JPH09122683A - Method for anaerobic treatment - Google Patents

Method for anaerobic treatment

Info

Publication number
JPH09122683A
JPH09122683A JP28324195A JP28324195A JPH09122683A JP H09122683 A JPH09122683 A JP H09122683A JP 28324195 A JP28324195 A JP 28324195A JP 28324195 A JP28324195 A JP 28324195A JP H09122683 A JPH09122683 A JP H09122683A
Authority
JP
Japan
Prior art keywords
sludge
water
pipeline
granule sludge
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28324195A
Other languages
Japanese (ja)
Other versions
JP3814851B2 (en
Inventor
Motoyuki Yoda
元之 依田
Sosuke Nishimura
総介 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP28324195A priority Critical patent/JP3814851B2/en
Publication of JPH09122683A publication Critical patent/JPH09122683A/en
Application granted granted Critical
Publication of JP3814851B2 publication Critical patent/JP3814851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02W10/12

Abstract

PROBLEM TO BE SOLVED: To surely prevent a granule sludge from floating and to obtain stabilization and effectiveness of a treatment by incorporating an iron salt and/or an sulfate ion source into an org. drainage so as to bring the iron content in the granule sludge at a specified value in an anaerobic treatment of a sludge bracket. SOLUTION: A granule sludge is filled in an upward countercurrent type anaerobic sludge bed (UASB) in a beer manufacturing factory and as a stock water, after a water prepd. by diluting a feeding system drainage with a city water is treated in an acid forming tank 2 through a pipeline 11, it is introduced in reactor 1 from a pipeline 12. The treated water is discharged out of the system from a pipeline 13 and a part of the treated water is circulated in an acid forming tank 2 from a pipeline 14. In addition, FeCl3 .6H2 O is added as an Fe salt from a pipeline 15 into an effluent water of the acid forming tank 2 in the pipeline 12 just before it flows into a UASB reactor 1. This addition is adjusted in such a way that the content of iron to the whole solid substance of the granule sludge is at least 3wt.%. It is possible thereby to improve remarkably sedimentation properties of the granule sludge.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は嫌気性処理法に係
り、特にUASB( Upflow Anaerobic Sludge Blanket
:上向流式嫌気性汚泥床)型嫌気性処理装置における
処理において、グラニュール汚泥を浮上流出させずに、
反応槽内に安定に保持することにより、処理の安定化、
効率化を図る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anaerobic treatment method, and more particularly to UASB (Upflow Anaerobic Sludge Blanket).
: Upflow-type anaerobic sludge bed) type anaerobic treatment device
Stabilizing the process by keeping it stable in the reaction tank,
Regarding the method of improving efficiency.

【0002】[0002]

【従来の技術及び先行技術】UASB法は、菌の付着担
体を用いることなく、嫌気性微生物をグラニュールと呼
ばれる粒状の汚泥として反応槽内に汚泥床(スラッジブ
ランケット)を形成し、原水を反応槽下部より上向流で
通水して処理する方法であり、従来、主にビール、製糖
等の食品産業排水の処理法として利用されている。UA
SB法は、他の嫌気性処理法、即ち、固定床又は流動床
式嫌気性処理法等と比較して、反応槽内の汚泥保持濃度
が高く、しかも閉塞のおそれのない方法であり、既に数
多くの実績を挙げている。
2. Description of the Related Art The UASB method forms a sludge bed (sludge blanket) in a reaction tank by converting anaerobic microorganisms into granular sludge called granules without using an adherent carrier of bacteria to react raw water. This is a method of treating water by flowing upward from the bottom of the tank, and has been conventionally used mainly as a method of treating wastewater from the food industry such as beer and sugar production. UA
The SB method has a higher sludge retention concentration in the reaction tank and is free from clogging compared with other anaerobic treatment methods, that is, a fixed bed or fluidized bed type anaerobic treatment method. Has many achievements.

【0003】しかし、UASB法では、グラニュール汚
泥の密度が水よりも小さい状態になってグラニュール汚
泥が浮上し、反応槽上部にスカムとなって堆積したり、
処理水と共に反応槽から流出したりすることにより、処
理に必要な汚泥量が確保できなくなるという問題が生じ
ている。特に、粒径が2mm以上の大きなグラニュール
汚泥では、内部から発生するガスが外部に放出されずに
グラニュール汚泥内部に溜り、上記のような浮上現象が
起き易く、このため、運転開始後数年経過して、グラニ
ュール汚泥が大粒子に成長した装置ではこのような問題
が起こり易い。
However, in the UASB method, the density of the granule sludge becomes smaller than that of water, and the granule sludge floats up and accumulates as scum on the upper part of the reaction tank.
There is a problem that the amount of sludge necessary for the treatment cannot be secured because it flows out from the reaction tank together with the treated water. In particular, in the case of large granule sludge having a particle size of 2 mm or more, the gas generated from the inside accumulates inside the granule sludge without being released to the outside, and the above-mentioned floating phenomenon easily occurs. Such a problem is likely to occur in a device in which granule sludge has grown into large particles over the years.

【0004】グラニュール汚泥内部にガスが溜る直接の
原因は、グラニュール汚泥内部に空洞が生じることにあ
る。この空洞が生じる原因は、グラニュール汚泥内部の
菌体が基質不足により自己分解するため、及び、グラニ
ュール汚泥内部に捕捉された有機性SSが徐々に分解す
るため、とされている。
The direct cause of the accumulation of gas inside the granulated sludge is the formation of cavities inside the granulated sludge. It is said that the cause of this cavity is that the bacterial cells inside the granulated sludge self-decompose due to lack of substrate, and that the organic SS trapped inside the granular sludge gradually decomposes.

【0005】こうした空洞に起因するグラニュール汚泥
の浮上防止策として、本出願人は先に、UASB反応槽
内に鉄塩又はカルシウム化合物を添加し、グラニュール
汚泥の空洞をこれらの金属の析出物により充填して気泡
が溜らないようにする方法を提案した(特願平6−28
7907号。以下「先願」という。)。
As a measure for preventing the floating of granule sludge due to such cavities, the present applicant first added an iron salt or a calcium compound in the UASB reaction tank, and made the cavities of the granule sludge into precipitates of these metals. We have proposed a method to prevent air bubbles from accumulating by applying (Japanese Patent Application No. 6-28).
No. 7907. Hereinafter, it is referred to as “first application”. ).

【0006】上記先願の方法においては、特に鉄塩の添
加が有効であり、原水有機物濃度に比例したある濃度範
囲で鉄塩及び必要に応じて硫酸塩を添加することによ
り、グラニュール汚泥の空洞を硫化鉄(FeS)によっ
て充填し、浮上を効果的に防止することができる。
In the method of the above-mentioned prior application, it is particularly effective to add an iron salt, and by adding an iron salt and, if necessary, a sulfate in a certain concentration range proportional to the concentration of raw water organic matter, The cavity can be filled with iron sulfide (FeS) to effectively prevent levitation.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記先
願の方法では、鉄塩の添加量が最適化されておらず、鉄
塩の過剰添加による問題が生じていた。即ち、過剰量の
鉄塩を添加することにより、汚泥中に占める菌体の割合
が低下して、全汚泥当りの活性が低下するという問題が
生じる。このように鉄塩の過剰添加は、装置の処理効率
を低下させる可能性がある。
However, in the method of the above-mentioned prior application, the addition amount of the iron salt was not optimized, and there was a problem due to the excessive addition of the iron salt. That is, the addition of an excessive amount of iron salt causes a problem that the proportion of bacterial cells in the sludge is reduced and the activity per total sludge is reduced. Thus, the excessive addition of iron salt may reduce the treatment efficiency of the device.

【0008】本発明は、上記先願の方法における問題点
を解決し、より信頼性の高いグラニュール汚泥の浮上防
止対策をとることができる嫌気性処理法を提供すること
を目的とする。
It is an object of the present invention to solve the problems in the method of the above-mentioned prior application and to provide an anaerobic treatment method capable of taking a more reliable measure for preventing floating of granule sludge.

【0009】[0009]

【課題を解決するための手段】本発明の嫌気性処理法
は、グラニュール汚泥で形成されたスラッジブランケッ
トに有機性排水を上向流通水して嫌気性処理する方法に
おいて、グラニュール汚泥の全固形物質に対する鉄の含
有率が3重量%以上となるように、該有機性排水に鉄塩
及び/又は硫酸イオン源を添加することを特徴とするも
のである。
The anaerobic treatment method of the present invention is a method for anaerobic treatment by upwardly circulating organic waste water to a sludge blanket formed of granule sludge. It is characterized in that an iron salt and / or a sulfate ion source is added to the organic wastewater so that the iron content with respect to the solid substance is 3% by weight or more.

【0010】本発明者らは、種々のUASB実装置内の
グラニュール汚泥の性状を様々な角度から調査、分析し
た結果、図2に示す如く、汚泥の浮上性は汚泥のTS
(全固形物質)中のFe含有割合が3重量%未満の場合
に高く、5重量%以上であれば殆ど浮上しないことを見
出した。なお、図2及び後掲の図4に示す浮上ポテンシ
ャルとは、汚泥の浮上傾向を数値化したもので、酢酸基
質1,000mg/L入りフラスコにグラニュール汚泥
を約20mL入れ、35℃で24時間嫌気的に静置培養
した後、浮上汚泥と沈澱汚泥のVSS重量を測定し、浮
上汚泥の全体に占める割合を重量%で表示したものであ
る。
The present inventors have investigated and analyzed the properties of granule sludge in various UASB actual equipment from various angles, and as a result, as shown in FIG.
It has been found that the Fe content in (total solid matter) is high when the content is less than 3% by weight, and that when the content is 5% by weight or more, it hardly floats. Note that the flotation potential shown in FIG. 2 and FIG. 4 below is a numerical representation of the flotation tendency of sludge. After statically culturing anaerobically for a period of time, the VSS weights of the flotation sludge and the settled sludge were measured, and the ratio of the flotation sludge to the whole was expressed in% by weight.

【0011】Fe塩を添加していてもSO4 2- 不足等に
よりTS中のFe含有率が3重量%未満に維持されてい
る限りはグラニュール汚泥は浮上傾向となり、Fe添加
のみでは浮上防止効果は得られない。従って、この場合
には、Fe塩と共にSO4 2-の添加が必要である。
Even if the Fe salt is added, as long as the Fe content in TS is kept below 3% by weight due to lack of SO 4 2-, the granulated sludge tends to float, and only the addition of Fe prevents floating. No effect. Therefore, in this case, it is necessary to add SO 4 2− together with the Fe salt.

【0012】調査した汚泥には、連続的にFe塩及びS
4 2- を添加することにより、TS中に10重量%以上
のFe含有率に達したものもあったが、汚泥の浮上防止
の観点からは、Fe含有率は10重量%以上でなくとも
十分効果が得られる。Fe塩及びSO4 2- を過剰に添加
すると、TS中のFe含有率はそれに比例して大きくな
るが、反面、菌体含有率(TSに占めるVSSの割合)
が低下し、結果として反応槽中の保持菌体量が低下す
る。従って、浮上防止効果と反応槽中の保持菌体量の維
持の面から、特に汚泥中のFe含有率は5〜10重量%
であることが好ましい。
The sludge investigated contained Fe salt and S continuously.
By adding O 4 2- , some Fe content ratio in TS reached 10% by weight or more, but from the viewpoint of preventing the sludge from floating, the Fe content may be 10% by weight or more. The effect is fully obtained. When Fe salt and SO 4 2− are added excessively, the Fe content in TS increases in proportion to it, but on the other hand, the cell content (VSS ratio in TS)
Is decreased, and as a result, the amount of retained bacterial cells in the reaction tank is decreased. Therefore, the Fe content in the sludge is particularly 5 to 10% by weight from the viewpoint of the effect of preventing floating and the maintenance of the amount of the retained cells in the reaction tank.
It is preferred that

【0013】グラニュール汚泥内のFe含有率を上記範
囲に維持することにより、グラニュール汚泥の沈降性が
著しく向上し、反応槽内の汚泥濃度を例えばVSSとし
て7〜10万mg/L程度に、飛躍的に増加させること
ができる。また、ガスを内包することによる汚泥の浮上
を防ぐことができるため、15〜20kg−CODCr
3 /日以上での高負荷処理が可能となる。同時に、低
濃度排水に対しては、排水の滞留時間を低下させること
が可能となる。
By maintaining the Fe content in the granule sludge within the above range, the sedimentation property of the granule sludge is remarkably improved, and the sludge concentration in the reaction tank is, for example, VSS of about 70 to 100,000 mg / L. , Can be increased dramatically. Moreover, since it is possible to prevent the sludge from floating due to the inclusion of gas, it is possible to obtain 15 to 20 kg-COD Cr /
High load processing is possible at m 3 / day or more. At the same time, it is possible to reduce the retention time of the wastewater for low-concentration wastewater.

【0014】本発明においては、グラニュール汚泥中の
Fe含有率を上記範囲として、反応槽(水槽の水容量)
のCODCr容量負荷を10kg/m3 /日以上、特に1
5kg/m3 /日以上、とりわけ20kg/m3 /日以
上とし、反応槽(水槽の水容量)における被処理排水の
滞留時間が4時間以内、特に3時間以内、とりわけ2時
間以内となるように運転を行うのが好ましい。
In the present invention, the Fe content in the granulated sludge is set within the above range, and the reaction tank (water capacity of the water tank) is set.
COD Cr capacity load of 10 kg / m 3 / day or more, especially 1
5 kg / m 3 / day or more, especially 20 kg / m 3 / day or more, so that the residence time of the treated wastewater in the reaction tank (water capacity of the water tank) is 4 hours or less, particularly 3 hours or less, particularly 2 hours or less. It is preferable to carry out the operation.

【0015】[0015]

【発明の実施の形態】以下に本発明を詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.

【0016】本発明の方法においては、グラニュール汚
泥のスラッジブランケットに上向流通水して嫌気性処理
する有機性排水に、グラニュール汚泥中のTSに対する
Fe含有率が3重量%以上、好ましくは5〜10重量%
以上となるように、Fe塩及び/又はSO4 2- 源を添加
する。
In the method of the present invention, the organic wastewater for anaerobic treatment by upwardly flowing water to the sludge blanket of the granulated sludge has an Fe content of 3% by weight or more with respect to TS in the granulated sludge, preferably 5-10% by weight
As mentioned above, the Fe salt and / or the SO 4 2− source is added.

【0017】本発明においてFe塩としては、FeCl
3 ,FeSO4 ,Fe2 (SO43 等が好適に用いら
れ、また、SO4 2- 源としては、Na2 SO4 等の硫酸
塩やH2 SO4 を用いることができる。
In the present invention, the Fe salt is FeCl.
3 , FeSO 4 , Fe 2 (SO 4 ) 3 and the like are preferably used, and as the SO 4 2− source, sulfates such as Na 2 SO 4 and H 2 SO 4 can be used.

【0018】本発明においては、Fe塩及び/又はSO
4 2- 源の添加により、グラニュール汚泥内にFeSの結
晶をFe含有率が3重量%以上、好ましくは5〜10重
量%となるように、成長させて、汚泥の比重を高め、そ
の沈降性を改善することができる。
In the present invention, Fe salt and / or SO
4 By adding a 2- source, FeS crystals are grown in the granulated sludge so that the Fe content is 3% by weight or more, preferably 5 to 10% by weight, the specific gravity of the sludge is increased, and the sedimentation thereof is performed. The sex can be improved.

【0019】グラニュール汚泥中のFe含有率が3重量
%以上、好ましくは5〜10重量%となるようにFe塩
及び/又はSO4 2- 源の添加量を調整するためには、反
応槽内のグラニュール汚泥を定期的にサンプリングして
Fe含有率を測定し、この測定値に基いて、Fe塩及び
/又はSO4 2- 源の添加量を制御するのが好ましい。こ
の場合、グラニュール汚泥のFe含有率の測定法として
は、グラニュール汚泥を硫酸及び硝酸の混合液に加熱溶
解させて、原子吸光法などで分析する方法が最も一般的
である。
In order to adjust the addition amount of the Fe salt and / or SO 4 2- source so that the Fe content in the granulated sludge is 3% by weight or more, preferably 5 to 10% by weight, the reaction tank is used. It is preferable to periodically sample the granulated sludge in the inside to measure the Fe content and to control the added amount of the Fe salt and / or the SO 4 2− source based on the measured value. In this case, the most general method for measuring the Fe content of the granulated sludge is to heat and dissolve the granulated sludge in a mixed solution of sulfuric acid and nitric acid, and then analyze by atomic absorption method or the like.

【0020】本発明において、被処理水へのFe塩及び
/又はSO4 2- 源の添加位置は、酸生成槽流出水のUA
SB反応槽流入直前の部分が最も好適である。
In the present invention, the position of addition of the Fe salt and / or SO 4 2− source to the water to be treated is determined by the UA of the acid generation tank outflow water.
The most suitable part is just before the SB reaction tank.

【0021】なお、Fe塩及び/又はSO4 2- 源は、必
ずしも試薬として添加する必要はなく、これらを含む他
系統の排水を被処理水に混入させることにより、Fe塩
及び/又はSO4 2- 源を添加するようにすることもでき
る。
[0021] Incidentally, the Fe salts and / or SO 4 2-sources need not necessarily be added as a reagent, by mixing the waste water other strains containing these to the water to be treated, Fe salts and / or SO 4 It is also possible to add a 2- source.

【0022】本発明においては、Fe塩及び/又はSO
4 2- 源の添加によりグラニュール汚泥中のTSに対する
Fe含有率を3重量%以上、好ましくは5〜10重量%
とすることによる高負荷処理化で、反応槽(水槽の水容
量)のCODCr容量負荷を10kg/m3 /日以上、特
に15kg/m3 /日以上、とりわけ20kg/m3
日以上とし、反応槽(水槽の水容量)における被処理排
水の滞留時間が4時間以内、特に3時間以内、とりわけ
2時間以内となるように運転を行うのが好ましい。
In the present invention, Fe salt and / or SO
4 Fe source content of TS in granulated sludge is 3% by weight or more, preferably 5 to 10% by addition of 2- source
The COD Cr capacity load of the reaction tank (water capacity of the water tank) is 10 kg / m 3 / day or more, particularly 15 kg / m 3 / day or more, especially 20 kg / m 3 /
It is preferable to carry out the operation so that the retention time of the waste water to be treated in the reaction tank (water capacity of the water tank) is 4 hours or less, particularly 3 hours or less, and particularly 2 hours or less.

【0023】[0023]

【実施例】以下に実施例及び比較例を挙げて、本発明を
より具体的に説明する。
The present invention will be described more specifically with reference to the following examples and comparative examples.

【0024】実施例1 ビール工場のUASB反応槽から採取したグラニュール
汚泥(平均粒径:約1.5mm)を用いて、図1に示す
装置により、鉄塩の添加効果を調べた。
Example 1 Using granule sludge (average particle size: about 1.5 mm) collected from a UASB reaction tank of a beer factory, the effect of adding an iron salt was examined by the apparatus shown in FIG.

【0025】まず、内径10cm、高さ100cmの実
験用UASB反応槽(容量:9L)1を準備し、これら
に上記の汚泥を静止容量として3L充填した。原水とし
ては、ビール工場の仕込系排水(CODCr:18,00
0mg/L)をCODCr濃度が1,500mg/Lにな
るように水道水で希釈したものを用い、この原水を配管
11より酸生成槽(容量:2.5L)2にて処理した
後、配管12よりUASB反応槽1に導入し、配管13
より処理水を系外に取り出すと共に、処理水の一部を配
管14より酸生成槽2に循環した。循環比は、酸生成槽
流入水量1Qに対し、UASB反応槽流入水量2Q、循
環水量1Qとなるようにした。なお、酸生成槽2では、
pHが6.5となるようにNaOHを添加した。
First, an experimental UASB reaction tank (capacity: 9 L) 1 having an inner diameter of 10 cm and a height of 100 cm was prepared, and 3 L of the above sludge was filled therein as a static capacity. As raw water, brewery system wastewater (COD Cr : 18,000)
0 mg / L) was diluted with tap water so that the COD Cr concentration became 1,500 mg / L, and this raw water was treated through a pipe 11 in an acid generation tank (capacity: 2.5 L) 2. It is introduced into the UASB reaction tank 1 from the pipe 12, and the pipe 13
Further, the treated water was taken out of the system, and a part of the treated water was circulated to the acid generation tank 2 through the pipe 14. The circulation ratio was such that the amount of inflow water of the acid production tank was 1Q, and the amount of inflow water of the UASB reaction tank was 2Q and the amount of circulation water was 1Q. In the acid production tank 2,
NaOH was added to bring the pH to 6.5.

【0026】また、UASB反応槽1の流入直前の配管
12の酸生成槽流出水に、配管15よりFe塩としてF
eCl3 ・6H2 OをFe3+換算で約5mg/L添加し
た。水道水中にはSO4 2- イオンが8〜10mg/L含
まれていたため、SO4 2- 源の添加は行わなかった。
Further, in the acid generation tank outflow water of the pipe 12 immediately before the inflow of the UASB reaction tank 1, the Fe salt as F salt is supplied from the pipe 15.
About 5 mg / L of eCl 3 .6H 2 O in terms of Fe 3+ was added. Since SO 4 2− ion was contained in the tap water at 8 to 10 mg / L, the SO 4 2− source was not added.

【0027】通水量を段階的に増加させて滞留時間を4
時間から1.5時間まで短縮させることにより、図3の
如く、容積負荷を9kg−CODCr/m3 /日から24
kg−CODCr/m3 /日まで増加させ、UASB反応
槽内の汚泥のFe含有率(図4)、浮上ポテンシャル
(図5)及び保持汚泥量(図6)の変化、Fe含有率と
処理性能(図7)の関係を調べた。なお、実験温度は3
5℃とした。
The residence time is increased to 4 by gradually increasing the water flow rate.
By reducing the time from 1.5 hours to 1.5 hours, the volume load is changed from 9 kg-COD Cr / m 3 / day to 24 as shown in FIG.
kg-COD Cr / m 3 / day, changes in Fe content (Fig. 4), flotation potential (Fig. 5) and retained sludge amount (Fig. 6) in sludge in the UASB reactor, Fe content and treatment The relationship of performance (Fig. 7) was investigated. The experimental temperature is 3
5 ° C.

【0028】実施例2 Feの過剰添加の例として、FeCl3 ・6H2 Oの代
りに、FeSO4 をFe2+換算で50mg/L添加した
こと以外は、実施例1と同様に実験を行った。
Example 2 As an example of excessive addition of Fe, an experiment was conducted in the same manner as in Example 1 except that FeSO 4 was added in an amount of 50 mg / L in terms of Fe 2+ instead of FeCl 3 .6H 2 O. It was

【0029】比較例1 Fe無添加の例として、FeCl3 ・6H2 Oを添加し
なかったこと以外は実施例1と同様に実験を行った。
Comparative Example 1 An experiment was conducted in the same manner as in Example 1 except that FeCl 3 .6H 2 O was not added as an example in which Fe was not added.

【0030】図3〜7の結果より次のことが明らかであ
る。
From the results of FIGS. 3 to 7, the following is clear.

【0031】即ち、図4,5に示すように、Feを添加
した実施例1,2では、Fe含有率が3.5重量%を超
えた43日目以降から汚泥の浮上ポテンシャルが低下
し、実験を終了した90日目ではほぼゼロになった。実
施例1において、実験終了時のグラニュール汚泥中のF
e含有率は約8重量%であった。これに対し、Fe無添
加の比較例1では浮上ポテンシャルが殆ど低下せずに、
終了時にも約26%あった。なお、Fe含有率は1重量
%以下であった。
That is, as shown in FIGS. 4 and 5, in Examples 1 and 2 in which Fe was added, the floating potential of sludge decreased from the 43rd day after the Fe content exceeded 3.5% by weight, It was almost zero on the 90th day when the experiment was completed. In Example 1, F in the granule sludge at the end of the experiment
The e content was about 8% by weight. On the other hand, in Comparative Example 1 in which Fe is not added, the floating potential is hardly decreased,
It was about 26% at the end. The Fe content was 1% by weight or less.

【0032】また、負荷量は、図3に示す如く、9,1
8,24kg−CODCr/m3 /日と1ヵ月間隔で3段
階に上昇させたが、図7に示す如く、実施例1ではいず
れの条件においても80%以上の溶解性CODCr除去率
を維持した。実施例2では、汚泥の沈降性は向上した
が、汚泥中のVSS含有率が低下して菌体保持量が低下
した結果、24kg−CODCr/m3 /日の条件では除
去率は70%以下に低下した。これに対し、比較例1で
は汚泥の浮上流出が継続したため、図6に示す如く、反
応槽内の汚泥保持量が徐々に減少し、24kg−COD
Cr/m3 /日の負荷条件では除去率が50%以下に悪化
した。
The load amount is 9, 1 as shown in FIG.
Although it was increased in 3 steps at a monthly interval of 8,24 kg-COD Cr / m 3 / day, as shown in FIG. 7, in Example 1, a soluble COD Cr removal rate of 80% or more was obtained under all conditions. Maintained. In Example 2, the sludge settling property was improved, but the VSS content rate in the sludge was decreased and the cell retention amount was decreased. As a result, the removal rate was 70% under the conditions of 24 kg-COD Cr / m 3 / day. Fell below. On the other hand, in Comparative Example 1, since the sludge floated and flowed out continuously, as shown in FIG. 6, the sludge holding amount in the reaction tank gradually decreased to 24 kg-COD.
Under Cr / m 3 / day load condition, the removal rate deteriorated to 50% or less.

【0033】実施例2及び比較例1の除去率が実施例1
と比較して悪かったのは、反応槽内の菌体保持量が少な
かったためであることが、図6から明らかである。
The removal rates of Example 2 and Comparative Example 1 are the same as those of Example 1.
It is clear from FIG. 6 that the deterioration compared with Example 1 was due to the small amount of bacterial cells retained in the reaction tank.

【0034】なお、UASB反応槽の容積負荷量9kg
−CODCr/m3 /日の場合、被処理水の滞留時間は4
時間であり、負荷量18kg−CODCr/m3 /日では
滞留時間2時間、負荷量25kg−CODCr/m3 /日
では滞留時間1.4時間である。
The volume load of the UASB reaction tank is 9 kg.
-In the case of COD Cr / m 3 / day, the residence time of the treated water is 4
Time is 2 hours for a load of 18 kg-COD Cr / m 3 / day, and 1.4 hours for a load of 25 kg-COD Cr / m 3 / day.

【0035】[0035]

【発明の効果】以上詳述した通り、本発明の嫌気性処理
法によれば、UASB法による有機性排水の処理におい
て、グラニュール汚泥の沈降性を高め、汚泥の浮上、流
出を確実に防止してUASB反応槽内の汚泥保持量を高
く維持することにより、高負荷処理を安定して行うと共
に、処理水中への汚泥の流入を防止して、高水質処理水
を得ることが可能となる。
As described in detail above, according to the anaerobic treatment method of the present invention, in the treatment of organic wastewater by the UASB method, the sedimentation property of granule sludge is enhanced, and the flotation and outflow of sludge are surely prevented. By maintaining a high sludge retention amount in the UASB reaction tank, it is possible to stably perform high-load treatment, prevent sludge from flowing into the treated water, and obtain high-quality treated water. .

【0036】特に、本発明の嫌気性処理法によれば、F
e塩及び/又はSO4 2- 源の添加量の最適化が図れるた
め、過剰添加によるコスト向上を回避できると共に、過
剰添加による汚泥の活性低下、菌体保持量の低下を防止
して、高い処理性能を安定に維持することができる。
Particularly, according to the anaerobic treatment method of the present invention, F
Since the amount of e-salt and / or SO 4 2- source added can be optimized, cost increase due to excessive addition can be avoided, sludge activity reduction and bacterial cell retention amount reduction due to excessive addition can be prevented, and high The processing performance can be stably maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1,2及び比較例1で用いた実験装置を
示す系統図である。
FIG. 1 is a system diagram showing an experimental device used in Examples 1 and 2 and Comparative Example 1.

【図2】グラニュール汚泥中のFe含有率と汚泥の浮上
ポテンシャルとの関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the Fe content in the granulated sludge and the floating potential of the sludge.

【図3】実施例1,2及び比較例1における容積負荷の
経時変化を示すグラフである。
FIG. 3 is a graph showing changes over time in volume load in Examples 1 and 2 and Comparative Example 1.

【図4】実施例1,2及び比較例1におけるグラニュー
ル汚泥中のFe含有率の経時変化を示すグラフである。
FIG. 4 is a graph showing changes over time in the Fe content in the granulated sludge in Examples 1 and 2 and Comparative Example 1.

【図5】実施例1,2及び比較例1における汚泥の浮上
ポテンシャルの経時変化を示すグラフである。
FIG. 5 is a graph showing changes with time in the floating potential of sludge in Examples 1 and 2 and Comparative Example 1.

【図6】実施例1,2及び比較例1における汚泥保持量
の経時変化を示すグラフである。
FIG. 6 is a graph showing changes over time in the amount of sludge retained in Examples 1 and 2 and Comparative Example 1.

【図7】実施例1,2及び比較例1における溶解性CO
Cr除去率の経時変化を示すグラフである。
FIG. 7: Soluble CO in Examples 1 and 2 and Comparative Example 1
It is a graph which shows the time-dependent change of a DCr removal rate.

【符号の説明】[Explanation of symbols]

1 UASB反応槽 2 酸生成槽 1 UASB reaction tank 2 Acid generation tank

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 グラニュール汚泥で形成されたスラッジ
ブランケットに有機性排水を上向流通水して嫌気性処理
する方法において、 グラニュール汚泥の全固形物質に対する鉄の含有率が3
重量%以上となるように、該有機性排水に鉄塩及び/又
は硫酸イオン源を添加することを特徴とする嫌気性処理
法。
1. A method for anaerobic treatment by upwardly circulating organic wastewater to a sludge blanket formed of granule sludge, wherein the iron content of the total solid matter of the granule sludge is 3 or less.
An anaerobic treatment method, characterized in that an iron salt and / or a sulfate ion source is added to the organic waste water so as to be at least wt%.
JP28324195A 1995-10-31 1995-10-31 Anaerobic treatment Expired - Fee Related JP3814851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28324195A JP3814851B2 (en) 1995-10-31 1995-10-31 Anaerobic treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28324195A JP3814851B2 (en) 1995-10-31 1995-10-31 Anaerobic treatment

Publications (2)

Publication Number Publication Date
JPH09122683A true JPH09122683A (en) 1997-05-13
JP3814851B2 JP3814851B2 (en) 2006-08-30

Family

ID=17662924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28324195A Expired - Fee Related JP3814851B2 (en) 1995-10-31 1995-10-31 Anaerobic treatment

Country Status (1)

Country Link
JP (1) JP3814851B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001252686A (en) * 2000-03-10 2001-09-18 Kurita Water Ind Ltd Anaerobic treatment method for organic waste water
JP2006247601A (en) * 2005-03-14 2006-09-21 Tokyo Gas Co Ltd Methanation method and apparatus
CN102260022A (en) * 2011-06-02 2011-11-30 江苏加德绿色能源有限公司 Biological enhanced brewery wastewater biotreatment device and method
CN102351381A (en) * 2011-08-16 2012-02-15 复旦大学 Device and method for treating sulfate wastewater
JP2012076001A (en) * 2010-09-30 2012-04-19 Kuraray Co Ltd Anaerobic wastewater treatment apparatus
CN102583931A (en) * 2012-03-19 2012-07-18 盐城同济环科固体废物处理处置有限公司 Dual-circulation two-grade anaerobic digestion system and application thereof
WO2013146853A1 (en) * 2012-03-30 2013-10-03 栗田工業株式会社 Method for treating fat-containing wastewater
JP2014023984A (en) * 2012-07-25 2014-02-06 Sumitomo Heavy Industries Environment Co Ltd Methane fermentation system and methane fermentation method
JP2014133210A (en) * 2013-01-10 2014-07-24 Swing Corp Anaerobic treatment method and anaerobic treatment apparatus of organic effluent
JP2015120169A (en) * 2015-03-30 2015-07-02 株式会社東芝 Water treatment system
JP2016007595A (en) * 2014-06-26 2016-01-18 住友重機械工業株式会社 Anaerobic wastewater treatment method and anaerobic wastewater treatment apparatus
CN105884022A (en) * 2016-06-17 2016-08-24 中国工程物理研究院材料研究所 Method and device for treating complicated waste water by iron enhanced microorganisms

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001252686A (en) * 2000-03-10 2001-09-18 Kurita Water Ind Ltd Anaerobic treatment method for organic waste water
JP2006247601A (en) * 2005-03-14 2006-09-21 Tokyo Gas Co Ltd Methanation method and apparatus
JP2012076001A (en) * 2010-09-30 2012-04-19 Kuraray Co Ltd Anaerobic wastewater treatment apparatus
CN102260022A (en) * 2011-06-02 2011-11-30 江苏加德绿色能源有限公司 Biological enhanced brewery wastewater biotreatment device and method
CN102351381A (en) * 2011-08-16 2012-02-15 复旦大学 Device and method for treating sulfate wastewater
CN102583931A (en) * 2012-03-19 2012-07-18 盐城同济环科固体废物处理处置有限公司 Dual-circulation two-grade anaerobic digestion system and application thereof
WO2013146853A1 (en) * 2012-03-30 2013-10-03 栗田工業株式会社 Method for treating fat-containing wastewater
JP2013208559A (en) * 2012-03-30 2013-10-10 Kurita Water Ind Ltd Method for treating oil-and-fat-containing wastewater
JP2014023984A (en) * 2012-07-25 2014-02-06 Sumitomo Heavy Industries Environment Co Ltd Methane fermentation system and methane fermentation method
JP2014133210A (en) * 2013-01-10 2014-07-24 Swing Corp Anaerobic treatment method and anaerobic treatment apparatus of organic effluent
JP2016007595A (en) * 2014-06-26 2016-01-18 住友重機械工業株式会社 Anaerobic wastewater treatment method and anaerobic wastewater treatment apparatus
JP2015120169A (en) * 2015-03-30 2015-07-02 株式会社東芝 Water treatment system
CN105884022A (en) * 2016-06-17 2016-08-24 中国工程物理研究院材料研究所 Method and device for treating complicated waste water by iron enhanced microorganisms

Also Published As

Publication number Publication date
JP3814851B2 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
JP6241187B2 (en) Anaerobic treatment method and anaerobic treatment apparatus
JP2005238166A (en) Anaerobic ammonoxidation treatment method
US10059610B2 (en) Reduction of the amount of sulphur compounds in a sulphur compounds contaminated wastewater stream using a granular sludge treatment system
JPH09122683A (en) Method for anaerobic treatment
JP4872171B2 (en) Biological denitrification equipment
JP4915036B2 (en) Denitrification method and denitrification apparatus
JP4774120B2 (en) Apparatus and method for treating radioactive nitrate waste liquid
JP4923348B2 (en) Biological denitrification method
JPH07155790A (en) Waste water treating device
JP5055667B2 (en) Biological denitrification method and biological denitrification apparatus
JP2003033790A (en) Denitrification device and method therefor
JP3358348B2 (en) Anaerobic treatment method
TWI513667B (en) Denitrification method
JP4329359B2 (en) Denitrification method
JP3387241B2 (en) Anaerobic treatment method
CN105502649B (en) A kind of method alleviated anaerobic ammonium oxidation granular sludge and floated
TW202202454A (en) Aerobic biological processing method and device
JP4618420B2 (en) Method for oxidizing nitrous acid-containing liquid
Shimamura et al. Use of a seeder reactor to manage crystal growth in the fluidized bed reactor for phosphorus recovery
JP6461408B1 (en) Water treatment method and water treatment apparatus
JP3956409B2 (en) UASB type anaerobic treatment equipment
JPH08155486A (en) Anaerobic treatment method for organic drainage
JPH08141591A (en) Treatment of organic waste water
JPH0218914B2 (en)
JP5558866B2 (en) Water treatment apparatus and water treatment method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060529

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140616

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees