JP2004275997A - Method and apparatus for removing nitrogen - Google Patents

Method and apparatus for removing nitrogen Download PDF

Info

Publication number
JP2004275997A
JP2004275997A JP2003075093A JP2003075093A JP2004275997A JP 2004275997 A JP2004275997 A JP 2004275997A JP 2003075093 A JP2003075093 A JP 2003075093A JP 2003075093 A JP2003075093 A JP 2003075093A JP 2004275997 A JP2004275997 A JP 2004275997A
Authority
JP
Japan
Prior art keywords
raw water
tank
nitrification
nitrogen
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003075093A
Other languages
Japanese (ja)
Other versions
JP3968781B2 (en
Inventor
Kazuichi Isaka
和一 井坂
So Ikuta
創 生田
Tatsuo Sumino
立夫 角野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2003075093A priority Critical patent/JP3968781B2/en
Priority to CNB031385087A priority patent/CN100337935C/en
Publication of JP2004275997A publication Critical patent/JP2004275997A/en
Application granted granted Critical
Publication of JP3968781B2 publication Critical patent/JP3968781B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for removing nitrogen capable of simply obtaining liquid suitable for anaerobic ammonia oxidation and efficiently removing nitrogen component by means of anaerobic ammonia oxidation treatment. <P>SOLUTION: Raw water in a raw water tank 12 is distributed to a first delivery line 24 and a second delivery line 26 by a distribution tank 14 and is delivered. The raw water in the second delivery line 26 is directly delivered to a mixing tank 20 and the raw water in the first delivery line 24 is subjected to nitrification treatment in a nitrification tank 16 and, thereafter, is delivered to the mixing tank 20. In the nitrification tank 16, the nitrification treatment is performed by using a carrier which is heat-treated in predetermined heating conditions, and ammonia nitrogen in the raw water is principally converted into nitrite nitrogen. The nitrification treating liquid is mixed with the raw water of the second delivery line in the mixing tank 20 and the mixed liquid is delivered to an anaerobic ammonia oxidation apparatus 22 and is subjected to the anaerobic ammonia oxidation treatment. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は窒素除去方法及び装置に係り、特に原水中のアンモニア性窒素を嫌気性アンモニア酸化法を用いて除去する窒素除去方法及び装置に関する。
【0002】
【従来の技術】
従来の硝化・脱窒法では、原水中のアンモニア性窒素を硝化菌により好気性条件下で亜硝酸を経て硝酸にまで酸化し、この硝酸を脱窒菌により嫌気性条件下で窒素ガスに変換することによって除去している。
【0003】
しかし、この方法は、脱窒処理時にメタノール等の水素供与体を添加する必要があるため、ランニングコストが増加するという欠点がある。
【0004】
水素供与体の添加を必要としない窒素除去方法として、嫌気性アンモニア酸化(Anaerobic Ammonium Oxidation :ANAMMOX)法と呼ばれる方法が提案されている。
【0005】
この方法では、亜硝酸イオンとアンモニウムイオンが化学的に略等当量溶解するように調製した液を反応タンクに供給し、液温30℃、pH8.0 の下、HRT を6`23 時間とする。その結果、嫌気性アンモニア酸化細菌の関与によって、液相中の亜硝酸アンモニウムが窒素ガスに変換され系外除去される。嫌気性アンモニア酸化細菌は独立栄養性であるため、通常の他栄養性脱窒とは異なり、脱窒のための水素供与体(例えば、メタノール)を必要としない。したがって、栄養源や酸素が不要であり、低コストで窒素成分を除去することができる。
【0006】
上記の嫌気性アンモニア酸化法において、嫌気性アンモニア酸化細菌の菌体合成も含めた物質収支式は下記の(1)式となる。
1NH +1.31NO +0.0425CO→1.045N+0.220NO +1.870HO+0.090OH +0.0425CHO …(1)式
(1)式から分かるように、嫌気性アンモニア酸化法では、原水のアンモニアと亜硝酸とのモル比が1:1.31に調製することが望ましい。
【0007】
このようなモル比の液を得る方法として、SHARON法と呼ばれる窒素除去法が利用されている。この方法は、汚泥の滞留機構を持たない連続攪拌タンクリアクターにおいて、温度を30〜40℃、pHを7 〜8 程度に保ち、エアレーションを行って1.5日滞留させる。その結果、アンモニア酸化細菌だけが増殖でき、亜硝酸酸化細菌は増殖できない環境が作り出される。これにより、アンモニアと亜硝酸が前記のモル比である液を得ることができる。
【0008】
しかし、SHARON法は、汚泥を滞留させる設備がないため、処置が不安定になるという問題がある。また、処理時間が制限されるため、アンモニアを完全に亜硝酸に変換することができない。さらに、液全体を高温にするために、多量の熱量が必要になるという問題がある。
【0009】
特許文献1には、アンモニアと亜硝酸のモル比が1:1.31の液を得るための別の方法が記載されている。この方法は、原水を分配し、その一方の原水を、亜硝酸酸化細菌阻害剤を添加した汚泥によって硝化処理した後、他方の原水と合流させる。この方法によれば、亜硝酸酸化細菌阻害剤を添加したことによって、汚泥に含まれる亜硝酸酸化細菌の成長が抑制され、汚泥中のアンモニア酸化細菌が優先的に生育するので、原水中のアンモニア性窒素を主に亜硝酸に変換することができる。したがって、この硝化処理液を他方の原水と合流させることによって、前記モル比の液を得ることができる。
【0010】
【特許文献1】
特開2001−170684号公報
【0011】
【発明が解決しようとする課題】
しかしながら、特許文献1は、亜硝酸酸化細菌阻害剤としてパラコートのように有害な物質を使用するため、現実的な方法ではない。
【0012】
また、特許文献1は、亜硝酸酸化細菌阻害剤を用いた培養設備が必要になるため、設備全体が大型化したり、ランニングコストが増加するという問題があった。
【0013】
本発明はこのような事情に鑑みて成されたもので、嫌気性アンモニア酸化に適した液を簡単に得ることができ、嫌気性アンモニア酸化処理において窒素成分を効率よく除去できる窒素除去方法及び装置を提供することを目的とする。
【0014】
【課題を解決する為の手段】
請求項1に記載の発明は前記目的を達成するために、原水中に含まれるアンモニア性窒素を除去する窒素除去方法において、前記原水を二つに分配し、該分配された一方の原水を、所定の加熱条件で加熱処理した固定化微生物担体、または所定の加熱条件で加熱処理した活性汚泥を用いて硝化処理することにより、前記原水に含まれるアンモニア性窒素を亜硝酸性窒素に変換し、該硝化処理した硝化処理液を、前記分配された他方の原水と混和し、該混和液を嫌気性アンモニア酸化処理することを特徴としている。
【0015】
請求項2に記載の発明は前記目的を達成するために、原水中に含まれるアンモニア性窒素を除去する窒素除去装置において、前記原水を第1送液ラインと第2送液ラインとに分配する分配槽と、前記第1送液ラインに配設され、所定の加熱条件で加熱処理した固定化微生物担体、または所定の加熱条件で加熱処理した活性汚泥によって硝化処理を行い、前記原水に含まれるアンモニア性窒素を亜硝酸性窒素に変換する硝化槽と、前記硝化槽によって硝化処理した硝化処理液と、前記第2送液ラインを流れる原水とを混和する混和槽と、該混和槽で混和した混和液を嫌気性アンモニア酸化処理する嫌気性アンモニア酸化装置と、を備えたことを特徴としている。
【0016】
請求項1及び2に記載の発明によれば、原水を二つに分配し、分配した一方の原水を、所定の加熱条件で加熱処理した固定化微生物担体または活性汚泥で硝化処理することによってアンモニア性窒素を亜硝酸性窒素に変換し、さらに、この硝化処理液を分配した他方の原水に混和するようにしたので、原水の分配比を調節することによって簡単に、混和液中のアンモニアと亜硝酸の比を調節することができる。これにより、嫌気性アンモニア酸化に適した混和液を得ることができるので、嫌気性アンモニア酸化処理において、効率良く脱窒処理することができる。なお、請求項1及び2に記載の発明において、所定の加熱条件とは、微生物固定化担体の場合、加熱温度は30〜80℃、より好ましくは40〜70℃であり、加熱時間は1h以上、より好ましくは1日以上二週間以内である。また、活性汚泥の場合は、加熱温度は50〜90℃、より好ましくは60〜90℃であり、加熱時間は1h以上、より好ましくは1日以上1週間以内である。
【0017】
請求項3に記載の発明は、前記硝化槽で硝化処理した硝化処理液の亜硝酸濃度を測定する亜硝酸センサと、前記第2送液ラインを流れる原水のアンモニア濃度を測定するアンモニアセンサと、前記亜硝酸センサの測定値と前記アンモニアセンサの測定値に応じて、前記混和槽に流入する硝化処理液の流量と原水の流量との比を調整する流量調整手段と、を備えたことを特徴としている。したがって、請求項3に記載の発明によれば、原水のアンモニア濃度と、硝化処理液の亜硝酸濃度に応じて、混和される原水の流量と硝化処理液の流量との比を調節するので、混和液におけるアンモニアと亜硝酸の比を任意に調節することができる。したがって、嫌気性アンモニア酸化に適した比の混和液を確実に得ることができる。また、原水に含まれるアンモニア性窒素の濃度が経時的に変動した場合であっても、混和液におけるアンモニアと亜硝酸を所定の比に調整することができる。
【0018】
請求項4に記載の発明は、前記第2送液ラインには、前記硝化槽と略同じ容積のタンクが設けられることを特徴としている。したがって、請求項4に記載の発明によれば、第2送液ラインを流れる原水は、タンクで滞留するようになり、その滞留時間は、硝化槽での滞留時間と略同一になる。このため、分配槽で同時刻に分配された原水は、混和槽に同じタイミングで流入するようになるので、原水のアンモニア性窒素濃度が変動しても、その影響を受けなくなる。これにより、混和液のアンモニアと亜硝酸の比が変動しなくなるので、嫌気性アンモニア酸化処理を安定して行うことができる。
【0019】
【発明の実施の形態】
以下添付図面に従って、本発明に係る窒素除去方法及び装置の好ましい実施形態について説明する。
【0020】
図1は本発明に係る窒素除去装置の第1の実施形態の構成を示す模式図である。
【0021】
図1に示すように、第1の実施形態の窒素除去装置10は主として、原水槽12、分配槽14、硝化槽16、加熱処理槽18、混和槽20、及び嫌気性アンモニア酸化装置22で構成され、原水槽12に貯留された原水は、分配層14に送液される。
【0022】
分配槽14には、第1送液ライン24と第2送液ライン26が接続されている。分配槽14は、この第1送液ライン24と第2送液ライン26に、原水を所定の流量比で分配して送液する。例えば、第1送液ライン24に流れる原水の流量と、第2送液ライン26に流れる原水の流量との比(以下、分配比という)が、1:1〜1:1.4程度になるように分配して送液する。
【0023】
第2送液ライン26は、混和槽20に直接接続される。一方、第1送液ライン24は、硝化槽16に接続され、この硝化槽16が硝化処理液ライン30を介して混和槽20に接続される。
【0024】
硝化槽16には、固定化微生物担体(以下、担体という)が投入されている。この担体は、微生物を固定化するためのモノマまたはプレポリマの何れかを、湖沼や河川や海の底泥、地表の土壌、または下水処理場の活性汚泥の何れかの汚泥の存在下で、30〜80℃で加熱処理しながら重合することによって製造される。このように製造された担体には、アンモニア性窒素を亜硝酸まで硝化するアンモニア酸化細菌が優先的に集積されるとともに、亜硝酸を硝酸まで硝化する亜硝酸酸化細菌の集積が抑制される。なお、担体製造時の加熱温度は、30〜80℃が好ましく、40〜70℃がさらに好ましい。また、担体製造時の加熱時間は、1時間以上が好ましく、1日以上2週間以内が好ましい。加熱時間が短いと、アンモニア酸化細菌を優先的に集積する効果が小さいためである。また、2週間を超えて加熱しても集積効果が殆ど変わらないため、2週間以内の加熱時間とすることが好ましい。
【0025】
硝化槽16の流出口には担体の回収装置28が設置されている。回収装置28で回収された担体は、担体運搬ライン32を介して加熱処理槽18に運搬される。加熱処理槽18は、担体を加熱処理する装置であり、その加熱条件としては、前記担体製造時と同じ加熱条件であることが好ましい。すなわち、加熱温度は、30〜80℃が好ましく、40〜70℃がより好ましい。また、加熱時間は、1時間以上が好ましく、1日以上2週間以内がより好ましい。このような加熱条件で担体を加熱処理することによって、担体は、亜硝酸酸化細菌の集積が抑制され、且つ、アンモニア酸化細菌が効率良く集積される。すなわち、担体による亜硝酸生成性能を復活させることができる。
【0026】
加熱処理槽18で加熱処理された担体は、担体返送ライン34を介して硝化槽16に返送される。これにより、硝化槽16において、原水中のアンモニア性窒素を硝酸にまで変換することなく、主に亜硝酸に変換することができる。なお、担体の加熱温度を50〜70℃とした際は、硝化処理液に含まれる亜硝酸と硝酸の濃度比が30程度になり、亜硝酸型反応率(=亜硝酸/(亜硝酸+硝酸)×100)が97%になり、略100%近い亜硝酸型の硝化反応が行われる。
【0027】
硝化槽16で硝化処理された硝化処理液は、硝化処理液ライン30を介して混和槽20に送液される。この硝化処理液は、混和槽20において、第2送液ライン26から直接送液された原水と混和される。すなわち、混和槽20では、亜硝酸を含む硝化処理液と、アンモニアを含む原水とが混和されるので、混和液には、アンモニアと亜硝酸が含まれる。混和液に含まれるアンモニアと亜硝酸の比は、硝化槽16でアンモニアが略完全に亜硝酸に変換されることから、分配槽14での分配比(すなわち、第1送液ライン24の流量と第2送液ライン26の流量との比)に略比例する。したがって、分配比を1:1〜1:1.4に調節することによって、アンモニアと亜硝酸のモル比が1:1.31に近い混和液を作成することができる。
【0028】
混和槽20の混和液は、嫌気性アンモニア酸化装置22に送液される。嫌気性アンモニア酸化装置22は、液温30℃、pH8.0 の下、滞留時間を6`23 時間とすることによって、アンモニアを水素供与体として、窒素成分が除去される。
【0029】
次に上記の如く構成された窒素除去装置10の作用について説明する。
【0030】
図2は、混和液の成分と嫌気性アンモニア酸化装置22の窒素除去率との関係を示す図である。
【0031】
同図に示すように、嫌気性アンモニア酸化装置22は、混和液におけるアンモニアと亜硝酸の比が0.9〜1.4の範囲である場合に、高い除去率が得られる。このため、混和液のアンモニアと亜硝酸の比を0.9〜1.4に制御することが必要である。
【0032】
本実施の形態では、原水を分配槽14によって第1送液ライン24と第2送液ライン26とに分配して送液し、第1送液ライン24の原水のアンモニア性窒素を亜硝酸に変換して、第2送液ライン26の原水と混和するように構成したので、分配槽14における分配比を調整することによって簡単に、混和液におけるアンモニアと亜硝酸の比を調整できる。したがって、混和液におけるアンモニアと亜硝酸の比を上記の範囲に調整することができ、嫌気性アンモニア酸化装置22における脱窒処理を効率良く行うことができる。
【0033】
図3は第2の実施形態の窒素除去装置36の構成を示す模式図である。
【0034】
図3に示す窒素除去装置36は、図1に示した第1の実施形態の窒素除去装置10と比較して、硝化処理液ライン30に亜硝酸センサ38が設けられている点と、第2送液ライン26にアンモニアセンサ40が設けられている点で異なっている。亜硝酸センサ38は、硝化処理液中の亜硝酸濃度を計測する計測器であり、例えばブラウンルーベが使用される。アンモニアセンサ40は、第2送液ライン26を流れる原水中のアンモニア濃度を計測する計測器であり、例えばイオン電極が使用される。
【0035】
分配槽14は、亜硝酸センサ38の測定値とアンモニアセンサ40の測定値に応じて、第1送液ライン24と第2送液ライン26との分配比を調節する。そして、混和槽20内のアンモニアに対する亜硝酸の比が0.9〜1.4になるように制御する。
【0036】
次に上記の如く構成された第2の実施形態の作用について説明する。
【0037】
第1送液ライン24を流れる原水は、硝化槽16で硝化処理されるのに対し、第2送液ライン26を流れる原水は直接、混和槽20の送液される。したがって、第1送液ライン24を流れる原水の方が、硝化槽16での滞留時間の分だけ、混和槽20に遅れて流入される。このため、原水に含まれるアンモニアの濃度が変動すると、混和時のアンモニアと亜硝酸の比が大きく変動するおそれがある。例えば、原水のアンモニア濃度が大きく低下した場合、第2送液ライン26から混和槽20に流入する原水のアンモニア濃度がすぐに低下するのに対して、硝化処理液ライン30から混和槽20に流入する硝化処理液の亜硝酸濃度は遅れて低下する。したがって、原水のアンモニア濃度が低下した直後、混和液は、アンモニアに対する亜硝酸の比が大きくなるおそれがある。
【0038】
そこで、第2の実施形態では、亜硝酸センサ38の測定値とアンモニアセンサ40の測定値に応じて、分配槽14による分配比を調整している。例えば、前記の如く原水のアンモニア濃度が低下した場合には、第1送液ライン24の流量に対して第2送液ライン26の流量が増加するようにする。これにより、混和液におけるアンモニアと亜硝酸の比が変動することを抑制することができる。
【0039】
また、第2の実施形態によれば、硝化槽16での硝化効率が変動した場合においても同様に、分配槽14による分配比を調整することによって、混和液のアンモニアと亜硝酸の比の変動を抑制することができる。
【0040】
このように第2の実施形態によれば、分配槽14による分配比を調節することによって、混和液におけるアンモニアと亜硝酸の比を任意に調節することができる。したがって、原水のアンモニア濃度が変動した場合や処理槽16の硝化効率が変動した場合であっても、混和液のアンモニアと亜硝酸の比を確実に0.9〜1.4の範囲に制御することができる。これにより、嫌気性アンモニア酸化装置22における脱窒効率を向上させることができる。
【0041】
なお、上述した第2の実施形態では、分配槽14における分配比を調整するようにしたが、第1送液ライン24(または硝化処理液ライン30)を流れる流量と、第2送液ライン26を流れる流量との比を調整すればよいので、第1送液ライン24(または硝化処理液ライン30)や第2送液ライン26に流量調整弁を設けてもよい。
【0042】
図4は第3の実施形態の窒素除去装置42の構成を模式的に示す図である。
【0043】
図4に示す第3の実施形態の窒素除去装置42は、図1に示した第1の実施形態の窒素除去装置10と比較して、第2送液ライン26にバッファタンク44が設けられている点で異なっている。このバッファタンク44は、硝化槽16と略同じ容積になるように構成されている。したがって、硝化槽16での滞留時間とバッファタンク44での滞留時間が略等しくなる。このため、分配槽14で同時刻に第1送水ライン24と第2送水ライン26とに分配された原水は、略同時刻に混和槽20に流入される。したがって、原水のアンモニア濃度が変動した場合であっても、混和液の成分はその影響を受けなくなり、混和液におけるアンモニアと亜硝酸の比は常に略一定になる。これにより、嫌気性アンモニア酸化装置22において安定した脱窒処理を行うことができる。
【0044】
なお、上述した第3の実施形態では、バッファタンク44の容積を硝化槽16の容積と略同一としたが、これに限定するものではない。硝化槽16の容積とバッファタンク44の容積の比を、分配槽14による分配比に一致させると、硝化槽16での滞留時間とバッファタンク44での滞留時間を同一にすることができる。
【0045】
図5は第4の実施形態の窒素除去装置46の構成を模式的に示す図である。
【0046】
図5に示す窒素除去装置46の硝化槽16は、活性汚泥によって硝化処理を行っている。硝化槽16の後段には、沈殿槽48が設けられ、この沈殿槽48によって、硝化槽16から流出した活性汚泥が沈殿回収される。沈殿槽48に沈殿した活性汚泥は、一部が汚泥引き抜きライン52によって引き抜かれ、余剰汚泥として定期的に取り除かれる。また、残りの活性汚泥は、汚泥運搬ライン54によって加熱処理槽50に運搬され、加熱処理槽50において加熱処理される。加熱処理された活性汚泥は汚泥返送ライン56によって硝化槽16に返送される。
【0047】
加熱処理槽50における加熱条件としては、加熱温度が50〜90℃が好ましく、60〜90℃がより好ましい。また、加熱時間が1h以上が好ましく、1日〜1週間がより好ましい。このような加熱条件の下で加熱処理を行うことによって、活性汚泥中の亜硝酸酸化細菌の生育を抑制しつつ、アンモニア酸化細菌を優先的に生育させることができる。したがって、加熱処理した活性汚泥を用いて硝化処理を行うことによって、原水中のアンモニア性窒素は硝酸まで硝化されずに、亜硝酸に変換される。
【0048】
上記の如く構成された第4の実施形態によれば、硝化槽16においてアンモニアを略完全に亜硝酸に変換させることができるので、混和液のアンモニアと亜硝酸の比を簡単に調節することができ、嫌気性アンモニア酸化処理に適した混和液を得ることができる。
【0049】
なお、上述した第4の実施形態においても、硝化処理液ライン30に亜硝酸センサを配設するとともに第2送液ライン26にアンモニアセンサを配設したり、或いは、硝化槽16と略同容積のバッファタンクを第2送液ライン26に配設したりしてもよい。
【0050】
【発明の効果】
以上説明したように本発明に係る窒素除去方法及び装置によれば、原水を二つに分配し、その一方の原水中のアンモニア性窒素を亜硝酸性窒素に変換した後に、分配した他方の原水と混和するようにしたので、亜硝酸とアンモニアを所定の比に調整した液を簡単に得ることができ、嫌気性アンモニア酸化処理において窒素を効率良く除去することができる。
【図面の簡単な説明】
【図1】本発明に係る窒素除去装置の第1の実施形態の構成を示す模式図
【図2】混和液の成分比と嫌気性アンモニア酸化処理の窒素除去率との関係を示す図
【図3】本発明に係る窒素除去装置の第2の実施形態の構成を示す模式図
【図4】本発明に係る窒素除去装置の第3の実施形態の構成を示す模式図
【図5】本発明に係る窒素除去装置の第4の実施形態の構成を示す模式図
【符号の説明】
10…窒素除去装置、12…原水槽、14…分配槽、16…硝化槽、18…加熱処理槽、20…混和槽、22…嫌気性アンモニア酸化装置、24…第1送液ライン、26…第2送液ライン、28…回収装置、30…硝化処理液ライン、32…担体運搬ライン、34…担体返送ライン、36…窒素除去装置、38…亜硝酸センサ、40…アンモニアセンサ、42…窒素除去装置、44…バッファタンク、46…窒素除去装置、48…沈殿槽、50…加熱処理槽、52…汚泥引き抜きライン、54…汚泥運搬ライン、56…汚泥返送ライン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for removing nitrogen, and more particularly, to a method and an apparatus for removing nitrogen in raw water using an anaerobic ammonia oxidation method.
[0002]
[Prior art]
In the conventional nitrification and denitrification method, ammonia nitrogen in raw water is oxidized by nitrifying bacteria to nitric acid through nitrous acid under aerobic conditions, and this nitric acid is converted to nitrogen gas under anaerobic conditions by denitrifying bacteria. Has been removed.
[0003]
However, this method has a drawback that the running cost increases because a hydrogen donor such as methanol must be added during the denitrification treatment.
[0004]
As a method for removing nitrogen that does not require the addition of a hydrogen donor, a method called anaerobic ammonium oxidation (ANAMMOX) method has been proposed.
[0005]
In this method, a solution prepared so that nitrite ions and ammonium ions are chemically dissolved in approximately equivalent amounts is supplied to a reaction tank, and the HRT is set to 6 to 23 hours at a solution temperature of 30 ° C. and a pH of 8.0. . As a result, due to the involvement of the anaerobic ammonium oxidizing bacteria, ammonium nitrite in the liquid phase is converted to nitrogen gas and removed out of the system. Since anaerobic ammonium oxidizing bacteria are autotrophic, they do not require a hydrogen donor (eg, methanol) for denitrification, unlike normal allotrophic denitrification. Therefore, a nutrient source and oxygen are unnecessary, and the nitrogen component can be removed at low cost.
[0006]
In the above-described anaerobic ammonia oxidation method, a mass balance equation including the synthesis of cells of the anaerobic ammonium oxidizing bacteria is represented by the following equation (1).
1NH 4 + + 1.31NO 2 +0.0425 CO 2 → 1.045 N 2 +0.220 NO 3 +1.870 H 2 O + 0.090 OH +0.0425 CH 2 O As can be seen from the equation (1), anaerobic. In the neutral ammonia oxidation method, it is desirable to adjust the molar ratio of ammonia and nitrite of the raw water to 1: 1.31.
[0007]
As a method for obtaining a liquid having such a molar ratio, a nitrogen removal method called a SHARON method is used. In this method, the temperature is kept at 30 to 40 ° C. and the pH is kept at about 7 to 8 in a continuous stirred tank reactor having no sludge retention mechanism, and aeration is performed to keep the sludge for 1.5 days. As a result, an environment is created in which only ammonia oxidizing bacteria can grow and nitrite oxidizing bacteria cannot grow. Thereby, a liquid in which ammonia and nitrous acid have the above molar ratio can be obtained.
[0008]
However, the SHARON method has a problem that the treatment becomes unstable because there is no facility for retaining sludge. In addition, since the treatment time is limited, ammonia cannot be completely converted to nitrous acid. Further, there is a problem that a large amount of heat is required to raise the temperature of the entire liquid.
[0009]
Patent Document 1 discloses another method for obtaining a liquid having a molar ratio of ammonia to nitrite of 1: 1.31. In this method, raw water is distributed, one of the raw waters is subjected to nitrification treatment with sludge to which a nitrite-oxidizing bacterium inhibitor has been added, and then combined with the other raw water. According to this method, the growth of nitrite oxidizing bacteria contained in the sludge is suppressed by the addition of the nitrite oxidizing bacteria inhibitor, and the ammonia oxidizing bacteria in the sludge grow preferentially. Nitrogen can be mainly converted to nitrous acid. Therefore, by combining this nitrification treatment liquid with the other raw water, a liquid having the above molar ratio can be obtained.
[0010]
[Patent Document 1]
JP 2001-170684 A
[Problems to be solved by the invention]
However, Patent Document 1 is not a practical method because it uses a harmful substance such as paraquat as a nitrite-oxidizing bacterium inhibitor.
[0012]
Further, Patent Document 1 has a problem that a culture facility using a nitrite-oxidizing bacterium inhibitor is required, so that the entire facility becomes large and the running cost increases.
[0013]
The present invention has been made in view of such circumstances, and a nitrogen removal method and apparatus capable of easily obtaining a liquid suitable for anaerobic ammonia oxidation and efficiently removing a nitrogen component in anaerobic ammonia oxidation treatment. The purpose is to provide.
[0014]
[Means for solving the problem]
In order to achieve the object, the invention according to claim 1 is a nitrogen removal method for removing ammoniacal nitrogen contained in raw water, wherein the raw water is divided into two, and one of the distributed raw water is By performing nitrification treatment using immobilized microorganism carrier heat-treated under predetermined heating conditions, or activated sludge heat-treated under predetermined heating conditions, ammonia nitrogen contained in the raw water is converted into nitrite nitrogen, The nitrification treatment liquid obtained by the nitrification treatment is mixed with the other raw water distributed, and the mixed liquid is subjected to an anaerobic ammonia oxidation treatment.
[0015]
According to a second aspect of the present invention, in order to achieve the above object, in a nitrogen removing device for removing ammoniacal nitrogen contained in raw water, the raw water is distributed to a first liquid sending line and a second liquid sending line. A nitrification treatment is performed by a distribution tank and an immobilized microorganism carrier that is disposed in the first liquid sending line and that is heat-treated under a predetermined heating condition or activated sludge that is heat-treated under a predetermined heating condition, and is included in the raw water. A nitrification tank for converting ammoniacal nitrogen to nitrite nitrogen, a nitrification treatment liquid nitrified by the nitrification tank, and a mixing tank for mixing raw water flowing through the second liquid sending line, and the mixing tank was mixed. An anaerobic ammonia oxidizer for anaerobic ammonia oxidation of the mixture.
[0016]
According to the first and second aspects of the present invention, ammonia is distributed by distributing raw water into two parts, and nitrifying one of the distributed raw water with an immobilized microorganism carrier or activated sludge that has been heated under predetermined heating conditions. Nitrogen is converted to nitrite nitrogen, and the nitrification solution is mixed with the other raw water to which the nitrification treatment liquid has been distributed. Therefore, by adjusting the distribution ratio of the raw water, the ammonia and the nitrous acid in the mixed liquid can be easily adjusted. The ratio of nitric acid can be adjusted. As a result, a mixture suitable for anaerobic ammonia oxidation can be obtained, so that denitrification can be performed efficiently in anaerobic ammonia oxidation. In the invention described in claims 1 and 2, the predetermined heating conditions are such that in the case of a microorganism-immobilized carrier, the heating temperature is 30 to 80 ° C, more preferably 40 to 70 ° C, and the heating time is 1 hour or more. And more preferably for one day or more and for two weeks or less. In the case of activated sludge, the heating temperature is 50 to 90 ° C, more preferably 60 to 90 ° C, and the heating time is 1 hour or more, more preferably 1 day to 1 week.
[0017]
The invention according to claim 3 is a nitrite sensor that measures a nitrite concentration of a nitrification treatment liquid nitrified in the nitrification tank, and an ammonia sensor that measures an ammonia concentration of raw water flowing through the second liquid sending line. Flow rate adjusting means for adjusting a ratio between a flow rate of the nitrification treatment liquid flowing into the mixing tank and a flow rate of raw water according to the measurement value of the nitrite sensor and the measurement value of the ammonia sensor. And Therefore, according to the third aspect of the present invention, the ratio between the flow rate of the raw water to be mixed and the flow rate of the nitrification treatment liquid is adjusted according to the ammonia concentration of the raw water and the nitrite concentration of the nitrification treatment liquid. The ratio of ammonia to nitrous acid in the mixture can be adjusted arbitrarily. Therefore, a mixture having a ratio suitable for anaerobic ammonia oxidation can be reliably obtained. Further, even when the concentration of ammoniacal nitrogen contained in the raw water fluctuates with time, the ratio of ammonia and nitrous acid in the mixture can be adjusted to a predetermined ratio.
[0018]
The invention described in claim 4 is characterized in that the second liquid sending line is provided with a tank having substantially the same volume as the nitrification tank. Therefore, according to the fourth aspect of the present invention, the raw water flowing through the second liquid sending line stays in the tank, and the staying time is substantially the same as the staying time in the nitrification tank. For this reason, the raw water distributed at the same time in the distribution tank flows into the mixing tank at the same timing, and therefore, even if the ammonia nitrogen concentration of the raw water fluctuates, it is not affected. Thereby, the ratio of ammonia and nitrous acid in the mixture does not fluctuate, so that the anaerobic ammonia oxidation treatment can be performed stably.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Preferred embodiments of the method and apparatus for removing nitrogen according to the present invention will be described below with reference to the accompanying drawings.
[0020]
FIG. 1 is a schematic diagram showing a configuration of a first embodiment of a nitrogen removing apparatus according to the present invention.
[0021]
As shown in FIG. 1, the nitrogen removing apparatus 10 of the first embodiment mainly includes a raw water tank 12, a distribution tank 14, a nitrification tank 16, a heat treatment tank 18, a mixing tank 20, and an anaerobic ammonia oxidation apparatus 22. The raw water stored in the raw water tank 12 is sent to the distribution layer 14.
[0022]
A first liquid sending line 24 and a second liquid sending line 26 are connected to the distribution tank 14. The distribution tank 14 distributes and feeds the raw water to the first liquid sending line 24 and the second liquid sending line 26 at a predetermined flow ratio. For example, the ratio of the flow rate of the raw water flowing through the first liquid transfer line 24 to the flow rate of the raw water flowing through the second liquid transfer line 26 (hereinafter, referred to as a distribution ratio) is about 1: 1 to 1: 1.4. And distribute the solution.
[0023]
The second liquid sending line 26 is directly connected to the mixing tank 20. On the other hand, the first liquid supply line 24 is connected to the nitrification tank 16, and the nitrification tank 16 is connected to the mixing tank 20 via the nitrification liquid line 30.
[0024]
An immobilized microorganism carrier (hereinafter, referred to as a carrier) is charged into the nitrification tank 16. The carrier is capable of depositing either a monomer or a prepolymer for immobilizing microorganisms in the presence of sludge, either in lakes, rivers, or sea bottom mud, surface soil, or activated sludge in sewage treatment plants. It is manufactured by polymerizing while heating at ~ 80 ° C. Ammonia oxidizing bacteria that nitrify ammonia nitrogen to nitrite are preferentially accumulated in the carrier thus produced, and accumulation of nitrite oxidizing bacteria that nitrifies nitrite to nitric acid is suppressed. The heating temperature during the production of the carrier is preferably from 30 to 80C, more preferably from 40 to 70C. The heating time during the production of the carrier is preferably 1 hour or more, and more preferably 1 day or more and 2 weeks or less. This is because if the heating time is short, the effect of preferentially accumulating ammonia-oxidizing bacteria is small. In addition, since the accumulation effect hardly changes even if heating is performed for more than two weeks, it is preferable to set the heating time within two weeks.
[0025]
At the outlet of the nitrification tank 16, a carrier recovery device 28 is installed. The carrier recovered by the recovery device 28 is transported to the heat treatment tank 18 via the carrier transport line 32. The heat treatment tank 18 is a device for heat-treating the carrier, and the heating conditions thereof are preferably the same heating conditions as in the production of the carrier. That is, the heating temperature is preferably from 30 to 80 ° C, more preferably from 40 to 70 ° C. The heating time is preferably one hour or more, and more preferably one day or more and two weeks or less. By heat-treating the carrier under such heating conditions, accumulation of nitrite-oxidizing bacteria on the carrier is suppressed, and ammonia-oxidizing bacteria are efficiently accumulated on the carrier. That is, the nitrite generation performance of the carrier can be restored.
[0026]
The carrier heat-treated in the heat treatment tank 18 is returned to the nitrification tank 16 via the carrier return line 34. Thereby, in the nitrification tank 16, the ammonia nitrogen in the raw water can be mainly converted to nitrous acid without converting to nitric acid. When the heating temperature of the carrier is set at 50 to 70 ° C., the concentration ratio of nitrite and nitric acid contained in the nitrification treatment liquid becomes about 30, and the nitrite type reaction rate (= nitrite / (nitrite + nitrate) ) × 100) becomes 97%, and a nitrite-type nitrification reaction of about 100% is performed.
[0027]
The nitrification liquid that has been nitrified in the nitrification tank 16 is sent to the mixing tank 20 via the nitrification liquid line 30. The nitrification liquid is mixed in the mixing tank 20 with the raw water directly supplied from the second liquid supply line 26. That is, in the mixing tank 20, the nitrification treatment liquid containing nitrous acid and the raw water containing ammonia are mixed, so that the mixing liquid contains ammonia and nitrous acid. The ratio of ammonia to nitrous acid contained in the admixture depends on the distribution ratio in the distribution tank 14 (that is, the flow rate of the first liquid feed line 24 and the (Ratio to the flow rate of the second liquid sending line 26). Therefore, by adjusting the distribution ratio to 1: 1 to 1: 1.4, a mixture liquid in which the molar ratio of ammonia to nitrous acid is close to 1: 1.31 can be prepared.
[0028]
The mixed liquid in the mixing tank 20 is sent to the anaerobic ammonia oxidation device 22. The anaerobic ammonia oxidizer 22 removes nitrogen components by using ammonia as a hydrogen donor by setting the residence time to 6 to 23 hours at a liquid temperature of 30 ° C. and a pH of 8.0.
[0029]
Next, the operation of the nitrogen removing device 10 configured as described above will be described.
[0030]
FIG. 2 is a diagram showing the relationship between the components of the mixture and the nitrogen removal rate of the anaerobic ammonia oxidation device 22.
[0031]
As shown in the figure, the anaerobic ammonia oxidizer 22 can obtain a high removal rate when the ratio of ammonia to nitrous acid in the mixture is in the range of 0.9 to 1.4. For this reason, it is necessary to control the ratio of ammonia and nitrous acid in the mixture to 0.9 to 1.4.
[0032]
In the present embodiment, the raw water is distributed to the first liquid sending line 24 and the second liquid sending line 26 by the distribution tank 14 and sent, and the ammonia nitrogen of the raw water in the first liquid sending line 24 is converted to nitrous acid. Since the conversion is made so as to be mixed with the raw water in the second liquid sending line 26, the ratio between ammonia and nitrous acid in the mixed liquid can be easily adjusted by adjusting the distribution ratio in the distribution tank 14. Therefore, the ratio of ammonia to nitrite in the mixture can be adjusted to the above range, and the denitrification treatment in the anaerobic ammonia oxidizer 22 can be performed efficiently.
[0033]
FIG. 3 is a schematic diagram illustrating a configuration of the nitrogen removing device 36 according to the second embodiment.
[0034]
The nitrogen removing device 36 shown in FIG. 3 is different from the nitrogen removing device 10 of the first embodiment shown in FIG. The difference is that an ammonia sensor 40 is provided in the liquid sending line 26. The nitrous acid sensor 38 is a measuring device for measuring the concentration of nitrous acid in the nitrification treatment liquid, and uses, for example, Brown Roubaix. The ammonia sensor 40 is a measuring device that measures the concentration of ammonia in the raw water flowing through the second liquid sending line 26, and uses, for example, an ion electrode.
[0035]
The distribution tank 14 adjusts the distribution ratio between the first liquid sending line 24 and the second liquid sending line 26 according to the measurement value of the nitrite sensor 38 and the measurement value of the ammonia sensor 40. Then, control is performed such that the ratio of nitrous acid to ammonia in the mixing tank 20 becomes 0.9 to 1.4.
[0036]
Next, the operation of the second embodiment configured as described above will be described.
[0037]
The raw water flowing through the first liquid sending line 24 is subjected to nitrification treatment in the nitrification tank 16, whereas the raw water flowing through the second liquid sending line 26 is directly sent to the mixing tank 20. Therefore, the raw water flowing through the first liquid sending line 24 flows into the mixing tank 20 with a delay corresponding to the residence time in the nitrification tank 16. For this reason, if the concentration of ammonia contained in the raw water fluctuates, the ratio of ammonia to nitrite during mixing may fluctuate significantly. For example, when the ammonia concentration of the raw water greatly decreases, the ammonia concentration of the raw water flowing into the mixing tank 20 from the second liquid sending line 26 immediately decreases, whereas the ammonia concentration of the raw water flows into the mixing tank 20 from the nitrification liquid line 30. The nitrite concentration of the nitrification solution decreases with a delay. Therefore, immediately after the ammonia concentration of the raw water decreases, the mixture may have a large ratio of nitrous acid to ammonia.
[0038]
Therefore, in the second embodiment, the distribution ratio of the distribution tank 14 is adjusted according to the measurement value of the nitrite sensor 38 and the measurement value of the ammonia sensor 40. For example, when the ammonia concentration of the raw water decreases as described above, the flow rate of the second liquid feed line 26 is increased with respect to the flow rate of the first liquid feed line 24. Thereby, the fluctuation of the ratio of ammonia and nitrous acid in the mixture can be suppressed.
[0039]
Further, according to the second embodiment, even when the nitrification efficiency in the nitrification tank 16 fluctuates, similarly, by adjusting the distribution ratio by the distribution tank 14, the fluctuation of the ratio of ammonia and nitrous acid in the admixture liquid is changed. Can be suppressed.
[0040]
As described above, according to the second embodiment, by adjusting the distribution ratio of the distribution tank 14, the ratio of ammonia to nitrite in the mixture can be arbitrarily adjusted. Therefore, even when the ammonia concentration of the raw water fluctuates or the nitrification efficiency of the treatment tank 16 fluctuates, the ratio of ammonia and nitrite in the mixture is reliably controlled in the range of 0.9 to 1.4. be able to. Thereby, the denitrification efficiency in the anaerobic ammonia oxidation device 22 can be improved.
[0041]
In the above-described second embodiment, the distribution ratio in the distribution tank 14 is adjusted. However, the flow rate flowing through the first liquid feed line 24 (or the nitrification treatment liquid line 30) and the second liquid feed line 26 The flow rate may be adjusted by adjusting the ratio to the flow rate flowing through the first liquid supply line 24 (or the nitrification treatment liquid line 30) or the second liquid supply line 26.
[0042]
FIG. 4 is a diagram schematically showing a configuration of a nitrogen removing device 42 according to the third embodiment.
[0043]
The nitrogen removing device 42 according to the third embodiment shown in FIG. 4 is different from the nitrogen removing device 10 according to the first embodiment shown in FIG. Is different. The buffer tank 44 is configured to have substantially the same volume as the nitrification tank 16. Therefore, the residence time in the nitrification tank 16 and the residence time in the buffer tank 44 are substantially equal. Therefore, the raw water distributed to the first water supply line 24 and the second water supply line 26 at the same time in the distribution tank 14 flows into the mixing tank 20 at substantially the same time. Therefore, even if the ammonia concentration of the raw water fluctuates, the components of the mixture become unaffected, and the ratio of ammonia to nitrous acid in the mixture becomes always substantially constant. Thus, a stable denitrification process can be performed in the anaerobic ammonia oxidation device 22.
[0044]
In the above-described third embodiment, the volume of the buffer tank 44 is substantially equal to the volume of the nitrification tank 16, but the present invention is not limited to this. When the ratio of the volume of the nitrification tank 16 to the volume of the buffer tank 44 matches the distribution ratio of the distribution tank 14, the residence time in the nitrification tank 16 and the residence time in the buffer tank 44 can be made equal.
[0045]
FIG. 5 is a diagram schematically illustrating a configuration of a nitrogen removing device 46 according to the fourth embodiment.
[0046]
The nitrification tank 16 of the nitrogen removing device 46 shown in FIG. 5 performs nitrification treatment with activated sludge. A sedimentation tank 48 is provided downstream of the nitrification tank 16, and the activated sludge flowing out of the nitrification tank 16 is settled and recovered by the sedimentation tank 48. Part of the activated sludge settled in the settling tank 48 is withdrawn by the sludge withdrawal line 52 and is periodically removed as excess sludge. The remaining activated sludge is transported to the heat treatment tank 50 by the sludge transport line 54, and is heated in the heat treatment tank 50. The activated sludge subjected to the heat treatment is returned to the nitrification tank 16 by a sludge return line 56.
[0047]
As a heating condition in the heat treatment tank 50, a heating temperature is preferably from 50 to 90C, more preferably from 60 to 90C. In addition, the heating time is preferably 1 hour or more, and more preferably 1 day to 1 week. By performing the heat treatment under such heating conditions, the ammonia oxidizing bacteria can be preferentially grown while suppressing the growth of the nitrite oxidizing bacteria in the activated sludge. Therefore, by performing the nitrification treatment using the activated sludge that has been subjected to the heat treatment, the ammonia nitrogen in the raw water is converted to nitrite without being nitrified to nitric acid.
[0048]
According to the fourth embodiment configured as described above, ammonia can be almost completely converted to nitrite in the nitrification tank 16, so that the ratio of ammonia and nitrite in the mixture can be easily adjusted. Thus, a mixture suitable for anaerobic ammonia oxidation treatment can be obtained.
[0049]
Also in the above-described fourth embodiment, a nitrite sensor is provided in the nitrification treatment liquid line 30 and an ammonia sensor is provided in the second liquid supply line 26, or the nitrification tank 16 has substantially the same volume. May be arranged in the second liquid sending line 26.
[0050]
【The invention's effect】
As described above, according to the method and apparatus for removing nitrogen according to the present invention, the raw water is divided into two, and after converting ammoniacal nitrogen in one raw water to nitrite nitrogen, the other raw water distributed Thus, a liquid in which nitrite and ammonia are adjusted to a predetermined ratio can be easily obtained, and nitrogen can be efficiently removed in the anaerobic ammonia oxidation treatment.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a configuration of a first embodiment of a nitrogen removing apparatus according to the present invention. FIG. 2 is a diagram showing a relationship between a component ratio of a mixture and a nitrogen removal rate in an anaerobic ammonia oxidation treatment. 3 is a schematic view showing the configuration of a second embodiment of the nitrogen removing apparatus according to the present invention. FIG. 4 is a schematic view showing the configuration of a third embodiment of the nitrogen removing apparatus according to the present invention. Diagram showing the configuration of a fourth embodiment of the nitrogen removal apparatus according to the present invention.
DESCRIPTION OF SYMBOLS 10 ... Nitrogen removal apparatus, 12 ... Raw water tank, 14 ... Distribution tank, 16 ... Nitrification tank, 18 ... Heat treatment tank, 20 ... Mixing tank, 22 ... Anaerobic ammonia oxidation apparatus, 24 ... 1st liquid sending line, 26 ... 2nd liquid sending line, 28 ... collection device, 30 ... nitrification treatment liquid line, 32 ... carrier transportation line, 34 ... carrier return line, 36 ... nitrogen removal device, 38 ... nitrous acid sensor, 40 ... ammonia sensor, 42 ... nitrogen Removal device, 44: Buffer tank, 46: Nitrogen removal device, 48: Sedimentation tank, 50: Heat treatment tank, 52: Sludge extraction line, 54: Sludge transport line, 56: Sludge return line

Claims (4)

原水中に含まれるアンモニア性窒素を除去する窒素除去方法において、
前記原水を二つに分配し、
該分配された一方の原水を、所定の加熱条件で加熱処理した固定化微生物担体、または所定の加熱条件で加熱処理した活性汚泥を用いて硝化処理することにより、前記原水に含まれるアンモニア性窒素を亜硝酸性窒素に変換し、
該硝化処理した硝化処理液を、前記分配された他方の原水と混和し、
該混和液を嫌気性アンモニア酸化処理することを特徴とする窒素除去方法。
In a nitrogen removal method for removing ammonia nitrogen contained in raw water,
Dividing the raw water into two,
The one of the distributed raw water is subjected to nitrification treatment using an immobilized microorganism carrier heat-treated under a predetermined heating condition or activated sludge heat-treated under a predetermined heating condition, whereby ammonia nitrogen contained in the raw water is treated. To nitrite nitrogen,
The nitrification solution subjected to the nitrification treatment is mixed with the other raw water distributed,
A method for removing nitrogen, comprising subjecting the mixture to anaerobic ammonia oxidation.
原水中に含まれるアンモニア性窒素を除去する窒素除去装置において、
前記原水を第1送液ラインと第2送液ラインとに分配する分配槽と、
前記第1送液ラインに配設され、所定の加熱条件で加熱処理した固定化微生物担体、または所定の加熱条件で加熱処理した活性汚泥によって硝化処理を行い、前記原水に含まれるアンモニア性窒素を亜硝酸性窒素に変換する硝化槽と、
前記硝化槽によって硝化処理した硝化処理液と、前記第2送液ラインを流れる原水とを混和する混和槽と、
該混和槽で混和した混和液を嫌気性アンモニア酸化処理する嫌気性アンモニア酸化装置と、
を備えたことを特徴とする窒素除去装置。
In a nitrogen removal device that removes ammoniacal nitrogen contained in raw water,
A distribution tank that distributes the raw water to a first liquid sending line and a second liquid sending line;
The nitrification treatment is performed on the immobilized microorganism carrier, which is provided in the first liquid sending line, and is heat-treated under predetermined heating conditions, or activated sludge, which is heat-treated under predetermined heating conditions, to remove ammonia nitrogen contained in the raw water. A nitrification tank for converting to nitrite nitrogen,
A mixing tank for mixing the nitrification treatment liquid nitrified by the nitrification tank and raw water flowing through the second liquid sending line,
An anaerobic ammonia oxidizer for anaerobic ammonia oxidation of the mixture mixed in the mixing tank;
A nitrogen removing device comprising:
前記硝化槽で硝化処理した硝化処理液の亜硝酸濃度を測定する亜硝酸センサと、
前記第2送液ラインを流れる原水のアンモニア濃度を測定するアンモニアセンサと、
前記亜硝酸センサの測定値と前記アンモニアセンサの測定値に応じて、前記混和槽に流入する硝化処理液の流量と原水の流量との比を調整する流量調整手段と、
を備えたことを特徴とする請求項2に記載の窒素除去装置。
A nitrite sensor for measuring the nitrite concentration of the nitrification solution nitrified in the nitrification tank,
An ammonia sensor for measuring the ammonia concentration of the raw water flowing through the second liquid sending line,
Flow rate adjusting means for adjusting the ratio between the flow rate of the nitrification treatment liquid flowing into the mixing tank and the flow rate of raw water according to the measurement value of the nitrous acid sensor and the measurement value of the ammonia sensor,
The nitrogen removal device according to claim 2, comprising:
前記第2送液ラインには、前記硝化槽と略同じ容積のタンクが設けられることを特徴とする請求項2に記載の窒素除去装置。The nitrogen removing device according to claim 2, wherein a tank having substantially the same volume as the nitrification tank is provided in the second liquid sending line.
JP2003075093A 2003-03-19 2003-03-19 Nitrogen removal method and apparatus Expired - Fee Related JP3968781B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003075093A JP3968781B2 (en) 2003-03-19 2003-03-19 Nitrogen removal method and apparatus
CNB031385087A CN100337935C (en) 2003-03-19 2003-05-30 Method and device for removing nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003075093A JP3968781B2 (en) 2003-03-19 2003-03-19 Nitrogen removal method and apparatus

Publications (2)

Publication Number Publication Date
JP2004275997A true JP2004275997A (en) 2004-10-07
JP3968781B2 JP3968781B2 (en) 2007-08-29

Family

ID=33290491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003075093A Expired - Fee Related JP3968781B2 (en) 2003-03-19 2003-03-19 Nitrogen removal method and apparatus

Country Status (2)

Country Link
JP (1) JP3968781B2 (en)
CN (1) CN100337935C (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246136A (en) * 2004-03-01 2005-09-15 Kurita Water Ind Ltd Nitration method for ammonia nitrogen-containing water and treatment method therefor
JP2006122874A (en) * 2004-11-01 2006-05-18 Hitachi Plant Eng & Constr Co Ltd Treatment method and apparatus for ammonia-containing liquid
JP2006122865A (en) * 2004-11-01 2006-05-18 Hitachi Plant Eng & Constr Co Ltd Water treatment and carrier acclimatization method and its device
JP2006130397A (en) * 2004-11-05 2006-05-25 Hitachi Plant Eng & Constr Co Ltd Waste water treatment system
JP2006239579A (en) * 2005-03-03 2006-09-14 Hitachi Plant Technologies Ltd Oxidation treatment method of nitrous acid-containing liquid
JP2006239572A (en) * 2005-03-03 2006-09-14 Hitachi Plant Technologies Ltd Oxidation treatment method of nitrous acid-containing liquid
JP2006272321A (en) * 2005-03-04 2006-10-12 Hitachi Plant Technologies Ltd Treatment method of ammonia-containing liquid and its treatment apparatus
JP2006281003A (en) * 2005-03-31 2006-10-19 Hitachi Zosen Corp Biological waste water treatment method
JP2007152236A (en) * 2005-12-05 2007-06-21 Takuma Co Ltd Ammonia-containing wastewater treatment method
JP2010207785A (en) * 2009-03-12 2010-09-24 Nittetsu Kankyo Engineering Kk Wastewater treatment method and wastewater treatment apparatus
JP2011143363A (en) * 2010-01-15 2011-07-28 Swing Corp Method and apparatus for treating nitrogen in waste water
CN103771648A (en) * 2012-10-18 2014-05-07 上海纳米技术及应用国家工程研究中心有限公司 Technology for treating low concentration ammonia nitrogen waste water
JP2018023958A (en) * 2016-08-12 2018-02-15 日立造船株式会社 Treatment device and treatment method of ammoniac nitrogen-containing drainage
CN111892161A (en) * 2020-08-07 2020-11-06 同济大学 Method for rapidly starting anaerobic ammonia oxidation by using inorganic composite powder carrier

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4203853B2 (en) * 2003-11-13 2009-01-07 株式会社日立プラントテクノロジー Method for producing nitrite-type nitrification carrier
CN1312270C (en) * 2004-11-05 2007-04-25 中国科学院生态环境研究中心 Method for activating and enriching nitrite bacterium
US7537698B2 (en) * 2005-02-28 2009-05-26 Hitachi Plant Technologies, Ltd. Process and equipment for treating ammonium containing liquid
CN101967030B (en) * 2010-09-26 2012-01-04 山东大学 Integrated filler ammoxidation internal circulation short-distance denitrification process
CN103803711A (en) * 2012-11-14 2014-05-21 上海纳米技术及应用国家工程研究中心有限公司 Method for treating ammonia-nitrogen wastewater by using immobilized microorganism
JP2018103080A (en) * 2016-12-22 2018-07-05 株式会社日立製作所 Wastewater treatment apparatus and wastewater treatment method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1202425B (en) * 1987-01-26 1989-02-09 Giuseppe Bianchi ELECTROCHEMICAL DEOXYGENATION PROCESS FOR THE CONTROL OF CORROSION IN DEIONIZED WATERS
NL1005343C1 (en) * 1996-08-23 1998-02-26 Univ Delft Tech Method for treating waste water containing ammonia.
AU760596B2 (en) * 1998-07-24 2003-05-15 Paques Bio Systems B.V. Process for the treatment of waste water containing ammonia
JP2001170684A (en) * 1999-12-14 2001-06-26 Meidensha Corp Ammonia-containing waste water treatment method and device therefor

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246136A (en) * 2004-03-01 2005-09-15 Kurita Water Ind Ltd Nitration method for ammonia nitrogen-containing water and treatment method therefor
JP2006122874A (en) * 2004-11-01 2006-05-18 Hitachi Plant Eng & Constr Co Ltd Treatment method and apparatus for ammonia-containing liquid
JP2006122865A (en) * 2004-11-01 2006-05-18 Hitachi Plant Eng & Constr Co Ltd Water treatment and carrier acclimatization method and its device
JP4645157B2 (en) * 2004-11-01 2011-03-09 株式会社日立プラントテクノロジー Method and apparatus for treating ammonia-containing liquid
JP2006130397A (en) * 2004-11-05 2006-05-25 Hitachi Plant Eng & Constr Co Ltd Waste water treatment system
JP4678577B2 (en) * 2004-11-05 2011-04-27 株式会社日立プラントテクノロジー Wastewater treatment system
JP4618420B2 (en) * 2005-03-03 2011-01-26 株式会社日立プラントテクノロジー Method for oxidizing nitrous acid-containing liquid
JP4618419B2 (en) * 2005-03-03 2011-01-26 株式会社日立プラントテクノロジー Method for oxidizing nitrous acid-containing liquid
JP2006239579A (en) * 2005-03-03 2006-09-14 Hitachi Plant Technologies Ltd Oxidation treatment method of nitrous acid-containing liquid
JP2006239572A (en) * 2005-03-03 2006-09-14 Hitachi Plant Technologies Ltd Oxidation treatment method of nitrous acid-containing liquid
JP2006272321A (en) * 2005-03-04 2006-10-12 Hitachi Plant Technologies Ltd Treatment method of ammonia-containing liquid and its treatment apparatus
JP2006281003A (en) * 2005-03-31 2006-10-19 Hitachi Zosen Corp Biological waste water treatment method
JP4644107B2 (en) * 2005-12-05 2011-03-02 株式会社タクマ Method for treating wastewater containing ammonia
JP2007152236A (en) * 2005-12-05 2007-06-21 Takuma Co Ltd Ammonia-containing wastewater treatment method
JP2010207785A (en) * 2009-03-12 2010-09-24 Nittetsu Kankyo Engineering Kk Wastewater treatment method and wastewater treatment apparatus
JP2011143363A (en) * 2010-01-15 2011-07-28 Swing Corp Method and apparatus for treating nitrogen in waste water
CN103771648A (en) * 2012-10-18 2014-05-07 上海纳米技术及应用国家工程研究中心有限公司 Technology for treating low concentration ammonia nitrogen waste water
CN103771648B (en) * 2012-10-18 2015-08-26 上海纳米技术及应用国家工程研究中心有限公司 A kind for the treatment of process of Low Concentration Ammonia Containing Wastewater
JP2018023958A (en) * 2016-08-12 2018-02-15 日立造船株式会社 Treatment device and treatment method of ammoniac nitrogen-containing drainage
CN111892161A (en) * 2020-08-07 2020-11-06 同济大学 Method for rapidly starting anaerobic ammonia oxidation by using inorganic composite powder carrier

Also Published As

Publication number Publication date
CN100337935C (en) 2007-09-19
JP3968781B2 (en) 2007-08-29
CN1532151A (en) 2004-09-29

Similar Documents

Publication Publication Date Title
JP3968781B2 (en) Nitrogen removal method and apparatus
JP3937664B2 (en) Biological nitrogen removal method and apparatus
JP4224951B2 (en) Denitrification method
EP3863977B1 (en) Mainstream deammonification process employing bypass primary effluent and step feeding
KR20130111920A (en) Optimized nutrient removal from wastewater
US20190315643A1 (en) Method and apparatus for biologically treating nitrogen
US8323487B2 (en) Waste water treatment apparatus
KR20160017818A (en) System for advanced wastewater treatment using optimal micro-organism of pollutants and the method thereof
JP4872171B2 (en) Biological denitrification equipment
Marcelino et al. A two-sludge system for simultaneous biological C, N and P removal via the nitrite pathway
JP3460745B2 (en) Biological nitrification denitrification method and apparatus
CN103827046A (en) Processing system and processing method for nitrogen-containing organic waste water
JP2001293494A (en) Biological nitrogen removing method
JP2006325512A (en) Waste water-treating system
Ma et al. Achieving nitritation and phosphorus removal in a continuous-flow anaerobic/oxic reactor through bio-augmentation
JP3925902B2 (en) Biological nitrogen removal method and apparatus
JP4302341B2 (en) Biological nitrogen removal method and apparatus
KR20080019975A (en) Wastewater treatment apparatus using hybrid bio-electrochemical sequencing batch reactor combined a biological reactor and an electrode system
JP4837706B2 (en) Ammonia nitrogen removal equipment
JP2003053385A (en) Biological denitrification equipment
JP2004230338A (en) Method for removing ammonia nitrogen compound from waste water
JP4529277B2 (en) Method for collecting autotrophic denitrifying microorganisms and method for biological nitrogen removal
CN103857632A (en) Processing system and processing method for nitrogen-containing organic waste water
JP2002001389A (en) Production process of biological membrane and continuous treatment equipment for inorganic ammonate containing wastewater, using the same membrane
JP2004298841A (en) Method for treating nitrogen-containing wastewater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070527

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140615

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees