JPH02207899A - Anaerobic two-phase type waste water treating system incorporating separator - Google Patents

Anaerobic two-phase type waste water treating system incorporating separator

Info

Publication number
JPH02207899A
JPH02207899A JP1026731A JP2673189A JPH02207899A JP H02207899 A JPH02207899 A JP H02207899A JP 1026731 A JP1026731 A JP 1026731A JP 2673189 A JP2673189 A JP 2673189A JP H02207899 A JPH02207899 A JP H02207899A
Authority
JP
Japan
Prior art keywords
methane
fermentation tank
treated
water
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1026731A
Other languages
Japanese (ja)
Inventor
Chota Yanagi
柳 長太
Masao Sato
正夫 佐藤
Yoshimasa Takahara
高原 義昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AKUA RUNESANSU GIJUTSU KENKYU KUMIAI
Original Assignee
AKUA RUNESANSU GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AKUA RUNESANSU GIJUTSU KENKYU KUMIAI filed Critical AKUA RUNESANSU GIJUTSU KENKYU KUMIAI
Priority to JP1026731A priority Critical patent/JPH02207899A/en
Publication of JPH02207899A publication Critical patent/JPH02207899A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

PURPOSE:To efficiently treat even the org. waste water of a high concn., such as waste water of food producing factories, and to simultaneously and efficiently produce methane by providing an SS component separating membrane in a waste water passage connecting an acid fermentation tank and a biobed methane fermentation tank. CONSTITUTION:The raw waste water 1 is treated in the acid fermentation tank 3 and is sent through an intermediate tank 4 to the SS (suspended solid) separator 5 where the SS and liquid are separated. The acid fermentation-treated water which is treated by the membrane 5 and does not contain the SS component is sent as membrane permeated water 6 to the methane fermentation tank 7. On the other hand, the concd. SS is returned as circulating water (membrane concd. water) 2 to the acid fermentation tank 3. The acid fermentation-treated water is sent to the methane fermentation tank 7 and is further made into methane, carbon dioxide, etc. The gas contg. a large amt. of methane is taken from the methane fermentation tank 7 and is utilized for various applications. The liquid treated in the methane fermentation tank 7 is treated by a screen 9 on the downstream of the intermediate tank 8 and is then released.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、有機性廃水の嫌気処理システムに関するもの
であり、更に詳細には、食品製造工場廃水のような高濃
度の有機性廃水をも効率よく処理すると同時に、効率よ
くメタンを製造することのできる廃水処理システムに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an anaerobic treatment system for organic wastewater, and more specifically to a system for treating highly concentrated organic wastewater such as food manufacturing factory wastewater. The present invention relates to a wastewater treatment system that can efficiently process methane and at the same time efficiently produce methane.

(従来の技術) 有機性廃水処理システムとしては、主として活性汚泥を
用いる好気性処理と嫌気的に処理するシステムに2大別
される。
(Prior Art) Organic wastewater treatment systems are divided into two main categories: aerobic treatment systems that use activated sludge and anaerobic treatment systems.

この内、嫌気的廃水処理は1例えば第2図に示すシステ
ムによって行われる0M廃水21を先ず第1槽の酸発酵
槽(例えば固定床酸発酵槽)23に送り、ここで生成し
た処理水(酸発酸処理水)25を。
Among these, anaerobic wastewater treatment is performed by, for example, the system shown in FIG. Acid-treated water) 25.

中間槽24を介して第2槽のメタン発酵槽(例えば生物
床メタン発酵槽)26に送って処理するものである。メ
タン発酵槽26で処、理された処理水28は、中間槽2
7を経て、必要あれば更に処理したうえで、河川等に放
流される。なお22は循環水である。
It is sent to a second methane fermentation tank (for example, a biological bed methane fermentation tank) 26 via an intermediate tank 24 for processing. The treated water 28 treated in the methane fermentation tank 26 is transferred to the intermediate tank 2
7, further treatment if necessary, and then discharged into rivers, etc. Note that 22 is circulating water.

この嫌気的廃水処理システムにおいては、第2図に示し
たように、酸発酵槽23、中間槽24及びメタン発酵槽
26からガス29が発生し、特にメタンが大量に発生す
ることから、このシステムはメタン発酵としても工業的
に利用されている。
In this anaerobic wastewater treatment system, as shown in FIG. 2, gas 29 is generated from the acid fermentation tank 23, intermediate tank 24, and methane fermentation tank 26, and in particular, a large amount of methane is generated, so this system It is also used industrially for methane fermentation.

メタン発酵による有機物からガスへの分解は次のように
2段階に行なわれる。
The decomposition of organic matter into gas by methane fermentation is carried out in two stages as follows.

まず、複雑な有機物は第1段階の酸生成過程(液化過程
)で酸生成菌群の作用により単糖類、アミノ酸などの分
子量の小さい物質をへて酢酸、プロピオン酸、酪酸、バ
レリアン酸などの低級脂肪酸に変換し、次に第2段階の
ガス生成過程で基質特異性の強いメタン細菌群によって
、 CH4,CO□などに分解される。(高原義昌編「
産業をひらく微生物−バイオテクノロジーの主役−」白
亜書房(昭58−12−25) p、177−182)
First, in the first stage of the acid production process (liquefaction process), complex organic substances are converted into substances with small molecular weight such as monosaccharides and amino acids by the action of acid-producing bacteria, and are converted into lower molecules such as acetic acid, propionic acid, butyric acid, and valeric acid. It is converted into fatty acids, and then decomposed into CH4, CO□, etc. by a group of highly substrate-specific methane bacteria in the second stage of gas production. (edited by Yoshimasa Takahara “
Microorganisms that open up industry - The leading role of biotechnology,'' Hakua Shobo (December 25, 1980, p. 177-182)
.

酵発酵槽のりアクタ−形式としては、浮遊式や固定床式
が用いられるが、処理水中に懸濁物質(SS)が多量に
含まれるため、I&終的なメタン発酵処理水の水質が向
上しない、すなわち、ガス化工程では有機酸など可溶化
した物質の処理が中心になるので、SSなどは分解され
にくい。
Floating type and fixed bed type are used as the fermenter type, but because the treated water contains a large amount of suspended solids (SS), the water quality of the I & final methane fermentation treated water does not improve. That is, since the gasification process mainly deals with solubilized substances such as organic acids, SS and the like are difficult to decompose.

メタン発酵槽のリアクター形式としては、生物床(up
flov anaarobic sludge bla
nket、 UASB)が知られている(Water 
Re5aarch、 20(1)pp、97−103(
1986))。
The reactor type of methane fermentation tank is biological bed (up
flov anaerobic sludge bra
nket, UASB) are known (Water
Re5aarch, 20(1)pp, 97-103(
1986)).

この方式は、メタン生成菌群が粒状になっているため1
本来、汚泥の流出は生じ難いシステムになっているもの
の、運転条件の変化などによって。
This method is possible because the methane-producing bacteria group is granular.
Originally, the system is designed to prevent sludge from flowing out, but due to changes in operating conditions, etc.

粒子が肥大化したりあるいは逆に小さく破壊されたりし
て流出するものもある。このため、処理水質が不安定に
なるという欠点があった。
Some particles become enlarged or, conversely, are broken into smaller pieces and flow out. For this reason, there was a drawback that the quality of the treated water became unstable.

(発明が解決しようとする問題点) 上記したように、従来の嫌気的廃水処理システムには1
次のような欠点があった。
(Problems to be solved by the invention) As mentioned above, the conventional anaerobic wastewater treatment system has one
It had the following drawbacks.

1、原廃水中にでんぷんやたんばくなどのSS成分が含
まれる場合、酸発酵処理水中に、流入したSS成分の一
部が混入するなどして、SS濃度が高くなり、それを処
理したメタン発酵処理水質も向上しない。
1. If the raw wastewater contains SS components such as starch or protein, some of the SS components that flowed into the acid fermentation treated water will mix, resulting in a high SS concentration and the treated methane. The quality of fermentation-treated water also does not improve.

2、酸発酵処理水中のSS成分はたんばくなど分解の遅
い物質が多く含まれているため、ガス化工程では分解し
にくい。
2. The SS component in acid fermentation water contains many substances that decompose slowly, such as protein, so it is difficult to decompose during the gasification process.

3、 メタン発酵槽内の粒状化生物は本来沈降性が良く
、流出しにくいが、環境条件の変化や時間の経過により
、沈降性が悪化するものが出てくる。このため、一部粒
子の流出がおごり、処理水質が向上しない。
3. The granular organisms in the methane fermentation tank originally have good sedimentation properties and are difficult to run out, but as environmental conditions change or the passage of time, some organisms become less sedimentable. As a result, part of the particles flow out and the quality of the treated water does not improve.

4、未分解物の流出やSSの流出により、処理水質やガ
ス化率が高くならない。
4. The quality of treated water and gasification rate do not increase due to the outflow of undecomposed substances and SS.

(問題点を解決するための手段) 本発明は、上記した欠点を一挙に解決するためになされ
たものであって、酸生成過程とガス生成過程とを分離し
た2相式の廃水処理システムにおいで、酸発酵槽の下流
で懸濁物質(suspendedsolids、 SS
)を分離し、濃縮されたSSは酸発酵槽に返送する一方
、SS成分が分離除去された酸発酵処理水は、これを次
のメタン発酵槽に送って処理したところ、上記の欠点を
伴うことなくきわめて効率的に廃水処理が可能となるこ
とを発見し、本発明の完成に到ったものである。
(Means for Solving the Problems) The present invention has been made to solve the above-mentioned drawbacks at once, and is a two-phase wastewater treatment system in which the acid generation process and the gas generation process are separated. In addition, suspended solids (SS) downstream of the acid fermenter
) is separated and the concentrated SS is returned to the acid fermenter, while the acid fermentation treated water from which the SS components have been separated and removed is sent to the next methane fermenter for treatment, but it suffers from the above drawbacks. The present invention was completed based on the discovery that it is possible to treat wastewater extremely efficiently without any problems.

このシステムによれば、澱粉製造工場等から排出される
高濃度の有機性廃水をも効率的に処理することができる
のであって、工業的に廃水処理システムとして非常にす
ぐれたものである。
According to this system, even highly concentrated organic wastewater discharged from starch manufacturing factories and the like can be efficiently treated, making it an extremely excellent industrial wastewater treatment system.

本発明は、メタン発酵槽の上流にSS分離装置を設ける
点を重要な骨子とするものであるが、本発明に係る装置
を実施例2を参照し作用を交えながら以下に詳述する。
The important gist of the present invention is to provide an SS separation device upstream of the methane fermentation tank, and the device according to the present invention will be described in detail below with reference to Example 2, including its effects.

原廃水1は、酸発酵槽3に送液する。酸発酵槽としては
、固定床式酸発酵槽その他既知のタイプのりアクタ−が
適宜使用できるが、固定床方式がSSの分解効率、生物
の高濃度化の点から特に有利である。酸発酵槽3で処理
された処理水は1次に中間槽4を経てSS分離装置5に
送られ、ここでSSと液体とを分離する。
The raw wastewater 1 is sent to the acid fermentation tank 3. As the acid fermenter, fixed-bed acid fermenters and other known types of fermenters can be used as appropriate, but the fixed-bed method is particularly advantageous in terms of SS decomposition efficiency and high biological concentration. The treated water treated in the acid fermentation tank 3 is first sent to the SS separation device 5 via the intermediate tank 4, where SS and liquid are separated.

分離装置としては、固液を分離する装置であれば遠心分
離機、沈澱装置、濾過装置、膜分離装置等すべてのタイ
プのものが広く使用されるが、本実施例では膜を用いた
。膜としては、SS成分分離能を有する既知の膜が適宜
使用され、例えば0.05〜0.45μ鳳(好ましくは
0.1〜0.3μm)の分画特性を有する膜が使用され
る。
As the separation device, all types of devices that separate solid and liquid, such as centrifuges, precipitation devices, filtration devices, and membrane separation devices, are widely used, but in this example, a membrane was used. As the membrane, a known membrane capable of separating SS components is appropriately used, for example, a membrane having a fractionation characteristic of 0.05 to 0.45 μm (preferably 0.1 to 0.3 μm) is used.

膜5で処理され、SS成分を含有しない酸発酵処理水は
、膜透過水6となって、メタン発酵槽7に送液される。
The acid-fermented water treated with the membrane 5 and containing no SS components becomes membrane-permeated water 6 and is sent to the methane fermentation tank 7.

他方、膜5で分離されSS成分に富んだ両分、つまり濃
縮SSは、循環水(膜濃縮水)2として酸発酵槽3に返
送してやる。
On the other hand, both fractions separated by the membrane 5 and rich in SS components, that is, concentrated SS, are returned to the acid fermenter 3 as circulating water (membrane concentrated water) 2.

一方、酸発酵処理水6は、酸生成過程において高分子物
質から低分子物質更には低級脂肪酸等にまで分解処理さ
れているのであるが、この酸発酵処理水6は、メタン発
酵槽7に送られて、更に、メタン、炭酸ガス等にまで分
解されるのである。
On the other hand, the acid fermentation treated water 6 has been decomposed from high molecular substances to low molecular substances and even lower fatty acids in the acid production process, and this acid fermentation treated water 6 is sent to the methane fermentation tank 7. It is further decomposed into methane, carbon dioxide, etc.

メタン発酵槽も、既知のすべてのタイプのものが広く使
用できるが、生物床式のりアクタ−等が有利であり、 
UASBリアクターは特に有利である。
All known types of methane fermenters can be widely used, but biological bed type glue actors are advantageous.
UASB reactors are particularly advantageous.

メタン発酵槽7で処理された処理済の液体は。The treated liquid treated in the methane fermentation tank 7 is as follows.

槽7から取り出し、中間槽8を経て排出せしめてもよい
が、中間槽8の下流にスクリーン9を設けておき、ここ
でSS成分を更に除去するようにしておけば、効果を高
めることができる。スクリーンの目開きは0.1〜0.
5鳳朧の範囲内とするのが良い。
It may be taken out from the tank 7 and discharged through the intermediate tank 8, but the effect can be enhanced by providing a screen 9 downstream of the intermediate tank 8 to further remove the SS component. . The screen aperture is 0.1-0.
It is best to keep it within the range of 5 Hoboro.

このようにして生成した処理水lOは、必要あれば、更
に常法にしたがって処理した後、河川に放流する。なお
、11は、酸発酵槽3.中間槽4.メタン発酵槽7から
発生するガスであるが、各種から個別に発生ガスを採取
することも可能であり、その場合、メタン発酵槽7から
採取するガスには大量のメタンが含まれているので、こ
れを各種の用途に広く利用することができる。
The treated water 1O produced in this way is, if necessary, further treated according to a conventional method and then discharged into a river. In addition, 11 is an acid fermenter 3. Intermediate tank4. Although the gas is generated from the methane fermentation tank 7, it is also possible to collect the gas generated from each type individually. In that case, the gas collected from the methane fermentation tank 7 contains a large amount of methane, so This can be widely used for various purposes.

次に、この装置を利用して、濃厚廃水を処理した例を実
施例として以下に述べる。
Next, an example in which concentrated wastewater was treated using this device will be described below.

実施例 でんぷん14g/L :I−ンスティーブリ力lOg/
l。
Example starch 14g/L: 10g/L
l.

ペプトン 2g/Ωの濃度になるよう水道水で調整した
合成廃水(CODcr濃度20,100H#l) lを
空塔容積20Ωの固定床式酸発酵槽3に水理学的滞留時
間(IIR丁)13時間で供給し、処理水を0.1μ諷
の目開きの膜5でSSを分離し、透過水6を生物床式メ
タン発酵槽7にHRτ8時間で供給した0両発酵槽の温
度は37℃に維持した。メタン発酵処理水は0.3■■
の目開きのワイヤースクリーン9でSS成分を除去した
Synthetic wastewater (CODcr concentration 20,100H#l) adjusted with tap water to have a concentration of peptone 2g/Ω was transferred to a fixed bed acid fermenter 3 with an empty column volume of 20Ω for a hydraulic retention time (IIR) of 13 The temperature of the two fermenters was 37°C, in which SS was separated from the treated water using a membrane 5 with an opening of 0.1 μm, and the permeated water 6 was supplied to the biological bed type methane fermenter 7 at an HRτ of 8 hours. maintained. Methane fermentation treated water is 0.3■■
The SS component was removed using a wire screen 9 with a mesh size of .

なお対照としては、膜及びスクリーンを除いたほかは本
発明と同じ装置を用いて上記と同様に処理した。そして
、有機物除去率については第3図。
As a control, the same treatment as above was carried out using the same apparatus as in the present invention except that the membrane and screen were removed. Figure 3 shows the organic matter removal rate.

そしてガス発生率については第4図に示した結果が得ら
れた。また、この処理の結果得られる処理水質は1次に
示す第1表のとおりであった。(なお、いずれにおいて
も、本発明に係るシステムについては「膜付」、対照シ
ステムについては「膜なし」としてそれぞれ表示した。
As for the gas generation rate, the results shown in FIG. 4 were obtained. The quality of the treated water obtained as a result of this treatment was as shown in Table 1 below. (In both cases, the system according to the present invention is shown as "with membrane" and the control system is shown as "without membrane."

) (発明の効果) 本発明は、懸濁物質(SS)分離装置を介在させるとい
う全く新規な構成を採用したことにより、きわめて効率
よく有機性廃水を処理することに成功したものである。
(Effects of the Invention) The present invention has succeeded in treating organic wastewater extremely efficiently by employing a completely new configuration in which a suspended solids (SS) separator is interposed.

本発明は、特に高濃度の有機性廃水をも有利に処理する
ことができ、しかも工業化、大規模処理に特に適してい
る。
The present invention can advantageously treat even highly concentrated organic wastewater, and is especially suitable for industrialization and large-scale treatment.

本発明によって奏される効果を更に詳記すれば次のとお
りである。
The effects achieved by the present invention will be described in more detail as follows.

(1)酸発酵処通水にSSが含まれないので処理水質が
大幅に改善される。
(1) Since SS is not included in the acid fermentation water, the quality of the treated water is greatly improved.

(2)酸発酵槽内にSSを留めておけるので、たんばく
などSSの分解が進行し、有機物の分解率が高くなり、
ガス化率が高くなる。
(2) Since SS can be retained in the acid fermenter, the decomposition of SS such as protein progresses, and the decomposition rate of organic matter increases.
Gasification rate increases.

(3)酸発酵水のSS成分分離用の膜の分画を0.2μ
m以下にすることによって、膜の目づまりを軽減するこ
とができる。すなわち、このSS成分の粒子径は0.7
μ−〜4μ園の範囲にあるため、 0.45μ−までの
孔径の場合1粒子が膜に入り込まないので致命的な目づ
まりにならない。
(3) The membrane fraction for separating SS components of acid fermented water is 0.2μ
By making it less than m, clogging of the membrane can be reduced. That is, the particle size of this SS component is 0.7
Since it is in the range of ~4μ, a single particle will not enter the membrane in the case of pore diameters up to 0.45μ, so it will not cause fatal clogging.

(4)生物床から流出するssは0.2〜3.0購鳳で
あるので、スクリーンの目開きが0.1−0.5−履で
あれば80%以上のSSが除去できる。
(4) Since the amount of SS flowing out from the biological bed is 0.2 to 3.0, more than 80% of SS can be removed if the screen opening is 0.1 to 0.5.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る処理装置の1実施例を図示したも
のであり、第2図は従来の処理装置を図示したものであ
る。 第3図は綜合C0Dcr負荷とC0Dcr除去率を示し
たグラフであり、・第4図は総合有機物負荷量とガス化
率との関係を示したグラフである。
FIG. 1 shows an embodiment of a processing device according to the present invention, and FIG. 2 shows a conventional processing device. FIG. 3 is a graph showing the total C0Dcr load and the C0Dcr removal rate, and FIG. 4 is a graph showing the relationship between the total organic matter load and the gasification rate.

Claims (1)

【特許請求の範囲】[Claims] 酸発酵槽及び生物床メタン発酵槽からなる有機性廃水の
処理装置において、前記酸発酵槽と前記生物床メタン発
酵槽を結ぶ廃水通路にSS成分分離膜を設け、膜濃縮水
を前記酸発酵槽に返送するとともに膜透過水を前記生物
床メタン発酵槽に送給するように構成したことを特徴と
する有機性廃水の処理装置。
In an organic wastewater treatment device consisting of an acid fermenter and a biological bed methane fermenter, an SS component separation membrane is provided in a wastewater passage connecting the acid fermenter and the biological bed methane fermenter, and the membrane concentrated water is transferred to the acid fermenter. An apparatus for treating organic wastewater, characterized in that it is configured to return membrane permeated water to the biological bed methane fermentation tank.
JP1026731A 1989-02-07 1989-02-07 Anaerobic two-phase type waste water treating system incorporating separator Pending JPH02207899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1026731A JPH02207899A (en) 1989-02-07 1989-02-07 Anaerobic two-phase type waste water treating system incorporating separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1026731A JPH02207899A (en) 1989-02-07 1989-02-07 Anaerobic two-phase type waste water treating system incorporating separator

Publications (1)

Publication Number Publication Date
JPH02207899A true JPH02207899A (en) 1990-08-17

Family

ID=12201458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1026731A Pending JPH02207899A (en) 1989-02-07 1989-02-07 Anaerobic two-phase type waste water treating system incorporating separator

Country Status (1)

Country Link
JP (1) JPH02207899A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06269640A (en) * 1993-03-18 1994-09-27 Nippon Memutetsuku Kk Membrane treatment apparatus
US5885461A (en) * 1997-02-07 1999-03-23 Purin-Pur, Inc. Process and system for treatment of pig and swine manure for environmental enhancement
US6921485B2 (en) * 2003-03-19 2005-07-26 Rodolfo Ernesto Kilian Two phase anaerobic organic matter treatment and system
US7198717B2 (en) 2004-08-26 2007-04-03 Graham John Gibson Juby Anoxic biological reduction system
US7318894B2 (en) * 2001-08-29 2008-01-15 Graham John Gibson Juby Method and system for treating wastewater
JP2008136984A (en) * 2006-12-05 2008-06-19 Fuji Electric Holdings Co Ltd Methane fermentation treatment apparatus
CN101905945A (en) * 2010-07-20 2010-12-08 刘伟 Municipal sludge energy treatment system
WO2014156216A1 (en) * 2013-03-27 2014-10-02 栗田工業株式会社 Anaerobic treatment method
US10781119B2 (en) 2013-02-22 2020-09-22 Bl Technologies, Inc. Membrane assembly for supporting a biofilm
US11850554B2 (en) 2014-03-20 2023-12-26 Bl Technologies, Inc. Wastewater treatment with primary treatment and MBR or MABR-IFAS reactor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605293A (en) * 1983-06-24 1985-01-11 Nippon Kokan Kk <Nkk> Two-phase anaerobic digestion treatment of organic waste liquid
JPS6223638A (en) * 1985-07-24 1987-01-31 Nec Corp Radio system for municipalities
JPS6316098A (en) * 1986-07-07 1988-01-23 Ebara Infilco Co Ltd Treatment of organic waste water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605293A (en) * 1983-06-24 1985-01-11 Nippon Kokan Kk <Nkk> Two-phase anaerobic digestion treatment of organic waste liquid
JPS6223638A (en) * 1985-07-24 1987-01-31 Nec Corp Radio system for municipalities
JPS6316098A (en) * 1986-07-07 1988-01-23 Ebara Infilco Co Ltd Treatment of organic waste water

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06269640A (en) * 1993-03-18 1994-09-27 Nippon Memutetsuku Kk Membrane treatment apparatus
US5885461A (en) * 1997-02-07 1999-03-23 Purin-Pur, Inc. Process and system for treatment of pig and swine manure for environmental enhancement
US7318894B2 (en) * 2001-08-29 2008-01-15 Graham John Gibson Juby Method and system for treating wastewater
US6921485B2 (en) * 2003-03-19 2005-07-26 Rodolfo Ernesto Kilian Two phase anaerobic organic matter treatment and system
US7198717B2 (en) 2004-08-26 2007-04-03 Graham John Gibson Juby Anoxic biological reduction system
JP2008136984A (en) * 2006-12-05 2008-06-19 Fuji Electric Holdings Co Ltd Methane fermentation treatment apparatus
CN101905945A (en) * 2010-07-20 2010-12-08 刘伟 Municipal sludge energy treatment system
US10781119B2 (en) 2013-02-22 2020-09-22 Bl Technologies, Inc. Membrane assembly for supporting a biofilm
US11724947B2 (en) 2013-02-22 2023-08-15 Bl Technologies, Inc. Membrane assembly for supporting a biofilm
WO2014156216A1 (en) * 2013-03-27 2014-10-02 栗田工業株式会社 Anaerobic treatment method
US11850554B2 (en) 2014-03-20 2023-12-26 Bl Technologies, Inc. Wastewater treatment with primary treatment and MBR or MABR-IFAS reactor

Similar Documents

Publication Publication Date Title
EP0567519B1 (en) Process and equipment for the biological treatment of solid organic material
WO2021077679A1 (en) Bacteria-algae coupling sewage treatment device based on energy recycling, and method for using same
US5540839A (en) Process for degrading organic matter
Sans et al. Volatile fatty acids production by mesophilic fermentation of mechanically-sorted urban organic wastes in a plug-flow reactor
WO2004011377A2 (en) Treatment of wastewater by biological and membrane separation technologies
US4559142A (en) Split feed for the anaerobic biological purification of wastewater
JPH02207899A (en) Anaerobic two-phase type waste water treating system incorporating separator
KR20190050477A (en) Food wastewater treatment system and operation method of the same
KR20190050474A (en) Food wastewater treatment system
CN114426375A (en) Food production wastewater treatment method
CN219823906U (en) Garbage leachate and kitchen sewage cooperative treatment system
DE3603792C2 (en)
JPH04326994A (en) Methane fermentation method and apparatus
CN102372624A (en) Method for extracting sodium gulonate from sodium gulonate fermented liquid
JPS62102896A (en) Treatment of organic waste water containing colored substance
CN114853267B (en) Efficient oil extraction and capacity system for kitchen waste
CN215924819U (en) Sweet potato protein extraction and separation device
CN1075472C (en) Two-phase anaerobic membrane-biologic system and process for treatment of waste water
JPS6362599A (en) Membrane bioreactor
CN219117290U (en) Device for recycling phosphorous acid production wastewater resources
CN202643681U (en) System for producing organic alcohol through gas-phase substrate fermentation
KR20050105302A (en) Treatment method of petro-chemical wastewater comprising terephthalic acid
CN113652454B (en) High-efficiency alcohol preparation process by industrial tail gas fermentation
CN218025762U (en) Inositol waste water&#39;s processing system
CN213895514U (en) Coking wastewater treatment device