JP2005034739A - Waste water treatment method - Google Patents

Waste water treatment method Download PDF

Info

Publication number
JP2005034739A
JP2005034739A JP2003274523A JP2003274523A JP2005034739A JP 2005034739 A JP2005034739 A JP 2005034739A JP 2003274523 A JP2003274523 A JP 2003274523A JP 2003274523 A JP2003274523 A JP 2003274523A JP 2005034739 A JP2005034739 A JP 2005034739A
Authority
JP
Japan
Prior art keywords
biofilm
thickness
membrane
days
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003274523A
Other languages
Japanese (ja)
Inventor
Masumi Kobayashi
真澄 小林
Jun Kamo
純 加茂
Hisashi Sato
久 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2003274523A priority Critical patent/JP2005034739A/en
Publication of JP2005034739A publication Critical patent/JP2005034739A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste water treatment method by which biological treatment (particularly, nitrogen removal) can more efficiently be performed. <P>SOLUTION: In the waste water treatment method where, while the water 3 to be treated is fed to one and air is fed to the other via a gas permeation membrane (hollow fiber membrane 1), biological treatment is performed with a biological membrane 2 formed on the feeding side of the water to be treated in the gas permeation membrane, an aerobic region 2a is formed on the side of the gas permeation membrane in the thickness direction of the biological membrane 2 at a thickness of ≤70% to the thickness of the whole of the biological membrane. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、都市下水や有機性排水中の富栄養成分、特に窒素成分の高度の除去に適した排水処理方法に関する。   The present invention relates to a wastewater treatment method suitable for highly removing eutrophic components, particularly nitrogen components, in municipal sewage and organic wastewater.

近年、川、湖沼、海洋などの公共水域の水質汚染防止のために、都市下水や有機性排水などの処理において、窒素やリンなどの富栄養成分の除去が大きな課題となっている。   In recent years, removal of eutrophic components such as nitrogen and phosphorus has become a major issue in the treatment of municipal sewage and organic wastewater in order to prevent water pollution in public water areas such as rivers, lakes, and oceans.

従来、窒素の除去は、生物学的な除去プロセスに拠る方法、すなわち好気的な条件下におけるアンモニアの硝化反応と、嫌気的な条件下における硝酸、亜硝酸の脱窒反応(硝酸呼吸および亜硝酸呼吸)に拠るのが一般的である。さらに、中空糸膜を使用して効率良く酸素を供給し、排水中に硝化反応の為の好気条件を形成する各種の排水処理技術が知られている(特許文献1、特許文献2参照)。また、中空糸膜を用いて酸素を溶解させると共に、硝化菌の有効な増殖により魚介類の水槽内の水浄化を図る技術も知られている(特許文献3参照)。   Traditionally, nitrogen removal is based on a biological removal process, namely nitrification of ammonia under aerobic conditions and denitrification of nitric acid and nitrous acid under anaerobic conditions (nitrate respiration and sublimation). It is common to rely on nitrate respiration. Furthermore, various wastewater treatment technologies are known in which oxygen is efficiently supplied using a hollow fiber membrane and aerobic conditions for nitrification reaction are formed in the wastewater (see Patent Documents 1 and 2). . In addition, a technique is known in which oxygen is dissolved using a hollow fiber membrane and water is purified in a fish tank by effective growth of nitrifying bacteria (see Patent Document 3).

一方、同じ生物学的な窒素除去プロセスとして、例えば生物膜を用いた硝化反応および脱窒素反応によって、排水中の窒素を除去する技術も知られている。
特開平7−290084号公報 特開昭64−90093号公報 特開平5−68990号公報
On the other hand, as the same biological nitrogen removal process, a technique for removing nitrogen in wastewater by, for example, a nitrification reaction and a denitrification reaction using a biofilm is also known.
JP-A-7-290084 Japanese Patent Laid-Open No. 64-90093 Japanese Patent Laid-Open No. 5-68990

従来技術においては、上述のように生物膜によって排水中の窒素成分を除去できることは知られていたが、具体的にはどのような構成の生物膜を使用すればより効率的に処理できるかは知られていなかった。   In the prior art, it has been known that the nitrogen component in the wastewater can be removed by the biofilm as described above. Specifically, what kind of configuration of the biofilm can be used for more efficient treatment? It was not known.

すなわち、本発明の目的は、処理に適した生物膜の構成を明らかにし、その特定構成の生物膜を使用してより効率的に生物処理(特に窒素除去)を行うことを可能とした排水処理方法を提供することにある。   That is, an object of the present invention is to clarify the configuration of a biofilm suitable for treatment, and to perform wastewater treatment that enables more efficient biotreatment (particularly nitrogen removal) using the biofilm of the specific configuration. It is to provide a method.

本発明者らは、上記目的を達成すべく鋭意検討したところ、気体透過膜上に形成される生物膜の好気領域が特定の割合であると良好な結果が得られることを見い出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that a favorable result can be obtained when the aerobic region of the biofilm formed on the gas permeable membrane has a specific ratio. It came to complete.

すなわち、本発明は、気体透過膜を介して、一方に被処理水を供給し、他方に酸素を含む気体を供給しながら、該気体透過膜の被処理水供給側に形成された生物膜によって生物処理を行う排水処理方法であって、該生物膜の厚さ方向において、該気体透過膜の側に生物膜全体の厚さの70%以下となる厚さで好気領域を形成させることを特徴とする排水処理方法である。   That is, the present invention provides a biofilm formed on the treated water supply side of the gas permeable membrane while supplying treated water to one side and a gas containing oxygen to the other through the gas permeable membrane. A wastewater treatment method for performing biological treatment, wherein an aerobic region is formed on the gas permeable membrane side in a thickness direction of the biological membrane with a thickness of 70% or less of the entire thickness of the biological membrane. This is a featured wastewater treatment method.

本発明の排水処理方法は、特定の構成の生物膜を用いているので、特に窒素成分の高度の除去に適している。   Since the wastewater treatment method of the present invention uses a biofilm having a specific configuration, it is particularly suitable for highly removing nitrogen components.

本発明の排水処理方法は、被処理水から生物学的に窒素等を除去する方法であって、いわゆる膜・生物膜法によるMABR(Membrane Aeration Bio-Reactor)を使用した排水処理方法である。また、本発明において生物膜による生物処理とは、代表的には硝化反応および脱窒反応による窒素除去処理である。以下、この硝化脱窒反応について、図1を用いて説明する。   The wastewater treatment method of the present invention is a method for biologically removing nitrogen and the like from water to be treated, and is a wastewater treatment method using MABR (Membrane Aeration Bio-Reactor) based on a so-called membrane / biofilm method. In the present invention, biological treatment with a biofilm is typically nitrogen removal treatment by nitrification reaction and denitrification reaction. Hereinafter, this nitrification denitrification reaction will be described with reference to FIG.

図1に示すように、被処理水3中から生物膜2中に流入したアンモニア(NH4 +)は、生物膜内の好気領域(硝化領域)2a中の硝化細菌により、亜硝酸(NO2 -)を経て硝酸(NO3 -)にまで酸化される。ここで生成したNO2 -およびNO3 -は、生物膜の嫌気領域(脱窒領域)2b中の脱窒細菌により窒素ガス(N2)にまで還元され、大気に放出される。この処理方法によれば、硝化反応と脱窒反応を単一反応槽内で同時に行うことができ、コストの削減やシステムの簡略化を図ることができる。 As shown in FIG. 1, ammonia (NH 4 + ) flowing into the biofilm 2 from the treated water 3 is converted to nitrous acid (NO) by nitrifying bacteria in the aerobic region (nitrification region) 2a in the biofilm. 2 -) via a nitrate (NO 3 - is oxidized to a). The NO 2 and NO 3 produced here are reduced to nitrogen gas (N 2 ) by the denitrifying bacteria in the anaerobic region (denitrification region) 2b of the biofilm and released to the atmosphere. According to this processing method, the nitrification reaction and the denitrification reaction can be performed simultaneously in a single reaction tank, and the cost can be reduced and the system can be simplified.

この生物膜2は、中空糸膜(気体透過膜)1の被処理水供給側に形成した膜である。この中空糸膜1の中空部に空気(酸素を含む気体)を所望圧力で供給することによって、その空気は中空糸膜1の膜内を透過し、生物膜2内に供給される。本発明においては、このように気体透過膜から生物膜2に直接気体を供給できるので、より有効な酸素供給を行うことができる。   This biological membrane 2 is a membrane formed on the treated water supply side of the hollow fiber membrane (gas permeable membrane) 1. By supplying air (gas containing oxygen) to the hollow part of the hollow fiber membrane 1 at a desired pressure, the air permeates through the membrane of the hollow fiber membrane 1 and is supplied into the biological membrane 2. In the present invention, since gas can be directly supplied from the gas permeable membrane to the biofilm 2 in this way, more effective oxygen supply can be performed.

また、生物膜2には、被処理水3中から栄養塩が、中空糸膜1表面から酸素がそれぞれ反対方向から供給される。したがって、被処理水から栄養塩および酸素を供給する方法と比較すると、生物膜内の表層に存在する他栄養性細菌が深層に存在する硝化細菌に対して酸素の輸送抵抗になりにくいという利点もある。   The biological membrane 2 is supplied with nutrient salts from the treated water 3 and oxygen from the surface of the hollow fiber membrane 1 in opposite directions. Therefore, compared to the method of supplying nutrient salts and oxygen from the water to be treated, there is also an advantage that other vegetative bacteria existing on the surface layer in the biofilm are less likely to become oxygen transport resistance against nitrifying bacteria existing in the deep layer. is there.

本発明では、生物膜2の厚さ方向において、中空糸膜1の側に生物膜2全体の厚さの70%以下となる厚さで好気領域2aを形成させる。このような構成の生物膜2を形成することにより、非常に効果的な窒素除去処理が可能となる。   In the present invention, in the thickness direction of the biofilm 2, the aerobic region 2a is formed on the hollow fiber membrane 1 side with a thickness that is 70% or less of the total thickness of the biofilm 2. By forming the biofilm 2 having such a configuration, a very effective nitrogen removal process can be performed.

この生物膜2の好気領域2aの厚さは、微小電極(クラークタイプ溶存酸素微小電極)を用いて測定した膜内の酸素濃度分布から確認できる。生物膜2の酸素濃度分布は、通常は中空糸膜1表面側から酸素を含有する領域が始まり、被処理水3側に進むに伴い酸素濃度が減少し、途中から無酸素領域になり、そして被処理水3側表面に至る。この酸素濃度分布における中空糸膜1表面側から無酸素領域(嫌気領域2b)までの間が好気領域2aである。本発明において、好気領域2aの厚さは、上述したとおり生物膜2全体の厚さの70%以下であるが、特に30%〜60%の範囲内であることが特に好ましい。   The thickness of the aerobic region 2a of the biofilm 2 can be confirmed from the oxygen concentration distribution in the membrane measured using a microelectrode (Clark type dissolved oxygen microelectrode). The oxygen concentration distribution of the biological membrane 2 usually starts from a region containing oxygen from the surface side of the hollow fiber membrane 1, decreases in oxygen concentration as it progresses to the treated water 3 side, and becomes an oxygen-free region from the middle. It reaches the surface to be treated 3 side. The aerobic region 2a is from the surface of the hollow fiber membrane 1 to the anoxic region (anaerobic region 2b) in this oxygen concentration distribution. In the present invention, the thickness of the aerobic region 2a is 70% or less of the total thickness of the biofilm 2 as described above, but is particularly preferably in the range of 30% to 60%.

本発明において生物膜2とは、上述したように硝化細菌や脱窒細菌等の微生物を主として成り、排水処理(生物処理)の為の反応を生起し得る膜である。この生物膜の全体の厚さは特に限定されないが、通常は100μm〜3000μmの範囲内であることが好ましい。   In the present invention, the biofilm 2 is a film that mainly comprises microorganisms such as nitrifying bacteria and denitrifying bacteria as described above and can cause a reaction for wastewater treatment (biological treatment). The total thickness of the biofilm is not particularly limited, but it is usually preferable to be within a range of 100 μm to 3000 μm.

中空糸膜2の表面にいったん生成した生物膜2は、被処理水3中から栄養塩、中空糸膜1から酸素とそれぞれ供給されることによって成長し、膜厚が増大する。ここで、生物膜2の好気領域2aを所望の割合にする為には、例えば、必要に応じて各種の処理条件を適宜設定すること等により可能である。例えば、中空糸膜(気体透過膜)1へ供給する空気(酸素を含む気体)の圧力を調整することによって、生物膜2への酸素供給量が制御され、これにより生物膜2内の好気領域2aの厚さの増加具合が変化する。ここで、供給気体の圧力は0.05Mpa以下であることが好ましく、特に0.01MPa〜0.02MPaの範囲内であることがより好ましい。ただし、処理条件は供給気体の圧力に限られる訳ではなく、それ以外の種々の処理条件に影響されると考えられる。   The biofilm 2 once generated on the surface of the hollow fiber membrane 2 grows by being supplied with nutrient salts from the treated water 3 and oxygen from the hollow fiber membrane 1, and the film thickness is increased. Here, in order to set the aerobic region 2a of the biofilm 2 to a desired ratio, for example, various processing conditions can be appropriately set as necessary. For example, by adjusting the pressure of the air (gas containing oxygen) supplied to the hollow fiber membrane (gas permeable membrane) 1, the oxygen supply amount to the biofilm 2 is controlled, and thereby the aerobic in the biofilm 2. The increase in the thickness of the region 2a changes. Here, the pressure of the supply gas is preferably 0.05 MPa or less, and more preferably in the range of 0.01 MPa to 0.02 MPa. However, the processing conditions are not limited to the pressure of the supply gas, but are considered to be influenced by various other processing conditions.

他の処理条件については、例えば、被処理水中の窒素濃度を、A(mg/L)、被処理水量をB(m3/d)、生物膜全体の容積をC(m3)とするとき、(A×B)/Cは2000以下であることが好ましい。また、被処理水の生物膜面との接触時間は、2.3×10-73/m2/sec(=20L/m2/day)以下であることが好ましい。 Regarding other treatment conditions, for example, when the nitrogen concentration in the water to be treated is A (mg / L), the amount of water to be treated is B (m 3 / d), and the volume of the entire biofilm is C (m 3 ) , (A × B) / C is preferably 2000 or less. Further, the contact time with the biofilm surface of the water to be treated is preferably 2.3 × 10 −7 m 3 / m 2 / sec (= 20 L / m 2 / day) or less.

本発明において、気体透過膜は、生物膜内に所望の割合の好気領域が形成されるような酸素供給が可能なものであれば特に限定されない。ただし、気体透過膜は非多孔質部分を持つ透過膜であることが好ましく、特に非多孔質膜を有効透過膜として有する中空糸膜を使用することがより好ましい。   In the present invention, the gas permeable membrane is not particularly limited as long as it can supply oxygen so that a desired proportion of aerobic regions are formed in the biofilm. However, the gas permeable membrane is preferably a permeable membrane having a non-porous portion, and more preferably a hollow fiber membrane having a non-porous membrane as an effective permeable membrane.

以下、本発明を実施例により更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

本実施例で使用した実験室スケールのMABR装置は、非多孔質膜を有効透過膜として有する中空糸膜モジュール(高さ20mm、縦幅300mm、横幅250mm、膜表面積0.25m2、O2フラックス0.28m3/m2・h・MPa)をセットして密閉したフローセル、循環ポンプおよびホースで構成されている。フローセル、循環ポンプおよび循環路として用いたホースを含めたMABRの全容積は約5Lであった。MABRの運転時の操作圧力は、コンプレッサー、調整弁および圧力計を用いて0.01MPaおよび0.04MPaになるように調整した。MABRの運転は、八戸市旭ヶ丘汚水処理場の生下水を半回分式で運転し、運転開始から約3日後に中空糸膜上に生物膜が形成されたのを確認し連続運転に切り換えた。試験対象排水としての流入水は、滅菌処理を施した有機物(YEAST EXTRACT)を含む人工下水(下記表1)を作製して使用した。 The laboratory-scale MABR apparatus used in this example is a hollow fiber membrane module (height 20 mm, length 300 mm, width 250 mm, membrane surface area 0.25 m 2 , O 2 flux, having a non-porous membrane as an effective permeable membrane. 0.28 m3 / m 2 · h · MPa) and a closed flow cell, a circulation pump and a hose. The total volume of MABR including the flow cell, the circulation pump and the hose used as the circulation path was about 5L. The operating pressure during operation of MABR was adjusted to 0.01 MPa and 0.04 MPa using a compressor, a regulating valve and a pressure gauge. The operation of MABR was switched to continuous operation after confirming that a biofilm was formed on the hollow fiber membrane approximately three days after the start of operation, by operating raw sewage from the Asahigaoka sewage treatment plant in Hachinohe City in a semi-batch system. As the influent water as the test waste water, artificial sewage (Table 1 below) containing sterilized organic matter (YEAST EXTRACT) was prepared and used.

Figure 2005034739
被処理水は、送液ポンプを用いて約2L/dayの流量で流入および流出させた。また、予備実験時において実験室内に設置したMABR内で藻類等の光合成細菌が繁殖したため、本実施例では日光および照明類等の光を遮断して運転を行った。
Figure 2005034739
The water to be treated was flowed in and out at a flow rate of about 2 L / day using a liquid feed pump. In addition, since photosynthetic bacteria such as algae propagated in the MABR installed in the laboratory at the time of the preliminary experiment, in this example, the operation was performed while blocking light such as sunlight and lighting.

<Run.1>
以上の操作を、操作圧力0.01MPa、人工下水(YEAST EXTRACT)0.5g/L[有機物濃度(COD)=160mg/L]の条件で50日間以上実施し、中空糸膜上に形成された生物膜の厚さおよび生物膜内の好気領域の厚さを、O2微小電極(クラークタイプ溶存酸素微小電極)を用いて逐次測定した。その測定点は、膜表面積0.25m2当たり1箇所の割合で、合計10点測定し、その平均値をとって測定厚とした。結果を図2および下記表2に示す。
<Run.1>
The above operation was carried out for 50 days or more under the conditions of an operation pressure of 0.01 MPa and artificial sewage (YEAST EXTRACT) of 0.5 g / L [organic substance concentration (COD) = 160 mg / L], and formed on the hollow fiber membrane. The thickness of the biofilm and the thickness of the aerobic region within the biofilm were sequentially measured using an O 2 microelectrode (Clark type dissolved oxygen microelectrode). The measurement points were measured at a rate of one place per film surface area of 0.25 m 2 for a total of 10 points, and the average value was taken as the measured thickness. The results are shown in FIG. 2 and Table 2 below.

Figure 2005034739
図2および表2に示すように、運転開始から8日経過後の生物膜厚さおよび生物膜内好気領域の厚さは、どちらも約120μmであった。すなわち、運転初期のMABR内中空糸膜上に形成された生物膜には好気領域しか存在していなかった。
Figure 2005034739
As shown in FIG. 2 and Table 2, the thickness of the biofilm after 8 days from the start of operation and the thickness of the aerobic region in the biofilm were both about 120 μm. That is, only the aerobic region was present in the biofilm formed on the MABR hollow fiber membrane in the initial stage of operation.

さらに、運転開始から23日、29日、37日、43日および50日経過後の生物膜厚さは、それぞれ約590μm、630μm、780μm、1170μmおよび1300μmであり、MABR内中空糸膜上に形成された生物膜厚さは、運転開始から経日的に増加していった。一方、運転開始から23日、29日、37日、43日および50日経過後の生物膜内の好気領域の厚さは、それぞれ約290μm、540μm、450μm、530μmおよび540μmであり、運転開始から24日経過後以降において殆ど変化はみられなかった。このことから、運転開始から29日経過後までは生物膜厚さの増加に伴い好気領域の厚さも増加していったが、29日経過後以降は生物膜厚さが増加しても好気領域は増加しなかったことが明らかとなった。生物膜厚さが成長しても好気領域が増加しないということは、生物膜内の嫌気領域(無酸素領域)の増加を示している。したがって、嫌気領域は、運転開始から29日経過後から増加していったことがわかる。この生物膜の好気領域および嫌気領域は、それぞれ硝化および脱窒領域と表現することもできる。   Furthermore, the biological film thicknesses after 23 days, 29 days, 37 days, 43 days and 50 days from the start of operation are about 590 μm, 630 μm, 780 μm, 1170 μm and 1300 μm, respectively, and are formed on the hollow fiber membrane in MABR. The biofilm thickness increased over time from the start of operation. On the other hand, the thickness of the aerobic region in the biofilm after 23, 29, 37, 43, and 50 days from the start of operation is about 290 μm, 540 μm, 450 μm, 530 μm, and 540 μm, respectively. Almost no change was observed after 24 days. From this, the thickness of the aerobic region increased with the increase of the biofilm thickness from 29 days after the start of operation, but after the elapse of 29 days, the aerobic region even if the biofilm thickness increased. It was revealed that did not increase. The fact that the aerobic region does not increase as the biofilm thickness grows indicates an increase in the anaerobic region (anoxic region) within the biofilm. Therefore, it can be seen that the anaerobic region increased after 29 days from the start of operation. The aerobic region and the anaerobic region of the biofilm can also be expressed as a nitrification region and a denitrification region, respectively.

更に、Run.1条件下におけるMABR内の中空糸膜表面積当たりの総窒素消費速度[R(T−N)]を逐次測定したところ、そのR(T−N)は運転開始から増加し、23日経過後(好気領域49%)には高い値を示したが、その後は減少していき、29日経過後(好気領域86%)には最も低い値を示した。しかし、その後はまた増加し始め、37日経過後(好気領域56%)およびそれ以降(好気領域56%〜41%)は著しい変化はみられなくなった。定常に達してからのRun.1のR(T−N)の平均(±標準偏差)は、約0.23(±0.07)g−N/m2/dayであった。 Furthermore, when the total nitrogen consumption rate [R (TN)] per hollow fiber membrane surface area in MABR under Run.1 conditions was measured sequentially, the R (TN) increased from the start of operation. After a lapse of days (aerobic region 49%), the value was high, but thereafter decreased, and after 29 days (aerobic region 86%), the lowest value was shown. However, after that, it started to increase again, and after 37 days (aerobic region 56%) and thereafter (aerobic region 56% to 41%), no significant change was observed. The average (± standard deviation) of R (T−N) of Run.1 after reaching steady state was about 0.23 (± 0.07) g-N / m 2 / day.

<Run.2>
操作圧力を0.04MPaに変更したこと以外は、Run.1と同様にして実施した。結果を図3および下記表3に示す。
<Run.2>
It was carried out in the same manner as Run.1 except that the operating pressure was changed to 0.04 MPa. The results are shown in FIG. 3 and Table 3 below.

Figure 2005034739
図3および表3に示すように、運転開始から8日経過後の生物膜厚さおよび生物膜内好気領域の厚さは、どちらも約120μmであった。すなわち、Run.1と同様に運転初期の生物膜には好気領域しか存在していなかった。
Figure 2005034739
As shown in FIG. 3 and Table 3, the biofilm thickness after 8 days from the start of operation and the thickness of the aerobic region in the biofilm were both about 120 μm. That is, like Run.1, only the aerobic region was present in the biofilm in the initial operation.

さらに、運転開始から23日、29日、37日、43日および50日経過後の生物膜厚さは、それぞれ約430μm、560μm、500μm、1060μmおよび1900μmであり、MABR内中空糸膜上に形成された生物膜厚さは、運転開始から経日的に増加していった。このことから、Run.2の生物膜はRun.1より厚く成長することがわかった。一方、23日、29日、37日、43日および50日経過後の生物膜内の好気領域の厚さは、それぞれ約280μm、240μm、430μm、750μmおよび1010μmであり、運転開始から経日的にほぼ増加していった。このことから、Run.2の生物膜は、Run.1と異なり、運転開始から29日経過後以降でも生物膜厚さの増加に伴い生物膜内の好気領域が増加していったことがわかる。   Furthermore, the biological film thicknesses after 23 days, 29 days, 37 days, 43 days and 50 days from the start of operation are about 430 μm, 560 μm, 500 μm, 1060 μm and 1900 μm, respectively, and are formed on the hollow fiber membrane in MABR. The biofilm thickness increased over time from the start of operation. From this, it was found that the biofilm of Run.2 grows thicker than that of Run.1. On the other hand, the thickness of the aerobic region in the biofilm after 23 days, 29 days, 37 days, 43 days and 50 days is about 280 μm, 240 μm, 430 μm, 750 μm and 1010 μm, respectively. Almost increased. This shows that the biofilm of Run.2, unlike Run.1, increased the aerobic region in the biofilm as the biofilm thickness increased even after 29 days from the start of operation. .

ただし、Run.2においては、生物膜の厚さの増加が好気領域の厚さの増加より高かったので、運転開始から29日経過後からRun.1と同様に、嫌気領域も増加し、定常に達した。また、Run.1およびRun.2の最終的な嫌気領域の厚さには、殆ど違いは見られなかった。   However, in Run.2, the increase in the thickness of the biofilm was higher than the increase in the thickness of the aerobic region. Therefore, as in Run.1, the anaerobic region increased after 29 days from the start of operation. Reached. Moreover, there was almost no difference in the thickness of the final anaerobic region of Run.1 and Run.2.

Run.1とRun.2を比較すると、MABRの操作圧力(MPa)を変更することにより、中空糸膜上に形成された生物膜内の好気領域が占める割合(%)も変化することが分かる。   Comparing Run.1 and Run.2, the ratio (%) of the aerobic region in the biofilm formed on the hollow fiber membrane can be changed by changing the operating pressure (MPa) of MABR. I understand.

更に、Run.2条件下におけるMABR内の中空糸膜表面積当たりの総窒素消費速度[R(T−N)]を逐次測定したところ、そのR(T−N)は運転開始から43日経過後(好気領域71%)までは変動したが、それ以降は著しい変化はみられなかった。定常に達してからのRun.2のR(T−N)の平均(±標準偏差)は、約0.29±0.06g−N/m2/dayであった。 Furthermore, when the total nitrogen consumption rate [R (TN)] per hollow fiber membrane surface area in MABR under Run.2 conditions was measured successively, the R (TN) was measured after 43 days from the start of operation ( It changed until the aerobic region (71%), but no significant change was observed thereafter. The average (± standard deviation) of R (TN) of Run.2 after reaching steady state was about 0.29 ± 0.06 g-N / m 2 / day.

本発明における硝化脱窒反応を説明するための模式図である。It is a schematic diagram for demonstrating the nitrification denitrification reaction in this invention. 実施例のRun.1の結果を示すグラフである。It is a graph which shows the result of Run.1 of an Example. 実施例のRun.2の結果を示すグラフである。It is a graph which shows the result of Run.2 of an Example.

符号の説明Explanation of symbols

1 中空糸膜
2 生物膜
2a 好気領域
2b 嫌気領域
3 被処理水
1 hollow fiber membrane 2 biofilm 2a aerobic region 2b anaerobic region 3 treated water

Claims (3)

気体透過膜を介して、一方に被処理水を供給し、他方に酸素を含む気体を供給しながら、該気体透過膜の被処理水供給側に形成された生物膜によって生物処理を行う排水処理方法であって、該生物膜の厚さ方向において、該気体透過膜の側に生物膜全体の厚さの70%以下となる厚さで好気領域を形成させることを特徴とする排水処理方法。   Wastewater treatment in which biological treatment is performed by a biological film formed on the treated water supply side of the gas permeable membrane while supplying treated water to one side and a gas containing oxygen to the other through the gas permeable membrane A wastewater treatment method characterized in that an aerobic region is formed at a thickness that is 70% or less of the thickness of the entire biofilm on the gas permeable membrane side in the biofilm thickness direction. . 生物処理は、硝化反応および脱窒反応による窒素除去処理である請求項1記載の排水処理方法。   The wastewater treatment method according to claim 1, wherein the biological treatment is nitrogen removal treatment by nitrification reaction and denitrification reaction. 気体透過膜は、非多孔質部分を持つ透過膜である請求項1または2記載の排水処理方法。   The wastewater treatment method according to claim 1 or 2, wherein the gas permeable membrane is a permeable membrane having a non-porous portion.
JP2003274523A 2003-07-15 2003-07-15 Waste water treatment method Pending JP2005034739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003274523A JP2005034739A (en) 2003-07-15 2003-07-15 Waste water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003274523A JP2005034739A (en) 2003-07-15 2003-07-15 Waste water treatment method

Publications (1)

Publication Number Publication Date
JP2005034739A true JP2005034739A (en) 2005-02-10

Family

ID=34211453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003274523A Pending JP2005034739A (en) 2003-07-15 2003-07-15 Waste water treatment method

Country Status (1)

Country Link
JP (1) JP2005034739A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102826652A (en) * 2012-01-13 2012-12-19 北京海思清膜科技有限公司 Inner-aeration hollow fiber film carrier module and its application method
CN104906944A (en) * 2015-06-25 2015-09-16 安庆市虹泰新材料有限责任公司 Device for treating waste gases volatilizing during polyamide granulation
WO2018100841A1 (en) * 2016-12-01 2018-06-07 栗田工業株式会社 Biologically activated carbon processing device
JP6365714B1 (en) * 2017-03-16 2018-08-01 栗田工業株式会社 Aerobic treatment method
CN108545838A (en) * 2018-06-26 2018-09-18 环境保护部华南环境科学研究所 A kind of anchoring type polluted water body purified in situ processing method and processing device
CN108558029A (en) * 2018-06-26 2018-09-21 环境保护部华南环境科学研究所 A kind of floated polluted water body purified in situ processing method and processing device
WO2019163424A1 (en) * 2018-02-20 2019-08-29 栗田工業株式会社 Aerobic biological treatment device and method for operating same
JP2019141784A (en) * 2018-02-20 2019-08-29 栗田工業株式会社 Aerobic biological treatment apparatus
JP2020028836A (en) * 2018-08-21 2020-02-27 積水化学工業株式会社 Waste water treatment apparatus
JP2020142179A (en) * 2019-03-05 2020-09-10 水ing株式会社 Water treatment method and water treatment device
CN108545838B (en) * 2018-06-26 2024-04-26 生态环境部华南环境科学研究所 Anchoring type polluted water body in-situ purification treatment method and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768195A (en) * 1980-10-13 1982-04-26 Mitsubishi Rayon Co Ltd Method for biochemical purification of water using film-like matter
JPH1085787A (en) * 1996-09-10 1998-04-07 Suido Kiko Kaisha Ltd Method and apparatus for nitrification-denitrification treatment.
JPH11333496A (en) * 1998-05-22 1999-12-07 Nissin Electric Co Ltd Microorganism carrier for denitrification

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768195A (en) * 1980-10-13 1982-04-26 Mitsubishi Rayon Co Ltd Method for biochemical purification of water using film-like matter
JPH1085787A (en) * 1996-09-10 1998-04-07 Suido Kiko Kaisha Ltd Method and apparatus for nitrification-denitrification treatment.
JPH11333496A (en) * 1998-05-22 1999-12-07 Nissin Electric Co Ltd Microorganism carrier for denitrification

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102826652A (en) * 2012-01-13 2012-12-19 北京海思清膜科技有限公司 Inner-aeration hollow fiber film carrier module and its application method
CN104906944A (en) * 2015-06-25 2015-09-16 安庆市虹泰新材料有限责任公司 Device for treating waste gases volatilizing during polyamide granulation
WO2018100841A1 (en) * 2016-12-01 2018-06-07 栗田工業株式会社 Biologically activated carbon processing device
JP2018089564A (en) * 2016-12-01 2018-06-14 栗田工業株式会社 Biological activated carbon treatment device
US11034602B2 (en) 2016-12-01 2021-06-15 Kurita Water Industries Ltd. Biological activated carbon treatment apparatus
WO2018168023A1 (en) * 2017-03-16 2018-09-20 栗田工業株式会社 Aerobe treatment method
JP6365714B1 (en) * 2017-03-16 2018-08-01 栗田工業株式会社 Aerobic treatment method
JP2018153733A (en) * 2017-03-16 2018-10-04 栗田工業株式会社 Aerobic biological treatment method
CN110139836A (en) * 2017-03-16 2019-08-16 栗田工业株式会社 Aerobe processing method
JP2019141781A (en) * 2018-02-20 2019-08-29 栗田工業株式会社 Aerobic biological treatment apparatus and operation method of the same
WO2019163424A1 (en) * 2018-02-20 2019-08-29 栗田工業株式会社 Aerobic biological treatment device and method for operating same
JP2019141784A (en) * 2018-02-20 2019-08-29 栗田工業株式会社 Aerobic biological treatment apparatus
WO2019163427A1 (en) * 2018-02-20 2019-08-29 栗田工業株式会社 Aerobic biological treatment device
CN108545838A (en) * 2018-06-26 2018-09-18 环境保护部华南环境科学研究所 A kind of anchoring type polluted water body purified in situ processing method and processing device
CN108558029A (en) * 2018-06-26 2018-09-21 环境保护部华南环境科学研究所 A kind of floated polluted water body purified in situ processing method and processing device
CN108558029B (en) * 2018-06-26 2024-04-05 生态环境部华南环境科学研究所 Suspension type polluted water body in-situ purification treatment method and device
CN108545838B (en) * 2018-06-26 2024-04-26 生态环境部华南环境科学研究所 Anchoring type polluted water body in-situ purification treatment method and device
JP2020028836A (en) * 2018-08-21 2020-02-27 積水化学工業株式会社 Waste water treatment apparatus
JP7063770B2 (en) 2018-08-21 2022-05-09 積水化学工業株式会社 Wastewater treatment equipment
JP2020142179A (en) * 2019-03-05 2020-09-10 水ing株式会社 Water treatment method and water treatment device
JP7303643B2 (en) 2019-03-05 2023-07-05 水ing株式会社 Water treatment method and water treatment equipment

Similar Documents

Publication Publication Date Title
EP1463687B1 (en) Biological water treatment process involving post-denitrification mechanism and a membrane filter
JP5899373B2 (en) Process comprising an ANAMOX microorganism on a biofilm carrier for removing ammonium from a wastewater stream
AU2005332342B2 (en) A method for improving flux in a membrane bioreactor
JP4632356B2 (en) Biological nitrogen removal method and system
JP4644107B2 (en) Method for treating wastewater containing ammonia
WO2007019617A1 (en) Biological phosphorous removal
JP3925902B2 (en) Biological nitrogen removal method and apparatus
JP4302341B2 (en) Biological nitrogen removal method and apparatus
JP2003154394A (en) Biological denitrification method and apparatus
JP2005034739A (en) Waste water treatment method
EP1531123A3 (en) Method and installation for the treatment of soil water from ships
JP2006087310A (en) Membrane-type bioreactor and liquid treatment method using the same
JP3474476B2 (en) Sewage treatment method
KR101074255B1 (en) Device for wastewater treatment by using activated algae
JPH1034185A (en) Drainage treatment method
KR20050046393A (en) Wastewater treatment plant and method thereof
KR19990083645A (en) Organic material and nitrogen, phosphate removal method using intermitted aeration process and plate type microfiltration membrane
KR20030097075A (en) Hybrid Submerged Plate Type Membrane Bioreactor Using microfilter Combined With Biofilm-Activated Carbon for Advanced Treatment of Sewage and Wastewater
KR20010076873A (en) Organic and nitrogen compound removal methods from landfill leachate using an anaerobic-aerobic-anoxic system
JPH0312957B2 (en)
KR100304068B1 (en) Biological Water Treatment Apparatus Using Biological Membrane Filtration and Process thereof(SBF)
JP3819457B2 (en) Biological denitrification of wastewater
KR102561953B1 (en) Water treatment apparatus using biological activated carbon
KR100254843B1 (en) System and method for removing nitrogen and phosphorus in the sewage at the same time
JPH0630784B2 (en) Treatment method for human waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100519