WO2014156216A1 - Anaerobic treatment method - Google Patents

Anaerobic treatment method Download PDF

Info

Publication number
WO2014156216A1
WO2014156216A1 PCT/JP2014/050228 JP2014050228W WO2014156216A1 WO 2014156216 A1 WO2014156216 A1 WO 2014156216A1 JP 2014050228 W JP2014050228 W JP 2014050228W WO 2014156216 A1 WO2014156216 A1 WO 2014156216A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
treatment method
anaerobic treatment
water
tank
Prior art date
Application number
PCT/JP2014/050228
Other languages
French (fr)
Japanese (ja)
Inventor
孝明 徳富
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to KR1020157025604A priority Critical patent/KR20150137061A/en
Priority to CN201480018707.3A priority patent/CN105102378A/en
Priority to JP2015508103A priority patent/JPWO2014156216A1/en
Publication of WO2014156216A1 publication Critical patent/WO2014156216A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/286Anaerobic digestion processes including two or more steps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2806Anaerobic processes using solid supports for microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH

Abstract

Provided is an anaerobic treatment method which enables the treatment of organic discharged water having a high solid concentration with high efficiency and at low facility cost. Raw water having a solid concentration of 1000 mg/L or more is treated in an acid generation vessel (1), then the treated water is supplied to a pH adjusting vessel (2) by means of a pump (P1) to adjust the pH value of the water, and then the pH-adjusted water is allowed to pass through a reaction vessel (3), in which a fluid non-biological carrier (4) is filled, in an upward flow direction by means of a pump (P2). A portion of outflowing water from the reaction vessel (3) is circulated into the pH adjusting vessel (2) as circulating water, and the remainder of the outflowing water is discharged to the outside of the system as treated water.

Description

嫌気性処理方法Anaerobic treatment method
 本発明は、反応槽内に流動性を持つ非生物担体を充填し、該非生物担体の表面に生物膜を形成させて嫌気条件下で被処理水を通水して処理する嫌気性処理方法に関する。 The present invention relates to an anaerobic treatment method in which a non-biological carrier having fluidity is filled in a reaction tank, a biological film is formed on the surface of the non-biological carrier, and the treated water is passed under anaerobic conditions. .
 有機性排水の嫌気性処理方法として、反応槽内に高密度で沈降性の大きいグラニュール汚泥を形成し、溶解性BODを含む有機性排水を上向流通水して、スラッジブランケットを形成した状態で接触させて高負荷高速処理を行うUASB(Upflow Anaerobic Sludge Blanket:上向流嫌気性スラッジブランケット)法が採用されている。この方法は、消化速度の遅い固形有機物を分離して別途処理し、消化速度の速い溶解性有機物のみを、嫌気性微生物密度の高いグラニュール汚泥を用いる嫌気性処理によって高負荷で高速処理する方法である。このUASB法を発展させたものとして、高さの高い反応槽を用いてさらに高流速で通水し、スラッジブランケットを高展開率で展開して、さらに高負荷で嫌気性処理を行うEGSB(Expanded Granule Sludge Blanket)法も行われている。 As an anaerobic treatment method for organic wastewater, a sludge blanket is formed by forming granular sludge with high density and high sedimentation in the reaction tank, and upwardly circulating organic wastewater containing soluble BOD. The UASB (Upflow Anaerobic Sludge Blanket) method is used, which performs high-load and high-speed processing by contacting with a high-pressure anaerobic sludge blanket. In this method, solid organic substances with a low digestion rate are separated and treated separately, and only soluble organic substances with a high digestion rate are processed at high speed with high load by anaerobic treatment using granular sludge with high anaerobic microorganism density. It is. As a development of this UASB method, EGSB (Expanded) is used to conduct anaerobic treatment at a higher load by passing water at a higher flow rate using a high reaction tank, deploying a sludge blanket at a higher deployment rate. Granule (Sludge Blanket) method is also carried out.
 UASB法、EGSB法などのグラニュール汚泥を用いる嫌気性処理は、嫌気性微生物を含む汚泥をグラニュール状に維持、増殖させて処理する方法である。この方法は担体に汚泥を保持する固定床や流動床による処理と比較して高い汚泥保持濃度を達成することができるため、高負荷運転が可能であり、また、既に稼働中の処理系から余剰汚泥を調達することにより短期間で立上げが可能であり、効率的な嫌気性処理法である。 Anaerobic treatment using granular sludge, such as the UASB method and EGSB method, is a method of treating sludge containing anaerobic microorganisms in a granular state and growing it. This method can achieve a high sludge retention concentration compared to the treatment with a fixed bed or fluidized bed that holds sludge on the carrier, so that it can be operated at a high load, and surplus sludge from an already operating treatment system. It is an efficient anaerobic treatment method that can be started up in a short period of time.
 しかし、これらグラニュール汚泥を用いる方法は、排水中に高濃度のSS成分が含まれる場合には、特許文献1に記載されているように、前処理として沈殿、加圧浮上、凝集沈殿、振動スクリーン、ロータリースクリーン等によって固形物を除去してから嫌気処理を行う必要があった。UASB、EGSB等のグラニュール法では、高濃度SSが流入するとSS成分がグラニュール層を押し上げてしまい、グラニュールが流出してしまうためである。 However, in the method using these granular sludges, as described in Patent Document 1, precipitation, pressurization flotation, coagulation sedimentation, vibration are performed as described in Patent Document 1 when high concentration SS components are contained in the waste water. It was necessary to perform anaerobic treatment after removing solids with a screen, a rotary screen or the like. This is because, in the granule method such as UASB or EGSB, when a high concentration SS flows, the SS component pushes up the granule layer, and the granule flows out.
 高濃度SSを含む排水の嫌気性処理としては、嫌気性汚泥消化があるが、これは固形物の分解が目的のため、通常滞留時間として10日以上必要であり、非常に大きな反応槽が必要となる。 As anaerobic treatment of wastewater containing high concentration SS, there is anaerobic sludge digestion, but this is for the purpose of decomposing solids, so it usually requires a residence time of 10 days or more and requires a very large reaction tank. It becomes.
 担体を用いる嫌気性処理方法としては、固定床担体を用いる方法がある。特許文献2には、有機性廃棄物をメタン発酵処理する際に、オゾンガスで親水処理した合成樹脂素材からなる担体にメタン菌を主体とする嫌気性微生物を担持させた固定化微生物を用いてメタン発酵を行なう有機性廃棄物のメタン発酵処理方法が記載されている。 An anaerobic treatment method using a carrier includes a method using a fixed bed carrier. In Patent Document 2, when organic waste is subjected to methane fermentation treatment, methane is obtained by using immobilized microorganisms in which anaerobic microorganisms mainly composed of methane bacteria are supported on a carrier made of a synthetic resin material hydrophilically treated with ozone gas. A method for methane fermentation treatment of organic waste for fermentation is described.
 しかしながら、この担体の固定床に高濃度SSを含有する有機性排水を流入させるとSS成分が担体表面に固着し、閉塞してしまうという欠点がある。 However, when organic wastewater containing high-concentration SS is allowed to flow into the fixed bed of the carrier, there is a drawback that the SS component adheres to the surface of the carrier and becomes blocked.
 これに対し、流動性の非生物担体を用いる方法では、スクリーン等の機械的な方法で反応槽からの担体の流出を防ぐことができ、また、担体表面は常に微生物の生育場所として確保できるため、低濃度のCOD排水やグラニュールが解体してしまうような排水に対しても適用できるという利点がある。 On the other hand, in the method using a fluid non-biological carrier, it is possible to prevent the carrier from flowing out of the reaction tank by a mechanical method such as a screen, and the carrier surface can always be secured as a place for growing microorganisms. There is an advantage that it can be applied to low-concentration COD wastewater and wastewater in which granules are dismantled.
 このような処理に用いる流動性非生物担体として、特許文献3には、以下の(I)及び/又は(II)の発泡体よりなり、該担体の大きさが1.0~5.0mmであり、該担体の沈降速度が100~500m/hrである流動性非生物担体が記載されている。
(I) ポリオレフィン系樹脂を主体とする樹脂成分30~95重量%と、セルロース系粉末の親水化剤5~70重量%とを含む発泡体であって、表面がメルトフラクチャー状態を有する発泡体
(II) ポリオレフィン系樹脂を主体とする樹脂成分30~95重量%と、セルロース系粉末の親水化剤4~69重量%と、無機粉末1~30重量%とを含む発泡体であって、表面がメルトフラクチャー状態を有する発泡体
As a fluid non-biological carrier used for such treatment, Patent Document 3 comprises the following foam (I) and / or (II), and the carrier has a size of 1.0 to 5.0 mm. A flowable non-biological carrier is described in which the sedimentation rate of the carrier is 100-500 m / hr.
(I) A foam containing 30 to 95% by weight of a resin component mainly composed of a polyolefin resin and 5 to 70% by weight of a hydrophilizing agent for cellulose powder, the surface of which has a melt fracture state ( II) A foam containing 30 to 95% by weight of a resin component mainly composed of a polyolefin resin, 4 to 69% by weight of a hydrophilizing agent for cellulose powder, and 1 to 30% by weight of an inorganic powder, Foam having melt fracture state
特開平5-253594JP-A-5-253594 特開2003-260446JP 2003-260446 A 特開2012-110843JP2012-110843
 上述の通り、高濃度SSを含む有機性排水をグラニュールを用いる嫌気性処理方法で処理しようとすると、グラニュール槽には高濃度SS成分を流入させることができないため、予め沈殿槽等の固液分離設備を設置する必要があり、処理全体の設備費用が大きくなってしまうという問題があった。特許文献3の嫌気性処理方法には、高SS濃度の有機性排水を処理することは記載されていない。 As described above, when organic wastewater containing high-concentration SS is treated by an anaerobic treatment method using granules, high-concentration SS components cannot be allowed to flow into the granule tank. There was a problem that it was necessary to install a liquid separation facility, and the equipment cost of the entire process would increase. The anaerobic treatment method of Patent Document 3 does not describe treatment of organic wastewater having a high SS concentration.
 本発明は、固形物濃度の高い有機性排水を効率よく、しかも安価な設備コストにて処理することができる嫌気性処理方法を提供することを目的とする。 An object of the present invention is to provide an anaerobic treatment method capable of treating organic wastewater with a high solid matter concentration efficiently and at low equipment costs.
 本発明の嫌気性処理方法は、固形物濃度1000~30000mg/Lの有機性排水を、流動性の非生物担体を有する嫌気性反応槽にて処理する工程を有する。 The anaerobic treatment method of the present invention includes a step of treating an organic wastewater having a solid concentration of 1000 to 30000 mg / L in an anaerobic reaction tank having a fluid non-biological carrier.
 本発明では、前記有機性排水を固形物除去処理することなく前記反応槽に通水することが好ましい。 In the present invention, it is preferable to pass the organic waste water through the reaction tank without removing the solid matter.
 前記担体の大きさは1.0~5.0mmであり、該担体の沈降速度は100~500m/hrである。 The size of the carrier is 1.0 to 5.0 mm, and the sedimentation speed of the carrier is 100 to 500 m / hr.
 反応槽の水理学的滞留時間(HRT)は好ましくは1~120hrである。 The hydraulic retention time (HRT) of the reaction vessel is preferably 1 to 120 hr.
 有機性排水を酸生成槽を通した後、前記反応槽に通水してもよい。 The organic wastewater may be passed through the acid generation tank and then into the reaction tank.
 前記反応槽は、好ましくは完全混合型反応槽であるか、又は上向流型反応槽である。 The reaction vessel is preferably a complete mixing type reaction vessel or an upward flow type reaction vessel.
 本発明では、固形物濃度の高い有機性排水を非生物担体を有する反応槽に通水することにより、非生物担体を嫌気性反応槽内で流動させ、効率よく嫌気性処理を行うことができる。 In the present invention, the organic waste water having a high solid concentration is passed through a reaction tank having a non-biological carrier, thereby allowing the non-biological carrier to flow in the anaerobic reaction tank and efficiently performing the anaerobic treatment. .
 本発明で用いる非生物担体は、グラニュールと比較して比重が大きく、沈降速度も速いため、高濃度のSS成分が含まれる排水中でも沈降することができる。発生するガスと水流により適度に撹拌混合されるため、生物膜の厚さが厚くなると自然に剥離がおこり、生物膜の肥大化による浮上や流路の閉塞を回避できる。 Since the non-biological carrier used in the present invention has a larger specific gravity and faster settling speed than granules, it can settle even in wastewater containing a high concentration of SS components. Since the generated gas and water flow are appropriately stirred and mixed, when the thickness of the biofilm is increased, the separation occurs naturally, and the floating and blockage of the flow path due to the enlargement of the biofilm can be avoided.
 有機性排水中のSS成分も反応槽内部で沈降し堆積してしまう可能性があるが、完全混合型反応槽を用いて混合するか、上向流反応槽の場合には液の上昇流速を大きくすることによりSSの堆積を防ぐことができる。 The SS component in the organic wastewater may also settle and accumulate inside the reaction tank, but it can be mixed using a fully mixed reaction tank, or in the case of an upward flow reaction tank, the rising flow rate of the liquid can be increased. By increasing the size, the accumulation of SS can be prevented.
 有機性排水中のSS成分も微生物により加水分解を受け、溶解性成分に転換される場合もある。その場合、可溶化された成分は元々含まれていた溶解性成分と同様に嫌気性生物処理を受ける。嫌気槽の水理学的滞留時間を1~120hrとすることにより、有機性排水中のSS成分の微生物による加水分解反応効率が良好となる。 ∙ SS components in organic wastewater may also be hydrolyzed by microorganisms and converted to soluble components. In that case, the solubilized component is subjected to anaerobic biological treatment in the same manner as the originally included soluble component. By setting the hydraulic residence time in the anaerobic tank to 1 to 120 hours, the hydrolysis reaction efficiency of microorganisms of the SS component in the organic waste water is improved.
 流動性非生物担体として、1~5mmの大きさと100~500m/hrの沈降速度を満たすものを用いることにより、十分量の微生物を担体に付着させた上で、担体の浮上、流出、固着による閉塞を防止して良好な流動床を形成することができ、安定かつ効率的な嫌気性処理を行うことができる。 By using a fluid non-biological carrier that satisfies a size of 1 to 5 mm and a sedimentation speed of 100 to 500 m / hr, a sufficient amount of microorganisms are attached to the carrier, and then the carrier floats, flows out, and adheres. It is possible to prevent clogging and form a good fluidized bed, and to perform a stable and efficient anaerobic treatment.
実施例及び比較例で用いた嫌気性処理装置の構成を示す系統図である。It is a systematic diagram which shows the structure of the anaerobic processing apparatus used by the Example and the comparative example. 実施例で用いた嫌気性処理装置の構成を示す系統図である。It is a systematic diagram which shows the structure of the anaerobic processing apparatus used in the Example. 比較例で用いた嫌気性処理装置の構成を示す系統図である。It is a systematic diagram which shows the structure of the anaerobic processing apparatus used by the comparative example. 実施例の結果を示すグラフである。It is a graph which shows the result of an Example. 比較例の結果を示すグラフである。It is a graph which shows the result of a comparative example. 実施例の結果を示すグラフである。It is a graph which shows the result of an Example. 比較例の結果を示すグラフである。It is a graph which shows the result of a comparative example.
 以下に本発明の実施の形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 本発明では、固形物濃度の高い有機性排水を、流動性の非生物担体を充填した嫌気性反応槽に通水し、該非生物担体の表面に生物膜を形成させて有機性排水を処理する。 In the present invention, organic wastewater having a high solid matter concentration is passed through an anaerobic reaction tank filled with a fluid non-biological carrier, and a biological film is formed on the surface of the non-biological carrier to treat the organic waste water. .
 本発明において処理対象となる被処理水は、固形物濃度が高く、かつ嫌気性微生物と接触させて嫌気性処理を行うことにより処理可能な有機物を含む液である。固形物濃度は1000mg/L以上、例えば1000~30000mg/L特に1000~5000mg/Lである。有機性排水のCODCr濃度は1000~60000mg/L特に3000~15000mg/L程度であることが好ましい。 The water to be treated in the present invention is a liquid having a high solid matter concentration and containing an organic substance that can be treated by anaerobic treatment by contacting with anaerobic microorganisms. The solid concentration is 1000 mg / L or more, for example, 1000 to 30000 mg / L, particularly 1000 to 5000 mg / L. The COD Cr concentration in the organic waste water is preferably about 1000 to 60000 mg / L, particularly about 3000 to 15000 mg / L.
 このような排水としては、食品工場の廃水、化学工場等の有機性廃水、半導体工場排水等が含まれるが、何らこれらに限定されるものではない。 Such wastewater includes, but is not limited to, wastewater from food factories, organic wastewater from chemical factories, semiconductor factory wastewater, and the like.
 被処理水中に糖、タンパク等の高分子成分が含まれる場合には、後述の実施例で用いた嫌気性処理装置のように、流動性非生物担体を充填した反応槽の前処理手段として高分子を酢酸やプロピオン酸といった低分子有機酸まで分解する酸生成槽を設けてもよい。 When high-molecular components such as sugar and protein are contained in the water to be treated, as a pretreatment means for a reaction tank filled with a fluid non-biological carrier, as in the anaerobic treatment apparatus used in the examples described later. You may provide the acid generation tank which decomposes | disassembles a molecule | numerator into low molecular organic acids, such as an acetic acid and propionic acid.
 この場合、酸生成槽の処理条件としては、被処理水の生分解性等の条件により異なるが、pH5~8、好ましくは5.5~7.0、温度20~40℃、好ましくは25~35℃、HRT2~24hr、好ましくは2~8hrが適当である。 In this case, the treatment conditions of the acid generation tank vary depending on conditions such as biodegradability of the water to be treated, but pH 5 to 8, preferably 5.5 to 7.0, temperature 20 to 40 ° C., preferably 25 to A temperature of 35 ° C. and HRT of 2 to 24 hours, preferably 2 to 8 hours is suitable.
 このような酸生成槽により低分子化が十分進行していると、後段の流動性非生物担体を充填した反応槽における処理が良好に進行する。 If the low molecular weight is sufficiently advanced by such an acid generation tank, the treatment in the reaction tank filled with the fluid non-biological carrier in the subsequent stage proceeds well.
 メタノール、酢酸等のメタン生成細菌が直接利用可能な化合物のみを含む排水の場合には、酸生成槽は必要なく、被処理水を直接流動性非生物担体を充填した反応槽に通水することができる。 In the case of wastewater containing only compounds that can be directly used by methanogenic bacteria such as methanol and acetic acid, there is no need for an acid generator tank, and the treated water is directly passed through a reaction tank filled with a fluid non-biological carrier. Can do.
 本発明において、前述の流動性非生物担体が充填され、被処理水が通水される反応槽としては、攪拌機等を用いる完全混合型反応槽、水流と発生ガスにより槽内を混合する上向流型反応槽等を利用することができる。 In the present invention, the reaction tank filled with the above-described fluid non-biological carrier and into which the water to be treated is passed is a fully mixed reaction tank using a stirrer or the like, an upward mixing in the tank with water flow and generated gas. A flow reaction tank or the like can be used.
 完全混合型反応槽、上向流型反応槽における処理条件としては、所望の処理効率を得ることができる範囲において、特に制限はないが、例えば以下のような条件を設定することができる。 The processing conditions in the complete mixing type reaction tank and the upward flow type reaction tank are not particularly limited as long as desired processing efficiency can be obtained. For example, the following conditions can be set.
<完全混合型反応槽>
 担体充填率:10~30%
 HRT:1.0~24hr
 槽負荷:4.0~12.0kg-CODCr/m/day
 汚泥負荷:0.8~3.0kg-CODCr/kg-VSS/day
 pH:6.5~7.5
 温度:25~38℃
<上向流型反応槽>
 担体充填率:10~80%
 HRT:1.0~24hr
 上昇流速(LV):1.0~20m/hr
 槽負荷:4.0~32kg-CODCr/m/day
 汚泥負荷:0.8~3.0kg-CODCr/kg-VSS/day
 pH:6.5~7.5
 温度:25~38℃
<Completely mixed reaction tank>
Carrier filling rate: 10-30%
HRT: 1.0-24 hr
Tank load: 4.0 to 12.0 kg-COD Cr / m 3 / day
Sludge load: 0.8-3.0kg-COD Cr / kg-VSS / day
pH: 6.5-7.5
Temperature: 25-38 ° C
<Upward flow reactor>
Carrier filling rate: 10-80%
HRT: 1.0-24 hr
Ascending flow velocity (LV): 1.0-20m / hr
Tank load: 4.0 to 32 kg-COD Cr / m 3 / day
Sludge load: 0.8-3.0kg-COD Cr / kg-VSS / day
pH: 6.5-7.5
Temperature: 25-38 ° C
 本発明の嫌気性処理方法で用いる流動性非生物担体は、大きさが1.0~5.0mmで、沈降速度が100~500m/hrのものが好ましい。 The fluid abiotic carrier used in the anaerobic treatment method of the present invention preferably has a size of 1.0 to 5.0 mm and a sedimentation speed of 100 to 500 m / hr.
 担体の大きさが大き過ぎると反応槽体積当りの表面積が小さくなり、小さ過ぎると沈降速度が遅くなり、処理水との分離が困難になる。本発明で用いる担体の特に好ましい大きさは2.5~4.0mmである。 If the size of the support is too large, the surface area per volume of the reaction vessel will be small, and if it is too small, the sedimentation rate will be slow and separation from the treated water will be difficult. The particularly preferred size of the carrier used in the present invention is 2.5 to 4.0 mm.
 担体の大きさとは、通常「粒径」と称されるものであり、例えば直方体形状の担体であればその長辺の長さをさし、立方体形状の担体であればその一辺の長さをさし、円柱形状の担体であれば直径又は円柱の高さのうちいずれか大きい方をさす。また、これらの形状以外の異形形状の担体であれば、担体を2枚の平行な板で挟んだときに、この板の間隔が最も大きくなる部位の板の間隔をさす。 The size of the carrier is usually referred to as “particle size”. For example, in the case of a rectangular parallelepiped carrier, the length of its long side is referred to, and in the case of a cubic carrier, the length of one side thereof is defined. In the case of a cylindrical carrier, the larger one of the diameter and the height of the cylinder is meant. Further, in the case of a carrier having an irregular shape other than these shapes, when the carrier is sandwiched between two parallel plates, the interval between the plates where the interval between the plates becomes the largest is given.
 本発明において、担体の大きさは、その平均値が1.0~5.0mm、好ましくは2.5~4.0mmの範囲であればよく、すべての担体の大きさがこの範囲でなくてもよい。 In the present invention, the average size of the carrier may be 1.0 to 5.0 mm, preferably 2.5 to 4.0 mm, and all the carrier sizes are not in this range. Also good.
 担体の沈降速度が小さすぎると、水流や発生ガスにより浮上し易く、水面近くにスカム状に蓄積してしまう。即ち、非生物担体を用いる方法の場合、表面に生物膜が形成され、生物膜内部でガスが発生する反応が進行するため、担体の見かけ比重は生物膜の形成に伴って小さくなっていく。この生物膜の影響を考慮して、担体自体の比重、沈降速度を決定する必要がある。逆に、担体の沈降速度が大きすぎると被処理水との接触効率が悪くなり、十分な処理効率が得られない、或いは担体の堆積層に固形物が蓄積して流路が閉塞するといった弊害が出る。本発明で用いる担体の好ましい沈降速度は100~500m/hrである。 If the sedimentation speed of the carrier is too small, it will easily float due to water flow and generated gas, and will accumulate in the form of scum near the water surface. That is, in the case of a method using a non-biological carrier, a biofilm is formed on the surface, and a reaction in which gas is generated proceeds inside the biofilm, so that the apparent specific gravity of the carrier decreases with the formation of the biofilm. In consideration of the influence of this biofilm, it is necessary to determine the specific gravity and sedimentation rate of the carrier itself. Conversely, if the sedimentation rate of the carrier is too high, the contact efficiency with the water to be treated will be poor, and sufficient treatment efficiency will not be obtained, or solid matter will accumulate in the deposited layer of the carrier and the channel will be blocked. coming out. The preferred sedimentation rate of the carrier used in the present invention is 100 to 500 m / hr.
 担体の沈降速度とは、担体を水(水道水等の清水)に浸して沈んだものを取り出し、これを水(水道水等の清水)に入れたメスシリンダーに投入し、単位時間当たりの沈降距離を測定して求められた値であり、本発明においては、10~20個の担体について測定を行い、その平均値を沈降速度とした。 The sedimentation speed of the carrier is the amount of sedimentation by submerging the carrier in water (fresh water such as tap water), taking it into a graduated cylinder in water (fresh water such as tap water) This is a value obtained by measuring the distance. In the present invention, 10 to 20 carriers were measured, and the average value was taken as the sedimentation velocity.
 本発明で用いる担体は、沈降速度と担体の大きさが上記所定条件を満たし、菌を保持できるものであれば特に限定されるものではない。発泡体、未発泡体またはゲル体も可能である。特に以下の(I)及び/又は(II)の発泡体よりなるものであり、このような樹脂発泡体よりなるものであれば、比重や粒径の調整が容易である点においても好ましい。
(I) ポリオレフィン系樹脂を主体とする樹脂成分30~95重量%と、セルロース系粉末の親水化剤5~70重量%とを含む発泡体であって、表面がメルトフラクチャー状態を有する発泡体(以下「発泡体(I)」と記載する場合がある。)
(II) ポリオレフィン系樹脂を主体とする樹脂成分30~95重量%と、セルロース系粉末の親水化剤4~69重量%と、無機粉末1~30重量%とを含む発泡体であって、表面がメルトフラクチャー状態を有する発泡体(以下「発泡体(II)」と記載する場合がある。)
The carrier used in the present invention is not particularly limited as long as the sedimentation rate and the carrier size satisfy the above-mentioned predetermined conditions and can retain bacteria. Foam, unfoamed or gel bodies are also possible. In particular, it is made of a foam of the following (I) and / or (II), and if it is made of such a resin foam, it is preferable in terms of easy adjustment of specific gravity and particle size.
(I) A foam containing 30 to 95% by weight of a resin component mainly composed of a polyolefin resin and 5 to 70% by weight of a hydrophilizing agent for cellulose powder, the surface of which has a melt fracture state ( Hereinafter, it may be referred to as “foam (I)”.
(II) A foam comprising 30 to 95% by weight of a resin component mainly composed of a polyolefin resin, 4 to 69% by weight of a hydrophilizing agent for cellulose powder, and 1 to 30% by weight of an inorganic powder, Has a melt fractured state (hereinafter sometimes referred to as “foam (II)”)
 ポレオレフィン樹脂でも沈降速度や担体の大きさが上記所定条件を満たせば、発泡体でなくても良く、親水化剤が含まれていなくても良い。ゲル体の材質についても特に制限はなく、ポリビニルアルコール(PVA)、ポリエチレングリコール(PEG)、アクリルアミド、およびポリアクリル酸等が挙げられる。 The polyolefin resin may not be a foam and may not contain a hydrophilizing agent as long as the sedimentation rate and the size of the carrier satisfy the above predetermined conditions. There is no restriction | limiting in particular also about the material of a gel body, Polyvinyl alcohol (PVA), polyethyleneglycol (PEG), acrylamide, polyacrylic acid, etc. are mentioned.
 ここでメルトフラクチャーとは、プラスチック成形時に、成形品の表面に凹凸が生じる現象(平滑な表面を有さない状態)として、一般的に知られている。例えば、プラスチック材料の押出成形において、押出機の内圧が著しく高くなったり、押出速度が著しく大きくなったり、或いは、プラスチック材料の温度が低くなりすぎたりしたとき、成形品の表面に不規則な凹凸が生じたり、表面の光沢を失ったりする現象をいう。 Here, melt fracture is generally known as a phenomenon in which irregularities are generated on the surface of a molded product during plastic molding (a state having no smooth surface). For example, in the extrusion molding of plastic material, when the internal pressure of the extruder becomes extremely high, the extrusion speed becomes extremely large, or the temperature of the plastic material becomes too low, irregular irregularities on the surface of the molded product This refers to a phenomenon in which surface gloss or surface gloss is lost.
 発泡体(I),(II)を構成する樹脂成分として好ましいものは、ポリエチレン(以下、単に「PE」と略記する場合がある。)、ポリプロピレン(以下、単に「PP」と略記する場合がある。)、エチレン-酢酸ビニル共重合体(以下、単に「EVA」と略記する場合がある。)等が挙げられる。これらの樹脂を単独で用いてもよく、適宜組み合わせた混合物として用いてもよい。また、発泡体(I),(II)を構成する樹脂成分は、ポリオレフィン系樹脂に他の熱可塑性樹脂成分を加えたものであってもよい。他の熱可塑性樹脂成分として、ポリスチレン(以下、単に「PS」と略記する場合がある。)、ポリエチレンテレフタレート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリカーボネート、ポリウレタン、ポリアミド、ポリアセタール、ポリ乳酸、ポリメチルメタクリレート、ABS樹脂等が挙げられる。 Preferred resin components constituting the foams (I) and (II) are polyethylene (hereinafter sometimes simply abbreviated as “PE”), polypropylene (hereinafter simply abbreviated as “PP”). And ethylene-vinyl acetate copolymer (hereinafter sometimes simply referred to as “EVA”). These resins may be used alone or as a mixture appropriately combined. Further, the resin component constituting the foams (I) and (II) may be one obtained by adding another thermoplastic resin component to a polyolefin resin. As other thermoplastic resin components, polystyrene (hereinafter sometimes abbreviated as “PS”), polyethylene terephthalate, polyvinyl chloride, polyvinylidene chloride, polycarbonate, polyurethane, polyamide, polyacetal, polylactic acid, polymethyl methacrylate , ABS resin and the like.
 発泡体(I),(II)を構成する樹脂成分としてはポリエチレンが特に好ましいが、PEと他のポリオレフィン系樹脂等との混合物、例えば、PEとPPの混合物、PEとEVAの混合物、PEとPPとEVAの混合物、PEとPPとPSの混合物、PEとPPとEVAとPSの混合物、或いはこれらに更に他の熱可塑性樹脂を混合した混合物でもよい。具体的には、PE、PP、EVA、PSを含む他の熱可塑性樹脂の組成比(重量比)が、樹脂全体を100として、PE:PP:EVA:PSを含む他の熱可塑性樹脂=100~60:40~0:20~0:15~0となることが好ましい。なお、担体の耐摩耗性を高めるためには、樹脂成分中にEVAを10重量%以上含有させることが好ましい。また、これらの樹脂成分は再生樹脂であってもよい。 Polyethylene is particularly preferable as the resin component constituting the foams (I) and (II), but a mixture of PE and other polyolefin resins, for example, a mixture of PE and PP, a mixture of PE and EVA, PE and It may be a mixture of PP and EVA, a mixture of PE, PP and PS, a mixture of PE, PP, EVA and PS, or a mixture obtained by further mixing other thermoplastic resins. Specifically, the composition ratio (weight ratio) of other thermoplastic resins including PE, PP, EVA, PS is 100, and other thermoplastic resins including PE: PP: EVA: PS = 100. It is preferably ˜60: 40 to 0:20 to 0:15 to 0. In order to improve the wear resistance of the carrier, it is preferable to contain 10% by weight or more of EVA in the resin component. These resin components may be recycled resins.
 親水化剤としてのセルロース系粉末としては、木粉、セルロース粉末、麻セルロース粉末などが挙げられ、おがくず、アビセル、アーボセル、紙粉、セルロースビーズ、微結晶セルロース、ミクロフィブリル化セルロースなどが例示されるが、特に木粉を用いることが好ましい。これらはいずれかを単独で用いてもよく、また、2種類以上を任意の割合で混合して用いてもよい。 Examples of the cellulose-based powder as the hydrophilizing agent include wood powder, cellulose powder, hemp cellulose powder and the like, and sawdust, avicel, arbocel, paper powder, cellulose beads, microcrystalline cellulose, microfibrillated cellulose and the like are exemplified. However, it is particularly preferable to use wood flour. Any of these may be used alone, or two or more of them may be mixed and used in an arbitrary ratio.
 親水化剤の形状は、球状、楕円状、くさび状、ウィスカー状、繊維状などであるが、これら以外の形状であってもよい。また、親水化剤の粒径は200メッシュパス品、好ましくは100メッシュパス品、さらに好ましくは40メッシュパス品がよい。 The shape of the hydrophilizing agent is spherical, elliptical, wedge-shaped, whisker-shaped, fibrous or the like, but other shapes may be used. The particle size of the hydrophilizing agent is 200 mesh pass product, preferably 100 mesh pass product, more preferably 40 mesh pass product.
 本発明において、親水化剤は、独立気泡を有する発泡体に対し、水浸透機能を付与する役割を有するが、そのためには親水化剤は、発泡体の表面に露出ないし突出していることが望ましい。ここで露出とは、発泡体表面に親水化剤の表面の一部が出現していることを意味し、突出とは、発泡体表面から親水化剤の一部が突き出ていることを意味する。即ち、露出ないし突出しているとは、発泡体中に親水化剤の全体あるいは一部が埋没しており、かつ、発泡体表面に親水化剤の表面の一部が現れている状態、あるいは、親水化剤の一部が発泡体表面に突き出ている状態を意味する。 In the present invention, the hydrophilizing agent has a role of imparting a water permeation function to the foam having closed cells. For this purpose, the hydrophilizing agent is desirably exposed or protruded from the surface of the foam. . Here, exposure means that part of the surface of the hydrophilizing agent appears on the foam surface, and protrusion means that part of the hydrophilizing agent protrudes from the foam surface. . That is, being exposed or protruding means that the whole or part of the hydrophilizing agent is buried in the foam and a part of the surface of the hydrophilizing agent appears on the foam surface, or It means a state in which a part of the hydrophilizing agent protrudes from the foam surface.
 発泡体(II)に用いられる無機粉末としては、硫酸バリウム、炭酸カルシウム、ゼオライト、タルク、酸化チタン、チタン酸カリウム、水酸化アルミニウム等が挙げられ、特に硫酸バリウムを用いることが好ましい。これらの無機粉末は、いずれかを単独で用いてもよく、2種類以上の無機粉末を用いてもよい。 Examples of the inorganic powder used for the foam (II) include barium sulfate, calcium carbonate, zeolite, talc, titanium oxide, potassium titanate, and aluminum hydroxide, and barium sulfate is particularly preferable. Any of these inorganic powders may be used alone, or two or more kinds of inorganic powders may be used.
 見かけ容積から求められる比重が上記下限より小さくても大きくても、前述の本発明で規定される沈降速度を満足し得なくなる場合がある。発泡体の見かけ容積から求められる比重とは、発泡体を50mlメスシリンダーに見かけ容積で30ml量り取り、その重量から算出して求めた値(単位:g/ml)であって、実質的な比重を示すものとする。これは、発泡体(I),(II)が、その表面にメルトラクチャー状態を有しているため、真の体積を測定するのが非常に困難なためである。以下において、発泡体の見かけ容積から求められる比重を、単に「比重」と称す。 Even if the specific gravity calculated from the apparent volume is smaller or larger than the above lower limit, the settling velocity defined in the present invention may not be satisfied. The specific gravity obtained from the apparent volume of the foam is a value (unit: g / ml) obtained by measuring 30 ml of the foam in an apparent volume in a 50 ml graduated cylinder and calculating the weight. It shall be shown. This is because the foams (I) and (II) have a melt-lacquered state on the surface, and it is very difficult to measure the true volume. Hereinafter, the specific gravity obtained from the apparent volume of the foam is simply referred to as “specific gravity”.
 発泡体(I),(II)は、前述のポリオレフィン系樹脂、親水化剤、更には無機粉末を溶融混練し、更に発泡剤を溶融混練して得られた混合物を発泡させた後、所定の大きさにカットすることにより製造することができる。 Foams (I) and (II) are prepared by melting and kneading the above-mentioned polyolefin resin, hydrophilizing agent, and further inorganic powder, and further foaming a mixture obtained by melting and kneading the foaming agent. It can be manufactured by cutting into a size.
 発泡剤としては、重炭酸ナトリウム(重曹)、アゾジカルボンアミドなどが挙げられる。発泡剤は、これらに制限されるものではなく、化学的発泡剤や物理的発泡剤などが挙げられる。 Examples of foaming agents include sodium bicarbonate (sodium bicarbonate) and azodicarbonamide. A foaming agent is not restricted to these, A chemical foaming agent, a physical foaming agent, etc. are mentioned.
 以下に実施例及び比較例を挙げて本発明をより具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
[実施例1~3、比較例1~4]
 図1に示す嫌気性処理装置により、CODCr濃度:5000mg/L、SS:1500mg/L、T-N:250mgN/L、T-P:30mg/L、pH:5.0の食品系排水を原水として通水試験を行った。
[Examples 1 to 3, Comparative Examples 1 to 4]
By using the anaerobic treatment apparatus shown in FIG. 1, food wastewater having a COD Cr concentration of 5000 mg / L, SS: 1500 mg / L, TN: 250 mg N / L, TP: 30 mg / L, pH: 5.0 is discharged. A water flow test was conducted as raw water.
 この嫌気性処理装置では、原水を酸生成槽1で処理した後、ポンプPでpH調整槽2に送給してpH調整し、pH調整水をポンプPにより流動性非生物担体4を充填した反応槽3に上向流で通水して処理する。反応槽3の流出水は一部が循環水としてpH調整槽2に循環され、残部が処理水として系外へ排出される。酸生成槽1及びpH調整槽2には、pH調整のためにアルカリ剤として水酸化ナトリウムが添加される。1A,2AはpH計であり、1B,2Bは撹拌機、3Aはスクリーンである。 In this anaerobic treatment device, after processing the raw water with acid production tank 1, and pH adjusted feed to pH adjustment tank 2 by pump P 1, the flowable non-biological carrier 4 pH adjustment water by a pump P 2 The packed reaction tank 3 is treated by passing water upward. A part of the effluent water from the reaction tank 3 is circulated to the pH adjustment tank 2 as circulating water, and the remainder is discharged out of the system as treated water. Sodium hydroxide is added to the acid generation tank 1 and the pH adjustment tank 2 as an alkaline agent for pH adjustment. 1A and 2A are pH meters, 1B and 2B are stirrers, and 3A is a screen.
 酸生成槽1、pH調整槽2及び反応槽3の処理条件は以下の通りとした。
<酸生成槽>
 容量:5L
 HRT:4hr
 pH:6.5
 温度:35℃
The treatment conditions of the acid generation tank 1, the pH adjustment tank 2, and the reaction tank 3 were as follows.
<Acid production tank>
Capacity: 5L
HRT: 4 hours
pH: 6.5
Temperature: 35 ° C
<pH調整槽2>
 容量:1L
 pH:7.0
<反応槽>
 容量:約7.5L(直径15cm、高さ約50cm)
 HRT:6hr
 上昇流速(LV):3~4m/hr
 pH:7.0
 担体充填率:40%
<PH adjustment tank 2>
Capacity: 1L
pH: 7.0
<Reaction tank>
Capacity: Approximately 7.5L (diameter 15cm, height approximately 50cm)
HRT: 6 hr
Ascending flow velocity (LV): 3-4m / hr
pH: 7.0
Carrier filling rate: 40%
 用いた流動性非生物担体の仕様は表1に示す通りであり、発泡体の構成材料としてのポリオレフィン系樹脂としては、ポリエチレンを用い、親水化剤としては、だ円形状で、100メッシュパスの木粉を用い、無機粉末としては硫酸バリウムを用いた。また、担体はいずれも円柱形状であり、担体の大きさとはその円柱の高さである。 The specifications of the flowable non-biological carrier used are as shown in Table 1. Polyolefin resin is used as the constituent material of the foam and polyethylene is used as the hydrophilizing agent. Wood powder was used, and barium sulfate was used as the inorganic powder. Each carrier has a cylindrical shape, and the size of the carrier is the height of the column.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 処理水量は約30L/dayとし、処理開始に当っては、反応槽3に微生物付着済みの担体を充填率40%にて充填した。 The amount of treated water was about 30 L / day, and at the start of the treatment, the reaction tank 3 was filled with a carrier with microorganisms attached at a filling rate of 40%.
 実施例1及び比較例4のCODCr濃度の経時変化を図4(実施例1)、図5(比較例4)に示す。 FIG. 4 (Example 1) and FIG. 5 (Comparative Example 4) show the changes over time in the COD Cr concentration of Example 1 and Comparative Example 4.
<考察>
 実施例1~3では、担体の浮上、固着による閉塞現象を起こすことなく、安定して処理することができる。(CODCr濃度変化は、代表として実施例1のみ図4に表示されている。実施例2,3については、CODCr濃度変化は実施例1とほぼ同じであることが認められた。)比較例1では、SSにより担体が浮上、処理不能となった。比較例2では、SSにより担体が固着、閉塞し、処理不能となった。比較例3では、SSにより担体が浮上、処理不能となった。比較例4では、担体の浮上、固着による閉塞は見られなかったが、図5に示すように処理水のCODCr濃度が実施例1の図1に比べて高い、またばらつきも大きく、処理能力が低下している。
<Discussion>
In Examples 1 to 3, the carrier can be stably processed without causing a blocking phenomenon due to the floating and fixing of the carrier. (The COD Cr concentration change is representatively shown in FIG. 4 only for Example 1. As for Examples 2 and 3, it was recognized that the COD Cr concentration change was almost the same as Example 1.) Comparison In Example 1, the carrier floated due to SS and became unprocessable. In Comparative Example 2, the carrier was fixed and blocked by SS, making it impossible to process. In Comparative Example 3, the carrier floated due to SS and became unprocessable. In Comparative Example 4, no clogging due to floating and sticking of the carrier was observed, but as shown in FIG. 5, the COD Cr concentration of the treated water was higher than that of FIG. Has fallen.
[実施例4]
 図2の通り、pH調整槽2を設置せず、また反応槽を下記の完全混合型反応槽3’(担体には、実施例1~3と同じく予め微生物を付着させておいた。)としたこと以外は実施例1と同様にして前記食品系排水の処理を行った。3CはpH計、3Bは攪拌機である。CODCr濃度の経時変化を図6に示す。
 完全混合型では、沈降速度が小さい担体を用いるとSSが付着し浮上するため長期間運転では処理水濃度が悪化すること、沈降速度が大きい担体を用いると反応槽内で担体を均一に流動させるために攪拌に多大なエネルギーを要することが課題である。
<完全混合型反応槽>
 容量:約7.5L
 HRT:6hr
 pH:7.0
 担体充填率:40%
 温度:35℃
[Example 4]
As shown in FIG. 2, the pH adjustment tank 2 was not installed, and the reaction tank was the following fully mixed reaction tank 3 ′ (microorganisms were previously attached to the carrier as in Examples 1 to 3). The food wastewater was treated in the same manner as in Example 1 except that. 3C is a pH meter, and 3B is a stirrer. FIG. 6 shows the change over time in the COD Cr concentration.
In the complete mixing type, if a carrier with a low sedimentation rate is used, SS adheres and floats, so the concentration of treated water deteriorates during long-term operation. If a carrier with a high sedimentation rate is used, the carrier flows uniformly in the reaction vessel. Therefore, it is a problem that much energy is required for stirring.
<Completely mixed reaction tank>
Capacity: Approximately 7.5L
HRT: 6 hr
pH: 7.0
Carrier filling rate: 40%
Temperature: 35 ° C
[比較例5]
 図3の通り、反応槽を下記のグラニュール反応槽3’’としたこと以外は実施例1と同様にして前記食品系排水の処理を行った。4’はグラニュール、3Dは気固液分離装置(GSS)を示す。CODCr濃度の経時変化を図7に示す。この比較例5では、グラニュールがSSにより上昇して、反応槽外に流出し、反応槽内の汚泥が減少して処理能力が低下したため、水質が悪化した。
<グラニュール槽>
 容量:約7.5L
 HRT:6hr
 pH:7.0
 温度:35℃
 グラニュール:ビール工場UASB設備のグラニュールを4L投入
[Comparative Example 5]
As shown in FIG. 3, the food wastewater was treated in the same manner as in Example 1 except that the reaction vessel was the following granule reaction vessel 3 ″. 4 'is a granule, and 3D is a gas-solid-liquid separator (GSS). FIG. 7 shows the change over time in the COD Cr concentration. In Comparative Example 5, the granule was raised by SS and flowed out of the reaction tank, the sludge in the reaction tank was reduced and the treatment capacity was lowered, so the water quality deteriorated.
<Granule tank>
Capacity: Approximately 7.5L
HRT: 6 hr
pH: 7.0
Temperature: 35 ° C
Granule: 4L of beer factory UASB equipment granule introduced
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2013年3月27日付で出願された日本特許出願2013-066782に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2013-066782 filed on March 27, 2013, which is incorporated by reference in its entirety.
 1 酸生成槽
 2 pH調整槽
 3,3’,3’’ 反応槽
 4 流動性非生物担体
1 Acid generation tank 2 pH adjustment tank 3, 3 ′, 3 ″ reaction tank 4 Fluid non-biological carrier

Claims (11)

  1.  固形物濃度1000~30000mg/Lの有機性排水を、流動性の非生物担体を有する嫌気性反応槽にて処理する工程を有する嫌気性処理方法であって、前記担体の大きさが1.0~5.0mmであり、該担体の沈降速度が100~500m/hrであることを特徴とする嫌気性処理方法。 An anaerobic treatment method comprising a step of treating an organic waste water having a solid concentration of 1000 to 30000 mg / L in an anaerobic reaction tank having a fluid non-biological carrier, wherein the carrier has a size of 1.0. An anaerobic treatment method, wherein the carrier has a sedimentation speed of 100 to 500 m / hr.
  2.  請求項1において、前記有機性排水を固形物除去処理することなく前記反応槽に通水することを特徴とする嫌気性処理方法。 The anaerobic treatment method according to claim 1, wherein the organic waste water is passed through the reaction tank without being subjected to a solid substance removal treatment.
  3.  請求項1又は2において、反応槽の水理学的滞留時間を1~120hrとすることを特徴とする嫌気性処理方法。 3. The anaerobic treatment method according to claim 1, wherein the hydraulic residence time in the reaction tank is 1 to 120 hours.
  4.  請求項1ないし3のいずれか1項において、有機性排水を酸生成槽を通した後、前記反応槽に通水することを特徴とする嫌気性処理方法。 The anaerobic treatment method according to any one of claims 1 to 3, wherein the organic waste water is passed through the acid generation tank and then passed through the reaction tank.
  5.  請求項1ないし4のいずれか1項において、前記反応槽が完全混合型反応槽であることを特徴とする嫌気性処理方法。 The anaerobic treatment method according to any one of claims 1 to 4, wherein the reaction vessel is a complete mixing type reaction vessel.
  6.  請求項1ないし4のいずれか1項において、前記反応槽が上向流型反応槽であることを特徴とする嫌気性処理方法。 The anaerobic treatment method according to any one of claims 1 to 4, wherein the reaction vessel is an upward flow type reaction vessel.
  7.  請求項1において、前記有機性排水のCODCr濃度が1000~60000mg/Lであることを特徴とする嫌気性処理方法。 The anaerobic treatment method according to claim 1, wherein the COD Cr concentration of the organic waste water is 1000 to 60000 mg / L.
  8.  請求項4において、前記酸生成槽の処理条件は、pH5~8、温度20~40℃、水理学的滞留時間2~24hrであることを特徴とする嫌気性処理方法。 5. The anaerobic treatment method according to claim 4, wherein the treatment conditions of the acid generation tank are pH 5 to 8, temperature 20 to 40 ° C., and hydraulic residence time 2 to 24 hours.
  9.  請求項5において、前記完全混合型反応槽の処理条件が以下の通りであるであることを特徴とする嫌気性処理方法。
     担体充填率:10~30%
     水理学的滞留時間:1.0~24hr
     槽負荷:4.0~12.0kg-CODCr/m/day
     汚泥負荷:0.8~3.0kg-CODCr/kg-VSS/day
     pH:6.5~7.5
     温度:25~38℃
    6. The anaerobic treatment method according to claim 5, wherein the treatment conditions of the complete mixing type reaction vessel are as follows.
    Carrier filling rate: 10-30%
    Hydrological residence time: 1.0-24 hr
    Tank load: 4.0 to 12.0 kg-COD Cr / m 3 / day
    Sludge load: 0.8-3.0kg-COD Cr / kg-VSS / day
    pH: 6.5-7.5
    Temperature: 25-38 ° C
  10.  請求項6において、前記上向流型反応槽の処理条件が以下の通りであるであることを特徴とする嫌気性処理方法。
     担体充填率:10~80%
     水理学的滞留時間:1.0~24hr
     上昇流速(LV):1.0~20m/hr
     槽負荷:4.0~32kg-CODCr/m/day
     汚泥負荷:0.8~3.0kg-CODCr/kg-VSS/day
     pH:6.5~7.5
     温度:25~38℃
    The anaerobic treatment method according to claim 6, wherein treatment conditions of the upward flow type reaction tank are as follows.
    Carrier filling rate: 10-80%
    Hydrological residence time: 1.0-24 hr
    Ascending flow velocity (LV): 1.0-20m / hr
    Tank load: 4.0 to 32 kg-COD Cr / m 3 / day
    Sludge load: 0.8-3.0kg-COD Cr / kg-VSS / day
    pH: 6.5-7.5
    Temperature: 25-38 ° C
  11.  請求項1において、前記担体が、以下の(I)及び/又は(II)の発泡体よりなることを特徴とする嫌気性処理方法。
    (I) ポリオレフィン系樹脂を主体とする樹脂成分30~95重量%と、セルロース系粉末の親水化剤5~70重量%とを含む発泡体であって、表面がメルトフラクチャー状態を有する発泡体
    (II) ポリオレフィン系樹脂を主体とする樹脂成分30~95重量%と、セルロース系粉末の親水化剤4~69重量%と、無機粉末1~30重量%とを含む発泡体であって、表面がメルトフラクチャー状態を有する発泡体
    2. The anaerobic treatment method according to claim 1, wherein the carrier comprises the following foam (I) and / or (II).
    (I) A foam containing 30 to 95% by weight of a resin component mainly composed of a polyolefin resin and 5 to 70% by weight of a hydrophilizing agent for cellulose powder, the surface of which has a melt fracture state ( II) A foam containing 30 to 95% by weight of a resin component mainly composed of a polyolefin resin, 4 to 69% by weight of a hydrophilizing agent for cellulose powder, and 1 to 30% by weight of an inorganic powder, Foam having melt fracture state
PCT/JP2014/050228 2013-03-27 2014-01-09 Anaerobic treatment method WO2014156216A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157025604A KR20150137061A (en) 2013-03-27 2014-01-09 Anaerobic treatment method
CN201480018707.3A CN105102378A (en) 2013-03-27 2014-01-09 Anaerobic treatment method
JP2015508103A JPWO2014156216A1 (en) 2013-03-27 2014-01-09 Anaerobic treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-066782 2013-03-27
JP2013066782 2013-03-27

Publications (1)

Publication Number Publication Date
WO2014156216A1 true WO2014156216A1 (en) 2014-10-02

Family

ID=51623222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050228 WO2014156216A1 (en) 2013-03-27 2014-01-09 Anaerobic treatment method

Country Status (5)

Country Link
JP (1) JPWO2014156216A1 (en)
KR (1) KR20150137061A (en)
CN (1) CN105102378A (en)
TW (1) TW201446660A (en)
WO (1) WO2014156216A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016007574A (en) * 2014-06-24 2016-01-18 オルガノ株式会社 Anaerobic biological treatment device and anaerobic biological treatment method
JP2017176958A (en) * 2016-03-29 2017-10-05 株式会社クラレ Method of treating waste water using carrier
JP2018015692A (en) * 2016-07-26 2018-02-01 水ing株式会社 Method for anaerobically treating organic waste water
JP2020157278A (en) * 2019-03-28 2020-10-01 住友重機械エンバイロメント株式会社 Anaerobic treatment apparatus and anaerobic treatment method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110776694A (en) * 2019-11-30 2020-02-11 苏州和塑美科技有限公司 Environment-friendly water purification functional master batch and preparation method thereof

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157398A (en) * 1984-12-28 1986-07-17 Kurita Water Ind Ltd Fluidized bed type waste water treatment apparatus
JPS61171600A (en) * 1985-01-25 1986-08-02 Kurita Water Ind Ltd Treatment of high concentration organic waste liquid such as sludge
JPS61242696A (en) * 1985-04-19 1986-10-28 Kubota Ltd Method for fermenting methane
JPH02207899A (en) * 1989-02-07 1990-08-17 Akua Runesansu Gijutsu Kenkyu Kumiai Anaerobic two-phase type waste water treating system incorporating separator
JPH0490897A (en) * 1990-08-03 1992-03-24 Snow Brand Milk Prod Co Ltd Anaerobic treatment of high concentration organic waste water
JPH04180896A (en) * 1990-11-15 1992-06-29 Kirin Brewery Co Ltd Anaerobic waste water treatment apparatus
JPH05138192A (en) * 1991-11-21 1993-06-01 Sanki Eng Co Ltd Anaerobic treatment of high-concentration organic waste water containing organic suspended solid and equipment thereof
JPH0975982A (en) * 1995-09-07 1997-03-25 Nisshin Seito Kk Mixed bed type anaerobic treatment device for organic waste water
JP2004358391A (en) * 2003-06-05 2004-12-24 Kurita Water Ind Ltd Treatment method and treatment apparatus of organic waste
JP2009066592A (en) * 2007-08-23 2009-04-02 Nisshinbo Ind Inc Carrier for treating fluid and method for manufacturing the same
JP2011212513A (en) * 2010-03-31 2011-10-27 Mitsui Eng & Shipbuild Co Ltd Microbial treatment system
WO2012070493A1 (en) * 2010-11-26 2012-05-31 栗田工業株式会社 Anaerobic treatment method
WO2012070459A1 (en) * 2010-11-24 2012-05-31 栗田工業株式会社 Method and apparatus for anaerobic treatment
JP2012143673A (en) * 2011-01-07 2012-08-02 Kurita Water Ind Ltd Fluidized bed type biological treatment apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2729623B2 (en) * 1988-03-03 1998-03-18 建設省土木研究所長 Anaerobic fluidized bed digestion method
CN1258485C (en) * 2003-12-23 2006-06-07 清华大学 Process for treating waste water by aerobic-anaerobic microbic repeated coupling

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157398A (en) * 1984-12-28 1986-07-17 Kurita Water Ind Ltd Fluidized bed type waste water treatment apparatus
JPS61171600A (en) * 1985-01-25 1986-08-02 Kurita Water Ind Ltd Treatment of high concentration organic waste liquid such as sludge
JPS61242696A (en) * 1985-04-19 1986-10-28 Kubota Ltd Method for fermenting methane
JPH02207899A (en) * 1989-02-07 1990-08-17 Akua Runesansu Gijutsu Kenkyu Kumiai Anaerobic two-phase type waste water treating system incorporating separator
JPH0490897A (en) * 1990-08-03 1992-03-24 Snow Brand Milk Prod Co Ltd Anaerobic treatment of high concentration organic waste water
JPH04180896A (en) * 1990-11-15 1992-06-29 Kirin Brewery Co Ltd Anaerobic waste water treatment apparatus
JPH05138192A (en) * 1991-11-21 1993-06-01 Sanki Eng Co Ltd Anaerobic treatment of high-concentration organic waste water containing organic suspended solid and equipment thereof
JPH0975982A (en) * 1995-09-07 1997-03-25 Nisshin Seito Kk Mixed bed type anaerobic treatment device for organic waste water
JP2004358391A (en) * 2003-06-05 2004-12-24 Kurita Water Ind Ltd Treatment method and treatment apparatus of organic waste
JP2009066592A (en) * 2007-08-23 2009-04-02 Nisshinbo Ind Inc Carrier for treating fluid and method for manufacturing the same
JP2011212513A (en) * 2010-03-31 2011-10-27 Mitsui Eng & Shipbuild Co Ltd Microbial treatment system
WO2012070459A1 (en) * 2010-11-24 2012-05-31 栗田工業株式会社 Method and apparatus for anaerobic treatment
WO2012070493A1 (en) * 2010-11-26 2012-05-31 栗田工業株式会社 Anaerobic treatment method
JP2012143673A (en) * 2011-01-07 2012-08-02 Kurita Water Ind Ltd Fluidized bed type biological treatment apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016007574A (en) * 2014-06-24 2016-01-18 オルガノ株式会社 Anaerobic biological treatment device and anaerobic biological treatment method
JP2017176958A (en) * 2016-03-29 2017-10-05 株式会社クラレ Method of treating waste water using carrier
JP2018015692A (en) * 2016-07-26 2018-02-01 水ing株式会社 Method for anaerobically treating organic waste water
JP2020157278A (en) * 2019-03-28 2020-10-01 住友重機械エンバイロメント株式会社 Anaerobic treatment apparatus and anaerobic treatment method
JP7266440B2 (en) 2019-03-28 2023-04-28 住友重機械エンバイロメント株式会社 Anaerobic treatment apparatus and anaerobic treatment method

Also Published As

Publication number Publication date
TW201446660A (en) 2014-12-16
CN105102378A (en) 2015-11-25
JPWO2014156216A1 (en) 2017-02-16
KR20150137061A (en) 2015-12-08

Similar Documents

Publication Publication Date Title
JP5949554B2 (en) Anaerobic treatment method
WO2012070459A1 (en) Method and apparatus for anaerobic treatment
WO2014156216A1 (en) Anaerobic treatment method
Dereli et al. Treatment of cheese whey by a cross-flow anaerobic membrane bioreactor: Biological and filtration performance
Chen et al. Evaluation of a sponge assisted-granular anaerobic membrane bioreactor (SG-AnMBR) for municipal wastewater treatment
JP6491406B2 (en) Anaerobic biological treatment method and anaerobic biological treatment apparatus
JP6241187B2 (en) Anaerobic treatment method and anaerobic treatment apparatus
JP5685902B2 (en) Organic wastewater treatment method
WO2015129707A1 (en) Anaerobic water-treatment system
JP5691434B2 (en) Anaerobic treatment method and apparatus
JP5691439B2 (en) Anaerobic treatment method and apparatus
KR101650822B1 (en) Wastewater treatment and wastewater treatment method by granular for activated sludge
Shafie et al. Performance of ultrasonic-assisted membrane anaerobic system (UMAS) for membrane fouling control in palm oil mill effluent (POME) treatment
JP6612195B2 (en) Organic wastewater treatment facility and operation method thereof
Yulianto et al. Preliminary study on aerobic granular biomass formation with aerobic continuous flow reactor
Fatah et al. Treatment of wastewater resulted from sucrose, fructose and starch production by aerobic activated sludge process
Colic et al. Advanced pretreatment enables MBBR treatment of high strength candy manufacturing wastewater
JP2021194616A (en) Anaerobic wastewater treatment method
JP2018015692A (en) Method for anaerobically treating organic waste water
CN116750868A (en) Microbial flocculation granulation generator
JP2018158311A (en) Operational method of anaerobic treatment tank
JP2018015690A (en) Method for anaerobically treating organic waste water

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480018707.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775827

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508103

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157025604

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14775827

Country of ref document: EP

Kind code of ref document: A1