includes an ammonia separation means for separating ammonia contained in the alkaline hydrolysis liquid produced by the hydrolysis means, and the anaerobic fermentation means separates the first separated liquid and the ammonia separation means.
  • Biogas may be generated by anaerobically fermenting the liquid containing the alkaline hydrolyzed liquid from which ammonia has been separated.
  • the organic matter treatment system may further include an aerobic treatment means provided after the anaerobic fermentation means, and the aerobic treatment means may purify the treated water discharged from the anaerobic fermentation means.
  • the organic matter treatment system is configured to treat the first solidified liquid based on the amount of at least one of a refractory substance that is difficult to decompose by anaerobic fermentation and an anaerobic microbial interference substance that is denatured by alkaline hydrolysis, contained in the first separated liquid.
  • the amount of added chemicals used for solid-liquid separation the amount of dilution water, the amount of microair for flotation separation, the gravity intensity applied for solid-liquid separation, or separation.
  • the method may further include a control means for determining at least one of the processing times of the steps.
  • the organic matter processing system includes a foreign matter removing means for removing foreign matter from the organic matter, and a foreign matter removing means that uses anaerobic fermentation contained in the first separated liquid before the first solid-liquid separation means separates the organic matter into solid and liquid. Based on the amount of at least one of a persistent substance that is difficult to decompose or an anaerobic microbial interfering substance that is denatured by alkaline hydrolysis, the foreign substance removal means determines the processing time for removing foreign substances, the amount of dilution water, and the amount of foreign substance removal.
  • the device may further include a control device that controls at least one of the width of the screen of the device and the amount of micro air for pressurized flotation.
  • the method for treating organic matter according to the second aspect of the present invention includes the steps of separating organic matter contained in at least one of sludge, excrement, or residue containing water-soluble organic matter into solid and liquid; A step of generating an alkaline hydrolyzed liquid by adding an alkaline substance and hydrolyzing the first separated solid, and anaerobically fermenting the separated first separated liquid and a liquid containing the alkaline hydrolyzed liquid. and a step of generating biogas.
  • FIG. 1 is a diagram showing the configuration of an organic matter treatment system 1 according to a first embodiment.
  • FIG. 2 is a diagram showing the configuration of an organic matter treatment system 2 according to a second embodiment. It is a figure showing the composition of organic matter processing system 3 of a 3rd embodiment. It is a figure showing the composition of organic substance processing system 4 of a 4th embodiment. It is a figure showing the composition of organic matter processing system 5 of a 5th embodiment. It is a figure showing the composition of organic substance processing system 6 of a 6th embodiment. It is a figure showing the composition of organic substance processing system 7 of a 7th embodiment.
  • FIG. 1 is a diagram showing the configuration of an organic matter treatment system 1 according to the first embodiment.
  • the organic matter treatment system 1 is a system that can generate biogas by anaerobically fermenting organic sludge, livestock manure, or residue containing soluble organic matter (hereinafter referred to as "sludge, etc.”).
  • the residue containing water-soluble organic matter is, for example, food residue.
  • the organic matter treatment system 1 includes a solid-liquid separator 11, an alkaline hydrolysis tank 12, and an anaerobic fermentation tank 13.
  • a method for treating organic matter can be carried out, which includes a step of generating biogas by anaerobically fermenting a separated liquid and a liquid containing an alkaline hydrolyzed liquid.
  • the solid-liquid separator 11 is a first solid-liquid separator that separates sludge and the like into solid and liquid.
  • the solid-liquid separator 11 is, for example, a centrifuge that separates solids and liquids by centrifugal force, or a separation tank that separates solids and liquids by generating flocs using a chemical for coagulating solid components. be.
  • a liquid diluted by adding water to sludge or the like is stirred, and then solid and liquid are separated.
  • the first separated solid produced by solid-liquid separation is sent to the alkaline hydrolysis tank 12.
  • the first separated liquid produced by solid-liquid separation mainly contains soluble organic substances, and can be decomposed by anaerobic fermentation without performing alkaline hydrolysis treatment. Therefore, the first separated liquid is sent to the anaerobic fermentation tank 13 without being subjected to alkaline hydrolysis in the alkaline hydrolysis tank 12.
  • the alkaline hydrolysis tank 12 is a hydrolysis means that generates an alkaline hydrolyzate by adding an alkaline substance to the first separated solid separated by the solid-liquid separation means and hydrolyzing the separated solid.
  • an alkaline substance is added to the charged first separated solid, mixed, and then heated to alkaline hydrolyze the first separated solid, so that the first separated solid is dissolved in water.
  • a solubilization step is performed to produce an alkaline hydrolyzate.
  • the alkaline hydrolyzate is sent to the anaerobic fermenter 13.
  • the pH of the first separated solid is adjusted to an alkaline range of 8 to 14 by adding an alkaline substance such as sodium hydroxide (NaOH) or potassium hydroxide (KOH).
  • an alkaline substance such as sodium hydroxide (NaOH) or potassium hydroxide (KOH).
  • the first separated solid which has been adjusted to be alkaline, is heated at a temperature within a range of 100°C or more and 250°C or less while applying a high pressure equal to or higher than the saturated water vapor pressure, thereby adding alkaline hydration to the first separated solid. Disassemble.
  • the heating time is, for example, 10 seconds or more and 3 hours or less.
  • the anaerobic fermentation tank 13 is an anaerobic fermentation means that generates biogas by anaerobically fermenting the first separated liquid separated by the first solid-liquid separation means and the liquid containing the alkaline hydrolysis liquid.
  • the anaerobic fermentation tank 13 is a processing tank for fermenting the first separated liquid and solubilized sludge, which is an alkaline hydrolyzed liquid such as sludge, by performing anaerobic treatment using anaerobic microorganisms to generate methane gas.
  • anaerobic microorganisms are bacteria that metabolically decompose and digest organic matter in an oxygen-free environment.
  • the anaerobic fermentation tank 13 is, for example, an EGSB (Expanded Granular Sludge Bed) type digestion tank, and anaerobic microorganisms decompose and digest the organic matter in the first separated liquid and solubilized sludge.
  • EGSB Expanded Granular Sludge Bed
  • anaerobic microorganisms decompose and digest the organic matter in the first separated liquid and solubilized sludge.
  • biogas containing methane gas is generated by performing an anaerobic fermentation process over, for example, about one day.
  • the anaerobic fermentation tank 13 may be provided with an acid fermentation tank at the front stage that promotes acid fermentation. Anaerobically treated water treated by anaerobic fermentation is sent to, for example, a sewage treatment facility.
  • the first separated solid separated in the solid-liquid separator 11 is alkaline hydrolyzed and reduced in molecular weight before being sent to the anaerobic fermentation tank 13.
  • the first separated liquid after being separated in the solid-liquid separator 11 is sent to the anaerobic fermenter 13 without being subjected to alkaline hydrolysis.
  • FIG. 2 is a diagram showing the configuration of an organic matter treatment system 2 according to the second embodiment.
  • the organic matter treatment system 2 differs from the organic matter treatment system 1 shown in FIG. This is similar to organic matter treatment system 1 in this respect.
  • the solid-liquid separator 14 has the same function as the solid-liquid separator 11, and separates the alkaline hydrolyzed liquid produced by the alkaline hydrolysis tank 12 into solid waste and a second separated liquid. If the alkaline substance input into the alkaline hydrolysis tank 12 is potassium hydroxide, the solid waste can also be used as fertilizer.
  • the second separated liquid is sent to the anaerobic fermenter 13.
  • the anaerobic fermentation tank 13 generates biogas by subjecting the first separated liquid sent from the solid-liquid separator 11 and the second separated liquid separated by the solid-liquid separator 14 to anaerobic fermentation.
  • the organic matter treatment system 2 includes the solid-liquid separator 14, even if solids that are difficult to decompose by anaerobic fermentation remain in the alkaline hydrolysis liquid, such solids can be removed by anaerobic fermentation. It is not sent to tank 13. As a result, it is possible to prevent suspended solids (SS) from accumulating in the anaerobic fermenter 13 and adversely affecting microorganisms or reducing fermentation efficiency. Particularly when an EGSB type digester is used, the inflowing suspended floats have the effect of preventing the decomposition of the granules inside. Moreover, an acid fermenter may be attached to the anaerobic fermenter.
  • FIG. 3 is a diagram showing the configuration of an organic matter treatment system 3 according to the third embodiment.
  • the organic matter treatment system 3 differs from the organic matter treatment system 1 shown in FIG. 1 and the organic matter treatment system 2 shown in FIG. 2 in that it further includes a control device 15.
  • the control device 15 has a processor that operates by executing a program stored in a storage medium, for example, and is a control means for controlling the operation of the solid-liquid separation device 11.
  • the control device 15 controls whether the solid-liquid in the solid-liquid separator 11 is controlled based on the amount of at least one of a refractory substance that is difficult to undergo anaerobic fermentation or an anaerobic microbial interference substance that is denatured by alkaline hydrolysis, contained in the first separated liquid. Controls the intensity of the separation process.
  • the control device 15 controls the amount of the agent used for solid-liquid separation, the amount of dilution water, and the amount of water used to float and separate solid components.
  • At least either the amount of microair to be produced or the processing time of the separation step is determined based on the amount of the anaerobic fermentation-refractory substance or the anaerobic microbially interfering substance denatured by alkaline hydrolysis.
  • the control device 15 determines the gravity intensity applied for solid-liquid separation or the processing time of the separation step. Specifically, the control device 15 increases the amount of chemicals used for solid-liquid separation or increases the gravity strength as the amount of persistent substances contained in the first separation liquid increases. or increase processing time.
  • the organic matter treatment system 3 is configured to use such a control device 15.
  • the organic matter treatment system 3 is configured to use such a control device 15.
  • the control device 15 when the sludge contains an anaerobic microbial interfering substance that is denatured by alkaline hydrolysis, the anaerobic microbial interfering substance is contained in the first separated liquid and the first separated solid is You can choose not to include it. As a result, it is possible to suppress the generation of anaerobic microbial interfering substances when the first separated solid is subjected to alkaline hydrolysis.
  • FIG. 4 is a diagram showing the configuration of an organic matter treatment system 4 according to the fourth embodiment.
  • the organic matter treatment system 4 differs from the organic matter treatment system 1 shown in FIG. 1 and the organic matter treatment system 2 shown in FIG. 2 in that it includes a control device 15 and a foreign matter removal device 16.
  • the control device 15 has a processor that operates by executing a program stored in a storage medium, for example, and controls the operation of the foreign object removal device 16.
  • the foreign matter removal device 16 is a foreign matter removal means that removes foreign matter from the sludge, excrement, or residue containing water-soluble organic matter before the solid-liquid separation device 11 separates the organic matter contained in the sludge, excrement, or residue into solid and liquid. It is.
  • the foreign matter removing device 16 is, for example, a screen for removing bedding such as straw or sawdust that is difficult to solubilize, a dehydrator, and a device that floats foreign matter by applying water and pressure.
  • the removed litter can be reused as recycled litter. When foreign substances are hydrolyzed with alkaline, they may transform into toxic anaerobic microorganism-interfering substances.
  • substances that may be transformed into anaerobic microbial-interfering substances are removed as foreign substances in advance, and such substances are hydrolyzed with alkaline water. By not introducing it into the decomposition process, stable anaerobic fermentation can be achieved.
  • the control device 15 controls the foreign matter removal device 16 based on the amount of at least one of the refractory substances that are difficult to undergo anaerobic fermentation and the anaerobic microbial interference substances that are denatured by alkaline hydrolysis, which are contained in the first separated liquid. At least one of the processing time for removing foreign matter, the amount of dilution water, the width of the screen of the foreign matter removing device 16, or the amount of microair for pressurized flotation is controlled. Specifically, the control device 15 increases the time required for the foreign matter removal device 16 to remove the foreign matter as the amount of the persistent substance contained in the first separated liquid increases.
  • the first separated liquid after solid-liquid separation by the solid-liquid separator 11 may contain persistent substances.
  • the control device 15 it is possible to suppress the inclusion of a difficult-to-decompose substance in the first separated liquid sent to the alkaline hydrolysis tank 12. As a result, it is possible to prevent persistent substances from accumulating in the anaerobic fermenter 13 and adversely affecting microorganisms and reducing fermentation efficiency.
  • FIG. 5 is a diagram showing the configuration of an organic matter treatment system 5 according to the fifth embodiment.
  • the organic matter treatment system 5 differs from the organic matter treatment system 1 in that an ammonia separation tank 17 is provided between the alkaline hydrolysis tank 12 and the anaerobic fermentation tank 13 in the organic matter treatment system 1 of the first embodiment. , are otherwise the same.
  • the ammonia separation tank 17 separates ammonia contained in the alkaline hydrolysis liquid flowing from the alkaline hydrolysis tank 12 by ammonia stripping.
  • the ammonia separation tank 17 may separate ammonia by flushing the alkaline hydrolysis liquid in the ammonia separation tank 17 using this pressure when the pressure inside the alkaline hydrolysis tank is equal to or higher than atmospheric pressure.
  • FIG. 6 is a diagram showing the configuration of an organic matter treatment system 6 according to the sixth embodiment.
  • the organic matter treatment system 6 is different from the organic matter treatment system 2 in that an ammonia separation tank 17 is provided between the alkaline hydrolysis tank 12 and the solid-liquid separation device 14 in the organic matter treatment system 2 of the second embodiment. different and in other respects the same.
  • FIG. 7 is a diagram showing the configuration of an organic matter treatment system 7 according to the seventh embodiment.
  • the organic matter treatment system 7 differs from the organic matter treatment system 2 in that an ammonia separation tank 17 is provided between the alkaline hydrolysis tank 12 and the anaerobic fermentation tank 13 in the organic matter treatment system 3 of the third embodiment. , are otherwise the same.
  • the organic matter treatment system 1 to the organic matter treatment system 7 further include an aerobic treatment tank (not shown) downstream of the anaerobic fermentation tank 13, and the treated water discharged from the anaerobic fermentation tank 13 is purified in the aerobic treatment tank. You may.
  • the first separated liquid generated when the solid-liquid separator 11 performs solid-liquid separation and the second separated liquid generated when the solid-liquid separator 14 performs solid-liquid separation.
  • the separated liquid was sent to the anaerobic fermentation tank 13
  • the first separated liquid and the second separated liquid may be sent to different microbial treatment tanks. That is, the first separated liquid may be sent to the first anaerobic fermentor or the aerobic treatment tank, and the second separated liquid may be sent to the second anaerobic fermenter.
  • the second separated liquid contains more potassium than the first separated liquid.
  • the first separated liquid contains almost no potassium
  • the second separated liquid contains a large amount of potassium.
  • potassium in the second separated liquid is diluted with the first separated liquid.
  • the first separated liquid and the second separated liquid may be treated in different first and second anaerobic fermenters, or in an aerobic treatment tank and a second anaerobic fermenter.
  • the treated water after treating the first separated liquid in the first anaerobic fermentation tank or the aerobic treatment tank is discharged into a river, etc.
  • the treated water after treating the second separated liquid in the second anaerobic fermentation tank is used as potassium fertilizer. It can be done.
  • a part of the treated water of the first anaerobic fermenter may be sent to the second anaerobic fermenter.
  • a small amount of alkali is added to decompose the bad odor generated from the sludge, excrement, and residue containing water-soluble organic matter. You may.
  • This alkali has a pH of 10 or less, for example.
  • Organic matter treatment system 1 Organic matter treatment system 2 Organic matter treatment system 3 Organic matter treatment system 4 Organic matter treatment system 11 Solid-liquid separation device 12 Alkaline hydrolysis tank 13 Anaerobic fermentation tank 14 Solid-liquid separation device 15 Control device 16 Foreign matter removal device 17 Ammonia separation tank

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

An organic matter treatment system 1 has: a solid-liquid separation device 11 for separating organic matter, which is contained in one or more substances from among sludge, manure and residues containing water-soluble organic matter, into a solid and a liquid; an alkaline hydrolysis vessel 12 for generating an alkaline hydrolyzate solution by adding an alkaline substance to a first separated solid which was separated by the solid-liquid separation device 11, and subjecting the first separated solid to hydrolysis; and an anaerobic fermentation vessel 13 for generating a biogas by anaerobically fermenting the first separated liquid which was separated by the solid-liquid separation device 11 and a liquid which contains the generated alkaline hydrolyzate solution.

Description

有機物処理システム及び有機物処理方法Organic matter treatment system and organic matter treatment method
 本発明は、有機物処理システム及び有機物処理方法に関する。 The present invention relates to an organic matter treatment system and an organic matter treatment method.
 従来、汚泥又は糞尿等の有機物をアルカリ加水分解して得られる加水分解液を嫌気発酵することによりメタンバイオガスを生成する方法が知られている(例えば、特許文献1を参照)。 Conventionally, there has been known a method of producing methane biogas by anaerobically fermenting a hydrolyzed solution obtained by alkaline hydrolysis of organic matter such as sludge or excrement (see, for example, Patent Document 1).
特開2017-119242号公報JP2017-119242A
 従来の方法では、汚泥又は糞尿に液体成分が含まれている場合に、液体成分を含めてアルカリ加水分解をしていた。したがって、加水分解をするために要するアルカリ溶液の量が多く、アルカリ加水分解をするための加水分解反応槽の容積が大きくなるとともに、アルカリ加水分解時に必要とする加熱熱量が大きいという問題が生じていた。 In conventional methods, when sludge or excrement contains liquid components, alkaline hydrolysis is performed including the liquid components. Therefore, there are problems in that the amount of alkaline solution required for hydrolysis is large, the volume of the hydrolysis reaction tank for alkaline hydrolysis is large, and the amount of heating heat required during alkaline hydrolysis is large. Ta.
 そこで、本発明はこれらの点に鑑みてなされたものであり、汚泥、糞尿又は水溶性有機物を含む残渣等に含まれる有機物の加水分解時に使用するアルカリ溶液の量を減少させることを目的とする。 Therefore, the present invention has been made in view of these points, and an object of the present invention is to reduce the amount of alkaline solution used when hydrolyzing organic matter contained in sludge, excrement, or residue containing water-soluble organic matter. .
 本発明の第1の態様の有機物処理システムは、汚泥、糞尿又は水溶性有機物を含む残渣の少なくともいずれかに含まれる有機物を固体と液体とに分離する第1固液分離手段と、前記第1固液分離手段により分離された第1分離固体にアルカリ性物質を加えて前記第1分離固体を加水分解することにより、アルカリ加水分解液を生成する加水分解手段と、前記第1固液分離手段により分離された第1分離液体と、前記アルカリ加水分解液を含む液体と、を嫌気発酵することによりバイオガスを発生させる嫌気発酵手段と、を有する。嫌気発酵手段は、酸発酵を促進させる酸発酵槽を前段に有してもよい。 The organic matter treatment system according to the first aspect of the present invention includes a first solid-liquid separation means for separating organic matter contained in at least one of sludge, excrement, or residue containing water-soluble organic matter into solid and liquid; a hydrolysis means that generates an alkaline hydrolyzed liquid by adding an alkaline substance to the first separated solid separated by the solid-liquid separation means and hydrolyzing the first separated solid; It has an anaerobic fermentation means for generating biogas by anaerobically fermenting the separated first separated liquid and the liquid containing the alkaline hydrolyzed liquid. The anaerobic fermentation means may have an acid fermenter at the front stage that promotes acid fermentation.
 前記加水分解手段が生成した前記アルカリ加水分解液を固体と液体とに分離する第2固液分離手段をさらに有し、前記嫌気発酵手段は、前記第1分離液体と、前記第2固液分離手段により分離された第2分離液体とを嫌気発酵することによりバイオガスを発生させてもよい。 The anaerobic fermentation means further includes a second solid-liquid separation means for separating the alkaline hydrolyzed liquid produced by the hydrolysis means into solid and liquid, and the anaerobic fermentation means separates the first separated liquid and the second solid-liquid separation. Biogas may be generated by anaerobically fermenting the second separated liquid separated by the means.
 前記嫌気発酵手段は、前記第1分離液体を嫌気発酵する第1嫌気発酵手段又は好気処理する好気処理手段と、前記第2分離液体を嫌気発酵する第2嫌気発酵手段とを有してもよい。また、前記アルカリ性物質は水酸化カリウムであり、前記第2分離液体に前記第1分離液体よりも多くのカリウムが含まれていてもよい。 The anaerobic fermentation means includes a first anaerobic fermentation means for anaerobically fermenting the first separated liquid or an aerobic processing means for aerobically processing the first separated liquid, and a second anaerobic fermentation means for anaerobically fermenting the second separated liquid. Good too. Further, the alkaline substance may be potassium hydroxide, and the second separated liquid may contain more potassium than the first separated liquid.
 前記有機物処理システムは、前記加水分解手段が生成した前記アルカリ加水分解液に含まれるアンモニアを分離するアンモニア分離手段をさらに有し、前記嫌気発酵手段は、前記第1分離液体と、前記アンモニア分離手段においてアンモニアが分離された後のアルカリ加水分解液を含む液体と、を嫌気発酵することによりバイオガスを発生させてもよい。 The organic matter treatment system further includes an ammonia separation means for separating ammonia contained in the alkaline hydrolysis liquid produced by the hydrolysis means, and the anaerobic fermentation means separates the first separated liquid and the ammonia separation means. Biogas may be generated by anaerobically fermenting the liquid containing the alkaline hydrolyzed liquid from which ammonia has been separated.
 前記有機物処理システムは、前記嫌気発酵手段の後段に設けられた好気処理手段をさらに有し、前記好気処理手段は、前記嫌気発酵手段から排出される処理水を浄化してもよい。 The organic matter treatment system may further include an aerobic treatment means provided after the anaerobic fermentation means, and the aerobic treatment means may purify the treated water discharged from the anaerobic fermentation means.
 前記有機物処理システムは、前記第1分離液体に含まれる嫌気発酵による分解が困難な難分解性物質又はアルカリ加水分解により変成する嫌気微生物妨害物質の少なくともいずれかの量に基づいて、前記第1固液分離手段における固液分離処理において固液分離のために使用される薬剤の添加量、希釈水の量、浮上分離のためのマイクロエア量、固液分離のために加えられる重力強度、又は分離工程の処理時間の少なくともいずれかを決定する制御手段をさらに有してもよい。 The organic matter treatment system is configured to treat the first solidified liquid based on the amount of at least one of a refractory substance that is difficult to decompose by anaerobic fermentation and an anaerobic microbial interference substance that is denatured by alkaline hydrolysis, contained in the first separated liquid. In the solid-liquid separation process in the liquid separation means, the amount of added chemicals used for solid-liquid separation, the amount of dilution water, the amount of microair for flotation separation, the gravity intensity applied for solid-liquid separation, or separation. The method may further include a control means for determining at least one of the processing times of the steps.
 前記有機物処理システムは、前記第1固液分離手段が前記有機物を固体と液体とに分離する前に、前記有機物から異物を除去する異物除去手段と、前記第1分離液体に含まれる嫌気発酵による分解が困難な難分解性物質又はアルカリ加水分解により変成する嫌気微生物妨害物質の少なくともいずれかの量に基づいて、前記異物除去手段が異物を除去する処理の時間、希釈水の量、前記異物除去手段のスクリーンの目幅、加圧浮上のためのマイクロエア量の少なくともいずれかを制御する制御手段と、をさらに有してもよい。 The organic matter processing system includes a foreign matter removing means for removing foreign matter from the organic matter, and a foreign matter removing means that uses anaerobic fermentation contained in the first separated liquid before the first solid-liquid separation means separates the organic matter into solid and liquid. Based on the amount of at least one of a persistent substance that is difficult to decompose or an anaerobic microbial interfering substance that is denatured by alkaline hydrolysis, the foreign substance removal means determines the processing time for removing foreign substances, the amount of dilution water, and the amount of foreign substance removal. The device may further include a control device that controls at least one of the width of the screen of the device and the amount of micro air for pressurized flotation.
 本発明の第2の態様の有機物処理方法は、汚泥、糞尿又は水溶性有機物を含む残渣の少なくともいずれかに含まれる有機物を固体と液体とに分離する工程と、分離された第1分離固体にアルカリ性物質を加えて前記第1分離固体を加水分解することにより、アルカリ加水分解液を生成する工程と、分離された第1分離液体と、前記アルカリ加水分解液を含む液体と、を嫌気発酵することによりバイオガスを発生させる工程と、を有する。 The method for treating organic matter according to the second aspect of the present invention includes the steps of separating organic matter contained in at least one of sludge, excrement, or residue containing water-soluble organic matter into solid and liquid; A step of generating an alkaline hydrolyzed liquid by adding an alkaline substance and hydrolyzing the first separated solid, and anaerobically fermenting the separated first separated liquid and a liquid containing the alkaline hydrolyzed liquid. and a step of generating biogas.
 本発明によれば、汚泥、糞尿又は水溶性有機物を含む残渣等に含まれる有機物の加水分解時に使用するアルカリ溶液の量を減少させることができるという効果を奏する。 According to the present invention, it is possible to reduce the amount of alkaline solution used when hydrolyzing organic matter contained in sludge, excrement, or residue containing water-soluble organic matter.
第1の実施形態の有機物処理システム1の構成を示す図である。FIG. 1 is a diagram showing the configuration of an organic matter treatment system 1 according to a first embodiment. 第2の実施形態の有機物処理システム2の構成を示す図である。FIG. 2 is a diagram showing the configuration of an organic matter treatment system 2 according to a second embodiment. 第3の実施形態の有機物処理システム3の構成を示す図である。It is a figure showing the composition of organic matter processing system 3 of a 3rd embodiment. 第4の実施形態の有機物処理システム4の構成を示す図である。It is a figure showing the composition of organic substance processing system 4 of a 4th embodiment. 第5の実施形態の有機物処理システム5の構成を示す図である。It is a figure showing the composition of organic matter processing system 5 of a 5th embodiment. 第6の実施形態の有機物処理システム6の構成を示す図である。It is a figure showing the composition of organic substance processing system 6 of a 6th embodiment. 第7の実施形態の有機物処理システム7の構成を示す図である。It is a figure showing the composition of organic substance processing system 7 of a 7th embodiment.
<第1の実施形態>
 図1は、第1の実施形態の有機物処理システム1の構成を示す図である。有機物処理システム1は、有機性汚泥、家畜の糞尿、又は溶解性有機物を含む残渣(以下、「汚泥等」という。)を嫌気発酵処理することによりバイオガスを発生させることができるシステムである。水溶性有機物を含む残渣は、例えば食品の残渣である。有機物処理システム1は、固液分離装置11と、アルカリ加水分解槽12と、嫌気発酵槽13と、を有する。
<First embodiment>
FIG. 1 is a diagram showing the configuration of an organic matter treatment system 1 according to the first embodiment. The organic matter treatment system 1 is a system that can generate biogas by anaerobically fermenting organic sludge, livestock manure, or residue containing soluble organic matter (hereinafter referred to as "sludge, etc."). The residue containing water-soluble organic matter is, for example, food residue. The organic matter treatment system 1 includes a solid-liquid separator 11, an alkaline hydrolysis tank 12, and an anaerobic fermentation tank 13.
 有機物処理システム1を用いることにより、汚泥等を固体と液体とに分離する工程と、分離された第1分離固体をアルカリ加水分解することによりアルカリ加水分解液を生成する工程と、分離された第1分離液体と、アルカリ加水分解液を含む液体と、を嫌気発酵することによりバイオガスを発生させる工程と、を有する有機物処理方法を実行することができる。 By using the organic matter treatment system 1, there are a step of separating sludge etc. into solid and liquid, a step of generating an alkaline hydrolyzed liquid by alkali hydrolyzing the separated first separated solid, and a step of generating an alkaline hydrolyzed liquid by alkaline hydrolyzing the separated first separated solid. A method for treating organic matter can be carried out, which includes a step of generating biogas by anaerobically fermenting a separated liquid and a liquid containing an alkaline hydrolyzed liquid.
 固液分離装置11は、汚泥等を固体と液体とに分離する第1固液分離手段である。固液分離装置11は、例えば遠心力により固体と液体とを分離する遠心分離機、又は固体成分を凝集するための薬剤を用いてフロックを生成することにより固体と液体とを分離する分離槽である。一例として、固液分離装置11においては、汚泥等に加水することにより希釈された液体が撹拌された後に固体と液体とが分離される。 The solid-liquid separator 11 is a first solid-liquid separator that separates sludge and the like into solid and liquid. The solid-liquid separator 11 is, for example, a centrifuge that separates solids and liquids by centrifugal force, or a separation tank that separates solids and liquids by generating flocs using a chemical for coagulating solid components. be. As an example, in the solid-liquid separator 11, a liquid diluted by adding water to sludge or the like is stirred, and then solid and liquid are separated.
 固液分離により生じた第1分離固体はアルカリ加水分解槽12に送られる。固液分離により生じた第1分離液体には、主に溶解性の有機物が含まれており、アルカリ加水分解処理を行わなくても嫌気発酵により分解することができる。そこで、第1分離液体は、アルカリ加水分解槽12においてアルカリ加水分解されることなく嫌気発酵槽13に送られる。 The first separated solid produced by solid-liquid separation is sent to the alkaline hydrolysis tank 12. The first separated liquid produced by solid-liquid separation mainly contains soluble organic substances, and can be decomposed by anaerobic fermentation without performing alkaline hydrolysis treatment. Therefore, the first separated liquid is sent to the anaerobic fermentation tank 13 without being subjected to alkaline hydrolysis in the alkaline hydrolysis tank 12.
 アルカリ加水分解槽12は、固液分離手段により分離された第1分離固体にアルカリ性物質を加えて分離固体を加水分解することにより、アルカリ加水分解液を生成する加水分解手段である。アルカリ加水分解槽12においては、投入された第1分離固体にアルカリ性物質を投入して混合した後に加熱して第1分離固体をアルカリ加水分解することにより、第1分離固体が水に溶解した状態のアルカリ加水分解液を生成する可溶化工程が実行される。アルカリ加水分解液は嫌気発酵槽13へと送られる。 The alkaline hydrolysis tank 12 is a hydrolysis means that generates an alkaline hydrolyzate by adding an alkaline substance to the first separated solid separated by the solid-liquid separation means and hydrolyzing the separated solid. In the alkaline hydrolysis tank 12, an alkaline substance is added to the charged first separated solid, mixed, and then heated to alkaline hydrolyze the first separated solid, so that the first separated solid is dissolved in water. A solubilization step is performed to produce an alkaline hydrolyzate. The alkaline hydrolyzate is sent to the anaerobic fermenter 13.
 アルカリ加水分解槽12においては、例えば水酸化ナトリウム(NaOH)や水酸化カリウム(KOH)のようなアルカリ性物質を投入することにより、第1分離固体のpHを8~14のアルカリ性に調整する。次に、アルカリ性に調整された第1分離固体を、100℃以上250℃以下の範囲内の温度で飽和水蒸気圧以上の高い圧力を加えた状態で加熱することにより、第1分離固体をアルカリ加水分解する。加熱時間は、例えば10秒以上3時間以下である。 In the alkaline hydrolysis tank 12, the pH of the first separated solid is adjusted to an alkaline range of 8 to 14 by adding an alkaline substance such as sodium hydroxide (NaOH) or potassium hydroxide (KOH). Next, the first separated solid, which has been adjusted to be alkaline, is heated at a temperature within a range of 100°C or more and 250°C or less while applying a high pressure equal to or higher than the saturated water vapor pressure, thereby adding alkaline hydration to the first separated solid. Disassemble. The heating time is, for example, 10 seconds or more and 3 hours or less.
 嫌気発酵槽13は、第1固液分離手段により分離された第1分離液体と、アルカリ加水分解液を含む液体とを嫌気発酵することによりバイオガスを発生させる嫌気発酵手段である。嫌気発酵槽13は、嫌気性微生物による嫌気処理を行うことで第1分離液体と汚泥等のアルカリ加水分解液である可溶化汚泥を発酵させ、メタンガスを生成するための処理槽である。ここで、嫌気性微生物とは、酸素がない環境において有機物を代謝分解して消化する菌である。 The anaerobic fermentation tank 13 is an anaerobic fermentation means that generates biogas by anaerobically fermenting the first separated liquid separated by the first solid-liquid separation means and the liquid containing the alkaline hydrolysis liquid. The anaerobic fermentation tank 13 is a processing tank for fermenting the first separated liquid and solubilized sludge, which is an alkaline hydrolyzed liquid such as sludge, by performing anaerobic treatment using anaerobic microorganisms to generate methane gas. Here, anaerobic microorganisms are bacteria that metabolically decompose and digest organic matter in an oxygen-free environment.
 嫌気発酵槽13は、例えばEGSB(Expanded Granular Sludge Bed)型消化槽であり、嫌気性微生物が、送り込まれた第1分離液体と可溶化汚泥内の有機物を分解して消化する。嫌気発酵槽13においては、例えば1日間程度にわたって嫌気発酵工程が実行されることによりメタンガスを含むバイオガスが発生する。また、嫌気発酵槽13は、酸発酵を促進する酸発酵槽を前段に備えていてもよい。嫌気発酵により処理された嫌気処理水は、例えば下水処理施設に送られる。 The anaerobic fermentation tank 13 is, for example, an EGSB (Expanded Granular Sludge Bed) type digestion tank, and anaerobic microorganisms decompose and digest the organic matter in the first separated liquid and solubilized sludge. In the anaerobic fermentation tank 13, biogas containing methane gas is generated by performing an anaerobic fermentation process over, for example, about one day. Moreover, the anaerobic fermentation tank 13 may be provided with an acid fermentation tank at the front stage that promotes acid fermentation. Anaerobically treated water treated by anaerobic fermentation is sent to, for example, a sewage treatment facility.
 以上のとおり、第1の実施形態に係る有機物処理システム1においては、固液分離装置11において分離された後の第1分離固体がアルカリ加水分解され低分子化されてから嫌気発酵槽13に送られ、固液分離装置11において分離された後の第1分離液体はアルカリ加水分解されることなく嫌気発酵槽13に送られる。有機物処理システム1がこのように構成されていることで、汚泥等に含まれている液体成分もアルカリ加水分解する場合に比べて、アルカリ加水分解時に使用するアルカリ溶液の量を減少(例えば1/3)させることができる。その結果、アルカリ溶液のコストを削減できるとともに、アルカリ加水分解槽12の容積が大幅に(例えば1/4)小さくなるので、大幅なコスト削減につながる。さらにアルカリ加水分解槽12を加熱する燃料費も大幅に(例えば1/4)減少するので更なるコスト削減が実現する。 As described above, in the organic matter treatment system 1 according to the first embodiment, the first separated solid separated in the solid-liquid separator 11 is alkaline hydrolyzed and reduced in molecular weight before being sent to the anaerobic fermentation tank 13. The first separated liquid after being separated in the solid-liquid separator 11 is sent to the anaerobic fermenter 13 without being subjected to alkaline hydrolysis. By configuring the organic matter treatment system 1 in this way, the amount of alkaline solution used during alkaline hydrolysis can be reduced (for example, by 1/ 3) It can be done. As a result, the cost of the alkaline solution can be reduced, and the volume of the alkaline hydrolysis tank 12 can be significantly (for example, 1/4) smaller, leading to a significant cost reduction. Furthermore, the cost of fuel for heating the alkaline hydrolysis tank 12 is significantly reduced (for example, by 1/4), resulting in further cost reduction.
<第2の実施形態>
 図2は、第2の実施形態の有機物処理システム2の構成を示す図である。有機物処理システム2は、アルカリ加水分解槽12の後段に、第2固液分離手段である固液分離装置14が設けられているという点で、図1に示した有機物処理システム1と異なり、他の点では有機物処理システム1と同様である。
<Second embodiment>
FIG. 2 is a diagram showing the configuration of an organic matter treatment system 2 according to the second embodiment. The organic matter treatment system 2 differs from the organic matter treatment system 1 shown in FIG. This is similar to organic matter treatment system 1 in this respect.
 固液分離装置14は、固液分離装置11と同等の機能を有しており、アルカリ加水分解槽12が生成したアルカリ加水分解液を固体廃棄物と第2分離液体とに分離する。アルカリ加水分解槽12に投入されるアルカリ性物質が水酸化カリウムである場合、固体廃棄物は肥料として使用することもできる。第2分離液体は嫌気発酵槽13に送られる。嫌気発酵槽13は、固液分離装置11から送られた第1分離液体と、固液分離装置14により分離された第2分離液体とを嫌気発酵することによりバイオガスを発生させる。 The solid-liquid separator 14 has the same function as the solid-liquid separator 11, and separates the alkaline hydrolyzed liquid produced by the alkaline hydrolysis tank 12 into solid waste and a second separated liquid. If the alkaline substance input into the alkaline hydrolysis tank 12 is potassium hydroxide, the solid waste can also be used as fertilizer. The second separated liquid is sent to the anaerobic fermenter 13. The anaerobic fermentation tank 13 generates biogas by subjecting the first separated liquid sent from the solid-liquid separator 11 and the second separated liquid separated by the solid-liquid separator 14 to anaerobic fermentation.
 有機物処理システム2が固液分離装置14を有することで、アルカリ加水分解液の中に嫌気発酵により分解することが困難な固体が残留している場合であっても、このような固体が嫌気発酵槽13に送られない。その結果、嫌気発酵槽13に懸濁性浮遊物(SS)が蓄積して微生物に悪影響を与えたり発酵効率が低下したりすることを抑制できる。特にEGSB型消化槽を使用する場合、流入する懸濁性浮遊物により内部のグラニュールの分解を阻止する効果がある。また、嫌気発酵槽は酸発酵槽を付属してもよい。 Since the organic matter treatment system 2 includes the solid-liquid separator 14, even if solids that are difficult to decompose by anaerobic fermentation remain in the alkaline hydrolysis liquid, such solids can be removed by anaerobic fermentation. It is not sent to tank 13. As a result, it is possible to prevent suspended solids (SS) from accumulating in the anaerobic fermenter 13 and adversely affecting microorganisms or reducing fermentation efficiency. Particularly when an EGSB type digester is used, the inflowing suspended floats have the effect of preventing the decomposition of the granules inside. Moreover, an acid fermenter may be attached to the anaerobic fermenter.
<第3の実施形態>
 図3は、第3の実施形態の有機物処理システム3の構成を示す図である。有機物処理システム3は、制御装置15をさらに有するという点で、図1に示した有機物処理システム1及び図2に示した有機物処理システム2と異なる。制御装置15は、例えば記憶媒体に記憶されたプログラムを実行することにより動作するプロセッサを有しており、固液分離装置11の動作を制御する制御手段である。
<Third embodiment>
FIG. 3 is a diagram showing the configuration of an organic matter treatment system 3 according to the third embodiment. The organic matter treatment system 3 differs from the organic matter treatment system 1 shown in FIG. 1 and the organic matter treatment system 2 shown in FIG. 2 in that it further includes a control device 15. The control device 15 has a processor that operates by executing a program stored in a storage medium, for example, and is a control means for controlling the operation of the solid-liquid separation device 11.
 制御装置15は、第1分離液体に含まれる嫌気発酵が困難な難分解性物質又はアルカリ加水分解により変成する嫌気微生物妨害物質の少なくともいずれかの量に基づいて、固液分離装置11における固液分離処理の強度を制御する。制御装置15は、固液分離装置11が凝集薬剤により固液分離をする場合は、固液分離のために使用される薬剤の添加量、希釈水の量、固体成分を浮上分離させるために用いられるマイクロエアの量、又は分離工程の処理時間の少なくともいずれかを嫌気発酵難分解性物質又はアルカリ加水分解により変成する嫌気微生物妨害物質の量に基づいて決定する。 The control device 15 controls whether the solid-liquid in the solid-liquid separator 11 is controlled based on the amount of at least one of a refractory substance that is difficult to undergo anaerobic fermentation or an anaerobic microbial interference substance that is denatured by alkaline hydrolysis, contained in the first separated liquid. Controls the intensity of the separation process. When the solid-liquid separator 11 performs solid-liquid separation using a flocculating agent, the control device 15 controls the amount of the agent used for solid-liquid separation, the amount of dilution water, and the amount of water used to float and separate solid components. At least either the amount of microair to be produced or the processing time of the separation step is determined based on the amount of the anaerobic fermentation-refractory substance or the anaerobic microbially interfering substance denatured by alkaline hydrolysis.
 制御装置15は、固液分離装置11が遠心分離機である場合は、固液分離のために加えられる重力強度、又は分離工程の処理時間を決定する。具体的には、制御装置15は、第1分離液体に含まれる難分解性物質の量が多いほど固液分離のために使用される薬剤の添加量を増加させたり、重力強度を大きくさせたり処理時間を長くしたりする。 If the solid-liquid separation device 11 is a centrifugal separator, the control device 15 determines the gravity intensity applied for solid-liquid separation or the processing time of the separation step. Specifically, the control device 15 increases the amount of chemicals used for solid-liquid separation or increases the gravity strength as the amount of persistent substances contained in the first separation liquid increases. or increase processing time.
 汚泥等の成分によって、固液分離装置11により固液分離をした後の第1分離液体に難分解性物質が含まれている可能性があるところ、有機物処理システム3がこのような制御装置15を有することで、嫌気発酵槽13に送られる第1分離液体に難分解性物質が含まれることを抑制し、難分解性物質はアルカリ加水分解槽12で可溶化されてから、嫌気発酵槽13に送られる。その結果、嫌気発酵槽13に難分解性物質が蓄積して微生物に悪影響を与えたり発酵効率が低下したりすることを抑制できる。また、制御装置15を有することで、汚泥中にアルカリ加水分解により変成する嫌気微生物妨害物質が含まれているとき、嫌気微生物妨害物質が第1分離液体に含まれるようにし、第1分離固体に含まれないようにすることができる。その結果、第1分離固体をアルカリ加水分解したときに嫌気微生物妨害物質が発生することを抑えることができる。 Depending on the components of sludge or the like, there is a possibility that the first separated liquid after solid-liquid separation by the solid-liquid separator 11 may contain a difficult-to-decompose substance, so the organic matter treatment system 3 is configured to use such a control device 15. By having this, it is possible to suppress the inclusion of persistent substances in the first separated liquid sent to the anaerobic fermentation tank 13, and the persistent substances are solubilized in the alkaline hydrolysis tank 12, and then transferred to the anaerobic fermentation tank 13. sent to. As a result, it is possible to prevent persistent substances from accumulating in the anaerobic fermenter 13 and adversely affecting microorganisms and reducing fermentation efficiency. Further, by having the control device 15, when the sludge contains an anaerobic microbial interfering substance that is denatured by alkaline hydrolysis, the anaerobic microbial interfering substance is contained in the first separated liquid and the first separated solid is You can choose not to include it. As a result, it is possible to suppress the generation of anaerobic microbial interfering substances when the first separated solid is subjected to alkaline hydrolysis.
<第4の実施形態>
 図4は、第4の実施形態の有機物処理システム4の構成を示す図である。有機物処理システム4は、制御装置15及び異物除去装置16を有するという点で、図1に示した有機物処理システム1及び図2に示した有機物処理システム2と異なる。制御装置15は、例えば記憶媒体に記憶されたプログラムを実行することにより動作するプロセッサを有しており、異物除去装置16の動作を制御する。
<Fourth embodiment>
FIG. 4 is a diagram showing the configuration of an organic matter treatment system 4 according to the fourth embodiment. The organic matter treatment system 4 differs from the organic matter treatment system 1 shown in FIG. 1 and the organic matter treatment system 2 shown in FIG. 2 in that it includes a control device 15 and a foreign matter removal device 16. The control device 15 has a processor that operates by executing a program stored in a storage medium, for example, and controls the operation of the foreign object removal device 16.
 異物除去装置16は、固液分離装置11が汚泥、糞尿又は残渣に含まれる有機物を固体と液体とに分離する前に、汚泥、糞尿又は水溶性有機物を含む残渣から異物を除去する異物除去手段である。異物除去装置16は、例えば可溶化が困難な藁又はおが粉のような敷料を除去するためのスクリーン、脱水機、加水及び加圧により異物を浮上させる装置である。除去された敷料は再生敷料として再利用できる。異物がアルカリ加水分解された時、毒性を示す嫌気微生物妨害物質に変成する場合があるので、嫌気微生物妨害物質に変成する可能性がある物質を異物として事前に取り除き、このような物質をアルカリ加水分解工程に導入しないことにより、安定した嫌気発酵を実現することができる。 The foreign matter removal device 16 is a foreign matter removal means that removes foreign matter from the sludge, excrement, or residue containing water-soluble organic matter before the solid-liquid separation device 11 separates the organic matter contained in the sludge, excrement, or residue into solid and liquid. It is. The foreign matter removing device 16 is, for example, a screen for removing bedding such as straw or sawdust that is difficult to solubilize, a dehydrator, and a device that floats foreign matter by applying water and pressure. The removed litter can be reused as recycled litter. When foreign substances are hydrolyzed with alkaline, they may transform into toxic anaerobic microorganism-interfering substances. Therefore, substances that may be transformed into anaerobic microbial-interfering substances are removed as foreign substances in advance, and such substances are hydrolyzed with alkaline water. By not introducing it into the decomposition process, stable anaerobic fermentation can be achieved.
 異物除去装置16により異物を除去したとしても、汚泥等の成分によっては、異物除去装置16により異物を除去できず、第1分離後液体に異物が混入してしまう場合がある。そこで、制御装置15は、第1分離後液体に含まれる嫌気発酵が困難な難分解性物質又はアルカリ加水分解により変成する嫌気微生物妨害物質の少なくともいずれかの量に基づいて、異物除去装置16が異物を除去する処理の時間、希釈水の量、異物除去装置16が有するスクリーンの目幅、又は加圧浮上のためのマイクロエア量の少なくともいずれかを制御する。具体的には、制御装置15は、第1分離液体に含まれる難分解性物質の量が多いほど、異物除去装置16により異物を除去する処理の時間を長くする。 Even if the foreign matter is removed by the foreign matter removing device 16, depending on the components such as sludge, the foreign matter may not be removed by the foreign matter removing device 16, and the foreign matter may be mixed into the liquid after the first separation. Therefore, the control device 15 controls the foreign matter removal device 16 based on the amount of at least one of the refractory substances that are difficult to undergo anaerobic fermentation and the anaerobic microbial interference substances that are denatured by alkaline hydrolysis, which are contained in the first separated liquid. At least one of the processing time for removing foreign matter, the amount of dilution water, the width of the screen of the foreign matter removing device 16, or the amount of microair for pressurized flotation is controlled. Specifically, the control device 15 increases the time required for the foreign matter removal device 16 to remove the foreign matter as the amount of the persistent substance contained in the first separated liquid increases.
 汚泥等に敷料が含まれている場合に、固液分離装置11により固液分離をした後の第1分離液体に難分解性物質が含まれることがあるが、有機物処理システム4がこのような制御装置15を有することで、アルカリ加水分解槽12に送られる第1分離液体に難分解性物質が含まれることを抑制できる。その結果、嫌気発酵槽13に難分解性物質が蓄積して微生物に悪影響を与えたり発酵効率が低下したりすることを抑制できる。 When sludge or the like contains bedding, the first separated liquid after solid-liquid separation by the solid-liquid separator 11 may contain persistent substances. By having the control device 15, it is possible to suppress the inclusion of a difficult-to-decompose substance in the first separated liquid sent to the alkaline hydrolysis tank 12. As a result, it is possible to prevent persistent substances from accumulating in the anaerobic fermenter 13 and adversely affecting microorganisms and reducing fermentation efficiency.
<第5の実施形態>
 図5は、第5の実施形態の有機物処理システム5の構成を示す図である。有機物処理システム5は、第1の実施形態の有機物処理システム1におけるアルカリ加水分解槽12と嫌気発酵槽13との間に、アンモニア分離槽17が設けられているという点で有機物処理システム1と異なり、他の点で同じである。
<Fifth embodiment>
FIG. 5 is a diagram showing the configuration of an organic matter treatment system 5 according to the fifth embodiment. The organic matter treatment system 5 differs from the organic matter treatment system 1 in that an ammonia separation tank 17 is provided between the alkaline hydrolysis tank 12 and the anaerobic fermentation tank 13 in the organic matter treatment system 1 of the first embodiment. , are otherwise the same.
 アンモニア分離槽17は、アンモニアストリッピングによりアルカリ加水分解槽12から流入したアルカリ加水分解液に含まれるアンモニアを分離する。アンモニア分離槽17は、アルカリ加水分解槽内の圧力が大気圧以上の時、この圧力を利用してアルカリ加水分解液をアンモニア分離槽17でフラッシュさせてアンモニアを分離してもよい。このようにアンモニア分離槽17においてアンモニアを分離した後のアルカリ加水分解液を嫌気発酵槽13に送ることで、嫌気発酵槽13内のアンモニア濃度を調整することが可能で、嫌気発酵槽13内でアンモニアによる嫌気発酵阻害を防止することができる。また、嫌気処理水中のアンモニア濃度を下げることができ。環境中にアンモニアを拡散させることを防ぐ事が可能となる。 The ammonia separation tank 17 separates ammonia contained in the alkaline hydrolysis liquid flowing from the alkaline hydrolysis tank 12 by ammonia stripping. The ammonia separation tank 17 may separate ammonia by flushing the alkaline hydrolysis liquid in the ammonia separation tank 17 using this pressure when the pressure inside the alkaline hydrolysis tank is equal to or higher than atmospheric pressure. By sending the alkaline hydrolyzed liquid after ammonia has been separated in the ammonia separation tank 17 to the anaerobic fermentation tank 13, it is possible to adjust the ammonia concentration in the anaerobic fermentation tank 13. It is possible to prevent inhibition of anaerobic fermentation by ammonia. It can also lower the ammonia concentration in anaerobically treated water. It is possible to prevent ammonia from dispersing into the environment.
<第6の実施形態>
 図6は、第6の実施形態の有機物処理システム6の構成を示す図である。有機物処理システム6は、第2の実施形態の有機物処理システム2におけるアルカリ加水分解槽12と固液分離装置14との間に、アンモニア分離槽17が設けられているという点で有機物処理システム2と異なり、他の点で同じである。
<Sixth embodiment>
FIG. 6 is a diagram showing the configuration of an organic matter treatment system 6 according to the sixth embodiment. The organic matter treatment system 6 is different from the organic matter treatment system 2 in that an ammonia separation tank 17 is provided between the alkaline hydrolysis tank 12 and the solid-liquid separation device 14 in the organic matter treatment system 2 of the second embodiment. different and in other respects the same.
<第7の実施形態>
 図7は、第7の実施形態の有機物処理システム7の構成を示す図である。有機物処理システム7は、第3の実施形態の有機物処理システム3におけるアルカリ加水分解槽12と嫌気発酵槽13との間に、アンモニア分離槽17が設けられているという点で有機物処理システム2と異なり、他の点で同じである。
<Seventh embodiment>
FIG. 7 is a diagram showing the configuration of an organic matter treatment system 7 according to the seventh embodiment. The organic matter treatment system 7 differs from the organic matter treatment system 2 in that an ammonia separation tank 17 is provided between the alkaline hydrolysis tank 12 and the anaerobic fermentation tank 13 in the organic matter treatment system 3 of the third embodiment. , are otherwise the same.
<第8の実施形態>
 有機物処理システム1から有機物処理システム7は、嫌気発酵槽13の後段に好気処理槽(不図示)をさらに有しており、嫌気発酵槽13から排出される処理水を好気処理槽において浄化してもよい。
<Eighth embodiment>
The organic matter treatment system 1 to the organic matter treatment system 7 further include an aerobic treatment tank (not shown) downstream of the anaerobic fermentation tank 13, and the treated water discharged from the anaerobic fermentation tank 13 is purified in the aerobic treatment tank. You may.
<第9の実施形態>
 第2の実施形態及び第6の実施形態においては、固液分離装置11が固液分離することにより発生した第1分離液体、及び固液分離装置14が固液分離することにより発生した第2分離液体が嫌気発酵槽13に送られていたが、第1分離液体と第2分離液体を異なる微生物処理槽に送ってもよい。すなわち、第1分離液体を第1嫌気発酵槽又は好気処理槽に送り、第2分離液体を第2嫌気発酵槽に送ってもよい。
<Ninth embodiment>
In the second embodiment and the sixth embodiment, the first separated liquid generated when the solid-liquid separator 11 performs solid-liquid separation, and the second separated liquid generated when the solid-liquid separator 14 performs solid-liquid separation. Although the separated liquid was sent to the anaerobic fermentation tank 13, the first separated liquid and the second separated liquid may be sent to different microbial treatment tanks. That is, the first separated liquid may be sent to the first anaerobic fermentor or the aerobic treatment tank, and the second separated liquid may be sent to the second anaerobic fermenter.
 アルカリ加水分解槽12に投入されるアルカリ性物質が水酸化カリウムである場合、第2分離液体に第1分離液体よりも多くのカリウムが含まれている。例えば、第1分離液体には殆どカリウムが含まれておらず、第2分離液体には多くのカリウムが含まれている。このような場合に、第1分離液体と第2分離液体が嫌気発酵槽13で混合されてしまうと、第2分離液体内のカリウムが第1分離液体で希釈される。 When the alkaline substance introduced into the alkaline hydrolysis tank 12 is potassium hydroxide, the second separated liquid contains more potassium than the first separated liquid. For example, the first separated liquid contains almost no potassium, and the second separated liquid contains a large amount of potassium. In such a case, when the first separated liquid and the second separated liquid are mixed in the anaerobic fermentation tank 13, potassium in the second separated liquid is diluted with the first separated liquid.
 固液分離装置11で固液分離する際には、糞尿等の粘性が高い物質を固液分離可能にするために、例えば糞尿の3倍から6倍程度の水を加える必要があるので第1分離液体は第2分離液体の5倍から8倍程度の量になる。その結果、第1分離液体と第2分離液体とが混合されてしまうと、第2分離液体に基づいてカリ肥料を製造する際に、希釈され過ぎてしまうとともに、液量が多くなり過ぎてしまうという問題が生じる。 When performing solid-liquid separation in the solid-liquid separator 11, in order to enable solid-liquid separation of highly viscous substances such as excrement, it is necessary to add, for example, approximately 3 to 6 times as much water as the excrement. The amount of the separated liquid is about 5 to 8 times that of the second separated liquid. As a result, if the first separated liquid and the second separated liquid are mixed, when producing potash fertilizer based on the second separated liquid, it will be too diluted and the amount of liquid will be too large. A problem arises.
 これに対して、第1分離液体と第2分離液体とがそれぞれ異なる第1嫌気発酵槽及び第2嫌気発酵槽において処理されたり、好気処理槽及び第2嫌気発酵槽において処理されたりすることで、第1分離液体を第1嫌気発酵槽又は好気処理槽で処理した後の処理水は河川等に放流し、第2分離液体を第2嫌気発酵槽で処理した後の処理水はカリ肥料とすることができる。なお、第2嫌気発酵槽の処理水におけるカリウム濃度を調整するために、第1嫌気発酵槽の処理水の一部を第2嫌気発酵槽に送ってもよい。 On the other hand, the first separated liquid and the second separated liquid may be treated in different first and second anaerobic fermenters, or in an aerobic treatment tank and a second anaerobic fermenter. The treated water after treating the first separated liquid in the first anaerobic fermentation tank or the aerobic treatment tank is discharged into a river, etc., and the treated water after treating the second separated liquid in the second anaerobic fermentation tank is used as potassium fertilizer. It can be done. In addition, in order to adjust the potassium concentration in the treated water of the second anaerobic fermenter, a part of the treated water of the first anaerobic fermenter may be sent to the second anaerobic fermenter.
<その他の実施形態>
 以上、第1の実施形態に係る有機物処理システム1から第9の実施形態に係る有機物処理システム9の構成及び動作を説明したが、有機物処理システムの構成はこれらに限定されず、有機物処理システム1から有機物処理システム9のいずれかの構成を組わせてもよい。例えば、有機物処理システム3と有機物処理システム4の構成を組み合わせて、制御装置15が固液分離装置11の強度を制御するとともに、異物除去装置16における処理時間を制御してもよい。このように制御装置15が動作することで、嫌気発酵槽13に難分解性物質や嫌気微生物妨害物質が蓄積されることをさらに抑制することができる。また、有機物処理システム2と有機物処理システム3の構成を組み合わせたり、有機物処理システム2と有機物処理システム4の構成を組み合わせたりしてもよい。
<Other embodiments>
The configuration and operation of the organic matter treatment system 1 according to the first embodiment to the organic matter treatment system 9 according to the ninth embodiment have been described above, but the configuration of the organic matter treatment system is not limited to these, and the organic matter treatment system 1 Any of the configurations of the organic matter treatment system 9 may be combined. For example, the configurations of the organic matter treatment system 3 and the organic matter treatment system 4 may be combined so that the control device 15 controls the strength of the solid-liquid separation device 11 and the processing time in the foreign matter removal device 16. By operating the control device 15 in this manner, it is possible to further suppress the accumulation of difficult-to-decompose substances and anaerobic microbial interfering substances in the anaerobic fermentation tank 13. Further, the configurations of the organic matter treatment system 2 and the organic matter treatment system 3 may be combined, or the configurations of the organic matter treatment system 2 and the organic matter treatment system 4 may be combined.
 第1固液分離手段としての固液分離装置11で汚泥等を固体と液体とに分離する前に少量のアルカリを添加して、汚泥、糞尿、水溶性有機物を含む残渣から発生する悪臭を分解してもよい。このアルカリは例えばPH10以下である。 Before separating sludge, etc. into solid and liquid in the solid-liquid separator 11 as the first solid-liquid separation means, a small amount of alkali is added to decompose the bad odor generated from the sludge, excrement, and residue containing water-soluble organic matter. You may. This alkali has a pH of 10 or less, for example.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されず、その要旨の範囲内で種々の変形及び変更が可能である。例えば、装置の全部又は一部は、任意の単位で機能的又は物理的に分散・統合して構成することができる。また、複数の実施の形態の任意の組み合わせによって生じる新たな実施の形態も、本発明の実施の形態に含まれる。組み合わせによって生じる新たな実施の形態の効果は、もとの実施の形態の効果を併せ持つ。 Although the present invention has been described above using the embodiments, the technical scope of the present invention is not limited to the scope described in the above embodiments, and various modifications and changes can be made within the scope of the gist. be. For example, all or part of the device can be functionally or physically distributed and integrated into arbitrary units. In addition, new embodiments created by arbitrary combinations of multiple embodiments are also included in the embodiments of the present invention. The effects of the new embodiment resulting from the combination have the effects of the original embodiment.
1 有機物処理システム
2 有機物処理システム
3 有機物処理システム
4 有機物処理システム
11 固液分離装置
12 アルカリ加水分解槽
13 嫌気発酵槽
14 固液分離装置
15 制御装置
16 異物除去装置
17 アンモニア分離槽
 
1 Organic matter treatment system 2 Organic matter treatment system 3 Organic matter treatment system 4 Organic matter treatment system 11 Solid-liquid separation device 12 Alkaline hydrolysis tank 13 Anaerobic fermentation tank 14 Solid-liquid separation device 15 Control device 16 Foreign matter removal device 17 Ammonia separation tank

Claims (9)

  1.  汚泥、糞尿又は水溶性有機物を含む残渣の少なくともいずれかに含まれる有機物を固体と液体とに分離する第1固液分離手段と、
     前記第1固液分離手段により分離された第1分離固体にアルカリ性物質を加えて前記第1分離固体を加水分解することにより、アルカリ加水分解液を生成する加水分解手段と、
     前記第1固液分離手段により分離された第1分離液体と、前記アルカリ加水分解液を含む液体と、を嫌気発酵することによりバイオガスを発生させる嫌気発酵手段と、
     を有する有機物処理システム。
    a first solid-liquid separation means for separating organic matter contained in at least one of sludge, excrement, or residue containing water-soluble organic matter into solid and liquid;
    Hydrolysis means for generating an alkaline hydrolyzate by adding an alkaline substance to the first separated solid separated by the first solid-liquid separation means and hydrolyzing the first separated solid;
    Anaerobic fermentation means for generating biogas by anaerobically fermenting the first separated liquid separated by the first solid-liquid separation means and the liquid containing the alkaline hydrolysis liquid;
    An organic matter treatment system with
  2.  前記加水分解手段が生成した前記アルカリ加水分解液を固体と液体とに分離する第2固液分離手段をさらに有し、
     前記嫌気発酵手段は、前記第1分離液体と、前記第2固液分離手段により分離された第2分離液体とを嫌気発酵することによりバイオガスを発生させる、
     請求項1に記載の有機物処理システム。
    further comprising a second solid-liquid separation means for separating the alkaline hydrolyzed liquid produced by the hydrolysis means into solid and liquid,
    The anaerobic fermentation means generates biogas by anaerobically fermenting the first separated liquid and the second separated liquid separated by the second solid-liquid separation means.
    The organic matter treatment system according to claim 1.
  3.  前記嫌気発酵手段は、前記第1分離液体を嫌気発酵する第1嫌気発酵手段又は好気処理する好気処理手段と、前記第2分離液体を嫌気発酵する第2嫌気発酵手段とを有する、
     請求項2に記載の有機物処理システム。
    The anaerobic fermentation means includes a first anaerobic fermentation means for anaerobically fermenting the first separated liquid or an aerobic processing means for aerobically processing the first separated liquid, and a second anaerobic fermentation means for anaerobically fermenting the second separated liquid.
    The organic matter treatment system according to claim 2.
  4.  前記アルカリ性物質は水酸化カリウムであり、
     前記第2分離液体に前記第1分離液体よりも多くのカリウムが含まれている、
     請求項3に記載の有機物処理システム。
    the alkaline substance is potassium hydroxide;
    The second separated liquid contains more potassium than the first separated liquid,
    The organic matter treatment system according to claim 3.
  5.  前記加水分解手段が生成した前記アルカリ加水分解液に含まれるアンモニアを分離するアンモニア分離手段をさらに有し、
     前記嫌気発酵手段は、前記第1分離液体と、前記アンモニア分離手段においてアンモニアが分離された後のアルカリ加水分解液を含む液体と、を嫌気発酵することによりバイオガスを発生させる、
     請求項1に記載の有機物処理システム。
    further comprising an ammonia separation means for separating ammonia contained in the alkaline hydrolysis liquid produced by the hydrolysis means,
    The anaerobic fermentation means generates biogas by anaerobically fermenting the first separated liquid and the liquid containing the alkaline hydrolyzed liquid after ammonia has been separated in the ammonia separation means.
    The organic matter treatment system according to claim 1.
  6.  前記嫌気発酵手段の後段に設けられた好気処理手段をさらに有し、
     前記好気処理手段は、前記嫌気発酵手段から排出される処理水を浄化する、
     請求項1に記載の有機物処理システム。
    further comprising an aerobic treatment means provided after the anaerobic fermentation means,
    The aerobic treatment means purifies the treated water discharged from the anaerobic fermentation means.
    The organic matter treatment system according to claim 1.
  7.  前記第1分離液体に含まれる嫌気発酵による分解が困難な難分解性物質又はアルカリ加水分解により変成する嫌気微生物妨害物質の少なくともいずれかの量に基づいて、前記第1固液分離手段における固液分離処理において固液分離のために使用される薬剤の添加量、希釈水の量、浮上分離のためのマイクロエア量、固液分離のために加えられる重力強度、又は分離工程の処理時間の少なくともいずれかを決定する制御手段をさらに有する、
     請求項1から6のいずれか一項に記載の有機物処理システム。
    Based on the amount of at least one of a refractory substance that is difficult to decompose by anaerobic fermentation or an anaerobic microorganism-disturbing substance that is denatured by alkaline hydrolysis, the solid-liquid in the first solid-liquid separation means is At least the amount of added chemicals used for solid-liquid separation in the separation process, the amount of dilution water, the amount of microair for flotation separation, the gravity intensity applied for solid-liquid separation, or the processing time of the separation process. further comprising control means for determining either;
    The organic matter treatment system according to any one of claims 1 to 6.
  8.  前記第1固液分離手段が前記有機物を固体と液体とに分離する前に、前記有機物から異物を除去する異物除去手段と、
     前記第1分離液体に含まれる嫌気発酵による分解が困難な難分解性物質又はアルカリ加水分解により変成する嫌気微生物妨害物質の少なくともいずれかの量に基づいて、前記異物除去手段が異物を除去する処理の時間、希釈水の量、前記異物除去手段のスクリーンの目幅、加圧浮上のためのマイクロエア量の少なくともいずれかを制御する制御手段と、
     をさらに有する、
     請求項1から6のいずれか一項に記載の有機物処理システム。
    Foreign matter removing means for removing foreign matter from the organic matter before the first solid-liquid separation means separates the organic matter into solid and liquid;
    A process in which the foreign matter removing means removes foreign matter based on the amount of at least one of a refractory substance that is difficult to decompose by anaerobic fermentation or an anaerobic microbial interference substance that is denatured by alkaline hydrolysis, contained in the first separated liquid. control means for controlling at least one of the time, the amount of dilution water, the mesh width of the screen of the foreign matter removing means, and the amount of micro air for pressurized flotation;
    further having,
    The organic matter treatment system according to any one of claims 1 to 6.
  9.  汚泥、糞尿又は水溶性有機物を含む残渣の少なくともいずれかに含まれる有機物を固体と液体とに分離する工程と、
     分離された第1分離固体にアルカリ性物質を加えて前記第1分離固体を加水分解することにより、アルカリ加水分解液を生成する工程と、
     分離された第1分離液体と、前記アルカリ加水分解液を含む液体と、を嫌気発酵することによりバイオガスを発生させる工程と、
     を有する有機物処理方法。
     
    A step of separating organic matter contained in at least one of sludge, excrement, or residue containing water-soluble organic matter into solid and liquid;
    Adding an alkaline substance to the separated first separated solid to hydrolyze the first separated solid to generate an alkaline hydrolyzed liquid;
    A step of generating biogas by anaerobically fermenting the separated first separated liquid and the liquid containing the alkaline hydrolyzed liquid;
    An organic matter treatment method having
PCT/JP2022/035241 2022-03-08 2022-09-21 Organic matter treatment system and organic matter treatment method WO2023171006A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-035334 2022-03-08
JP2022035334 2022-03-08
JP2022068957 2022-04-19
JP2022-068957 2022-04-19

Publications (1)

Publication Number Publication Date
WO2023171006A1 true WO2023171006A1 (en) 2023-09-14

Family

ID=87936470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035241 WO2023171006A1 (en) 2022-03-08 2022-09-21 Organic matter treatment system and organic matter treatment method

Country Status (1)

Country Link
WO (1) WO2023171006A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238091A (en) * 1990-02-15 1991-10-23 Ebara Infilco Co Ltd Methane fermentation
JPH10249384A (en) * 1997-03-11 1998-09-22 Ishikawajima Harima Heavy Ind Co Ltd Treatment of concentrated suspended matter-containing waste water
JP2000015228A (en) * 1998-07-06 2000-01-18 Kubota Corp Method for fermenting organic waste
JP2001300486A (en) * 2000-04-26 2001-10-30 Babcock Hitachi Kk Apparatus and method for methane fermentation treatment of organic waste
JP2004082017A (en) * 2002-08-28 2004-03-18 Babcock Hitachi Kk Methane fermentation method of organic waste and system therefor
JP2008155075A (en) * 2006-12-20 2008-07-10 Jfe Engineering Kk Sewage treatment method and apparatus
JP2017119242A (en) * 2015-12-28 2017-07-06 株式会社サピエナント Organic matter treatment system and organic matter treatment method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238091A (en) * 1990-02-15 1991-10-23 Ebara Infilco Co Ltd Methane fermentation
JPH10249384A (en) * 1997-03-11 1998-09-22 Ishikawajima Harima Heavy Ind Co Ltd Treatment of concentrated suspended matter-containing waste water
JP2000015228A (en) * 1998-07-06 2000-01-18 Kubota Corp Method for fermenting organic waste
JP2001300486A (en) * 2000-04-26 2001-10-30 Babcock Hitachi Kk Apparatus and method for methane fermentation treatment of organic waste
JP2004082017A (en) * 2002-08-28 2004-03-18 Babcock Hitachi Kk Methane fermentation method of organic waste and system therefor
JP2008155075A (en) * 2006-12-20 2008-07-10 Jfe Engineering Kk Sewage treatment method and apparatus
JP2017119242A (en) * 2015-12-28 2017-07-06 株式会社サピエナント Organic matter treatment system and organic matter treatment method

Similar Documents

Publication Publication Date Title
JP6649769B2 (en) Organic matter processing system and organic matter processing method
JP2001300486A (en) Apparatus and method for methane fermentation treatment of organic waste
JP4864339B2 (en) Organic waste processing apparatus and processing method
JP4907123B2 (en) Organic waste processing method and processing system
JP2006314920A (en) Method for recovering energy from biomass
JP2003010895A (en) Method for anaerobic treatment of organic substance and apparatus therefor
JP2002361293A (en) Method and apparatus for reducing volume of organic sludge
JP2009202095A (en) Disposer wastewater treatment method and apparatus
JP4917507B2 (en) Methane gas generation system that generates methane gas from organic waste such as garbage
JP4250994B2 (en) Organic waste treatment method and apparatus
JP2006255538A (en) Method and apparatus for treatment of food waste
JP2003326237A (en) Organic waste treating system
JP3977174B2 (en) Sludge treatment method and apparatus for reducing generation amount of excess sludge
WO2023171006A1 (en) Organic matter treatment system and organic matter treatment method
JP2017148777A (en) Method and device for methane fermentation
JP5230243B2 (en) Method and system for methane fermentation treatment of organic waste
KR100750502B1 (en) Organic livestock sewage treatment apparatus and organic livestock sewage treatment method
KR101605523B1 (en) Method and appratus for treating organic waste
TWI414489B (en) Anaerobic digestion treatment method of organic waste solution and apparatus thereof
JP3409728B2 (en) Organic waste treatment method
JP2006043649A (en) Treatment method of organic waste and its treatment apparatus
JP2005218898A (en) Methane fermentation system
JP4192491B2 (en) Organic waste processing apparatus and processing method
KR100962215B1 (en) Method for treating waste water and waste materials
JP2006326438A (en) Apparatus and method for treating sludge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930983

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024505873

Country of ref document: JP

Kind code of ref document: A