JP2020142179A - Water treatment method and water treatment device - Google Patents

Water treatment method and water treatment device Download PDF

Info

Publication number
JP2020142179A
JP2020142179A JP2019040061A JP2019040061A JP2020142179A JP 2020142179 A JP2020142179 A JP 2020142179A JP 2019040061 A JP2019040061 A JP 2019040061A JP 2019040061 A JP2019040061 A JP 2019040061A JP 2020142179 A JP2020142179 A JP 2020142179A
Authority
JP
Japan
Prior art keywords
water
biological treatment
tank
sludge
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019040061A
Other languages
Japanese (ja)
Other versions
JP7303643B2 (en
JP2020142179A5 (en
Inventor
惇太 高橋
Atsuta Takahashi
惇太 高橋
勝子 楠本
Katsuko Kusumoto
勝子 楠本
米山 豊
Yutaka Yoneyama
豊 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2019040061A priority Critical patent/JP7303643B2/en
Publication of JP2020142179A publication Critical patent/JP2020142179A/en
Publication of JP2020142179A5 publication Critical patent/JP2020142179A5/ja
Priority to JP2022140115A priority patent/JP7420887B2/en
Application granted granted Critical
Publication of JP7303643B2 publication Critical patent/JP7303643B2/en
Priority to JP2024002755A priority patent/JP2024026729A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

To provide a water treatment method and a water treatment device possible to more efficiently obtain treated water that satisfies a sewage exclusion standard with a smaller amount of diluted water.SOLUTION: There is provided a water treatment method, including: solid-liquid separating water to be treated containing at least one of septic tank sludge and human waste sludge into separated sludge and separated liquid; applying biological treatment to at least part of the separated liquid using a non-obstructive biomembrane method including at least one of a sprinkling filter method, a fluidized carrier method, a rotary disk method, and a fixed bed method; and diluting the biologically treated water obtained by the biological treatment to satisfy a sewage exclusion criteria.SELECTED DRAWING: Figure 1

Description

本発明は、水処理方法及び水処理装置に関し、特に、浄化槽汚泥及びし尿系汚泥を処理し、処理水を下水道放流する水処理への適用に好適な水処理方法及び水処理装置に関する。 The present invention relates to a water treatment method and a water treatment apparatus, and more particularly to a water treatment method and a water treatment apparatus suitable for application to a water treatment for treating septic tank sludge and human waste sludge and discharging the treated water into a sewer.

浄化槽汚泥及びし尿系汚泥を含む原水を処理して得られる処理水を下水道放流するためには下水排除基準を満足する必要があるが、下水排除基準は、一般的には、公共用水域への放流基準よりも基準が緩いことが知られている。例えば、公共用水域への放流基準としてBOD(生物化学的酸素要求量)10mg/L、N(窒素)が10mg/L、SS(浮遊物質)が10mg/Lとされているのに対し、下水排除基準はBODが600mg/L、T-Nが240mg/L、SSが600mg/Lである。 In order to discharge treated water obtained by treating raw water containing septic tank sludge and human waste sludge into the sewer, it is necessary to satisfy the sewage exclusion standard, but the sewage exclusion standard is generally applied to public water areas. It is known that the standard is looser than the discharge standard. For example, BOD (biochemical oxygen demand) is 10 mg / L, N (nitrogen) is 10 mg / L, and SS (suspended solids) is 10 mg / L as standards for discharge to public water bodies, whereas sewage The exclusion criteria are 600 mg / L for BOD, 240 mg / L for TN, and 600 mg / L for SS.

下水道放流水の従来の処理方法として、例えば、し尿等に含まれるごみ(し渣)を取り除き、下水排除基準まで希釈して放流する方法が知られている。この場合、一般的に希釈倍率は10〜20倍程度となり、希釈水量及び下水道放流量が過剰となる。 As a conventional method for treating sewage discharge water, for example, a method of removing dust (residue) contained in human waste or the like, diluting it to a sewage exclusion standard, and discharging it is known. In this case, the dilution ratio is generally about 10 to 20 times, and the amount of diluted water and the discharge of sewerage are excessive.

別の処理方法として、し尿等を脱水機で固液分離し、脱水分離液を希釈して下水道放流する方式がある。この場合、脱水分離液は除渣し尿と比較してBOD、SS、窒素等の成分が大幅に低減されるため、希釈倍率は一般に3〜8倍程度とすることができるが、脱水分離液の水質には変動が見られるため、希釈水量も水質によって大きく変動するという問題がある。 As another treatment method, there is a method in which human waste or the like is separated into solid and liquid by a dehydrator, the dehydrated separated liquid is diluted, and discharged into the sewer. In this case, since the dehydration separation solution has significantly reduced components such as BOD, SS, and nitrogen as compared with the excrement urine, the dilution ratio can generally be about 3 to 8 times, but the dehydration separation solution Since the water quality fluctuates, there is a problem that the amount of diluted water also fluctuates greatly depending on the water quality.

また、し尿等を脱水機で固液分離する方法も、結局は、搬入量に対して4〜9倍量を放流することとなるため、下水道放流量の低減効果は限定的である。固液分離では溶解性成分が除去されにくいため、し尿等に溶解性成分が多く含まれる場合には、脱水分離液の水質が悪化し、希釈水量を増加する必要性が生じる場合もある。放流水量の規制により下水排除基準を満足できない場合もある。 Further, the method of solid-liquid separation of human waste or the like with a dehydrator also results in the discharge of 4 to 9 times the amount carried in, so that the effect of reducing the discharge of sewerage is limited. Since it is difficult to remove soluble components by solid-liquid separation, if a large amount of soluble components are contained in human waste or the like, the water quality of the dehydrated separation solution may deteriorate, and it may be necessary to increase the amount of diluted water. In some cases, sewage exclusion standards cannot be met due to restrictions on the amount of discharged water.

希釈水量及び放流水量をより確実に削減する別の方法として、固液分離と生物処理とを組み合わせる方法が考えられる。例えば、特開昭61−50691号公報(特許文献1)には、浄化槽汚泥を固液分離した固形分を、し尿系汚水と混合して凝集処理を行い、その分離液を生物処理する方法が記載されている。 As another method for more reliably reducing the amount of diluted water and the amount of discharged water, a method of combining solid-liquid separation and biological treatment can be considered. For example, Japanese Patent Application Laid-Open No. 61-50691 (Patent Document 1) describes a method in which solid content obtained by solid-liquid separation of septic tank sludge is mixed with human waste and agglomerated treatment, and the separated liquid is biologically treated. Are listed.

特開昭61−50691号公報Japanese Unexamined Patent Publication No. 61-50691

特許文献1に記載される方法では、生物処理した水の放流先についての記載はないが、実施例1の処理液のBODが10mg/L以下まで処理可能であることなどから、公共用水域への放流を前提とした処理方式であることが推察できる。 In the method described in Patent Document 1, there is no description about the discharge destination of the biologically treated water, but since the BOD of the treatment liquid of Example 1 can be treated up to 10 mg / L or less, it is sent to a public water area. It can be inferred that the processing method is based on the assumption that the water is released.

しかしながら、前述の通り、公共用水域への放流基準と比較すると下水排除基準は緩い傾向にあるため、下水道放流する処理水に対しては、特許文献1で言及されるような水質までは必要とされていない。そのため、下水道放流のための水質基準に応じたより効率的且つ適切な処理方法の提案が望まれる。 However, as mentioned above, since the sewage exclusion standard tends to be looser than the discharge standard to public water areas, it is necessary for the treated water discharged from the sewage to have the water quality as mentioned in Patent Document 1. It has not been. Therefore, it is desired to propose a more efficient and appropriate treatment method according to the water quality standard for sewage discharge.

一方で、引用文献1に記載されるような固液分離と生物処理とを組み合わせる水処理においては、下水排除基準を満たす程度に中途半端な処理を行うことが難しいという問題がある。 On the other hand, in water treatment that combines solid-liquid separation and biological treatment as described in Cited Document 1, there is a problem that it is difficult to perform halfway treatment to the extent that the sewage exclusion standard is satisfied.

例えば、生物処理として硝化脱窒処理を行う場合、窒素を全量ではなく例えば6割程度処理する方法、或いは、脱水分離液中に含まれるアンモニア態窒素を全量硝化した後にその6割だけ脱窒処理する方法等が考えられる。 For example, when nitrification denitrification treatment is performed as a biological treatment, for example, about 60% of nitrogen is treated instead of the total amount, or about 60% of the ammonia nitrogen contained in the dehydration separation solution is nitrified and then denitrified. The method of doing this can be considered.

しかしながら、窒素を6割程度処理する場合は4割程度の硝酸性窒素が残留することになるため、後段の沈殿槽において嫌気状態となったところで再度脱窒が起こり、発生した窒素ガスによって汚泥が浮上し、沈殿槽で固液分離が十分に行えない場合がある。沈殿槽で固液分離ができない場合は、硝化脱窒槽のMLSS(活性汚泥濃度)が維持できず、処理そのものが悪化する。 However, when about 60% of nitrogen is treated, about 40% of nitrate nitrogen remains, so denitrification occurs again when the sedimentation tank in the subsequent stage becomes anaerobic, and sludge is generated by the generated nitrogen gas. It may float and solid-liquid separation may not be sufficient in the settling tank. If solid-liquid separation cannot be performed in the settling tank, the MLSS (activated sludge concentration) of the nitrification denitrification tank cannot be maintained, and the treatment itself deteriorates.

脱水分離液中に含まれるアンモニア態窒素を全量硝化する場合は、水槽容量が過大となること、硝化に必要な曝気風量が過大となること、脱窒に必要なメタノールやエタノール等の水素供与体の添加が必要となること等があり、求められる処理水質に対して設備及び運用コストが過大となる。 When the total amount of ammonia nitrogen contained in the dehydration separation solution is nitrified, the capacity of the water tank becomes excessive, the amount of aeration air required for nitrification becomes excessive, and hydrogen donors such as methanol and ethanol required for denitrification. It may be necessary to add ethanol, and the equipment and operating costs will be excessive for the required treated water quality.

別の手法として、活性汚泥法を用いた生物処理によって、処理水の水質が下水排除基準未満となるまで粗処理を行い、希釈して下水道放流する方法も考えられる。この場合、硝化を起こさない程度の高BOD負荷で処理することによって、硝化脱窒処理を用いた中途半端な生物処理を行うことによる上述の問題を解決することが可能であるが、活性汚泥法を用いた生物処理のための適正な水槽容量が必要となり、高BOD負荷に対応するための曝気風量も過大となり、処理効率的に良好な手段であるとはいえない。 As another method, it is conceivable to carry out rough treatment until the quality of the treated water becomes less than the sewage exclusion standard by biological treatment using the activated sludge method, dilute it, and discharge it into the sewer. In this case, it is possible to solve the above-mentioned problem by performing halfway biological treatment using nitrification denitrification treatment by treating with a high BOD load that does not cause nitrification, but the activated sludge method An appropriate water tank capacity is required for biological treatment using the above, and the amount of aerated air to cope with a high BOD load is also excessive, so it cannot be said that the treatment efficiency is good.

上記課題を鑑み、本発明は、下水排除基準を満足する処理水をより少ない希釈水量でより効率良く得ることが可能な水処理方法及び水処理装置を提供する。 In view of the above problems, the present invention provides a water treatment method and a water treatment apparatus capable of more efficiently obtaining treated water satisfying the sewage exclusion standard with a smaller amount of diluted water.

上記課題を解決するために本発明者らが鋭意検討した結果、浄化槽汚泥及びし尿系汚泥の少なくともいずれかを含む被処理水を固液分離して得られる分離液の少なくとも一部に対して、特定の生物処理を行った後に希釈処理することが有効であるとの知見を得た。 As a result of diligent studies by the present inventors in order to solve the above problems, at least a part of the separation liquid obtained by solid-liquid separation of the water to be treated containing at least one of septic tank sludge and human waste sludge It was found that it is effective to dilute after performing a specific biological treatment.

以上の知見を基礎として完成した本発明の実施の形態に係る水処理方法は一側面において、浄化槽汚泥及びし尿系汚泥の少なくともいずれかを含む被処理水を固液分離して分離汚泥と分離液とに分離し、分離液の少なくとも一部に対し、散水ろ床法、流動担体法、回転円板法、固定床法のいずれかを少なくとも含む無閉塞型の生物膜法を用いた生物処理を行い、生物処理で得られる生物処理水を下水排除基準を満たすように希釈することを含む水処理方法である。 The water treatment method according to the embodiment of the present invention completed based on the above findings is, in one aspect, solid-liquid separation of the water to be treated containing at least one of septic tank sludge and urinary sludge, and separate sludge and separation liquid. At least a part of the separation solution is subjected to biological treatment using a non-obstructive biomembrane method including at least one of a watering filter method, a fluidized carrier method, a rotating disk method, and a fixed bed method. It is a water treatment method including diluting the biologically treated water obtained by the biological treatment so as to meet the sewage exclusion standard.

本発明の実施の形態に係る水処理方法は一実施態様において、生物処理が、分離液中のBODを除去するための生物処理槽と、分離液中の窒素を除去するための生物処理槽とを、並列又は直列に接続して処理することを含む。 In one embodiment, the water treatment method according to the embodiment of the present invention includes a biological treatment tank for removing BOD in the separation liquid and a biological treatment tank for removing nitrogen in the separation liquid. Includes processing by connecting in parallel or in series.

本発明の実施の形態に係る水処理方法は別の一実施態様において、生物処理が、二段以上に直列に接続した生物処理槽に対し、分離液をステップ流入させることを含む。 In another embodiment, the water treatment method according to the embodiment of the present invention comprises stepping the separation liquid into a biological treatment tank in which two or more stages are connected in series.

本発明の実施の形態に係る水処理方法は更に別の一実施態様において、生物処理が、分離液を散水ろ床に供給して分離液中のBODの好気的分解及びアンモニア態窒素の硝化を行って生物処理水を得ることと、生物処理水を散水ろ床に循環させることと、散水ろ床に循環させる循環水を収容する循環槽内に担体を配置し、担体に付着する微生物により脱窒反応を進行させることを含む。 In yet another embodiment of the water treatment method according to the embodiment of the present invention, the biological treatment supplies the separation liquid to the sprinkling filter to aerobic decomposition of BOD in the separation liquid and nitrification of ammonia nitrogen. To obtain biotreated water, to circulate the biotreated water to the sprinkling filter, and to place the carrier in the circulation tank containing the circulating water to be circulated to the sprinkler filter, and by the microorganisms adhering to the carrier. Includes proceeding with denitrification reaction.

本発明の実施の形態に係る水処理装置は一側面において、浄化槽汚泥及びし尿系汚泥の少なくともいずれかを含む被処理水を固液分離して分離汚泥と分離液とに分離する固液分離装置と、分離液の少なくとも一部に対し、散水ろ床法、流動担体法、回転円板法、固定床法のいずれかを少なくとも含む無閉塞型の生物膜法による生物処理を行う生物処理槽と、生物処理で得られる生物処理水を下水排除基準を満たすように希釈する希釈槽とを備える水処理装置である。 On one side, the water treatment device according to the embodiment of the present invention is a solid-liquid separation device that separates the water to be treated containing at least one of septic tank sludge and urinary sludge into solid-liquid separation and separate sludge and separation liquid. And a biological treatment tank that performs biological treatment of at least a part of the separation liquid by a non-obstructive biomembrane method including at least one of a watering filter method, a fluidized carrier method, a rotary disk method, and a fixed bed method. , A water treatment apparatus including a diluting tank for diluting biologically treated water obtained by biological treatment so as to meet sewage exclusion criteria.

本発明の実施の形態に係る水処理装置は別の一実施態様において、生物処理槽内に、分離液と酸素とが膜面を挟んで対向して浸透する構造を有する膜状担体が配置されていることを含む。 In another embodiment of the water treatment apparatus according to the embodiment of the present invention, a membranous carrier having a structure in which a separation liquid and oxygen permeate facing each other across a membrane surface is arranged in a biological treatment tank. Including that.

本発明の実施の形態に係る水処理装置は更に別の一実施態様において、膜状担体が、支持体と支持体に支持される膜を備え、膜が支持体を覆うループ形状を有し、分離液が膜の外面から浸透し、酸素が膜の内面に形成された空間から膜の外面へ浸透し、膜の内面から剥離する汚泥を空間の外へ排出するための開口部が膜に形成されていることを含む。 In yet another embodiment, the water treatment apparatus according to the embodiment of the present invention has a membrane-like carrier provided with a support and a membrane supported by the support, and the membrane has a loop shape covering the support. The separation liquid permeates from the outer surface of the membrane, oxygen permeates from the space formed on the inner surface of the membrane to the outer surface of the membrane, and an opening is formed in the membrane for discharging sludge exfoliated from the inner surface of the membrane to the outside of the space. Including being done.

本発明の実施の形態に係る水処理装置は更に別の一実施態様において、直列に接続された二段以上の処理槽を含む生物処理槽のそれぞれに対し、分離液をステップ流入させるための流入手段と、生物処理槽の容積負荷と分離液又は生物処理水の水質とに基づいて、生物処理槽へ流入させる分離液のステップ比を制御する制御手段とを備えることを含む。 In still another embodiment, the water treatment apparatus according to the embodiment of the present invention has an inflow for step-inflow of the separation liquid into each of the biological treatment tanks including two or more stages of treatment tanks connected in series. The means includes means and a control means for controlling the step ratio of the separation liquid flowing into the biological treatment tank based on the volume load of the biological treatment tank and the water quality of the separation liquid or the biological treatment water.

本発明によれば、下水排除基準を満足する処理水をより少ない希釈水量でより効率良く得ることが可能な水処理方法及び水処理装置が提供できる。 According to the present invention, it is possible to provide a water treatment method and a water treatment apparatus capable of more efficiently obtaining treated water satisfying the sewage exclusion standard with a smaller amount of diluted water.

第1の実施の形態に係る水処理装置を表す概略図である。It is the schematic which shows the water treatment apparatus which concerns on 1st Embodiment. 第2の実施の形態に係る水処理装置が備える膜状担体の一例を示す断面図である。It is sectional drawing which shows an example of the film-like carrier provided in the water treatment apparatus which concerns on 2nd Embodiment. 第2の実施の形態に係る水処理装置が備える膜状担体の一例を示す側面図である。It is a side view which shows an example of the film-like carrier provided in the water treatment apparatus which concerns on 2nd Embodiment. 第3の実施の形態に係る水処理装置を表す概略図である。It is the schematic which shows the water treatment apparatus which concerns on 3rd Embodiment. 第4の実施の形態に係る水処理装置を表す概略図である。It is the schematic which shows the water treatment apparatus which concerns on 4th Embodiment. 第5の実施の形態に係る水処理装置を表す概略図である。It is the schematic which shows the water treatment apparatus which concerns on 5th Embodiment. 第6の実施の形態に係る水処理装置を表す概略図である。It is the schematic which shows the water treatment apparatus which concerns on 6th Embodiment. 第7の実施の形態に係る水処理装置を表す概略図である。It is the schematic which shows the water treatment apparatus which concerns on 7th Embodiment. 第7の実施の形態の変形例に係る水処理装置を表す概略図である。It is the schematic which shows the water treatment apparatus which concerns on the modification of 7th Embodiment. 実施例の水処理方法を用いた場合の各槽のBOD設定負荷の推移の確認を行った結果を表すグラフである。It is a graph which shows the result of having confirmed the transition of the BOD set load of each tank when the water treatment method of an Example was used.

<水処理方法>
本発明の実施の形態に係る水処理方法は、浄化槽汚泥及びし尿系汚泥の少なくともいずれかを含む被処理水を固液分離して分離汚泥と分離液とに分離し、分離液の少なくとも一部に対し、散水ろ床法、流動担体法、回転円板法、固定床法のいずれかを少なくとも含む無閉塞型の生物膜法による生物処理を行い、生物処理による生物処理水を下水排除基準を満たすように希釈することを含む。
<Water treatment method>
In the water treatment method according to the embodiment of the present invention, the water to be treated containing at least one of septic tank sludge and human waste sludge is solid-liquid separated and separated into separated sludge and separated liquid, and at least a part of the separated liquid. On the other hand, biological treatment is performed by the non-obstructive biofilm method including at least one of the sprinkling filter method, the fluidized carrier method, the rotating disk method, and the fixed bed method, and the biologically treated water by the biological treatment is set as the sewage exclusion standard. Includes diluting to meet.

(被処理水)
処理対象となる被処理水としては、浄化槽汚泥及びし尿系汚泥の少なくともいずれかを少なくとも含むものであれば特に限定されない。例えばし尿系汚泥と浄化槽汚泥の混合液を被処理水として利用する場合の固液分離については、し尿系汚泥と浄化槽汚泥に対してそれぞれ別々に固液分離を行うことが好ましい。
(Water to be treated)
The water to be treated is not particularly limited as long as it contains at least one of septic tank sludge and human waste sludge. For example, regarding solid-liquid separation when a mixed solution of human waste sludge and septic tank sludge is used as water to be treated, it is preferable to perform solid-liquid separation separately for human waste sludge and septic tank sludge.

(固液分離)
固液分離処理には、種々の固液分離装置を用いることができるが、例えば、脱水機を用いて分離汚泥と分離液とに固液分離することが設備及び運用コスト面から好ましい。更に、固液分離前の被処理水に対して濃縮処理を行うことがより好ましい。濃縮方式としては、重力濃縮、機械濃縮の何れも有効な濃縮方式である。
(Solid-liquid separation)
Various solid-liquid separation devices can be used for the solid-liquid separation treatment, and for example, solid-liquid separation into the separated sludge and the separated liquid using a dehydrator is preferable from the viewpoint of equipment and operating costs. Further, it is more preferable to perform a concentration treatment on the water to be treated before the solid-liquid separation. As the concentration method, both gravity concentration and mechanical concentration are effective concentration methods.

固液分離処理前に高分子凝集剤を添加した濃縮処理を行うことにより、濃縮汚泥の汚泥濃度(TS)を最大10〜12質量%程度にまで濃縮することができる。高濃度に濃縮された濃縮汚泥に対して更に脱水機を用いて脱水処理を行えば、含水率70%以下の低含水率の脱水汚泥(分離汚泥)が得られるため、より顕著な汚泥減容効果が得られる。この低含水率の脱水汚泥のカロリーは高いため、焼却処理において補助燃料無しでの自燃が可能であり、省エネ、低コストとなる。 By performing a concentration treatment in which a polymer flocculant is added before the solid-liquid separation treatment, the sludge concentration (TS) of the concentrated sludge can be concentrated to a maximum of about 10 to 12% by mass. If the concentrated sludge concentrated to a high concentration is further dehydrated using a dehydrator, a low water content dehydrated sludge (separated sludge) having a water content of 70% or less can be obtained, so that the sludge volume reduction is more remarkable. The effect is obtained. Since the dewatered sludge with a low water content has a high calorie content, it can be self-combusted without auxiliary fuel in the incineration process, resulting in energy saving and low cost.

(生物処理)
生物膜法を用いた生物処理は、大きく分けて担体の定期的な洗浄工程を必要とするものと、生物膜量が処理の中で自律的にコントロールされるものとに分けることができる。前者には、生物膜ろ過法等が該当する。後者には、散水ろ床法、流動担体法、回転円板法、固定床法(接触酸化法)が該当する。
(Biological treatment)
Biological treatment using the biofilm method can be broadly divided into those requiring a periodic washing step of the carrier and those in which the amount of biofilm is autonomously controlled during the treatment. The former corresponds to the biofilm filtration method and the like. The latter corresponds to the sprinkling filter method, the fluidized carrier method, the rotary disk method, and the fixed bed method (contact oxidation method).

中でも、本発明の実施の形態に係る生物処理としては、生物膜量が処理の中で自律的にコントロールされるタイプの生物膜法を利用することが好ましく、これを本明細書において「無閉塞型の生物膜法」と定義する。特に、無閉塞型の生物膜法の中でも、散水ろ床法、流動担体法は、BOD容積負荷1kg−BOD/m3/d以上でも安定して運転することが可能であり、敷地面積が限られる場合に有効である。この「無閉塞型の生物膜法」に包含される生物処理の具体例を以下に説明する。 Above all, as the biological treatment according to the embodiment of the present invention, it is preferable to use a type of biofilm method in which the amount of biofilm is autonomously controlled in the treatment, and this is referred to as "non-obstruction" in the present specification. It is defined as "type biofilm method". In particular, among the non-obstructive biofilm methods, the watering filter method and the fluidized carrier method can operate stably even with a BOD volume load of 1 kg-BOD / m 3 / d or more, and the site area is limited. It is effective when it is possible. Specific examples of biological treatment included in this "non-obstructive biomembrane method" will be described below.

−散水ろ床法−
散水ろ床法は、好気性生物化学的処理法の一つであり、ろ材の表面に付着した微生物の作用によって、散布される被処理水(分離液)中の有機物を分解することにより、生物処理水を得る方法である。散水ろ床法は、一般的に、生物膜の表面が好気的、生物膜の内部が嫌気的になることが知られている。このため、硝化が進行可能な負荷で散水ろ床の運転を実施すると、生物膜の表面では硝化反応が進行し、生物膜の内部では脱窒反応が進行するという特徴があり、窒素除去効率の面で優れている。
-Sprinkling filter method-
The watering filter method is one of the aerobic biochemical treatment methods, and organisms are decomposed by the action of microorganisms adhering to the surface of the filter medium to decompose organic substances in the water to be treated (separation liquid). This is a method of obtaining treated water. It is generally known that the watering filter method makes the surface of the biofilm aerobic and the inside of the biofilm anaerobic. For this reason, when the sprinkling filter is operated with a load that allows nitrification to proceed, the nitrification reaction proceeds on the surface of the biological membrane, and the denitrification reaction proceeds inside the biological membrane. Excellent in terms of.

散水ろ床に用いられる担体、散水部等の具体的構成に特に制限はない。担体の素材は、微生物が付着すればどのような素材でも良く、代表的なものとしては、プラスチック、砕石等が用いられる。担体の形状は、プレート状、球状、円柱状、直方体、中空状などいずれの形状でもよい。また、反応槽の容量に対する担体の充填率としては、40〜80%、望ましくは50〜70%が好ましい。膜状担体の場合は、反応槽の容量に対する膜の表面の面積として、0.05〜0.15 m2/m3となるように充填することが好ましい。 There are no particular restrictions on the specific configuration of the carrier used for the watering filter, the watering part, and the like. The material of the carrier may be any material as long as microorganisms adhere to it, and plastics, crushed stones and the like are typically used. The shape of the carrier may be any shape such as a plate shape, a spherical shape, a columnar shape, a rectangular parallelepiped shape, and a hollow shape. The filling rate of the carrier with respect to the capacity of the reaction vessel is preferably 40 to 80%, preferably 50 to 70%. In the case of a membranous carrier, it is preferable to fill the surface so that the area of the surface of the membrane relative to the capacity of the reaction vessel is 0.05 to 0.15 m 2 / m 3 .

より効率良く且つ安定的に生物処理を行うためには、散水ろ床に供給される固液分離後の分離液と散水ろ床内の酸素とが膜面を挟んで対向して浸透する構造を有する膜状担体が散水ろ床内に配置されることが好ましい。 In order to carry out biological treatment more efficiently and stably, a structure in which the separated liquid after solid-liquid separation supplied to the sprinkling filter and oxygen in the sprinkling filter permeate facing each other across the membrane surface is provided. It is preferable that the membranous carrier to have is arranged in the sprinkling filter.

膜状担体は、分離液供給側はBODが豊富で酸素が乏しいエリアとなる一方で、酸素供給側はBODが乏しく酸素が豊富なエリアとなる。そのため、被処理水(分離液)の供給側に脱窒反応の進行に適した条件を作り出しながら、酸素供給側に硝化反応に適した条件を作り出すことができるため、種々の担体の中でも特に優れた窒素除去性能を発揮する点においてより好適である。 In the membranous carrier, the separation liquid supply side has a BOD-rich and oxygen-poor area, while the oxygen supply side has a BOD-poor and oxygen-rich area. Therefore, it is possible to create conditions suitable for the progress of the denitrification reaction on the supply side of the water to be treated (separation liquid) and conditions suitable for the nitrification reaction on the oxygen supply side, which is particularly excellent among various carriers. It is more suitable in terms of exhibiting nitrogen removal performance.

これに対して、通常の粒状担体の場合、BOD、窒素、及び酸素が同じ方向から担体表面の生物膜に供給されるため、1〜1.5kg−BOD/m3/dの負荷では酸素はBODの酸化で消費しきってしまい、硝化−脱窒反応が進みにくくなる場合もある。加えて、膜状担体は、他の形状の担体を使用する処理方式と比較して、1.5kg−BOD/m3/d以上の高負荷条件でも閉塞せず安定して運転できるという利点を有している。これは、膜状担体では担体垂直方向に並べられ、担体から剥離した生物膜は担体間で閉塞することなく槽外に排出されるためである。 On the other hand, in the case of a normal granular carrier, BOD, nitrogen, and oxygen are supplied to the biological film on the carrier surface from the same direction, so that oxygen is supplied under a load of 1 to 1.5 kg-BOD / m 3 / d. In some cases, the oxidation of BOD consumes the entire amount, making it difficult for the nitrification-denitrification reaction to proceed. In addition, the membranous carrier has an advantage that it can be operated stably without clogging even under a high load condition of 1.5 kg-BOD / m 3 / d or more, as compared with a treatment method using a carrier of another shape. Have. This is because the film-like carriers are arranged in the vertical direction of the carriers, and the biological membranes peeled off from the carriers are discharged to the outside of the tank without being blocked between the carriers.

固液分離後の分離液の散水ろ床への流入は、サイフォン等を用いて散水ろ床の上方へ移送された後に行われる。散水にあたっては、ろ床全体に分離液が散水されればよく、多孔板、スプリンクラー型、スパイラル型のノズル、自走式の回転散水機等の任意の散水装置を用いることができる。 After the solid-liquid separation, the separated liquid flows into the sprinkling filter after being transferred to the upper part of the sprinkling filter using a siphon or the like. When sprinkling water, the separation liquid may be sprinkled over the entire filter bed, and any sprinkler such as a perforated plate, a sprinkler type, a spiral type nozzle, or a self-propelled rotary sprinkler can be used.

−流動担体法−
流動担体法は、生物処理槽内に担体を収容し、担体が生物処理槽内で流動することにより微生物を被処理水中の有機物や酸素などと接触させて生物処理水を得る方法である。流動担体法を利用する生物処理槽は新設してもよいし、既存の貯留槽等に担体、散気装置等を導入してもよい。流動担体に使用される担体には特に制限はないが、代表的なものとして以下のものが挙げられる。
-Fluid carrier method-
The fluidized carrier method is a method in which a carrier is housed in a biological treatment tank, and the carrier flows in the biological treatment tank to bring microorganisms into contact with organic substances or oxygen in the water to be treated to obtain biologically treated water. A biological treatment tank using the fluidized carrier method may be newly installed, or a carrier, an air diffuser, or the like may be introduced into an existing storage tank or the like. The carrier used for the fluidized carrier is not particularly limited, and typical examples thereof include the following.

使用する担体は、微生物が付着し、かつ曝気により流動する担体であればどのような担体でも良い。担体の素材としては、例えば曝気により流動すればどのような担体でも良く、例えば、プラスチック(ポリウレタン(PU)、ポリエチレン(PE)、ポリエチレングリコール(PEG)、ポリビニルアルコール(PVA))、木製チップ、砂、等が利用される。担体の性状は、スポンジ状、ゲル状、固形状等であり得る。担体の形状は、球状、立方体状、円筒状、ハニカム状等の任意の形状とすることができる。中でも担体の外表面に微生物を付着させる結合固定化担体を利用することにより、生物処理槽内の環境に適した微生物を担体に付着させることができ、流入水の性状変動の影響を受けにくくより安定した生物処理を行うことができる。担体の充填率としては、流動性と性能の観点から、20〜40%が好ましい。充填率を20%以上とすることで槽内に多量の微生物を保持することができ、40%以下として適切な空隙をつくることで流動性を良好に保つことができるのである。流動担体法のBOD負荷としては、0.5〜5.0kg−BOD/m3/d、望ましくは1.0〜3.0kg−BOD/m3/dが好ましい。流動担体法は既設活性汚泥の曝気槽を利用する場合などに適している。 The carrier used may be any carrier as long as it has microorganisms attached to it and flows by aeration. The material of the carrier may be any carrier as long as it flows by exposure to air, for example, plastic (polyurethane (PU), polyethylene (PE), polyethylene glycol (PEG), polyvinyl alcohol (PVA)), wooden chips, sand. , Etc. are used. The properties of the carrier can be sponge-like, gel-like, solid-like, or the like. The shape of the carrier can be any shape such as spherical, cubic, cylindrical, and honeycomb. Above all, by using a bond-immobilized carrier that attaches microorganisms to the outer surface of the carrier, it is possible to attach microorganisms suitable for the environment in the biological treatment tank to the carrier, and it is less susceptible to changes in the properties of the inflow water. Stable biological treatment can be performed. The filling rate of the carrier is preferably 20 to 40% from the viewpoint of fluidity and performance. By setting the filling rate to 20% or more, a large amount of microorganisms can be retained in the tank, and by creating an appropriate void of 40% or less, good fluidity can be maintained. The BOD load of the fluidized carrier method is preferably 0.5 to 5.0 kg-BOD / m 3 / d, preferably 1.0 to 3.0 kg-BOD / m 3 / d. The fluidized carrier method is suitable when using an aeration tank for existing activated sludge.

−回転円板法−
回転円板法は、回転する円板の一部を被処理水と外気に触れさせることによって、円板の表面に生物膜を形成させ、被処理水(分離液)中の有機分を分解させて生物処理水を得る方法である。曝気、エアレーションを行なわないため、風量調整が必要なブロワの設置が不要で、活性汚泥法等のように返送汚泥を供給する必要も無いため、より簡易な設備を供給できる点で有利である。回転円板法のBOD負荷としては、0.1〜1.5kg−BOD/m3/dが好ましく、過剰な負荷をかけると、円板に過剰に微生物が付着し、回転軸が破損するという問題が発生する場合がある。
-Rotating disk method-
In the rotating disk method, a part of the rotating disk is exposed to the water to be treated and the outside air to form a biological membrane on the surface of the disk, and the organic component in the water to be treated (separation liquid) is decomposed. It is a method to obtain biologically treated water. Since aeration and aeration are not performed, it is not necessary to install a blower that requires air volume adjustment, and it is not necessary to supply returned sludge as in the activated sludge method, which is advantageous in that simpler equipment can be supplied. The BOD load of the rotating disk method is preferably 0.1 to 1.5 kg-BOD / m 3 / d, and when an excessive load is applied, excessive microorganisms adhere to the disk and the rotating shaft is damaged. Problems may occur.

円板の材質及び具体的形状に特に制限は無く、任意の装置を用いることができる。例えば、円板としての材質としては発泡スチロール、プラスチック、塩化ビニル、耐水ベニヤ、アルミニウム等の金属板が利用でき、直径1〜3m、厚さ0.7〜20mmの円板状にして使用することができる。 The material and specific shape of the disk are not particularly limited, and any device can be used. For example, a metal plate such as styrofoam, plastic, vinyl chloride, water resistant veneer, or aluminum can be used as the material of the disk, and it can be used in the form of a disk having a diameter of 1 to 3 m and a thickness of 0.7 to 20 mm. it can.

―固定床法(接触酸化法)―
接触酸化法は、反応槽に固定床担体を浸漬させ、被処理水を通水させながら曝気を行うことによって、担体表面に生物膜を形成させ、被処理水(分離液)中の有機分を分解させて生物処理水を得る方法である。担体に付着した生物膜によって処理を行うため、活性汚泥法のように返送による汚泥量のコントロールが不要であり、維持管理が容易となる。BOD負荷としては、0.1〜1.0kg−BOD/m3/dが好ましく、高負荷で運転すると生物膜が肥大して接触材が目詰まりすることがある。
-Fixed bed method (contact oxidation method)-
In the catalytic oxidation method, a fixed bed carrier is immersed in a reaction vessel, and aeration is performed while passing water to be treated to form a biological membrane on the surface of the carrier to remove organic components in the water to be treated (separation liquid). It is a method of decomposing to obtain biologically treated water. Since the treatment is performed by the biofilm attached to the carrier, it is not necessary to control the amount of sludge by returning it as in the activated sludge method, and maintenance is easy. The BOD load is preferably 0.1 to 1.0 kg-BOD / m 3 / d, and when operated at a high load, the biofilm may enlarge and the contact material may be clogged.

接触酸化法の担体の材質及び具体的形状に特に制限は無く、任意の装置を用いることができる。担体の材質としては、ポリエチレン、プラスチック等が利用でき、形状としてはチューブ型、ひも状、網状、平板状、ボール状、等の任意の形状とすることができる。 The material and specific shape of the carrier of the catalytic oxidation method are not particularly limited, and any device can be used. As the material of the carrier, polyethylene, plastic or the like can be used, and the shape can be any shape such as tube type, string shape, net shape, flat plate shape, ball shape and the like.

(希釈倍率)
上記の生物処理によって得られた生物処理水は希釈槽に送られ、希釈水と混合して下水排除基準を満たすように希釈される。本実施形態によれば、希釈倍率を典型的には1〜4倍、より典型的には1〜3倍、さらには1〜2倍とすることにより、下水排除基準を満たす量とすることができる。希釈は常時行っても良いし、下水排除基準を満たすために必要な場合にのみ行っても良い。これにより、従来の手法に比べてより少ない希釈水量で、下水道放流のための水質基準に応じたより効率的且つ適切な処理が行える。
(Dilution factor)
The biologically treated water obtained by the above biological treatment is sent to a dilution tank, mixed with the diluted water, and diluted so as to meet the sewage exclusion criteria. According to the present embodiment, the dilution ratio is typically 1 to 4 times, more typically 1 to 3 times, and further 1 to 2 times, so that the amount satisfies the sewage exclusion standard. it can. Dilution may be done all the time or only when necessary to meet the sewage exclusion criteria. As a result, more efficient and appropriate treatment can be performed according to the water quality standard for sewage discharge with a smaller amount of diluted water as compared with the conventional method.

本実施形態によれば、上述の生物処理を行うことにより、生物処理水の希釈を行わなくてもよい程度にまで生物処理水が処理される場合もある。その場合は、分離液の少なくとも一部に対し、散水ろ床法または流動担体法のいずれかを含む無閉塞型の生物膜法を用いた生物処理を行った後の生物処理水に対し、希釈を行うことなくそのまま下水道放流を行ってもよいことは勿論である。 According to the present embodiment, by performing the above-mentioned biological treatment, the biologically treated water may be treated to the extent that it is not necessary to dilute the biologically treated water. In that case, at least a part of the separation solution is diluted with the biologically treated water after the biological treatment using the non-obstructive biomembrane method including either the sprinkling filter method or the fluidized carrier method. It goes without saying that the sewerage system may be discharged as it is without performing the above.

本発明の実施の形態に係る水処理方法によれば、浄化槽汚泥及びし尿系汚泥の少なくともいずれかを含む被処理水を固液分離した分離液の少なくとも一部に対して上述の無閉塞型の生物膜法による生物処理を行った後に希釈することで、下水道放流することが可能な処理水を、少ない希釈水量でより効率良く安定して得ることが可能となる。 According to the water treatment method according to the embodiment of the present invention, the above-mentioned non-occluded type is used for at least a part of the separation liquid obtained by solid-liquid separation of the water to be treated containing at least one of septic tank sludge and human waste sludge. By diluting after performing biological treatment by the biomembrane method, it is possible to obtain treated water that can be discharged into the sewer more efficiently and stably with a small amount of diluted water.

また、本実施の形態に係る水処理方法によれば、固液分離によって得られた分離液の処理に生物処理を採用しているため、生物処理槽内の微生物の生育に必要なだけのリンを供給することで、生物処理による処理水の水質をより高く保ち、且つ安定化させることができる。 Further, according to the water treatment method according to the present embodiment, since biological treatment is adopted for the treatment of the separation liquid obtained by solid-liquid separation, the amount of phosphorus required for the growth of microorganisms in the biological treatment tank is sufficient. By supplying the water, the quality of the treated water by biological treatment can be kept higher and stabilized.

一般的に、生物処理においては、BOD100mg/Lに対し、1mg/L程度のリンが必要とされている。このため、流入水(分離液)のBODに対し、この比を満足するようにリンを供給することが望ましい。処理が良好であれば、リンの濃度は1mg/L以下、好ましくは0.7mg/L以下、より好ましくは0.5mg/L以下に減らして供給しても良い。 Generally, in biological treatment, about 1 mg / L of phosphorus is required for 100 mg / L of BOD. Therefore, it is desirable to supply phosphorus to the BOD of the inflow water (separation liquid) so as to satisfy this ratio. If the treatment is good, the phosphorus concentration may be reduced to 1 mg / L or less, preferably 0.7 mg / L or less, and more preferably 0.5 mg / L or less.

特に、浄化槽汚泥及びし尿系汚泥の脱水工程において鉄系、アルミ系の凝集剤を使用する場合、リンは汚泥に取り込まれ、脱水分離液に含まれるリン濃度が低下するため、リンの添加を行うことでより安定した水質の処理水が得られる。粗処理では、リンのような栄養塩類の供給が軽視されがちであるが、リンが欠乏するとBODがほとんど除去できなくなることもあるため、実は、粗処理であっても、リンを供給することが重要となる場合が多いためである。 In particular, when iron-based or aluminum-based coagulants are used in the dehydration process of septic tank sludge and human waste sludge, phosphorus is taken into the sludge and the phosphorus concentration contained in the dehydration separation solution decreases, so phosphorus is added. As a result, treated water with more stable water quality can be obtained. In the rough treatment, the supply of nutrients such as phosphorus is often neglected, but when phosphorus is deficient, BOD may hardly be removed. Therefore, in fact, even in the rough treatment, phosphorus can be supplied. This is because it is often important.

以下、図面を参照しながら、本発明の第1〜第7の実施の形態について説明する。以下の図面の記載においては、同一又は類似の部分には同一又は類似の符号を付している。なお、以下に示す実施の形態はこの発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の構造、配置等を下記のものに特定するものではない。また、以下に示す各実施の形態において説明された各構成を別の実施の形態に係る水処理装置に組み合わせることが可能であることは勿論である。 Hereinafter, embodiments of the first to seventh embodiments of the present invention will be described with reference to the drawings. In the description of the drawings below, the same or similar parts are designated by the same or similar reference numerals. It should be noted that the embodiments shown below exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention describes the structure, arrangement, etc. of the components as follows. It is not specific to anything. In addition, it is of course possible to combine each configuration described in each of the following embodiments with the water treatment apparatus according to another embodiment.

(第1の実施の形態)
第1の実施の形態に係る水処理装置は、図1に示すように、浄化槽汚泥及びし尿系汚泥の少なくともいずれかを含む被処理水を固液分離して分離汚泥と分離液とに分離する固液分離装置1と、分離液に対し、無閉塞型の生物膜法、即ち、散水ろ床法、流動担体法、回転円板法、固定床法のいずれかの生物処理を行う生物処理槽2と、生物処理による生物処理水を下水排除基準を満たすように希釈する希釈槽3とを備える。
(First Embodiment)
As shown in FIG. 1, the water treatment apparatus according to the first embodiment solid-liquid separates the water to be treated containing at least one of septic tank sludge and human waste sludge and separates it into a separated sludge and a separated liquid. The solid-liquid separator 1 and a biological treatment tank that performs biological treatment on the separated liquid by any of the non-obstructive biological membrane method, that is, the watering filter method, the fluidized carrier method, the rotary disk method, and the fixed bed method. 2 and a diluting tank 3 for diluting the biologically treated water by biological treatment so as to satisfy the sewage exclusion standard.

生物処理水中のBODが希釈倍率を決定する場合の基準となる処理(BOD除去型)の実施態様においては、固液分離装置1として脱水機を備え、生物処理槽2として散水ろ床を備えることが好ましい。散水ろ床の処理条件としては、例えば、BOD容積負荷を0.5〜7.5kg−BOD/m3/d、更に別の態様では1.0〜5.0kg−BOD/m3/dとすることができる。 In the embodiment of the treatment (BOD removal type) that serves as a reference when the BOD in the biological treatment water determines the dilution ratio, a dehydrator is provided as the solid-liquid separation device 1 and a sprinkling filter is provided as the biological treatment tank 2. Is preferable. As the treatment conditions for the watering filter, for example, the BOD volume load is 0.5 to 7.5 kg-BOD / m 3 / d, and in yet another embodiment, 1.0 to 5.0 kg-BOD / m 3 / d. can do.

被処理水は、固液分離装置1によって固液分離され、例えばBODが600〜10000mg/L、より典型的には1000〜5000mg/Lの分離液と分離汚泥が得られる。分離液はその後、生物処理槽2に導入され、BODが粗取りされて、BODが600〜3000mg/L程度の生物処理水が得られる。生物処理水は希釈槽3において希釈水と混合され、下水排除基準を満足するまで希釈された後、下水道放流される。なお、生物処理槽2として、散水ろ床の代わりに、流動担体槽、接触酸化槽或いは回転円板装置を利用することも可能である。 The water to be treated is solid-liquid separated by the solid-liquid separation device 1, and for example, a separation liquid having a BOD of 600 to 10000 mg / L, more typically 1000 to 5000 mg / L, and separated sludge are obtained. The separation liquid is then introduced into the biological treatment tank 2 and the BOD is roughly removed to obtain biologically treated water having a BOD of about 600 to 3000 mg / L. The biologically treated water is mixed with the diluted water in the dilution tank 3, diluted until the sewage exclusion standard is satisfied, and then discharged to the sewer. As the biological treatment tank 2, a fluidized carrier tank, a catalytic oxidation tank, or a rotary disk device can be used instead of the watering filter bed.

第1の実施の形態に係る水処理装置及び水処理方法によれば、浄化槽汚泥及びし尿系汚泥生物処理槽2として従来から利用される散水ろ床、流動担体槽、接触酸化槽、回転円板装置等を用いて生物処理した生物処理水を希釈水で希釈することにより、活性汚泥法等による処理等と比べて曝気のための動力等を省略でき、設備面においてもより簡易な装置で下水道放流のための処理水を効率良く得ることができる。 According to the water treatment apparatus and the water treatment method according to the first embodiment, the watering filter, the fluidized carrier tank, the contact oxide tank, and the rotary disk, which are conventionally used as the septic tank sludge and the urine sludge biological treatment tank 2. By diluting the biologically treated water that has been biologically treated using a device, etc. with diluted water, the power for aeration can be omitted compared to the treatment by the activated sludge method, etc., and the sewerage system is simpler in terms of equipment. Treated water for discharge can be obtained efficiently.

(第2の実施の形態)
第2の実施の形態に係る水処理装置は、図1の生物処理槽2内に、分離液と酸素とが膜面を挟んで対向して浸透する構造を有する膜状担体20(図2及び図3参照)が配置されていることを含む。
(Second Embodiment)
The water treatment apparatus according to the second embodiment has a membranous carrier 20 having a structure in which the separation liquid and oxygen permeate into the biological treatment tank 2 of FIG. 1 so as to face each other with the membrane surface interposed therebetween (FIG. 2 and FIG. (See FIG. 3) is included.

図2に示すように、膜状担体20は、支持体21と支持体21に支持される膜22を備え、膜22が支持体21を覆うループ形状を有しており、分離液がループ形状の膜22の外面から浸透し、酸素がループ形状の膜22の内面に形成された空間23から膜の外面へ浸透するように構成されている。膜22は支持体21の外側で湾曲する湾曲部22aと、湾曲部22aの両端から互いに略平行に延伸する延伸部22b、22cとを備え、膜22の下端側、即ち、膜22の生物処理槽2の底面と対向する側に、膜22の内面に堆積してその後剥離する汚泥(不図示)を空間23の外へ排出するための開口部22dが形成されている。 As shown in FIG. 2, the film-like carrier 20 includes a support 21 and a film 22 supported by the support 21, and the film 22 has a loop shape covering the support 21, and the separation liquid has a loop shape. It is configured to permeate from the outer surface of the membrane 22 and oxygen permeates from the space 23 formed on the inner surface of the loop-shaped membrane 22 to the outer surface of the membrane. The film 22 includes a curved portion 22a that curves outside the support 21, and stretched portions 22b and 22c that extend substantially parallel to each other from both ends of the curved portion 22a, and the lower end side of the film 22, that is, biological treatment of the film 22. An opening 22d is formed on the side of the tank 2 facing the bottom surface to discharge sludge (not shown) that accumulates on the inner surface of the membrane 22 and then peels off to the outside of the space 23.

図2及び図3に示す構造の膜状担体20が、生物処理槽2としての散水ろ床内に収容されることにより、分離液供給側である膜状担体20の膜22の外側はBODが豊富で酸素が乏しいエリアとなる一方で、膜22の内側の酸素供給側はBODが乏しく酸素が豊富なエリアとなる。そのため、分離液の供給側に脱窒反応の進行に適した条件を作り出しながら、酸素供給側に硝化反応に適した条件を作り出すことができる。 By accommodating the membrane-like carrier 20 having the structure shown in FIGS. 2 and 3 in the sprinkling filter as the biological treatment tank 2, the outside of the membrane 22 of the membrane-like carrier 20 on the separation liquid supply side has a BOD. While the area is abundant and oxygen-poor, the oxygen supply side inside the membrane 22 is an area where BOD is poor and oxygen is abundant. Therefore, it is possible to create conditions suitable for the progress of the denitrification reaction on the supply side of the separation liquid and conditions suitable for the nitrification reaction on the oxygen supply side.

第2の実施の形態に係る水処理装置及び水処理方法によれば、図2及び図3に示す構造の膜状担体20を用いることにより、ろ材として砂や石などを使用する場合に比べて、酸素が乏しいエリアと酸素が豊富なエリアを一定の領域内に確実に形成させることができる。そのため、砂や石などのろ材を使用する場合に比べて硝化−脱窒反応が進行しやすい環境を作り出すことができる。また、開口部22dから膜22の内面に堆積した汚泥を排出させることができるため、より長期間安定した処理が行えるようになる。排出汚泥の中には生物から剥離したものが多く、これらの汚泥は沈降性が良いため、沈殿槽などの固液分離装置を経由して希釈槽に固液分離水を供給すると良い。分離汚泥は浄化槽汚泥及びし尿系汚泥の脱水設備前の受槽に戻して、脱水処理を行い、脱水ケーキとして場外に排出すると良い。 According to the water treatment apparatus and the water treatment method according to the second embodiment, by using the film-like carrier 20 having the structure shown in FIGS. 2 and 3, as compared with the case where sand, stone or the like is used as the filter medium. , An oxygen-poor area and an oxygen-rich area can be reliably formed in a certain area. Therefore, it is possible to create an environment in which the nitrification-denitrification reaction is more likely to proceed than when a filter medium such as sand or stone is used. Further, since the sludge accumulated on the inner surface of the membrane 22 can be discharged from the opening 22d, stable treatment can be performed for a longer period of time. Many of the discharged sludge are exfoliated from living organisms, and since these sludges have good sedimentation properties, it is preferable to supply the solid-liquid separation water to the dilution tank via a solid-liquid separation device such as a sedimentation tank. The separated sludge may be returned to the receiving tank in front of the dewatering facility for septic tank sludge and human waste sludge, dehydrated, and discharged to the outside as a dewatered cake.

(第3の実施の形態)
第3の実施の形態に係る水処理装置は、図4に示すように、生物処理槽2として、分離液中のBODを除去するための生物処理槽(高負荷生物処理槽)2aと、分離液中の窒素を除去するための生物処理槽(低負荷生物処理槽)2bとを並列に接続して処理することを含む。
(Third Embodiment)
As shown in FIG. 4, the water treatment apparatus according to the third embodiment is separated from the biological treatment tank (high-load biological treatment tank) 2a for removing BOD in the separation liquid as the biological treatment tank 2. It includes processing by connecting a biological treatment tank (low load biological treatment tank) 2b for removing nitrogen in the liquid in parallel.

生物処理槽2aのBOD負荷条件としては、以下に限定されるものではないが、例えば3.0〜10.0kg−BOD/m3/dとし、他の態様では3.0〜8.0kg−BOD/m3/d、更に別の態様では3.0〜5.0kg−BOD/m3/dとすることができる。生物処理槽2aでは、分離液中のBODの粗取りを目的とした処理を行う。 The BOD load condition of the biological treatment tank 2a is not limited to the following, but is, for example, 3.0 to 10.0 kg-BOD / m 3 / d, and 3.0 to 8.0 kg- in other embodiments. BOD / m 3 / d, and in yet another aspect, 3.0 to 5.0 kg-BOD / m 3 / d. In the biological treatment tank 2a, a treatment is performed for the purpose of roughing the BOD in the separation liquid.

生物処理槽2bのBOD負荷条件としては、生物処理槽2aよりも低負荷で運転することが望ましく、以下に限定されるものではないが、例えば0.5〜2.0kg−BOD/m3/dとし、他の態様では0.5〜1.5kg−BOD/m3/d、更に別の態様では他の態様では0.5〜1.0kg−BOD/m3/dとすることができる。生物処理槽2bでは、分離液中のT−N(全窒素)を除去することを目的とした処理を行う。 As the BOD load condition of the biological treatment tank 2b, it is desirable to operate at a lower load than the biological treatment tank 2a, and the operation is not limited to the following, but for example, 0.5 to 2.0 kg-BOD / m 3 /. In other embodiments, it may be 0.5 to 1.5 kg-BOD / m 3 / d, and in yet another embodiment, it may be 0.5 to 1.0 kg-BOD / m 3 / d. .. In the biological treatment tank 2b, a treatment aimed at removing TN (total nitrogen) in the separation liquid is performed.

生物処理槽2a及び生物処理槽2bへの分離液の流入比は、分離液の水質(BOD、T−N)によって調整することができる。図示していないが、分離液の水質に基づいて生物処理槽2a及び生物処理槽2bの分離液の流入比を制御する制御手段が設けられていても良い。なお、図4においては、生物処理槽2として、生物処理槽2a及び生物処理槽2bを二槽並列に接続する例を示しているが、二槽以上の生物処理槽が備えられていてもよいことは勿論である。 The inflow ratio of the separation liquid into the biological treatment tank 2a and the biological treatment tank 2b can be adjusted by adjusting the water quality (BOD, TN) of the separation liquid. Although not shown, a control means for controlling the inflow ratio of the separated liquids in the biological treatment tank 2a and the biological treatment tank 2b may be provided based on the water quality of the separated liquid. Although FIG. 4 shows an example in which two biological treatment tanks 2a and 2b are connected in parallel as the biological treatment tank 2, two or more biological treatment tanks may be provided. Of course.

第3の実施の形態に係る水処理装置及び水処理方法によれば、分離液中の有機物の除去目的に応じて、複数の生物処理槽2を用いてより適切な処理を行うことができるため、下水排除基準を満たす処理水をより効率的に作り出すことができる。 According to the water treatment apparatus and the water treatment method according to the third embodiment, more appropriate treatment can be performed using a plurality of biological treatment tanks 2 according to the purpose of removing organic substances in the separation liquid. , It is possible to more efficiently produce treated water that meets the sewage exclusion criteria.

(第4の実施の形態)
第4の実施の形態に係る水処理装置は、図5に示すように、生物処理槽2として、分離液中のBODを除去するための生物処理槽(高負荷生物処理槽)2aと、分離液中の窒素を除去するための生物処理槽(低負荷生物処理槽)2bとを直列に接続して処理することを含む。生物処理槽2a、2bにおける処理によって最終的に得られる生物処理水は、返送手段4を介して生物処理槽2a、2bの前段に循環させる。
(Fourth Embodiment)
As shown in FIG. 5, the water treatment apparatus according to the fourth embodiment is separated from the biological treatment tank (high-load biological treatment tank) 2a for removing BOD in the separation liquid as the biological treatment tank 2. The treatment includes connecting a biological treatment tank (low-load biological treatment tank) 2b for removing nitrogen in the liquid in series. The biologically treated water finally obtained by the treatment in the biological treatment tanks 2a and 2b is circulated in the preceding stage of the biological treatment tanks 2a and 2b via the return means 4.

第4の実施の形態に係る水処理装置及び水処理方法によれば、前段の生物処理槽2aでBOD除去を行い、後段の生物処理槽2bで硝化反応を進行させることができ、更に返送手段4を用いて生物処理水を返流することで、循環型硝化脱窒をより促進することができるため、下水道放流用のためのより安定化した水処理を行うことができる。 According to the water treatment apparatus and the water treatment method according to the fourth embodiment, the BOD can be removed in the biological treatment tank 2a in the first stage, the nitrification reaction can proceed in the biological treatment tank 2b in the latter stage, and the return means. By returning the biotreated water using No. 4, the circulating nitrification denitrification can be further promoted, so that more stable water treatment for sewage discharge can be performed.

(第5の実施の形態)
第5の実施の形態に係る水処理装置は、図6に示すように、直列に接続された二段以上の生物処理槽2a、2b、・・・2nを備え、各生物処理槽2a、2b、・・・2nに対して分離液をステップ流入させるための流入手段5を備えている。
(Fifth Embodiment)
As shown in FIG. 6, the water treatment apparatus according to the fifth embodiment includes two or more stages of biological treatment tanks 2a, 2b, ... 2n connected in series, and each biological treatment tank 2a, 2b. , ... The inflow means 5 for step-inflowing the separation liquid into 2n is provided.

各生物処理槽2a、2b、・・・2nへの流入量(ステップ比)は任意に変更することが可能であるが、窒素除去の観点からは、BOD容積負荷として1.0〜4.0kg−BOD/m3/d、望ましくは1.5〜3.0kg−BOD/m3/d、TN容積負荷として0.5〜2.0kg−N/m3/d、望ましくは0.7〜1.5kg−N/m3/d、となる生物処理槽2a、2b、・・・2nを1以上含むようにし、このような槽が更に増えるように各ステップ比を決定することが望ましい。 The inflow amount (step ratio) into each biological treatment tank 2a, 2b, ... 2n can be arbitrarily changed, but from the viewpoint of nitrogen removal, the BOD volume load is 1.0 to 4.0 kg. -BOD / m 3 / d, preferably 1.5-3.0 kg-BOD / m 3 / d, TN volumetric load 0.5-2.0 kg-N / m 3 / d, preferably 0.7- It is desirable to include one or more biological treatment tanks 2a, 2b, ... 2n having 1.5 kg-N / m 3 / d, and to determine each step ratio so that such tanks are further increased.

被処理水の流量が12m3/d、BODが2000mg/L、NH4−Nが700mg/Lで生物処理槽2を三段直列に接続し、各生物処理槽2の容積を2m3として、流入手段5から供給する分離液のステップ流入量を変更した場合のBOD、T−Nの処理水質の例を表1に表す。表1のケースA〜Cにおいて最も良い処理水質を示す例を◎、二番目に良い処理水質を示す例を○、三番目に良い処理水質を示す例を△に示す。 The flow rate of the water to be treated is 12 m 3 / d, the BOD is 2000 mg / L, and the NH 4- N is 700 mg / L. The biological treatment tanks 2 are connected in three stages in series, and the volume of each biological treatment tank 2 is 2 m 3 . Table 1 shows an example of the treated water quality of BOD and TN when the step inflow rate of the separation liquid supplied from the inflow means 5 is changed. In Cases A to C of Table 1, examples showing the best treated water quality are shown in ⊚, examples showing the second best treated water quality are shown in ◯, and examples showing the third best treated water quality are shown in Δ.

表1に示すように、ケースAのように前段へのステップ流入量を低くした場合にはT−Nの処理性能が向上し、ケースCのように前段へのステップ流入量を高くした場合はBODの処理性能が向上する傾向となる。これは、処理水量を少なくすることが可能な前段側において硝化が進行可能な負荷に調整することがプロセス全体の窒素除去に寄与するためである。 As shown in Table 1, when the step inflow amount to the previous stage is reduced as in case A, the processing performance of TN is improved, and when the step inflow amount to the previous stage is increased as in case C, the step inflow amount to the previous stage is increased. BOD processing performance tends to improve. This is because adjusting the load so that nitrification can proceed on the front stage side where the amount of treated water can be reduced contributes to the removal of nitrogen in the entire process.

第5の実施の形態に係る水処理装置によれば、流入手段5により、各生物処理槽2a、2b、・・・2nに流入する水量の分配比を調整できるため、例えば、生物処理槽2a、2b、・・・2nの前段側の流入量を下げて硝化を進行させて処理水中のNO3−N濃度を上げ、後段側において前段で生成されたNO3−Nとステップ流入される分離液中に含まれるBOD成分とで脱窒反応を進行させることにより、被処理水中のBOD、T−Nを効率的に除去することができる。 According to the water treatment apparatus according to the fifth embodiment, the distribution ratio of the amount of water flowing into each biological treatment tank 2a, 2b, ... 2n can be adjusted by the inflow means 5, so that, for example, the biological treatment tank 2a , 2b, ... 2n is separated by reducing the inflow amount on the front stage side to promote nitrification and increasing the NO 3- N concentration in the treated water, and stepping inflow with NO 3- N generated in the front stage side on the rear stage side. By advancing the denitrification reaction with the BOD component contained in the liquid, BOD and TN in the water to be treated can be efficiently removed.

また、第5の実施の形態に係る水処理装置によれば、循環式硝化脱窒法のように処理水の循環を行わないため、循環式硝化脱窒法に比べてポンプ動力を削減することが可能となる。 Further, according to the water treatment apparatus according to the fifth embodiment, since the treated water is not circulated unlike the circulation type nitrification denitrification method, the pump power can be reduced as compared with the circulation type nitrification denitrification method. It becomes.

(第6の実施の形態)
第6の実施の形態に係る水処理装置は、図7に示すように、各生物処理槽2a、2b、・・・2nに対して分離液をステップ流入させるための流入手段5と、生物処理槽2a、2b、・・・2nへ流入させる分離液のステップ比を制御する制御手段6を備える。
(Sixth Embodiment)
As shown in FIG. 7, the water treatment apparatus according to the sixth embodiment includes an inflow means 5 for step-inflowing the separation liquid into each biological treatment tank 2a, 2b, ... 2n, and a biological treatment. A control means 6 for controlling the step ratio of the separation liquid flowing into the tanks 2a, 2b, ... 2n is provided.

流入手段5による分離液のステップ比は、各生物処理槽2a、2b、・・・2nの容積負荷と固液分離装置1から得られる分離液又は生物処理槽2a、2b、・・・2nから得られる生物処理水の水質に応じて、各生物処理槽2a、2b、・・・2nでの処理がより安定的に行われるように、図7に示す制御手段6によって制御することができる。 The step ratio of the separation liquid by the inflow means 5 is from the volumetric load of each biological treatment tank 2a, 2b, ... 2n and the separation liquid or the biological treatment tank 2a, 2b, ... 2n obtained from the solid-liquid separation device 1. It can be controlled by the control means 6 shown in FIG. 7 so that the treatment in each of the biological treatment tanks 2a, 2b, ... 2n is performed more stably according to the water quality of the obtained biological treatment water.

例えば、制御手段6は、固液分離装置1で得られた分離液の水質を測定する測定手段11、各生物処理槽2a、2b、・・・2nで得られた生物処理水の水質を測定する測定手段12、13、14の測定結果をモニタリングするモニタリング手段7を備え、モニタリング手段7のモニタリング結果に基づいて、制御手段6が各生物処理槽2a、2b、・・・2nの容積負荷に応じてより最適な流量比となるように、流入手段5からの各生物処理槽2a、2b、・・・2nへ流入させる分離液のステップ比を調整する。 For example, the control means 6 measures the water quality of the biologically treated water obtained in the measuring means 11 for measuring the water quality of the separated liquid obtained by the solid-liquid separating device 1, the biological treatment tanks 2a, 2b, ... 2n. The monitoring means 7 for monitoring the measurement results of the measuring means 12, 13 and 14 is provided, and the control means 6 applies the volumetric load of each biological treatment tank 2a, 2b, ... 2n based on the monitoring result of the monitoring means 7. The step ratio of the separation liquid flowing into each biological treatment tank 2a, 2b, ... 2n from the inflow means 5 is adjusted so as to obtain a more optimum flow rate ratio accordingly.

モニタリング手段7がモニタリングする項目に特に制限はないが、例えば、流量、水温、pH、ORP、BOD、COD、TOC、アンモニア態窒素、硝酸態窒素等をモニタリングすることができる。モニタリング手段7がモニタリングする箇所は図7の例に限定されるものではなく、代表的な生物処理槽2a、2b、・・・2nのいずれかをピックアップしてモニタリングすることも可能である。 The items monitored by the monitoring means 7 are not particularly limited, and for example, flow rate, water temperature, pH, ORP, BOD, COD, TOC, ammonia nitrogen, nitrate nitrogen and the like can be monitored. The location monitored by the monitoring means 7 is not limited to the example of FIG. 7, and it is also possible to pick up and monitor any of the typical biological treatment tanks 2a, 2b, ... 2n.

制御手段6には、モニタリング手段7がモニタリングした項目に基づいて各2a、2b、・・・2nへ流入させる分離液のステップ比を計算する計算手段(不図示)を備え、計算手段による計算結果に基づいて、流入手段5から流入する分離液の流量を流量調整装置で調整する。流量調整装置としては、電磁弁、手動弁等が挙げられる。 The control means 6 is provided with a calculation means (not shown) for calculating the step ratio of the separation liquid flowing into each of 2a, 2b, ... 2n based on the items monitored by the monitoring means 7, and the calculation result by the calculation means. The flow rate of the separated liquid flowing in from the inflow means 5 is adjusted by the flow rate adjusting device based on the above. Examples of the flow rate adjusting device include a solenoid valve and a manual valve.

第6の実施の形態に係る水処理装置によれば、固液分離装置1から得られる分離液又は生物処理槽2a、2b、・・・2nから得られる生物処理水の水質をリアルタイムに把握することができるため、被処理水の水質変動が生じた場合においても各生物処理槽2a、2b、・・・2nにおいてより適切な生物処理が行われるように分離液のステップ比を設定することができ、より安定した処理を行うことができる。 According to the water treatment apparatus according to the sixth embodiment, the water quality of the separation liquid obtained from the solid-liquid separation apparatus 1 or the biological treatment water obtained from the biological treatment tanks 2a, 2b, ... 2n is grasped in real time. Therefore, it is possible to set the step ratio of the separation liquid so that more appropriate biological treatment is performed in each biological treatment tank 2a, 2b, ... 2n even when the water quality of the water to be treated fluctuates. It is possible to perform more stable processing.

(第7の実施の形態)
第7の実施の形態に係る水処理装置は、図8に示すように、生物処理槽2aと生物処理槽2bとが並行に接続されている。生物処理槽2aは、分離液中のBODの好気的分解及びアンモニア態窒素の硝化を行って生物処理水を得る散水ろ床201aと、散水ろ床201aで得られた生物処理水を散水ろ床201aに循環させる循環ライン203aと、散水ろ床201aに循環させる循環水を収容する循環槽202aとを備える。生物処理槽2bは、分離液中のBODの好気的分解及びアンモニア態窒素の硝化を行って生物処理水を得る散水ろ床201bと、散水ろ床201bで得られた生物処理水を散水ろ床201bに循環させる循環ライン203bと、散水ろ床201bに循環させる循環水を収容する循環槽202bとを備える。
(7th Embodiment)
In the water treatment apparatus according to the seventh embodiment, as shown in FIG. 8, the biological treatment tank 2a and the biological treatment tank 2b are connected in parallel. In the biological treatment tank 2a, the watering filter 201a for obtaining the biologically treated water by aerobically decomposing the BOD in the separation liquid and nitrifying the ammonia nitrogen, and the biologically treated water obtained in the watering filter 201a are sprinkled. A circulation line 203a that circulates on the floor 201a and a circulation tank 202a that houses the circulating water that circulates on the sprinkler bed 201a are provided. In the biological treatment tank 2b, the watering filter 201b for obtaining the biologically treated water by aerobically decomposing the BOD in the separation liquid and nitrifying the ammonia nitrogen, and the biologically treated water obtained in the watering filter 201b are sprinkled. A circulation line 203b that circulates on the floor 201b and a circulation tank 202b that houses the circulating water that circulates on the sprinkler bed 201b are provided.

浄化槽汚泥及びし尿系汚泥の少なくともいずれかを含む被処理水を固液分離した後の分離液は貯留槽2xに貯留された後、各生物処理槽2a、2bの循環槽202a、202bへそれぞれ供給される。浄化槽汚泥及びし尿系汚泥の脱水処理では、凝集剤として金属塩(ポリ鉄、硫酸バンド等)を使用すると原水中のリンは鉄やAlに化学的に固定されるため、分離液中のリン濃度は下がる。このため、循環槽202a、202bの前段には、散水ろ床201a、201b内の微生物の生育に必要なだけのリンを供給するためのリン供給手段2yがそれぞれ接続されている。リン供給手段2yから供給されるリンの形態としては特に制限はないが、リン酸、リン酸二水素カリウム等の薬品、或いはし尿系汚泥、浄化槽汚泥の一部を投入する等の方法がある。浄化槽汚泥及びし尿系汚泥を利用する場合、不足したりん量に応じて脱水後の分離液貯槽に浄化槽汚泥及びし尿系汚泥を分注しても良い。 After solid-liquid separation of the water to be treated containing at least one of septic tank sludge and human waste sludge, the separated liquid is stored in the storage tank 2x and then supplied to the circulation tanks 202a and 202b of the biological treatment tanks 2a and 2b, respectively. Will be done. In the dehydration treatment of septic tank sludge and human waste sludge, when a metal salt (poly iron, sulfuric acid band, etc.) is used as a coagulant, phosphorus in the raw water is chemically fixed to iron and Al, so the phosphorus concentration in the separation liquid Goes down. Therefore, phosphorus supply means 2y for supplying as much phosphorus as necessary for the growth of microorganisms in the sprinkler beds 201a and 201b is connected to the front stages of the circulation tanks 202a and 202b, respectively. The form of phosphorus supplied from the phosphorus supply means 2y is not particularly limited, but there are methods such as adding chemicals such as phosphoric acid and potassium dihydrogen phosphate, or a part of human waste sludge and septic tank sludge. When septic tank sludge and human waste sludge are used, septic tank sludge and human waste sludge may be dispensed into the dehydrated separation liquid storage tank according to the insufficient amount of phosphorus.

図9に示すように、循環槽202内には、担体を充填することもできる。この場合、表面に微生物を付着させた担体を10〜40%V/V循環槽202内へ収容することで、循環槽202内に収容された微生物により脱窒反応が進行する。微生物を付着させた担体が収容された循環槽202で脱窒反応を進行させた後、循環水を散水ろ床201へ循環させ、その処理水を再び循環槽202へ戻すことができる。 As shown in FIG. 9, the circulation tank 202 can be filled with a carrier. In this case, by accommodating the carrier on which the microorganisms are attached to the surface in the 10 to 40% V / V circulation tank 202, the denitrification reaction proceeds by the microorganisms contained in the circulation tank 202. After the denitrification reaction is allowed to proceed in the circulation tank 202 containing the carrier to which the microorganisms are attached, the circulating water can be circulated to the sprinkling filter bed 201, and the treated water can be returned to the circulation tank 202 again.

図9に示す水処理装置によれば、循環槽202内に表面に微生物を付着させた担体が収容されることにより、被処理水の変動によらず安定して分離液中に含まれる有機物(BOD)及び窒素(T−N)を効率良く粗取りすることができる。 According to the water treatment apparatus shown in FIG. 9, by accommodating the carrier on which the microorganisms are attached to the surface in the circulation tank 202, the organic matter (stable) contained in the separation liquid is stably contained regardless of the fluctuation of the water to be treated. BOD) and nitrogen (TN) can be efficiently roughened.

第7の実施の形態に係る水処理装置によれば、返送等による汚泥濃度制御が不要で、汚泥の再浮上等のトラブルが発生しない容易な維持管理にて、分離液中に含まれる有機物(BOD)及び窒素(T−N)を効率良く粗取りすることが可能となり、これにより下水排除基準を満足するための希釈水量の削減し、施設の運転費用の削減することが可能となる。 According to the water treatment apparatus according to the seventh embodiment, it is not necessary to control the sludge concentration by returning the sludge, and the organic matter contained in the separation liquid (the organic matter contained in the separation liquid) can be easily maintained without causing troubles such as re-floating of the sludge. BOD) and nitrogen (TN) can be efficiently roughened, which makes it possible to reduce the amount of diluted water to satisfy the sewage exclusion standard and reduce the operating cost of the facility.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Examples of the present invention are shown below together with comparative examples, but these examples are provided for a better understanding of the present invention and its advantages, and are not intended to limit the invention.

分離液として、し尿処理施設の脱水分離液を図8に示す水処理装置に供給して処理水を得た。脱水分離液には栄養塩(りん酸一カリウム(KH2PO4))を添加した。表2に、実験期間中の代表的な脱水分離液の性状を示す。 As the separation liquid, the dehydration separation liquid of the urine treatment facility was supplied to the water treatment apparatus shown in FIG. 8 to obtain treated water. A nutrient salt (monopotassium phosphate (KH 2 PO 4 )) was added to the dehydrated separator. Table 2 shows the properties of typical dehydration separation solutions during the experimental period.

処理フローとしては、図8の一方の散水ろ床201aを高負荷型(No.1)、他方の散水ろ床201bを低負荷型(No.2)として並列に接続し、それぞれに脱水分離液を流入させた。各槽の設定負荷を段階的に増加させて、各負荷での処理水質の確認を行った(図10参照)。散水ろ床201a、散水ろ床201bの外径寸法は0.05mW×1.15mD×2.42mHとし、有効容積2m3とした。散水ろ床201a、散水ろ床201bのろ床として、図2及び図3に示す膜状担体を使用した。膜状担体の表面積は246m2であった。実験期間中、処理槽からの汚泥の返送等は一切行わず、汚泥量のコントロールは行わなかった。実験結果を表3に示す。 As a treatment flow, one watering filter bed 201a in FIG. 8 is connected in parallel as a high load type (No. 1) and the other watering filter bed 201b is connected in parallel as a low load type (No. 2), and dehydration separation liquids are connected to each. Inflowed. The set load of each tank was gradually increased, and the quality of treated water at each load was confirmed (see FIG. 10). The outer diameter dimensions of the sprinkling filter bed 201a and the sprinkling filter bed 201b were 0.05 mW × 1.15 mD × 2.42 mH, and the effective volume was 2 m 3 . The membrane-like carriers shown in FIGS. 2 and 3 were used as the filters for the sprinkler filter bed 201a and the sprinkler filter bed 201b. The surface area of the membranous carrier was 246 m 2 . During the experiment period, sludge was not returned from the treatment tank and the amount of sludge was not controlled. The experimental results are shown in Table 3.

高負荷条件(3.0〜10kg−BOD/m3/d)では、T−N除去率は18%以下と低いものの、BOD除去率は38〜62%を示し、BODの粗取りが可能であることを示した。低負荷条件(0.5〜2.0kg−BOD/m3/d)では、BOD除去率は80%以上と高いことに加え、T−N除去率も30〜70%を示し、T−Nの粗取りも可能であることを示した。また、いずれの負荷条件においても、汚泥の流出や目詰まりによる閉塞等のトラブルは一切起こらなかった。 Under high load conditions (3.0 to 10 kg-BOD / m 3 / d), the TN removal rate is as low as 18% or less, but the BOD removal rate is 38 to 62%, and rough removal of BOD is possible. Showed that there is. Under low load conditions (0.5 to 2.0 kg-BOD / m 3 / d), the BOD removal rate is as high as 80% or more, and the TN removal rate is also 30 to 70%, showing TN. It was shown that rough removal is also possible. In addition, no trouble such as sludge outflow or clogging caused clogging occurred under any of the load conditions.

上記実験により得られた負荷と硝化量の関係を表4に示す。硝化量は、2.5kg−BOD/m3/d近傍で最大となった。この結果より、窒素除去を目的とする場合は、BOD負荷として1.5〜6.0kg−BOD/m3/d、更には1.5〜4.0kg−BOD/m3/d、より更には2.0〜3.0kg/m3/dの負荷条件で運転することにより、窒素除去効率を高くできることがわかった。 Table 4 shows the relationship between the load obtained by the above experiment and the amount of nitrification. The amount of nitrification reached its maximum near 2.5 kg-BOD / m 3 / d. From this result, when the purpose is to remove nitrogen, the BOD load is 1.5 to 6.0 kg-BOD / m 3 / d, and further 1.5 to 4.0 kg-BOD / m 3 / d. It was found that the nitrogen removal efficiency can be increased by operating under a load condition of 2.0 to 3.0 kg / m 3 / d.

下水排除基準をBOD600mg/L、T−N380mg/Lとしたときの、各負荷の除去率から求めた希釈倍率の計算値を表5に示す。生物処理の無い場合は3.8倍希釈が必要であったが、本実施例によれば、希釈倍率を1.0〜1.7倍に低減可能であることがわかった。なお、下記の計算は脱水ろ液の全量を生物処理に流入させた場合を想定したが、敷地面積等の制限により、脱水ろ液の一部を生物処理する形であっても、希釈水量を低減可能なことは自明である。 Table 5 shows the calculated values of the dilution ratio obtained from the removal rate of each load when the sewage exclusion standard is BOD 600 mg / L and TN 380 mg / L. In the absence of biological treatment, 3.8-fold dilution was required, but according to this example, it was found that the dilution ratio can be reduced to 1.0 to 1.7-fold. The calculation below assumes that the entire amount of the dehydrated filtrate has flowed into the biological treatment, but due to restrictions on the site area, etc., the amount of diluted water can be determined even if part of the dehydrated filtrate is biologically treated. It is self-evident that it can be reduced.

1…固液分離装置
2、2a〜2n…生物処理槽
3…希釈槽
4…返送手段
5…流入手段
6…制御手段
7…モニタリング手段
11〜14…測定手段
20…膜状担体
20…支持体
22…膜
23…空間
200、201a、201b…散水ろ床
202、202a、202b…循環槽
203、203a、203b…循環ライン
1 ... Solid-liquid separation device 2, 2a-2n ... Biological treatment tank 3 ... Dilution tank 4 ... Return means 5 ... Inflow means 6 ... Control means 7 ... Monitoring means 11-14 ... Measuring means 20 ... Membrane-like carrier 20 ... Support 22 ... Membrane 23 ... Space 200, 201a, 201b ... Sprinkling filter 202, 202a, 202b ... Circulation tank 203, 203a, 203b ... Circulation line

Claims (8)

浄化槽汚泥及びし尿系汚泥の少なくともいずれかを含む被処理水を固液分離して分離汚泥と分離液とに分離し、
前記分離液の少なくとも一部に対し、散水ろ床法、流動担体法、回転円板法、固定床法のいずれかを少なくとも含む無閉塞型の生物膜法を用いた生物処理を行い、
前記生物処理で得られる生物処理水を下水排除基準を満たすように希釈すること
を含むことを特徴とする水処理方法。
The water to be treated containing at least one of septic tank sludge and human waste sludge is solid-liquid separated and separated into separated sludge and separated liquid.
At least a part of the separation solution is subjected to biological treatment using a non-obstructive biomembrane method including at least one of a sprinkling filter method, a fluidized carrier method, a rotating disk method, and a fixed bed method.
A water treatment method comprising diluting the biologically treated water obtained by the biological treatment so as to meet a sewage exclusion standard.
前記生物処理が、前記分離液中のBODを除去するための生物処理槽と、前記分離液中の窒素を除去するための生物処理槽とを、並列又は直列に接続して処理することを特徴とする請求項1に記載の水処理方法。 The biological treatment is characterized in that a biological treatment tank for removing BOD in the separation liquid and a biological treatment tank for removing nitrogen in the separation liquid are connected in parallel or in series for treatment. The water treatment method according to claim 1. 前記生物処理が、二段以上に直列に接続した生物処理槽に対し、前記分離液をステップ流入させることを特徴とする請求項1に記載の水処理方法。 The water treatment method according to claim 1, wherein the biological treatment is a step inflow of the separation liquid into a biological treatment tank in which two or more stages are connected in series. 前記生物処理が、
前記分離液を散水ろ床に供給して前記分離液中のBODの好気的分解及びアンモニア態窒素の硝化を行って生物処理水を得ることと、
前記生物処理水を前記散水ろ床に循環させることと、
前記散水ろ床に循環させる循環水を収容する循環槽内に担体を配置し、前記担体に付着する微生物により脱窒反応を進行させること
を特徴とする請求項1〜3のいずれか1項に記載の水処理方法。
The biological treatment
The separation liquid is supplied to a sprinkling filter to perform aerobic decomposition of BOD in the separation liquid and nitrification of ammonia nitrogen to obtain biotreated water.
Circulating the biologically treated water to the sprinkling filter and
The one according to any one of claims 1 to 3, wherein a carrier is arranged in a circulation tank containing circulating water to be circulated in the watering filter, and a denitrification reaction is allowed to proceed by microorganisms adhering to the carrier. The water treatment method described.
浄化槽汚泥及びし尿系汚泥の少なくともいずれかを含む被処理水を固液分離して分離汚泥と分離液とに分離する固液分離装置と、
前記分離液の少なくとも一部に対し、散水ろ床法、流動担体法、回転円板法、固定床法のいずれかを少なくとも含む無閉塞型の生物膜法による生物処理を行う生物処理槽と、
前記生物処理で得られる生物処理水を下水排除基準を満たすように希釈する希釈槽と
を備えることを特徴とする水処理装置。
A solid-liquid separation device that separates the water to be treated containing at least one of septic tank sludge and human waste sludge into solid-liquid separation and separate sludge.
A biological treatment tank for performing biological treatment on at least a part of the separation liquid by a non-obstructive biomembrane method including at least one of a sprinkling filter method, a fluidized carrier method, a rotary disk method, and a fixed bed method.
A water treatment apparatus including a dilution tank for diluting the biologically treated water obtained by the biological treatment so as to satisfy the sewage exclusion standard.
前記生物処理槽内に、前記分離液と酸素とが膜面を挟んで対向して浸透する構造を有する膜状担体が配置されていることを特徴とする請求項5に記載の水処理装置。 The water treatment apparatus according to claim 5, wherein a film-like carrier having a structure in which the separation liquid and oxygen permeate facing each other across the membrane surface is arranged in the biological treatment tank. 前記膜状担体が、支持体と前記支持体に支持される膜を備え、前記膜が前記支持体を覆うループ形状を有し、前記分離液が前記膜の外面から浸透し、前記酸素が前記膜の内面に形成された空間から前記膜の外面へ浸透し、前記膜の前記内面から剥離する汚泥を前記空間の外へ排出するための開口部が前記膜に形成されていることを特徴とする請求項6に記載の水処理装置。 The membranous carrier comprises a support and a membrane supported by the support, the membrane has a loop shape covering the support, the separation liquid permeates from the outer surface of the membrane, and the oxygen is said. The membrane is characterized in that an opening for permeating from the space formed on the inner surface of the membrane to the outer surface of the membrane and discharging sludge exfoliated from the inner surface of the membrane to the outside of the space is formed in the membrane. The water treatment apparatus according to claim 6. 直列に接続された二段以上の処理槽を含む前記生物処理槽のそれぞれに対し、前記分離液をステップ流入させるための流入手段と、
前記生物処理槽の容積負荷と前記分離液又は前記生物処理水の水質とに基づいて、前記生物処理槽へ流入させる前記分離液のステップ比を制御する制御手段と
を備えることを特徴とする請求項5〜7のいずれか1項に記載の水処理装置。
An inflow means for step-inflowing the separation liquid into each of the biological treatment tanks including two or more stages of treatment tanks connected in series.
A claim comprising a control means for controlling the step ratio of the separation liquid flowing into the biological treatment tank based on the volume load of the biological treatment tank and the water quality of the separation liquid or the biological treatment water. Item 6. The water treatment apparatus according to any one of Items 5 to 7.
JP2019040061A 2019-03-05 2019-03-05 Water treatment method and water treatment equipment Active JP7303643B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019040061A JP7303643B2 (en) 2019-03-05 2019-03-05 Water treatment method and water treatment equipment
JP2022140115A JP7420887B2 (en) 2019-03-05 2022-09-02 Water treatment method and water treatment equipment
JP2024002755A JP2024026729A (en) 2019-03-05 2024-01-11 water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019040061A JP7303643B2 (en) 2019-03-05 2019-03-05 Water treatment method and water treatment equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022140115A Division JP7420887B2 (en) 2019-03-05 2022-09-02 Water treatment method and water treatment equipment

Publications (3)

Publication Number Publication Date
JP2020142179A true JP2020142179A (en) 2020-09-10
JP2020142179A5 JP2020142179A5 (en) 2021-10-07
JP7303643B2 JP7303643B2 (en) 2023-07-05

Family

ID=72355009

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2019040061A Active JP7303643B2 (en) 2019-03-05 2019-03-05 Water treatment method and water treatment equipment
JP2022140115A Active JP7420887B2 (en) 2019-03-05 2022-09-02 Water treatment method and water treatment equipment
JP2024002755A Pending JP2024026729A (en) 2019-03-05 2024-01-11 water treatment equipment

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2022140115A Active JP7420887B2 (en) 2019-03-05 2022-09-02 Water treatment method and water treatment equipment
JP2024002755A Pending JP2024026729A (en) 2019-03-05 2024-01-11 water treatment equipment

Country Status (1)

Country Link
JP (3) JP7303643B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7372859B2 (en) 2020-03-13 2023-11-01 水ing株式会社 Organic wastewater treatment method and treatment equipment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03198A (en) * 1989-05-27 1991-01-07 Yoshikimi Watanabe Sewage cleaning device
JPH0647398A (en) * 1992-07-31 1994-02-22 Ebara Infilco Co Ltd Treatment of organic sewage
JP2005021733A (en) * 2003-06-30 2005-01-27 Takuma Co Ltd Method and system for treating human waste or the like
JP2005034739A (en) * 2003-07-15 2005-02-10 Mitsubishi Rayon Co Ltd Waste water treatment method
JP2005103338A (en) * 2003-09-26 2005-04-21 Hitachi Plant Eng & Constr Co Ltd Operation controller of nitrogen removal system
JP2007296499A (en) * 2006-05-08 2007-11-15 Japan Organo Co Ltd Waste water treatment method
JP2008012407A (en) * 2006-07-04 2008-01-24 Japan Sewage Works Agency Water distribution method and water distribution device
JP2017051922A (en) * 2015-09-11 2017-03-16 独立行政法人国立高等専門学校機構 Wastewater treatment method and apparatus
US10202295B2 (en) * 2014-04-23 2019-02-12 Biogill Environmental Pty Limited Water biotreatment unit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000317477A (en) 1999-05-11 2000-11-21 Sanyo Electric Co Ltd Sewage treating device
KR100474106B1 (en) 2002-07-09 2005-03-08 주식회사 덕진엔지니어링 Method for wastewater and night soil treatment utilizing microbial actuator and its apparatus
JP2009142810A (en) 2007-11-21 2009-07-02 Kato Construction Co Ltd Water purifying treatment method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03198A (en) * 1989-05-27 1991-01-07 Yoshikimi Watanabe Sewage cleaning device
JPH0647398A (en) * 1992-07-31 1994-02-22 Ebara Infilco Co Ltd Treatment of organic sewage
JP2005021733A (en) * 2003-06-30 2005-01-27 Takuma Co Ltd Method and system for treating human waste or the like
JP2005034739A (en) * 2003-07-15 2005-02-10 Mitsubishi Rayon Co Ltd Waste water treatment method
JP2005103338A (en) * 2003-09-26 2005-04-21 Hitachi Plant Eng & Constr Co Ltd Operation controller of nitrogen removal system
JP2007296499A (en) * 2006-05-08 2007-11-15 Japan Organo Co Ltd Waste water treatment method
JP2008012407A (en) * 2006-07-04 2008-01-24 Japan Sewage Works Agency Water distribution method and water distribution device
US10202295B2 (en) * 2014-04-23 2019-02-12 Biogill Environmental Pty Limited Water biotreatment unit
JP2017051922A (en) * 2015-09-11 2017-03-16 独立行政法人国立高等専門学校機構 Wastewater treatment method and apparatus

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"2-4-4 ステップ A2O 法の処理特性及び NH4-N 制御の有効性について", 東京都下水道局 技術調査年報 2014, vol. 38, JPN6022055667, 2014, ISSN: 0004955388 *
"中部汚泥再生処理センターにおける生物処理停止時の水質調査", 平成28年度 福岡市保健環境研究所報42号, JPN6022055670, 2016, pages 165 - 167, ISSN: 0004955383 *
"施設紹介解説 福岡市中部汚泥再生処理センター", 都市清掃, vol. 70, no. 335, JPN6022055668, 1 January 2017 (2017-01-01), pages 85 - 89, ISSN: 0004955384 *
"既存施設を利用した汚泥再生処理センターへの改造工事", 第38回 全国都市清掃研究・事例発表会講演論文集, JPN6022055669, 20 December 2016 (2016-12-20), pages 300 - 302, ISSN: 0004955385 *
PRODUCT BIOGILL TOWER PLUS, JPN6022055671, November 2018 (2018-11-01), ISSN: 0004955386 *
日本下水道事業団, ステップ流入式多段硝化脱窒法, JPN6022055672, August 2011 (2011-08-01), ISSN: 0004955387 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7372859B2 (en) 2020-03-13 2023-11-01 水ing株式会社 Organic wastewater treatment method and treatment equipment

Also Published As

Publication number Publication date
JP7303643B2 (en) 2023-07-05
JP2024026729A (en) 2024-02-28
JP7420887B2 (en) 2024-01-23
JP2022164901A (en) 2022-10-27

Similar Documents

Publication Publication Date Title
US6605220B2 (en) Apparatus and method for wastewater treatment with enhanced solids reduction (ESR)
US6423229B1 (en) Bioreactor systems for biological nutrient removal
KR101472421B1 (en) Membrane wastewater treatment system and method for high energy efficiency, high flow capicity, low operating cost, automated scum and foam removal / destruction and conversion method thereof from a constant level sequencing batch reactor process
CN103112991A (en) Coking wastewater treatment system and coking wastewater treatment method
JP2024026729A (en) water treatment equipment
CN109052867A (en) A kind of dispersed wastewater EGA processing unit and treatment process based on modified active carrier
JP5233498B2 (en) Biological treatment method and apparatus for water containing organic matter
JP4568528B2 (en) Water treatment equipment
US11760670B2 (en) Fixed biofilm anaerobic-aerobic combined reactor for treating wastewater
JP4512576B2 (en) Wastewater treatment by aerobic microorganisms
JP6136699B2 (en) Biological treatment method for organic wastewater
KR100953075B1 (en) Oxidation-reduction reaction tank for treating wastewater and wastewater treatment method using the same
CN114455708A (en) Integrated sewage treatment equipment and sewage treatment method
IL155193A (en) Apparatus and method for wastewater treatment with enhanced solids reduction (esr)
KR100336263B1 (en) Apparatus for treating waste water
JP2007196081A (en) Wastewater treatment system and toilet arrangement
KR102108870B1 (en) Membrane Treatment Device for Eliminating Nitrogen and/or Phosphorus
CN210711166U (en) Villages and towns sewage treatment plant
KR20040020325A (en) A method for treating the graywater by membrane
JP2003010871A (en) Sewage treatment apparatus and its operating method
JP7378370B2 (en) Water treatment method and water treatment equipment
JP7372859B2 (en) Organic wastewater treatment method and treatment equipment
CN214990949U (en) Difficult degradation industrial waste water treatment system
CN207313384U (en) Domestic sewage processing system
KR20140140528A (en) Membrane wastewater treatment system and method for high energy efficiency, high flow capicity, low operating cost, automated scum and foam removal / destruction and conversion method thereof from a constant level sequencing batch reactor process

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210826

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230623

R150 Certificate of patent or registration of utility model

Ref document number: 7303643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150