JP2018015692A - Method for anaerobically treating organic waste water - Google Patents

Method for anaerobically treating organic waste water Download PDF

Info

Publication number
JP2018015692A
JP2018015692A JP2016146107A JP2016146107A JP2018015692A JP 2018015692 A JP2018015692 A JP 2018015692A JP 2016146107 A JP2016146107 A JP 2016146107A JP 2016146107 A JP2016146107 A JP 2016146107A JP 2018015692 A JP2018015692 A JP 2018015692A
Authority
JP
Japan
Prior art keywords
carrier
anaerobic
sludge
reaction tank
cod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016146107A
Other languages
Japanese (ja)
Other versions
JP6675283B2 (en
Inventor
一将 蒲池
Kazumasa Kamaike
一将 蒲池
智弘 飯倉
Tomohiro Iikura
智弘 飯倉
惇太 高橋
Atsuta Takahashi
惇太 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2016146107A priority Critical patent/JP6675283B2/en
Publication of JP2018015692A publication Critical patent/JP2018015692A/en
Application granted granted Critical
Publication of JP6675283B2 publication Critical patent/JP6675283B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for treating organic waste water, wherein a starting operation period of an anaerobic reaction vessel is shortened.SOLUTION: This invention relates to an anaerobic treating method, comprising treating organic waste water by making the waste water pass through an anaerobic reaction vessel that holds a carrier capable of carrying anaerobic microorganisms, wherein granule sludge is used as a seed sludge. When starting the passage of the organic waste water through the reaction vessel, a bulk volume of the seed sludge per bulk volume of the carrier is in a ratio of 6-50 inclusive. In the CODdesign load of the anaerobic reaction vessel, by the time S-CODrejection reaches 90%, the seed sludge is additionally put at least once.SELECTED DRAWING: None

Description

本発明は、有機性廃水の嫌気性処理方法に関し、特に、嫌気性微生物を非生物担体に付着させて、非生物担体の表面に活性の高い生物膜を形成させるまでの立ち上げ運転期間を短縮した有機性廃水の嫌気性処理方法に関する。   The present invention relates to an anaerobic treatment method for organic wastewater, and in particular, shortens the startup operation period until anaerobic microorganisms adhere to a non-biological carrier to form a highly active biofilm on the surface of the non-biological carrier. The present invention relates to an anaerobic treatment method for organic wastewater.

微生物を利用した有機性廃水の処理方法として、好気性生物処理、嫌気性生物処理が挙げられる。嫌気性生物処理の中でもメタン発酵処理は、酸素のない嫌気性環境下で生育する嫌気性微生物の代謝反応を利用して、有機性廃水中の有機物をメタンガスや炭酸ガスなどに分解する生物処理方法であり、好気性生物処理と比べて、汚泥発生量が少なく、ブロワ−(曝気)などの電気代が不要なためランニングコストがかからないと言ったメリットがあるほか、発生したメタンガスを有効利用できるなどのメリットがあるため、近年、有機性廃水の処理方法として特に注目されている。   Examples of a method for treating organic waste water using microorganisms include aerobic biological treatment and anaerobic biological treatment. Among the anaerobic biological treatments, methane fermentation treatment uses a metabolic reaction of anaerobic microorganisms that grow in an anaerobic environment without oxygen to decompose organic matter in organic wastewater into methane gas, carbon dioxide, etc. Compared with aerobic biological treatment, there is a merit that the amount of sludge generated is small and no electricity costs such as blower (aeration) are required, so there is no running cost, and the generated methane gas can be used effectively In recent years, it has attracted particular attention as a method for treating organic wastewater.

メタン発酵処理方法としては、例えばUASB(Upflow Anaerobic Sludge Blanket(上向流嫌気性汚泥床)の略)法、固定床法、流動床法等などが知られている。中でも、UASB法は、メタン菌等の嫌気性菌と酸生成菌と汚泥との接触によりグラニュール状に造粒化してなるグラニュール汚泥を利用することにより、反応槽内のメタン菌の濃度を高濃度に維持できるという特徴があり、その結果、廃水中の有機物の濃度が相当高い場合でも効率よく処理できるため、有機性廃水の処理方法として国内外で普及している。しかしながら、化学工場などから排出されるメタノールやホルムアルデヒドなどの低分子有機物を主成分とする有機性廃水では、グラニュール汚泥を形成しにくく、維持しにくいという問題がある。   As the methane fermentation treatment method, for example, UASB (abbreviation of Upflow Anaerobic Sludge Blanket) method, fixed bed method, fluidized bed method and the like are known. In particular, the UASB method uses granule sludge that is granulated into granules by contact with anaerobic bacteria such as methane bacteria, acid-producing bacteria, and sludge, thereby reducing the concentration of methane bacteria in the reaction tank. As a result, it can be maintained at a high concentration, and as a result, it can be efficiently treated even when the concentration of organic matter in the wastewater is considerably high. However, organic wastewater mainly composed of low molecular organic substances such as methanol and formaldehyde discharged from chemical factories has a problem that it is difficult to form and maintain granular sludge.

また、CODCr(二クロム酸カリウムによる酸素要求量)が2000mg/L以下の低濃度原水を対象とする場合、一般的なUASB処理方法における設計負荷であるCODCr容積負荷10kg/(m・d)で運転しようとすると、有機性排水の通水量が過大となり、UASB反応槽内の上昇線速度LV(Liner Velocity)が3m/hを超過するため、UASB反応槽からグラニュール汚泥が流出し、UASB反応槽内での汚泥量の維持が困難となる。 Further, when COD Cr (oxygen demand by potassium dichromate) is intended for low-concentration raw water of 2000 mg / L or less, COD Cr volumetric load of 10 kg / (m 3 .multidot.m, which is a design load in a general UASB treatment method. If you try to operate in d), the amount of organic wastewater will be excessive and the linear velocity LV (Liner Velocity) in the UASB reaction tank will exceed 3 m / h, so granule sludge will flow out of the UASB reaction tank. It becomes difficult to maintain the amount of sludge in the UASB reaction tank.

UASB反応槽内に必要量の汚泥を維持する方策として、グラニュール汚泥をUASB反応槽内に非生物担体とメタン菌グラニュールとを100:5〜100:500の容積比で存在させた状態で有機性排水の通水を開始する立ち上げ運転方法が提案されている(特許文献1)。しかし、メタン菌グラニュールが非生物担体に付着して生物膜を形成するまでに時間がかかるため、非生物担体に生物膜が形成される前にグラニュール汚泥が解体されてメタン菌が流出してしまい、定常運転時に必要な量のメタン菌グラニュールを確保するためには、通水開始時に大量のグラニュール汚泥を全量投入することが必要となる。   As a measure to maintain the required amount of sludge in the UASB reaction tank, the granular sludge is present in the UASB reaction tank with a non-biological carrier and methane bacteria granules in a volume ratio of 100: 5 to 100: 500. A start-up operation method for starting the passage of organic waste water has been proposed (Patent Document 1). However, since it takes time for the methane bacteria granules to adhere to the non-biological carrier and form a biofilm, the granule sludge is disassembled before the biofilm is formed on the non-biological carrier and the methane bacterium flows out. Therefore, in order to secure the required amount of methane bacteria granules during steady operation, it is necessary to add a large amount of granular sludge at the start of water flow.

反応槽に、担体とメタン菌グラニュールを粉砕させたメタン菌凝集物を投入し、担体1Lあたりのメタン菌凝集物を1〜900gの範囲で存在させた状態で反応槽の立ち上げ運転を行うことが示されている(特許文献2)。しかし、メタン菌グラニュールを粉砕しているため、沈降速度が低下して反応槽から流出しやすくなり、立ち上げ運転中に所望の汚泥量を維持することができず、通水開始時には、流出量を見込んだ多量のメタン菌グラニュールを投入することが必要となる。   The reaction vessel is charged with methane bacterium aggregates obtained by pulverizing the carrier and methane bacterium granules, and the reaction vessel is started up in a state where methane bacterium aggregates per liter of the carrier are present in the range of 1 to 900 g. (Patent Document 2). However, because the methane bacteria granules are pulverized, the sedimentation rate is reduced and it becomes easy to flow out of the reaction tank, and the desired amount of sludge cannot be maintained during the start-up operation. It is necessary to input a large amount of methane bacteria granules in anticipation of the amount.

特許5685902号公報Japanese Patent No. 5658902 特開2014−100680号公報JP, 2014-100680, A

本発明は、嫌気性反応槽の立ち上げ運転期間を短縮した有機性廃水処理方法を提供することを目的とする。
また、本発明は、負荷変動に応じた汚泥量の維持管理の必要性を低減できる有機性廃水処理方法を提供することを目的とする。
An object of this invention is to provide the organic wastewater treatment method which shortened the starting operation period of the anaerobic reaction tank.
Another object of the present invention is to provide an organic wastewater treatment method that can reduce the need for maintenance of sludge amount according to load fluctuations.

本発明の実施態様は以下のとおりである。
[1]嫌気性微生物を担持することができる担体を保持する嫌気性反応槽に、有機性廃水を通水して処理する嫌気性処理方法であって、
種汚泥としてグラニュール汚泥を用い、
有機性廃水の通水開始時には、当該担体のかさ容量1に対して、当該種汚泥のかさ容量を6以上50以下の比率とし、
当該嫌気性反応槽のCODCr設計負荷においてS−CODCr除去率が90%に到達するまでに当該担体の追加投入を少なくとも1回行うことを特徴とする有機性廃水の嫌気性処理方法。
[2]嫌気性微生物を担持することができる担体を保持する上向流式嫌気性反応槽と、
当該上向流式嫌気性反応槽の立ち上げ運転期間中に当該担体を導入する担体導入管と、
当該担体導入管から当該上向流式嫌気性反応槽への当該担体の導入を制御する弁と、
を具備することを特徴とする有機性廃水の嫌気性処理装置。
[3]前記上向流式嫌気性反応槽の前段に設けられている酸発酵槽と、
当該酸発酵槽からの酸発酵処理水を前記上向流式嫌気性反応槽に送る酸発酵処理水導入管と、
をさらに具備することを特徴とする[2]に記載の有機性廃水の嫌気性処理装置。
Embodiments of the present invention are as follows.
[1] An anaerobic treatment method in which organic waste water is passed through an anaerobic reaction tank holding a carrier capable of supporting anaerobic microorganisms,
Granule sludge is used as seed sludge,
At the start of passing organic wastewater, the bulk capacity of the seed sludge is set to a ratio of 6 to 50 with respect to the bulk capacity 1 of the carrier,
An anaerobic treatment method for organic wastewater, wherein the carrier is additionally charged at least once before the S-COD Cr removal rate reaches 90% in the COD Cr design load of the anaerobic reaction tank.
[2] An upflow anaerobic reaction tank holding a carrier capable of supporting anaerobic microorganisms;
A carrier introduction pipe for introducing the carrier during the startup operation period of the upward flow anaerobic reaction tank;
A valve for controlling the introduction of the carrier from the carrier introduction pipe into the upward flow anaerobic reaction tank;
An anaerobic treatment apparatus for organic wastewater, comprising:
[3] An acid fermentation tank provided in a front stage of the upward flow anaerobic reaction tank;
Acid fermentation treated water introduction pipe for sending acid fermentation treated water from the acid fermentation tank to the upward flow anaerobic reaction tank;
The anaerobic treatment apparatus for organic wastewater according to [2], further comprising:

本発明の有機性廃水の嫌気性処理方法によれば、通水開始時に種汚泥となるグラニュール汚泥を担体の周囲に存在させることで担体と微生物との接触頻度を高めて、担体への生物付着を促進し、担体への微生物付着程度に応じて新たな担体を追加投入して、新たな担体の周囲には常にグラニュール汚泥又は微生物が付着した担体が存在する状態を維持することにより、汚泥負荷を制御でき、安定した処理で立ち上げが可能である。また、反応槽内に適切な嫌気性微生物量を保持することで立ち上げ期間の短縮を行うことができる。   According to the anaerobic treatment method of organic wastewater of the present invention, the granular sludge that becomes seed sludge at the start of water flow is present around the carrier to increase the contact frequency between the carrier and the microorganism, By promoting the adhesion, adding a new carrier according to the degree of microbial adhesion to the carrier, and maintaining a state where there is always a granular sludge or a carrier with microorganisms attached around the new carrier, The sludge load can be controlled, and startup is possible with stable treatment. Moreover, the start-up period can be shortened by maintaining an appropriate amount of anaerobic microorganisms in the reaction tank.

本発明の有機性廃水処理方法の一形態の概要を例示した説明図である。It is explanatory drawing which illustrated the outline | summary of one form of the organic wastewater treatment method of this invention. 嫌気性反応槽としてメタン発酵槽の概略構成の一例を示す説明図である。It is explanatory drawing which shows an example of schematic structure of a methane fermentation tank as an anaerobic reaction tank. 嫌気性反応槽としてメタン発酵槽の概略構成の別の一例を示す説明図である。It is explanatory drawing which shows another example of schematic structure of a methane fermentation tank as an anaerobic reaction tank. 正常なグラニュール汚泥断面の模式図である。It is a schematic diagram of a normal granule sludge cross section. 担体に付着したグラニュール汚泥の模式図である。It is a schematic diagram of the granular sludge adhering to a support | carrier. 比較例1のCODCr容積負荷(上段)とS−CODCr除去率(下段)の経日変化を示すグラフである。It is a graph which shows the daily change of the COD Cr volumetric load (upper stage) and the S-COD Cr removal rate (lower stage) of the comparative example 1. 比較例2のCODCr容積負荷(上段)とS−CODCr除去率(下段)の経日変化を示すグラフである。It is a graph which shows the daily change of the COD Cr volumetric load (upper stage) and the S-COD Cr removal rate (lower stage) of the comparative example 2. 実施例1のCODCr容積負荷(上段)とS−CODCr除去率(下段)の経日変化を示すグラフである。It is a graph which shows the time-dependent change of the COD Cr volumetric load (upper stage) of Example 1, and a S-COD Cr removal rate (lower stage). 実施例2のCODCr容積負荷(上段)とS−CODCr除去率(下段)の経日変化を示すグラフである。It is a graph which shows the daily change of the COD Cr volumetric load (upper stage) of Example 2, and a S-COD Cr removal rate (lower stage).

実施形態Embodiment

図1は、本発明の有機性廃水処理方法の一形態の概要を例示した説明図である。一般的に、有機性廃水処理は、原水(有機性廃水)を酸発酵処理槽にて処理した後、メタン発酵槽に導入して嫌気性処理し、得られる処理水を処理水槽に送る。処理水槽からの処理水を酸発酵槽及び/又はメタン発酵槽に戻し、槽内の上向流速の制御に用いてもよい。   FIG. 1 is an explanatory view illustrating the outline of one embodiment of the organic wastewater treatment method of the present invention. Generally, in organic wastewater treatment, raw water (organic wastewater) is treated in an acid fermentation treatment tank, then introduced into a methane fermentation tank, subjected to anaerobic treatment, and the resulting treated water is sent to the treatment water tank. The treated water from the treated water tank may be returned to the acid fermentation tank and / or the methane fermentation tank and used for controlling the upward flow rate in the tank.

本発明におけるメタン発酵槽は、上向流型反応槽に嫌気性微生物を流動性担体表面に保持する嫌気性流動床方式を採用する。嫌気性反応槽(メタン発酵槽)では、嫌気性反応により発生するバイオガス(メタンガス)が嫌気性反応槽内を上昇して、嫌気性反応槽の上部から外部に排出されて回収される。このとき、微生物を保持している担体も一緒に上昇し、嫌気性反応槽から越流として流出する可能性がある。本発明を実施する装置においては、担体が嫌気性反応槽(メタン発酵槽)から越流することを防止するために、処理水と担体を分離するスクリーンが越流口に設置されている(図2)。あるいは、嫌気性反応槽外部に越流水貯蔵部を取り付けて、担体を含む越流水を一旦貯蔵し、越流水貯蔵部からの流出部にスクリーンを設けて、担体と処理水とを分離し、担体のみを嫌気性反応槽に返送する構成としてもよい(図3)。嫌気性反応槽(メタン発酵槽)から回収されたバイオガスは、必要に応じて脱硫などのガス精製を行ったのちに、ボイラーなどで利用することができる。   The methane fermentation tank in the present invention employs an anaerobic fluidized bed system in which an anaerobic microorganism is held on the surface of a fluid carrier in an upward flow type reaction tank. In the anaerobic reaction tank (methane fermentation tank), biogas (methane gas) generated by the anaerobic reaction rises in the anaerobic reaction tank, and is discharged and recovered from the upper part of the anaerobic reaction tank. At this time, the carrier holding the microorganisms may rise together and flow out of the anaerobic reaction tank as an overflow. In the apparatus for carrying out the present invention, a screen for separating the treated water and the carrier is installed at the overflow port in order to prevent the carrier from overflowing from the anaerobic reaction tank (methane fermentation tank) (see FIG. 2). Alternatively, an overflow water storage unit is attached outside the anaerobic reaction tank, the overflow water containing the carrier is temporarily stored, a screen is provided at the outflow part from the overflow water storage unit, and the carrier and the treated water are separated. It is good also as a structure which returns only to an anaerobic reaction tank (FIG. 3). The biogas recovered from the anaerobic reaction tank (methane fermentation tank) can be used in a boiler or the like after gas purification such as desulfurization as necessary.

本発明で用いるメタン発酵槽は、立ち上げ運転期間中に担体を導入する担体導入管と、当該担体導入管から当該上向流式嫌気性反応槽への担体の導入を制御する弁と、を具備することを特徴とする。必要に応じて、メタン発酵槽の前段に酸発酵槽を設けてもよい。   The methane fermenter used in the present invention comprises a carrier introduction tube for introducing a carrier during a startup operation period, and a valve for controlling the introduction of the carrier from the carrier introduction tube to the upward flow anaerobic reaction vessel. It is characterized by comprising. As needed, you may provide an acid fermenter in the front | former stage of a methane fermenter.

本発明は、嫌気性反応槽(メタン発酵槽)の立ち上げ運転を制御することを特徴とする。通常、有機性廃水の嫌気性処理において、嫌気性反応槽の設計負荷に到達するまでに嫌気性微生物の馴致運転を行うことが必要である。担体への微生物の安定付着及び繁殖には長時間がかかるため、立ち上げ運転時間が90日を越えることもある。本発明では、担体に微生物を付着させるために、グラニュール汚泥を種汚泥として用い、担体の周囲には常にグラニュール汚泥又は微生物が付着した担体が存在するように、担体の投入量及び投入時を制御する。   The present invention is characterized by controlling the start-up operation of an anaerobic reaction tank (methane fermentation tank). Usually, in the anaerobic treatment of organic wastewater, it is necessary to perform anaerobic microorganism habituation operation until the design load of the anaerobic reaction tank is reached. Since stable adhesion and propagation of microorganisms on the carrier take a long time, the startup operation time may exceed 90 days. In the present invention, granule sludge is used as seed sludge for adhering microorganisms to the carrier, and the amount of carrier charged and the amount of the carrier charged so that there is always granule sludge or a carrier to which microorganisms adhere around the carrier. To control.

本発明の有機性廃水処理方法は、嫌気性微生物を担持することができる担体を保持する嫌気性反応槽に有機性廃水を通水して処理する嫌気性処理方法であって、種汚泥としてグラニュール汚泥を用い、有機性廃水の通水開始時には、当該担体のかさ容量1に対して、当該種汚泥のかさ容量を6以上50以下の比率とし、当該嫌気性反応槽のCODCr設計負荷においてS−CODCr(溶解性CODCr)除去率が90%に到達するまでに担体の追加投入を少なくとも1回行うことを特徴とする。 The organic wastewater treatment method of the present invention is an anaerobic treatment method in which organic wastewater is passed through an anaerobic reaction tank holding a carrier capable of supporting anaerobic microorganisms, and is treated as seed sludge. At the beginning of the flow of organic waste water using the sludge, the bulk capacity of the seed sludge is 6 or more and 50 or less with respect to the bulk capacity 1 of the carrier, and the COD Cr design load of the anaerobic reaction tank The carrier is additionally charged at least once until the S-COD Cr (soluble COD Cr ) removal rate reaches 90%.

本発明における嫌気性反応は、30℃〜40℃を至適温度とした中温メタン発酵処理、50℃〜60℃を至適温度とした高温メタン発酵処理など、すべての温度範囲の嫌気性処理を制限無く用いることができる。   The anaerobic reaction in the present invention is an anaerobic treatment in all temperature ranges, such as a medium temperature methane fermentation treatment with an optimum temperature of 30 ° C to 40 ° C and a high temperature methane fermentation treatment with an optimum temperature of 50 ° C to 60 ° C. Can be used without limitation.

[種汚泥]
本発明において投入する種汚泥としては、嫌気性微生物を含む汚泥が微生物の自己造粒作用により粒状化して沈降性のグラニュールとなったグラニュール汚泥を好ましく用いることができる。グラニュール汚泥は、UASB(上向流嫌気性汚泥床法)やEGSB(膨脹汚泥床法)において汚泥層として形成される。正常なグラニュール汚泥は、糸状性あるいはロッド状のMethanosaeta属のメタン生成菌が絡み合った構造を有している(図4)。UASB法やEGSB法では、グラニュール汚泥を担体に保持させずに、グラニュール汚泥を流動床として利用する。本発明においては、UASB法やEGSB法にて形成されるグラニュール汚泥を種汚泥として利用し、担体に保持させ、担体表面で微生物を繁殖させる。本発明において用いることができるグラニュール汚泥は、粒径が0.5mm以上4.0mm以下、特に0.5mm以上2.0mm以下であることが好ましい。粒径が0.5mm以下だと流出しやすく、4.0mm以上だと内部に気泡を抱えて浮上流出しやすくなる。ただし、グラニュール汚泥のすべてが上記範囲内の粒径である必要はなく、汚泥量の80%以上、好ましくは90%以上が上記範囲内の粒径であればよい。
[Seed sludge]
As the seed sludge to be introduced in the present invention, granule sludge in which sludge containing anaerobic microorganisms is granulated by the self-granulating action of microorganisms to form sedimentary granules can be preferably used. Granule sludge is formed as a sludge layer in UASB (upflow anaerobic sludge bed method) or EGSB (expanded sludge bed method). Normal granular sludge has a structure in which filamentous or rod-shaped Methanosaeta methanogens are intertwined (FIG. 4). In the UASB method and the EGSB method, the granular sludge is used as a fluidized bed without holding the granular sludge on the carrier. In the present invention, granule sludge formed by the UASB method or EGSB method is used as seed sludge, held on a carrier, and microorganisms are propagated on the surface of the carrier. The granular sludge that can be used in the present invention preferably has a particle size of 0.5 mm to 4.0 mm, particularly 0.5 mm to 2.0 mm. If the particle size is 0.5 mm or less, it will be easy to flow out, and if it is 4.0 mm or more, it will be easy to float up with air bubbles inside. However, it is not necessary for all the granular sludge to have a particle size within the above range, and 80% or more, preferably 90% or more of the sludge amount may be within the above range.

グラニュール汚泥の追加投入は、図1又は図3に示すメタン発酵槽の下部に設けられている流入水入口に圧送してもよいし、あるいはメタン発酵槽の上部から投入してもよい。
[担体]
担体は、微生物を担持して、担体表面で微生物を繁殖させることができるものであれば特に制限無く用いることができる。
The additional addition of granule sludge may be pumped to the inflow water inlet provided in the lower part of the methane fermentation tank shown in FIG. 1 or FIG. 3, or may be introduced from the upper part of the methane fermentation tank.
[Carrier]
The carrier can be used without particular limitation as long as it can carry microorganisms and can propagate microorganisms on the surface of the carrier.

担体の形状は、球状、円柱状、直方体、中空状などいずれの形状でもよいが、微生物の担持量、繁殖した微生物と有機性廃水との接触効率、嫌気性反応槽内での担体の保持量などを考慮して、特に球状が好ましい(図5)。   The shape of the carrier may be any shape such as spherical, cylindrical, rectangular parallelepiped, hollow, etc., but the amount of microorganisms supported, the contact efficiency between the propagated microorganisms and organic waste water, the amount of carriers retained in the anaerobic reaction tank In consideration of the above, a spherical shape is particularly preferable (FIG. 5).

担体の寸法は、平均値(球状粒子の場合には中位径d50、他の形状の場合には最大寸法と最小寸法との算術平均値)で0.1mm以上10mm以下が好ましく、特に2mm以上6mm以下が好ましい。   The size of the carrier is preferably 0.1 mm or more and 10 mm or less in average value (median diameter d50 in the case of spherical particles, and arithmetic average value of the maximum size and the minimum size in the case of other shapes), particularly 2 mm or more. 6 mm or less is preferable.

担体は、微生物が付着しやすい細孔を有する多孔質担体であることが好ましく、細孔径は1μm以上100μm以下が好ましく、特に5μm以上50μm以下であることが好ましい。   The carrier is preferably a porous carrier having pores to which microorganisms easily adhere, and the pore diameter is preferably 1 μm or more and 100 μm or less, and particularly preferably 5 μm or more and 50 μm or less.

また、嫌気性反応槽内に上向流で流動層を展開させるためには、未使用の担体を充填した直径80mmの円筒カラムに清水を上向流で上昇線速度(LV)を1m/h以上20m/h以下で通水した場合の膨張率(投入時担体高さに対する通水時担体高さ)が、105%以上150%以下、特にLV2m/h以上15m/h以下で通水した場合の膨張率110%以上130%以下となる担体が好ましい。   Further, in order to develop the fluidized bed in an anaerobic reaction tank by upward flow, the upward linear velocity (LV) is increased to 1 m / h with upward flow of fresh water in a cylindrical column having a diameter of 80 mm filled with unused carrier. When the water is passed at a flow rate of 20 m / h or less, the expansion rate (the carrier height at the time of flow relative to the carrier height at the time of charging) is 105% or more and 150% or less, particularly LV2 m / h or more and 15 m / h or less. A carrier having an expansion coefficient of 110% to 130% is preferable.

担体の素材は、嫌気性微生物が付着すればどのような素材でも良いが、上述の諸要件を充足することから、特に活性炭、ポリビニルアルコール、エチレングリコールなどが好ましい。   The material of the carrier may be any material as long as anaerobic microorganisms adhere to it, and activated carbon, polyvinyl alcohol, ethylene glycol, and the like are particularly preferable because the above-described requirements are satisfied.

[嫌気性反応槽(メタン発酵槽)の運転条件]
嫌気性反応槽(メタン発酵槽)のLVは1m/h以上20m/h以下、特に2m/h以上10m/h以下が好ましい。嫌気性反応槽(メタン発酵槽)内を所定のLVに調整するために、嫌気性反応(メタン発酵)処理水の一部を嫌気性反応槽(メタン発酵槽)の下部に設けられている流入水入口に循環させることができる。循環させる処理水は、嫌気性反応槽(メタン発酵槽)から流出した担体を随伴する処理水をスクリーンに通過させて担体を分離した後の担体を含まない処理水でもよいし、担体を含む処理水でもよい。担体を含む処理水を循環させる場合には、担体を破壊しないようなスネークポンプやガスリフトによることが好ましい。担体を分離した場合には、担体を嫌気性反応槽(メタン発酵槽)に戻すことが好ましい(図3)。
[Operating conditions of anaerobic reaction tank (methane fermentation tank)]
The LV of the anaerobic reaction tank (methane fermentation tank) is preferably 1 m / h or more and 20 m / h or less, particularly preferably 2 m / h or more and 10 m / h or less. In order to adjust the inside of the anaerobic reaction tank (methane fermentation tank) to a predetermined LV, a part of the anaerobic reaction (methane fermentation) treated water is provided at the lower part of the anaerobic reaction tank (methane fermentation tank). It can be circulated to the water inlet. The treated water to be circulated may be treated water containing no carrier after passing the treated water accompanied by the carrier flowing out from the anaerobic reaction tank (methane fermentation tank) through the screen and separating the carrier, or treatment containing the carrier. Water can be used. When the treated water containing the carrier is circulated, it is preferable to use a snake pump or a gas lift that does not destroy the carrier. When the carrier is separated, it is preferable to return the carrier to the anaerobic reaction tank (methane fermentation tank) (FIG. 3).

嫌気性反応槽(メタン発酵槽)の設計負荷(CODCr容積負荷)は原水性状に依存するが、5〜50kg/(m・d)の範囲とすることができる。グラニュール汚泥では内部に気泡を抱えて浮上したり、過大なガス混合によりグラニュール汚泥が解体したりすることがあるため、高負荷処理は困難であるが、本発明ではグラニュール汚泥を種汚泥として担体に担持させて繁殖させることで、より高負荷処理が可能となる。 The design load (COD Cr volumetric load) of the anaerobic reaction tank (methane fermentation tank) depends on the raw aqueous state, but can be in the range of 5 to 50 kg / (m 3 · d). Granule sludge floats with air bubbles inside, and granule sludge may be dismantled due to excessive gas mixing, so high load treatment is difficult.In the present invention, granular sludge is used as seed sludge. As a result, it is possible to carry a higher load treatment by carrying it on a carrier.

一般的に、グラニュール汚泥は、メタン生成菌だけではなく酸生成菌などを含み、表面付近の活性が高いが、中心部の活性は低い(図4)。一方、本発明において、種汚泥としてグラニュール汚泥を担体に担持させて繁殖させると、担体表面に活性の高いメタン生成菌が繁殖する(図5)。一般的なグラニュール汚泥のメタン生成活性度は0.4〜0.8kg/(kg−MLVSS・d)とされるが、本発明で用いる担体に担持させた微生物のメタン生成活性度は1.0〜2.0kg/(kg−MLVSS・d)と高い。   In general, granule sludge contains not only methanogens but also acid producers, and has high activity near the surface, but low activity in the center (FIG. 4). On the other hand, in the present invention, when granule sludge is carried as a seed sludge on a carrier and propagated, highly active methanogens propagate on the surface of the carrier (FIG. 5). The methanogenic activity of general granular sludge is 0.4 to 0.8 kg / (kg-MLVSS · d). The methanogenic activity of the microorganisms supported on the carrier used in the present invention is 1. It is as high as 0 to 2.0 kg / (kg-MLVSS · d).

[有機性廃水]
本発明の有機性廃水処理方法により処理できる有機性廃水のCODCrは特に限定されるものではなく、100mg/L以上50,000mg/L以下の範囲の有機物濃度が低濃度乃至高濃度の有機性廃水に適用することができる。有機物濃度が高濃度の有機性廃水の場合には、原水成分の阻害を緩和するために適宜希釈することが好ましい。
[Organic wastewater]
The organic wastewater COD Cr that can be treated by the organic wastewater treatment method of the present invention is not particularly limited, and the organic substance concentration in the range of 100 mg / L to 50,000 mg / L is low to high. Can be applied to waste water. In the case of organic wastewater having a high organic matter concentration, it is preferable to dilute appropriately in order to mitigate the inhibition of raw water components.

本発明の有機性廃水処理方法は、グラニュール汚泥を維持できない組成の有機性廃水の処理に特に有用である。例えば、グラニュール汚泥の強度が低下してグラニュール汚泥を維持できないエタノール、メタノール、酢酸などの炭素数5以下の低分子有機物を含む有機性廃水や、グラニュール汚泥を解体させてしまう配管洗浄剤、キレート剤、殺菌剤などを含む飲料工場などからの有機性廃水などの処理に効果的である。   The organic wastewater treatment method of the present invention is particularly useful for the treatment of organic wastewater having a composition that cannot maintain granular sludge. For example, organic sludge containing low-molecular-weight organic substances with 5 or less carbon atoms such as ethanol, methanol, and acetic acid that cannot maintain the granular sludge because the strength of the granular sludge is reduced, and pipe cleaning agents that dismantle the granular sludge It is effective for the treatment of organic wastewater from beverage factories, etc. containing chelating agents and bactericides.

図1には、有機性廃水は、酸発酵槽にて酸発酵処理した後、メタン発酵槽に流入する処理フローを示すが、酸発酵処理は必須ではない。すでに酸発酵が十分進行している有機性廃水や、酸発酵処理を行わずにメタン発酵槽のみで処理可能な有機性廃水の場合には酸発酵槽を用いる必要はない。具体的には、例えば、有機性廃水CODCrに対する炭素数5以下の有機酸のCODCr換算値の合計が40%以上を占める有機性廃水や、メタノールやホルムアルデヒドなど炭素数1の低分子有機物が有機性廃水CODCrの70%以上を占める有機性廃水の場合には、酸発酵処理は不要である。酸発酵処理を行う場合には、酸発酵槽では酸生成菌に適したpHである5.5以上となるようにアルカリ剤でpH調整を行う。メタン発酵処理水を酸発酵槽に循環することで、メタン発酵処理水に含まれるアルカリ成分によってアルカリ剤添加量を削減することもできる。酸発酵槽の滞留時間は、有機性廃水中に含まれる成分によって2時間以上48時間以下の範囲で適宜決定することができるが、分解しやすい糖質成分を含む場合は2時間以上6時間以下とすることが多い。 Although the organic waste water shows the processing flow which flows into an methane fermentation tank after performing an acid fermentation process in an acid fermentation tank, an acid fermentation process is not essential. In the case of organic wastewater in which acid fermentation has already progressed sufficiently, or organic wastewater that can be treated only with a methane fermentation tank without performing acid fermentation treatment, it is not necessary to use an acid fermentation tank. Specifically, for example, organic waste water in which the total of COD Cr conversion values of organic acids having 5 or less carbon atoms with respect to organic waste water COD Cr accounts for 40% or more, or low molecular organic substances having 1 carbon atom such as methanol and formaldehyde. In the case of organic waste water that occupies 70% or more of the organic waste water COD Cr , acid fermentation treatment is unnecessary. When acid fermentation treatment is performed, the pH is adjusted with an alkaline agent so that the acid fermentation tank has a pH suitable for acid-producing bacteria of 5.5 or higher. By circulating the methane fermentation treated water to the acid fermenter, the amount of alkali agent added can be reduced by the alkali components contained in the methane fermentation treated water. The residence time of the acid fermenter can be appropriately determined in the range of 2 hours to 48 hours depending on the components contained in the organic waste water, but when it contains a saccharide component that is easily decomposed, it is 2 hours to 6 hours. And often.

以下、実施例及び比較例を用いて本発明をさらに具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
比較例および実施例では、CODCrを約3,000mg/Lに調整した清涼飲料工場排水である有機性廃水(原水)を、滞留時間6時間、水温36℃、pH6.5となるようにアルカリ剤として水酸化ナトリウムを添加して酸発酵処理した後、容量10Lの上向流型嫌気性反応槽(メタン発酵槽)を用いて嫌気性処理を行った。メタン発酵槽上部の処理水流出部には、幅2.0mmのスクリーンを設けて担体がメタン発酵槽から流出しないようにした。メタン発酵処理水の一部をメタン発酵槽下部の流入部に循環させ、メタン発酵槽のLVを5.0m/hに調整した。
EXAMPLES Hereinafter, although this invention is demonstrated further more concretely using an Example and a comparative example, this invention is not limited by these Examples.
In Comparative Examples and Examples, organic waste water (raw water), which is a soft drink factory effluent with COD Cr adjusted to about 3,000 mg / L, is alkaline so that the residence time is 6 hours, the water temperature is 36 ° C., and the pH is 6.5. After adding sodium hydroxide as an agent and performing an acid fermentation treatment, an anaerobic treatment was performed using an upflow anaerobic reaction tank (methane fermentation tank) having a capacity of 10 L. A 2.0 mm wide screen was provided at the treated water outflow part in the upper part of the methane fermentation tank so that the carrier did not flow out of the methane fermentation tank. A part of the methane fermentation treated water was circulated in the inflow part at the bottom of the methane fermentation tank, and the LV of the methane fermentation tank was adjusted to 5.0 m / h.

嫌気性反応槽(メタン発酵槽)には、担体として、平均粒径4.0mm、未使用の清水試験におけるLV10m/hの膨張率115%のポリビニルアルコールのゲル状粒子を投入した。種汚泥として、径0.5mm〜2.0mmが全体の92%を占める、UASBから採取したグラニュール汚泥を使用した。   In an anaerobic reaction tank (methane fermentation tank), gel particles of polyvinyl alcohol having an average particle diameter of 4.0 mm and an LV of 10 m / h in an unused fresh water test of 115% were used as a carrier. As the seed sludge, granular sludge collected from UASB whose diameter 0.5 mm to 2.0 mm accounts for 92% of the whole was used.

メタン発酵槽の設計負荷は、20kg/(m・d)とした。
処理性能の評価にあたっては、流出した汚泥の影響を除くため、1μmろ液の溶解性CODCr(S−CODCr)を採用した。
The design load of the methane fermenter was 20 kg / (m 3 · d).
In the evaluation of the treatment performance, 1 μm filtrate soluble COD Cr (S-COD Cr ) was employed in order to eliminate the influence of the spilled sludge.

[比較例1]
メタン発酵槽にグラニュール汚泥4.0L及び担体4.0Lを一度に投入し、酸発酵処理水の通水を開始した。この場合、有機性廃水の通水開始時の担体のかさ容量に対する種汚泥のかさ容量の比率(Rgc)は1.0である。
[Comparative Example 1]
The granular sludge 4.0L and the support | carrier 4.0L were injected | thrown-in to the methane fermentation tank at once, and the water supply of acid fermentation treated water was started. In this case, the ratio (Rgc) of the bulk capacity of the seed sludge to the bulk capacity of the carrier at the start of the flow of the organic waste water is 1.0.

CODCr容積負荷の設定負荷を5kg/(m・d)、7.5kg/(m・d)、10kg/(m・d)、15kg/(m・d)及び20kg/(m・d)の5段階で段階的に上げて、各段階の運転期間を7日間とする立ち上げ運転を行った。各設定負荷の最終日におけるS−CODCr除去率を求めた。結果を表1に示す。 Set load of COD Cr volumetric load is 5 kg / (m 3 · d), 7.5 kg / (m 3 · d), 10 kg / (m 3 · d), 15 kg / (m 3 · d) and 20 kg / (m The operation was started up in 5 stages (3.d) and the operation period of each stage was 7 days. The S-COD Cr removal rate on the last day of each set load was determined. The results are shown in Table 1.

CODCr容積負荷(設定値)が10kg/(m・d)以上になると、メタン発酵槽からグラニュール汚泥が流出するとともに、S−CODCr除去率が低下した。運転開始後21日目及び28日目に、グラニュール汚泥を各2.0Lずつ追加投入したが、投入後3日程度で流出してしまい、運転開始後35日目で測定した時点でグラニュール汚泥の残存率は0%であり、S−CODCr除去率の向上も認められなかった。そのまま運転を継続するとS−CODCr除去率は57日目以降に約90%で安定した。結果として、立ち上げ運転期間は57日間となった。 When the COD Cr volumetric load (set value) was 10 kg / (m 3 · d) or more, granulated sludge flowed out of the methane fermentation tank and the S-COD Cr removal rate decreased. On the 21st and 28th days after the start of operation, 2.0 L of granule sludge was added each time, but it flowed out in about 3 days after the start, and the granule was measured when measured on the 35th day after the start of operation. The residual rate of sludge was 0%, and no improvement in the S-COD Cr removal rate was observed. When the operation was continued as it was, the S-COD Cr removal rate stabilized at about 90% after the 57th day. As a result, the startup operation period was 57 days.

[比較例2]
メタン発酵槽に担体4.0Lを投入したが種汚泥を投入しない状態で、酸発酵を行わない原水の通水を開始した。原水を10日間通水した後、グラニュール汚泥4.0Lを投入した。この場合、有機性廃水の通水開始時の担体のかさ容量に対する種汚泥のかさ容量の比率(Rgc)は0である。
[Comparative Example 2]
Although 4.0 L of the carrier was put into the methane fermenter, the raw water without acid fermentation was started in a state where the seed sludge was not put. After passing the raw water for 10 days, 4.0 L of granule sludge was added. In this case, the ratio (Rgc) of the bulk capacity of the seed sludge to the bulk capacity of the carrier at the start of the flow of the organic waste water is zero.

CODCr容積負荷の設定負荷を5kg/(m・d)、7.5kg/(m・d)、10kg/(m・d)、15kg/(m・d)、20kg/(m・d)の5階で段階的に上げて、各段階の運転期間を4日間とする立ち上げ運転を行った。各設定負荷最終日におけるS−CODCr除去率を求めた。結果を表2に示す。 Set load of COD Cr volumetric load is 5 kg / (m 3 · d), 7.5 kg / (m 3 · d), 10 kg / (m 3 · d), 15 kg / (m 3 · d), 20 kg / (m The stage was raised step by step on the 5th floor of 3 · d), and the start-up operation was performed with the operation period of each stage being 4 days. The S-COD Cr removal rate on the last day of each set load was determined. The results are shown in Table 2.

運転開始後15日目以降に、メタン発酵槽内のグラニュール汚泥が急激に減少し、運転開始後26日目にS−CODCr除去率は約52%に低下した。そのまま運転を継続するとS−CODCr除去率は62日目以降に約90%で安定した。結果として、立ち上げ運転期間は62日間となった。 The granule sludge in the methane fermenter sharply decreased after the 15th day from the start of operation, and the S-COD Cr removal rate decreased to about 52% on the 26th day after the start of operation. When the operation was continued as it was, the S-COD Cr removal rate stabilized at about 90% after the 62nd day. As a result, the startup operation period was 62 days.

[実施例1]
メタン発酵槽にグラニュール汚泥6.0L及び担体1.0Lを投入し、酸発酵処理水の通水を開始した。この場合、有機性廃水の通水開始時の担体のかさ容量に対する種汚泥のかさ容量の比率(Rgc)は6.0である。
[Example 1]
6.0 L of granule sludge and 1.0 L of support | carrier were injected | thrown-in to the methane fermentation tank, and the water supply of acid fermentation treated water was started. In this case, the ratio (Rgc) of the bulk capacity of the seed sludge to the bulk capacity of the carrier at the start of the flow of the organic waste water is 6.0.

CODCr容積負荷の設定負荷を5kg/(m・d)、7.5kg/(m・d)、10kg/(m・d)、15kg/(m・d)及び20kg/(m・d)の5段階で段階的に上げて、各段階の運転期間を5日間とする立ち上げ運転を行った。運転開始後5日目及び10日目に、担体1.0L及び2.0Lをそれぞれ追加投入した。各設定負荷の最終日におけるS−CODCr除去率を求めた。結果を表3に示す。 Set load of COD Cr volumetric load is 5 kg / (m 3 · d), 7.5 kg / (m 3 · d), 10 kg / (m 3 · d), 15 kg / (m 3 · d) and 20 kg / (m The operation was started up in 5 stages (3.d) and the operation period of each stage was 5 days. On the 5th and 10th days after the start of operation, 1.0 L and 2.0 L of carrier were additionally charged, respectively. The S-COD Cr removal rate on the last day of each set load was determined. The results are shown in Table 3.

運転開始後21日目に、S−CODCr除去率が約80%まで低下したものの、運転開始後28日目以降は約90%で安定していた。結果として、立ち上げ運転期間は28日間となった。 On the 21st day after the start of operation, the S-COD Cr removal rate decreased to about 80%, but after about 28th day after the start of operation, it was stable at about 90%. As a result, the startup operation period was 28 days.

[実施例2]
メタン発酵槽にグラニュール汚泥4.0L及び担体0.4Lを投入し、酸発酵処理水の通水を開始した。この場合、有機性廃水の通水開始時の担体のかさ容量に対する種汚泥のかさ容量の比率(Rgc)は10.0である。
[Example 2]
4.0 L of granule sludge and 0.4 L of support | carrier were injected | thrown-in to the methane fermentation tank, and water flow of acid fermentation treated water was started. In this case, the ratio (Rgc) of the bulk capacity of the seed sludge to the bulk capacity of the carrier at the start of the flow of the organic waste water is 10.0.

CODCr容積負荷の設定負荷を5kg/(m・d)、7.5kg/(m・d)、10kg/(m・d)、15kg/(m・d)及び20kg/(m・d)の5段階で段階的に上げて、各段階の運転期間を5日間とする立ち上げ運転を行った。運転開始後5日目、10日目及び15日目に、担体0.6L、1.0L及び2.0Lをそれぞれ追加投入した。各設定負荷の最終日におけるS−CODCr除去率を求めた。結果を表4に示す。 Set load of COD Cr volumetric load is 5 kg / (m 3 · d), 7.5 kg / (m 3 · d), 10 kg / (m 3 · d), 15 kg / (m 3 · d) and 20 kg / (m The operation was started up in 5 stages (3.d) and the operation period of each stage was 5 days. On the fifth, tenth and fifteenth days after the start of operation, 0.6 L, 1.0 L and 2.0 L of carrier were additionally charged, respectively. The S-COD Cr removal rate on the last day of each set load was determined. The results are shown in Table 4.

運転開始後21日目にS−CODCr除去率が一時的に約70%まで低下したものの、運転開始後32日目以降は約90%で安定していた。結果として、立ち上げ運転期間は32日間となった。 Although the S-COD Cr removal rate temporarily decreased to about 70% on the 21st day after the start of operation, it was stable at about 90% after the 32nd day after the start of operation. As a result, the startup operation period was 32 days.

図6には、比較例1のCODCr容積負荷(上段)とS−CODCr除去率(下段)の経日変化を示し、図7には比較例2のCODCr容積負荷(上段)とS−CODCr除去率(下段)の経日変化を示し、図8には実施例1のCODCr容積負荷(上段)とS−CODCr除去率(下段)の経日変化を示し、図9には実施例2のCODCr容積負荷(上段)とS−CODCr除去率(下段)の経日変化を示す。 FIG. 6 shows changes over time in the COD Cr volume load (upper stage) and S-COD Cr removal rate (lower stage) of Comparative Example 1, and FIG. 7 shows the COD Cr volume load (upper stage) and S of Comparative Example 2. -COD Cr removal rate (lower stage) shows daily changes, FIG. 8 shows COD Cr volumetric load (upper stage) and S-COD Cr removal rate (lower stage) daily changes of Example 1, and FIG. These show the daily change of COD Cr volume load (upper stage) and S-COD Cr removal rate (lower stage) of Example 2.

比較例1〜2及び実施例1〜2の結果をまとめて表5に示す。   The results of Comparative Examples 1-2 and Examples 1-2 are summarized in Table 5.

Claims (3)

嫌気性微生物を担持することができる担体を保持する嫌気性反応槽に、有機性廃水を通水して処理する嫌気性処理方法であって、
種汚泥としてグラニュール汚泥を用い、
有機性廃水の通水開始時には、当該担体のかさ容量1に対して、当該種汚泥のかさ容量を6以上50以下の比率とし、
当該嫌気性反応槽のCODCr設計負荷においてS−CODCr除去率が90%に到達するまでに当該担体の追加投入を少なくとも1回行うことを特徴とする有機性廃水の嫌気性処理方法。
An anaerobic treatment method in which organic waste water is passed through an anaerobic reaction tank holding a carrier capable of supporting anaerobic microorganisms,
Granule sludge is used as seed sludge,
At the start of passing organic wastewater, the bulk capacity of the seed sludge is set to a ratio of 6 to 50 with respect to the bulk capacity 1 of the carrier,
An anaerobic treatment method for organic wastewater, wherein the carrier is additionally charged at least once before the S-COD Cr removal rate reaches 90% in the COD Cr design load of the anaerobic reaction tank.
嫌気性微生物を担持することができる担体を保持する上向流式嫌気性反応槽と、
当該上向流式嫌気性反応槽の立ち上げ運転期間中に当該担体を導入する担体導入管と、
当該担体導入管から当該上向流式嫌気性反応槽への当該担体の導入を制御する弁と、
を具備することを特徴とする有機性廃水の嫌気性処理装置。
An upflow anaerobic reactor holding a carrier capable of supporting anaerobic microorganisms;
A carrier introduction pipe for introducing the carrier during the startup operation period of the upward flow anaerobic reaction tank;
A valve for controlling the introduction of the carrier from the carrier introduction pipe into the upward flow anaerobic reaction tank;
An anaerobic treatment apparatus for organic wastewater, comprising:
前記上向流式嫌気性反応槽の前段に設けられている酸発酵槽と、
当該酸発酵槽からの酸発酵処理水を前記上向流式嫌気性反応槽に送る酸発酵処理水導入管と、
をさらに具備することを特徴とする請求項2に記載の有機性廃水の嫌気性処理装置。
An acid fermentation tank provided upstream of the upward flow anaerobic reaction tank;
Acid fermentation treated water introduction pipe for sending acid fermentation treated water from the acid fermentation tank to the upward flow anaerobic reaction tank;
The anaerobic treatment apparatus for organic wastewater according to claim 2, further comprising:
JP2016146107A 2016-07-26 2016-07-26 Anaerobic treatment of organic wastewater Active JP6675283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016146107A JP6675283B2 (en) 2016-07-26 2016-07-26 Anaerobic treatment of organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016146107A JP6675283B2 (en) 2016-07-26 2016-07-26 Anaerobic treatment of organic wastewater

Publications (2)

Publication Number Publication Date
JP2018015692A true JP2018015692A (en) 2018-02-01
JP6675283B2 JP6675283B2 (en) 2020-04-01

Family

ID=61078968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016146107A Active JP6675283B2 (en) 2016-07-26 2016-07-26 Anaerobic treatment of organic wastewater

Country Status (1)

Country Link
JP (1) JP6675283B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111498991A (en) * 2020-04-29 2020-08-07 南京大学 Method for promoting proliferation and activity improvement of anaerobic granular sludge

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070459A1 (en) * 2010-11-24 2012-05-31 栗田工業株式会社 Method and apparatus for anaerobic treatment
JP2012110821A (en) * 2010-11-24 2012-06-14 Kurita Water Ind Ltd Method for treatment of organic wastewater
JP2014024032A (en) * 2012-07-27 2014-02-06 Japan Organo Co Ltd Anaerobic biological treatment method and anaerobic biological treatment device
JP2014100677A (en) * 2012-11-21 2014-06-05 Kuraray Co Ltd Anaerobic wastewater treatment method using carrier
WO2014156216A1 (en) * 2013-03-27 2014-10-02 栗田工業株式会社 Anaerobic treatment method
JP2015077534A (en) * 2013-10-15 2015-04-23 栗田工業株式会社 Anaerobic treatment method and device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070459A1 (en) * 2010-11-24 2012-05-31 栗田工業株式会社 Method and apparatus for anaerobic treatment
JP2012110821A (en) * 2010-11-24 2012-06-14 Kurita Water Ind Ltd Method for treatment of organic wastewater
JP2014024032A (en) * 2012-07-27 2014-02-06 Japan Organo Co Ltd Anaerobic biological treatment method and anaerobic biological treatment device
JP2014100677A (en) * 2012-11-21 2014-06-05 Kuraray Co Ltd Anaerobic wastewater treatment method using carrier
WO2014156216A1 (en) * 2013-03-27 2014-10-02 栗田工業株式会社 Anaerobic treatment method
JP2015077534A (en) * 2013-10-15 2015-04-23 栗田工業株式会社 Anaerobic treatment method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111498991A (en) * 2020-04-29 2020-08-07 南京大学 Method for promoting proliferation and activity improvement of anaerobic granular sludge

Also Published As

Publication number Publication date
JP6675283B2 (en) 2020-04-01

Similar Documents

Publication Publication Date Title
JP6491406B2 (en) Anaerobic biological treatment method and anaerobic biological treatment apparatus
CN101734827B (en) Method for treating yeast wastewater
EA024049B1 (en) Sludge treatment method and apparatus and application of said method and apparatus for wastewater bio-treatment
CN104003513B (en) A kind of aerobic particle mud reaction tank-microbial film Sewage treatment systems
CN109896629B (en) Method and device for strengthening AOMBR process sludge in-situ reduction
JP2009148705A (en) Method and apparatus for anaerobic treatment
JP6241187B2 (en) Anaerobic treatment method and anaerobic treatment apparatus
JP5685902B2 (en) Organic wastewater treatment method
CN103183447A (en) Treatment method of piggery wastewater
CN208071545U (en) A kind of mine domestic wastewater processing unit
CN103011515A (en) Soybean wastewater biochemical treatment process and device
CN204079721U (en) A kind of sewage disposal device adopting pure oxygen aeration and remaining oxygen reuse
JP6654981B2 (en) Anaerobic treatment of organic wastewater
JP2012210584A (en) Method for treating kraft pulp wastewater
JP2006110424A (en) Method and apparatus for treating organic waste water
JP2018015692A (en) Method for anaerobically treating organic waste water
CN202080949U (en) Moving bed type biofilm reaction tank
JP2012076000A (en) One tank type anaerobic wastewater treatment apparatus
JP6612195B2 (en) Organic wastewater treatment facility and operation method thereof
CN207845440U (en) Production waste water mixes purification system with sanitary wastewater
CN208071544U (en) A kind of railway communication system production wastewater treatment system
CN207792814U (en) A kind of denitrification dephosphorization system
CN203112653U (en) Soybean product wastewater biochemical treatment device
CN108862969A (en) A kind of sewage treatment process of activated sludge process excess sludge reduction
JP2018015690A (en) Method for anaerobically treating organic waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200310

R150 Certificate of patent or registration of utility model

Ref document number: 6675283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250