JP7303643B2 - Water treatment method and water treatment equipment - Google Patents

Water treatment method and water treatment equipment Download PDF

Info

Publication number
JP7303643B2
JP7303643B2 JP2019040061A JP2019040061A JP7303643B2 JP 7303643 B2 JP7303643 B2 JP 7303643B2 JP 2019040061 A JP2019040061 A JP 2019040061A JP 2019040061 A JP2019040061 A JP 2019040061A JP 7303643 B2 JP7303643 B2 JP 7303643B2
Authority
JP
Japan
Prior art keywords
membrane
biological treatment
sludge
tank
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019040061A
Other languages
Japanese (ja)
Other versions
JP2020142179A (en
JP2020142179A5 (en
Inventor
惇太 高橋
勝子 楠本
豊 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2019040061A priority Critical patent/JP7303643B2/en
Publication of JP2020142179A publication Critical patent/JP2020142179A/en
Publication of JP2020142179A5 publication Critical patent/JP2020142179A5/ja
Priority to JP2022140115A priority patent/JP7420887B2/en
Application granted granted Critical
Publication of JP7303643B2 publication Critical patent/JP7303643B2/en
Priority to JP2024002755A priority patent/JP2024026729A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、水処理方法及び水処理装置に関し、特に、浄化槽汚泥及びし尿系汚泥を処理し、処理水を下水道放流する水処理への適用に好適な水処理方法及び水処理装置に関する。 TECHNICAL FIELD The present invention relates to a water treatment method and a water treatment apparatus, and more particularly to a water treatment method and a water treatment apparatus suitable for application to water treatment for treating septic tank sludge and night soil sludge and discharging the treated water into a sewage system.

浄化槽汚泥及びし尿系汚泥を含む原水を処理して得られる処理水を下水道放流するためには下水排除基準を満足する必要があるが、下水排除基準は、一般的には、公共用水域への放流基準よりも基準が緩いことが知られている。例えば、公共用水域への放流基準としてBOD(生物化学的酸素要求量)10mg/L、N(窒素)が10mg/L、SS(浮遊物質)が10mg/Lとされているのに対し、下水排除基準はBODが600mg/L、T-Nが240mg/L、SSが600mg/Lである。 In order to discharge the treated water obtained by treating raw water containing septic tank sludge and night soil sludge into the sewage system, it is necessary to satisfy the sewage exclusion standards. It is known that the standards are more lenient than the release standards. For example, BOD (biochemical oxygen demand) is 10 mg/L, N (nitrogen) is 10 mg/L, and SS (suspended solids) is 10 mg/L as standards for discharge to public waters. Exclusion criteria are BOD 600 mg/L, TN 240 mg/L, SS 600 mg/L.

下水道放流水の従来の処理方法として、例えば、し尿等に含まれるごみ(し渣)を取り除き、下水排除基準まで希釈して放流する方法が知られている。この場合、一般的に希釈倍率は10~20倍程度となり、希釈水量及び下水道放流量が過剰となる。 As a conventional method for treating sewage effluent, for example, a method of removing dust (screen residue) contained in night soil and the like, diluting it to the sewage disposal standard, and discharging the water is known. In this case, the dilution ratio is generally about 10 to 20 times, and the amount of diluted water and the amount of sewer discharge become excessive.

別の処理方法として、し尿等を脱水機で固液分離し、脱水分離液を希釈して下水道放流する方式がある。この場合、脱水分離液は除渣し尿と比較してBOD、SS、窒素等の成分が大幅に低減されるため、希釈倍率は一般に3~8倍程度とすることができるが、脱水分離液の水質には変動が見られるため、希釈水量も水質によって大きく変動するという問題がある。 As another treatment method, there is a system in which night soil or the like is solid-liquid separated by a dehydrator, and the dehydrated separated liquid is diluted and discharged into the sewage system. In this case, the dewatered separated liquid has significantly reduced components such as BOD, SS, and nitrogen compared to the residual urine, so the dilution ratio can generally be about 3 to 8 times. Since the water quality fluctuates, there is a problem that the amount of dilution water also fluctuates greatly depending on the water quality.

また、し尿等を脱水機で固液分離する方法も、結局は、搬入量に対して4~9倍量を放流することとなるため、下水道放流量の低減効果は限定的である。固液分離では溶解性成分が除去されにくいため、し尿等に溶解性成分が多く含まれる場合には、脱水分離液の水質が悪化し、希釈水量を増加する必要性が生じる場合もある。放流水量の規制により下水排除基準を満足できない場合もある。 Also, the method of solid-liquid separation of human waste using a dehydrator ends up discharging 4 to 9 times the incoming amount, so the effect of reducing the sewage discharge amount is limited. Since it is difficult to remove soluble components in solid-liquid separation, if night soil or the like contains a large amount of soluble components, the water quality of the dehydrated separation liquid may deteriorate, and it may be necessary to increase the amount of dilution water. In some cases, it may not be possible to satisfy the sewage exclusion standard due to regulations on the amount of discharged water.

希釈水量及び放流水量をより確実に削減する別の方法として、固液分離と生物処理とを組み合わせる方法が考えられる。例えば、特開昭61-50691号公報(特許文献1)には、浄化槽汚泥を固液分離した固形分を、し尿系汚水と混合して凝集処理を行い、その分離液を生物処理する方法が記載されている。 As another method for more reliably reducing the amount of dilution water and the amount of discharged water, a method of combining solid-liquid separation and biological treatment can be considered. For example, Japanese Patent Application Laid-Open No. 61-50691 (Patent Document 1) describes a method in which the solid content obtained by solid-liquid separation of septic tank sludge is mixed with night soil sewage to perform flocculation treatment, and the separated liquid is biologically treated. Are listed.

特開昭61-50691号公報JP-A-61-50691

特許文献1に記載される方法では、生物処理した水の放流先についての記載はないが、実施例1の処理液のBODが10mg/L以下まで処理可能であることなどから、公共用水域への放流を前提とした処理方式であることが推察できる。 In the method described in Patent Document 1, there is no description about the discharge destination of the biologically treated water, but since the BOD of the treatment liquid of Example 1 can be treated up to 10 mg / L or less, it can be discharged to public water areas. It can be inferred that the treatment method is based on the premise of the discharge of water.

しかしながら、前述の通り、公共用水域への放流基準と比較すると下水排除基準は緩い傾向にあるため、下水道放流する処理水に対しては、特許文献1で言及されるような水質までは必要とされていない。そのため、下水道放流のための水質基準に応じたより効率的且つ適切な処理方法の提案が望まれる。 However, as mentioned above, the sewage exclusion standards tend to be looser than the standards for discharge into public water areas, so for treated water discharged into the sewage system, it is not necessary to meet the water quality mentioned in Patent Document 1. It has not been. Therefore, it is desired to propose a more efficient and appropriate treatment method that meets the water quality standards for sewage discharge.

一方で、引用文献1に記載されるような固液分離と生物処理とを組み合わせる水処理においては、下水排除基準を満たす程度に中途半端な処理を行うことが難しいという問題がある。 On the other hand, in the water treatment that combines solid-liquid separation and biological treatment as described in Cited Document 1, there is a problem that it is difficult to perform incomplete treatment to the extent that sewage disposal standards are met.

例えば、生物処理として硝化脱窒処理を行う場合、窒素を全量ではなく例えば6割程度処理する方法、或いは、脱水分離液中に含まれるアンモニア態窒素を全量硝化した後にその6割だけ脱窒処理する方法等が考えられる。 For example, when nitrification and denitrification treatment is performed as biological treatment, a method of treating, for example, about 60% of the nitrogen instead of the entire amount, or a method of nitrifying the entire amount of ammonium nitrogen contained in the dehydration separated liquid and then denitrifying only 60% of it. and other methods are conceivable.

しかしながら、窒素を6割程度処理する場合は4割程度の硝酸性窒素が残留することになるため、後段の沈殿槽において嫌気状態となったところで再度脱窒が起こり、発生した窒素ガスによって汚泥が浮上し、沈殿槽で固液分離が十分に行えない場合がある。沈殿槽で固液分離ができない場合は、硝化脱窒槽のMLSS(活性汚泥濃度)が維持できず、処理そのものが悪化する。 However, when about 60% of the nitrogen is treated, about 40% of the nitrate nitrogen remains, so denitrification occurs again when the sedimentation tank becomes anaerobic in the latter stage, and the generated nitrogen gas causes the sludge to become sludge. In some cases, solid-liquid separation cannot be performed sufficiently in the sedimentation tank. If solid-liquid separation cannot be performed in the sedimentation tank, the MLSS (activated sludge concentration) of the nitrification/denitrification tank cannot be maintained, and the treatment itself deteriorates.

脱水分離液中に含まれるアンモニア態窒素を全量硝化する場合は、水槽容量が過大となること、硝化に必要な曝気風量が過大となること、脱窒に必要なメタノールやエタノール等の水素供与体の添加が必要となること等があり、求められる処理水質に対して設備及び運用コストが過大となる。 When nitrifying all the ammonium nitrogen contained in the dehydration separated liquid, the water tank capacity becomes excessive, the aeration air volume required for nitrification becomes excessive, and hydrogen donors such as methanol and ethanol required for denitrification are required. , etc., and the equipment and operating costs are excessive for the required treated water quality.

別の手法として、活性汚泥法を用いた生物処理によって、処理水の水質が下水排除基準未満となるまで粗処理を行い、希釈して下水道放流する方法も考えられる。この場合、硝化を起こさない程度の高BOD負荷で処理することによって、硝化脱窒処理を用いた中途半端な生物処理を行うことによる上述の問題を解決することが可能であるが、活性汚泥法を用いた生物処理のための適正な水槽容量が必要となり、高BOD負荷に対応するための曝気風量も過大となり、処理効率的に良好な手段であるとはいえない。 As another method, biological treatment using an activated sludge method may be used to perform rough treatment until the quality of the treated water falls below the sewage disposal standard, dilute the treated water, and discharge the treated water into the sewage system. In this case, it is possible to solve the above-mentioned problems caused by halfway biological treatment using nitrification and denitrification treatment by treating with a high BOD load that does not cause nitrification, but the activated sludge method An appropriate water tank capacity is required for biological treatment using .

上記課題を鑑み、本発明は、下水排除基準を満足する処理水をより少ない希釈水量でより効率良く得ることが可能な水処理方法及び水処理装置を提供する。 In view of the above problems, the present invention provides a water treatment method and a water treatment apparatus that can more efficiently obtain treated water that satisfies the sewage disposal standard with a smaller amount of diluted water.

上記課題を解決するために本発明者らが鋭意検討した結果、浄化槽汚泥及びし尿系汚泥の少なくともいずれかを含む被処理水を固液分離して得られる分離液の少なくとも一部に対して、特定の生物処理を行った後に希釈処理することが有効であるとの知見を得た。 As a result of intensive studies by the present inventors in order to solve the above problems, at least a part of the separated liquid obtained by solid-liquid separation of the water to be treated containing at least one of septic tank sludge and night soil sludge, We have found that it is effective to carry out dilution treatment after performing a specific biological treatment.

以上の知見を基礎として完成した本発明の実施の形態に係る水処理方法は一側面において、浄化槽汚泥及びし尿系汚泥の少なくともいずれかを含む被処理水を固液分離して分離汚泥と分離液とに分離し、分離液の少なくとも一部に対し、散水ろ床法、流動担体法、回転円板法、固定床法のいずれかを少なくとも含む無閉塞型の生物膜法を用いた生物処理を行い、生物処理で得られる生物処理水を下水排除基準を満たすように希釈することを含む水処理方法である。 In one aspect of the water treatment method according to the embodiment of the present invention, which has been completed based on the above knowledge, water to be treated containing at least one of septic tank sludge and night soil sludge is solid-liquid separated into separated sludge and separated liquid. and at least part of the separated liquid is subjected to biological treatment using a non-clogging biofilm method including at least one of the trickling filter method, fluid carrier method, rotating disk method, and fixed bed method. and diluting the biologically treated water obtained in the biological treatment so as to meet the sewage disposal standards.

本発明の実施の形態に係る水処理方法は一実施態様において、生物処理が、分離液中のBODを除去するための生物処理槽と、分離液中の窒素を除去するための生物処理槽とを、並列又は直列に接続して処理することを含む。 In one embodiment of the water treatment method according to the embodiment of the present invention, the biological treatment includes a biological treatment tank for removing BOD in the separated liquid and a biological treatment tank for removing nitrogen in the separated liquid. are connected in parallel or in series for processing.

本発明の実施の形態に係る水処理方法は別の一実施態様において、生物処理が、二段以上に直列に接続した生物処理槽に対し、分離液をステップ流入させることを含む。 In another embodiment of the water treatment method according to the embodiment of the present invention, the biological treatment includes stepwise inflow of the separated liquid into biological treatment tanks connected in series in two or more stages.

本発明の実施の形態に係る水処理方法は更に別の一実施態様において、生物処理が、分離液を散水ろ床に供給して分離液中のBODの好気的分解及びアンモニア態窒素の硝化を行って生物処理水を得ることと、生物処理水を散水ろ床に循環させることと、散水ろ床に循環させる循環水を収容する循環槽内に担体を配置し、担体に付着する微生物により脱窒反応を進行させることを含む。 In still another embodiment of the water treatment method according to the embodiment of the present invention, the biological treatment supplies the separated liquid to a trickling filter bed to aerobicly decompose BOD in the separated liquid and nitrify ammonia nitrogen. to obtain biologically treated water, circulate the biologically treated water through the trickling filter, place the carrier in a circulation tank containing the circulating water to be circulated through the trickling filter, and the microorganisms adhering to the carrier Including allowing the denitrification reaction to proceed.

本発明の実施の形態に係る水処理装置は一側面において、浄化槽汚泥及びし尿系汚泥の少なくともいずれかを含む被処理水を固液分離して分離汚泥と分離液とに分離する固液分離装置と、分離液の少なくとも一部に対し、散水ろ床法、流動担体法、回転円板法、固定床法のいずれかを少なくとも含む無閉塞型の生物膜法による生物処理を行う生物処理槽と、生物処理で得られる生物処理水を下水排除基準を満たすように希釈する希釈槽とを備える水処理装置である。 In one aspect, the water treatment apparatus according to the embodiment of the present invention is a solid-liquid separation apparatus that separates water to be treated containing at least one of septic tank sludge and night soil sludge into solid-liquid separation into separated sludge and separated liquid. and a biological treatment tank in which at least part of the separated liquid is biologically treated by a non-clogging biofilm method including at least one of a trickling filter method, a fluid carrier method, a rotating disk method, and a fixed bed method. and a dilution tank for diluting the biologically treated water obtained by the biological treatment so as to meet the sewage disposal standards.

本発明の実施の形態に係る水処理装置は別の一実施態様において、生物処理槽内に、分離液と酸素とが膜面を挟んで対向して浸透する構造を有する膜状担体が配置されていることを含む。 In another embodiment of the water treatment apparatus according to the embodiment of the present invention, a film-like carrier having a structure in which a separated liquid and oxygen permeate facing each other across a film surface is arranged in the biological treatment tank. including being

本発明の実施の形態に係る水処理装置は更に別の一実施態様において、膜状担体が、支持体と支持体に支持される膜を備え、膜が支持体を覆うループ形状を有し、分離液が膜の外面から浸透し、酸素が膜の内面に形成された空間から膜の外面へ浸透し、膜の内面から剥離する汚泥を空間の外へ排出するための開口部が膜に形成されていることを含む。 In still another embodiment of the water treatment apparatus according to the embodiment of the present invention, the film-like carrier comprises a support and a film supported by the support, the film has a loop shape covering the support, Separation liquid permeates from the outer surface of the membrane, oxygen permeates from the space formed on the inner surface of the membrane to the outer surface of the membrane, and openings are formed in the membrane for discharging sludge separated from the inner surface of the membrane to the outside of the space. including being

本発明の実施の形態に係る水処理装置は更に別の一実施態様において、直列に接続された二段以上の処理槽を含む生物処理槽のそれぞれに対し、分離液をステップ流入させるための流入手段と、生物処理槽の容積負荷と分離液又は生物処理水の水質とに基づいて、生物処理槽へ流入させる分離液のステップ比を制御する制御手段とを備えることを含む。 In still another embodiment of the water treatment apparatus according to the embodiment of the present invention, an inflow for stepwise inflow of the separated liquid into each of the biological treatment tanks including two or more stages of treatment tanks connected in series and control means for controlling the step ratio of the separated liquid flowing into the biological treatment tank based on the volumetric load of the biological treatment tank and the quality of the separated liquid or biologically treated water.

本発明によれば、下水排除基準を満足する処理水をより少ない希釈水量でより効率良く得ることが可能な水処理方法及び水処理装置が提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the water-treatment method and water-treatment apparatus which can obtain the treated water which satisfies a sewage disposal standard more efficiently with a smaller amount of dilution water can be provided.

第1の実施の形態に係る水処理装置を表す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic showing the water treatment apparatus which concerns on 1st Embodiment. 第2の実施の形態に係る水処理装置が備える膜状担体の一例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of a film-like carrier included in a water treatment apparatus according to a second embodiment; 第2の実施の形態に係る水処理装置が備える膜状担体の一例を示す側面図である。FIG. 4 is a side view showing an example of a film-like carrier included in a water treatment apparatus according to a second embodiment; 第3の実施の形態に係る水処理装置を表す概略図である。It is a schematic diagram showing the water treatment equipment concerning a 3rd embodiment. 第4の実施の形態に係る水処理装置を表す概略図である。It is a schematic diagram showing the water treatment equipment concerning a 4th embodiment. 第5の実施の形態に係る水処理装置を表す概略図である。It is a schematic diagram showing the water treatment equipment concerning a 5th embodiment. 第6の実施の形態に係る水処理装置を表す概略図である。It is a schematic diagram showing the water treatment equipment concerning a 6th embodiment. 第7の実施の形態に係る水処理装置を表す概略図である。It is a schematic diagram showing the water treatment equipment concerning a 7th embodiment. 第7の実施の形態の変形例に係る水処理装置を表す概略図である。It is the schematic showing the water treatment apparatus which concerns on the modification of 7th Embodiment. 実施例の水処理方法を用いた場合の各槽のBOD設定負荷の推移の確認を行った結果を表すグラフである。It is a graph showing the result of having confirmed the change of the BOD setting load of each tank at the time of using the water-treatment method of an Example.

<水処理方法>
本発明の実施の形態に係る水処理方法は、浄化槽汚泥及びし尿系汚泥の少なくともいずれかを含む被処理水を固液分離して分離汚泥と分離液とに分離し、分離液の少なくとも一部に対し、散水ろ床法、流動担体法、回転円板法、固定床法のいずれかを少なくとも含む無閉塞型の生物膜法による生物処理を行い、生物処理による生物処理水を下水排除基準を満たすように希釈することを含む。
<Water treatment method>
The water treatment method according to the embodiment of the present invention separates water to be treated containing at least one of septic tank sludge and night soil sludge into solid-liquid separation into separated sludge and separated liquid, and at least part of the separated liquid On the other hand, biological treatment is performed by a non-clogging biofilm method that includes at least one of the trickling filter bed method, fluidized carrier method, rotating disk method, and fixed bed method, and the biologically treated water by biological treatment meets the sewage exclusion standard. including diluting to fill.

(被処理水)
処理対象となる被処理水としては、浄化槽汚泥及びし尿系汚泥の少なくともいずれかを少なくとも含むものであれば特に限定されない。例えばし尿系汚泥と浄化槽汚泥の混合液を被処理水として利用する場合の固液分離については、し尿系汚泥と浄化槽汚泥に対してそれぞれ別々に固液分離を行うことが好ましい。
(Water to be treated)
The water to be treated to be treated is not particularly limited as long as it contains at least one of septic tank sludge and night soil sludge. For example, when a mixture of night soil sludge and septic tank sludge is used as the water to be treated, it is preferable to separately separate the night soil sludge and the septic tank sludge.

(固液分離)
固液分離処理には、種々の固液分離装置を用いることができるが、例えば、脱水機を用いて分離汚泥と分離液とに固液分離することが設備及び運用コスト面から好ましい。更に、固液分離前の被処理水に対して濃縮処理を行うことがより好ましい。濃縮方式としては、重力濃縮、機械濃縮の何れも有効な濃縮方式である。
(Solid-liquid separation)
Various solid-liquid separation apparatuses can be used for the solid-liquid separation treatment, but it is preferable, for example, to separate the solid-liquid into separated sludge and separated liquid using a dehydrator in terms of equipment and operation costs. Furthermore, it is more preferable to perform concentration treatment on the water to be treated before solid-liquid separation. As a concentration method, both gravity concentration and mechanical concentration are effective concentration methods.

固液分離処理前に高分子凝集剤を添加した濃縮処理を行うことにより、濃縮汚泥の汚泥濃度(TS)を最大10~12質量%程度にまで濃縮することができる。高濃度に濃縮された濃縮汚泥に対して更に脱水機を用いて脱水処理を行えば、含水率70%以下の低含水率の脱水汚泥(分離汚泥)が得られるため、より顕著な汚泥減容効果が得られる。この低含水率の脱水汚泥のカロリーは高いため、焼却処理において補助燃料無しでの自燃が可能であり、省エネ、低コストとなる。 By performing the concentration treatment with the addition of a polymer flocculant before the solid-liquid separation treatment, the sludge concentration (TS) of the thickened sludge can be concentrated up to about 10 to 12% by mass. If the thickened sludge that has been concentrated to a high concentration is further dehydrated using a dehydrator, dehydrated sludge with a low water content of 70% or less (separated sludge) can be obtained, resulting in a more significant sludge volume reduction. effect is obtained. Since the dehydrated sludge with a low moisture content is high in calories, it can be self-combusted without auxiliary fuel in incineration treatment, resulting in energy saving and low cost.

(生物処理)
生物膜法を用いた生物処理は、大きく分けて担体の定期的な洗浄工程を必要とするものと、生物膜量が処理の中で自律的にコントロールされるものとに分けることができる。前者には、生物膜ろ過法等が該当する。後者には、散水ろ床法、流動担体法、回転円板法、固定床法(接触酸化法)が該当する。
(biological treatment)
Biological treatments using the biofilm method can be broadly divided into those that require a periodical cleaning step of the carrier and those in which the amount of biofilm is autonomously controlled during the treatment. The former corresponds to the biomembrane filtration method and the like. The latter includes the trickling filter bed method, the fluid carrier method, the rotating disk method, and the fixed bed method (contact oxidation method).

中でも、本発明の実施の形態に係る生物処理としては、生物膜量が処理の中で自律的にコントロールされるタイプの生物膜法を利用することが好ましく、これを本明細書において「無閉塞型の生物膜法」と定義する。特に、無閉塞型の生物膜法の中でも、散水ろ床法、流動担体法は、BOD容積負荷1kg-BOD/m3/d以上でも安定して運転することが可能であり、敷地面積が限られる場合に有効である。この「無閉塞型の生物膜法」に包含される生物処理の具体例を以下に説明する。 Among them, as the biological treatment according to the embodiment of the present invention, it is preferable to use a type of biofilm method in which the amount of biofilm is autonomously controlled during treatment, which is herein referred to as "non-clogging type of biofilm method”. In particular, among the non-clogging biofilm methods, the trickling filter method and the fluid carrier method can be stably operated even at a BOD volume load of 1 kg-BOD/m 3 /d or more, and the site area is limited. valid when A specific example of the biological treatment included in this "non-clogging biofilm method" will be described below.

-散水ろ床法-
散水ろ床法は、好気性生物化学的処理法の一つであり、ろ材の表面に付着した微生物の作用によって、散布される被処理水(分離液)中の有機物を分解することにより、生物処理水を得る方法である。散水ろ床法は、一般的に、生物膜の表面が好気的、生物膜の内部が嫌気的になることが知られている。このため、硝化が進行可能な負荷で散水ろ床の運転を実施すると、生物膜の表面では硝化反応が進行し、生物膜の内部では脱窒反応が進行するという特徴があり、窒素除去効率の面で優れている。
-Trickling filter method-
The trickling filter bed method is one of the aerobic biochemical treatment methods. The action of microorganisms attached to the surface of the filter media decomposes the organic matter in the water to be treated (separate liquid) that is sprayed, resulting in biological It is a method of obtaining treated water. In the trickling filter bed method, it is generally known that the surface of the biofilm becomes aerobic and the inside of the biofilm becomes anaerobic. Therefore, when the trickling filter is operated with a load that allows nitrification to proceed, the nitrification reaction proceeds on the surface of the biofilm and the denitrification reaction proceeds inside the biofilm. excellent in terms of

散水ろ床に用いられる担体、散水部等の具体的構成に特に制限はない。担体の素材は、微生物が付着すればどのような素材でも良く、代表的なものとしては、プラスチック、砕石等が用いられる。担体の形状は、プレート状、球状、円柱状、直方体、中空状などいずれの形状でもよい。また、反応槽の容量に対する担体の充填率としては、40~80%、望ましくは50~70%が好ましい。膜状担体の場合は、反応槽の容量に対する膜の表面の面積として、0.05~0.15 m2/m3となるように充填することが好ましい。 There are no particular restrictions on the specific configurations of the carrier, sprinkler section, etc. used in the trickling filter. Any material to which microorganisms can adhere can be used as the material of the carrier, and typical examples thereof include plastics and crushed stone. The shape of the carrier may be any shape such as plate-like, spherical, cylindrical, rectangular parallelepiped, and hollow. The filling rate of the carrier with respect to the volume of the reaction tank is preferably 40-80%, preferably 50-70%. In the case of a film-like carrier, it is preferable to fill the reaction vessel so that the surface area of the film is 0.05 to 0.15 m 2 /m 3 with respect to the capacity of the reaction vessel.

より効率良く且つ安定的に生物処理を行うためには、散水ろ床に供給される固液分離後の分離液と散水ろ床内の酸素とが膜面を挟んで対向して浸透する構造を有する膜状担体が散水ろ床内に配置されることが好ましい。 In order to perform biological treatment more efficiently and stably, a structure in which the separated liquid after solid-liquid separation supplied to the trickling filter and the oxygen in the trickling filter face each other across the membrane face and permeate is required. It is preferable that the membrane-like carrier having

膜状担体は、分離液供給側はBODが豊富で酸素が乏しいエリアとなる一方で、酸素供給側はBODが乏しく酸素が豊富なエリアとなる。そのため、被処理水(分離液)の供給側に脱窒反応の進行に適した条件を作り出しながら、酸素供給側に硝化反応に適した条件を作り出すことができるため、種々の担体の中でも特に優れた窒素除去性能を発揮する点においてより好適である。 In the film carrier, the separation liquid supply side is an area rich in BOD and oxygen poor, while the oxygen supply side is an area rich in BOD and rich in oxygen. Therefore, it is possible to create conditions suitable for the denitrification reaction on the supply side of the water to be treated (separated liquid) while creating conditions suitable for the nitrification reaction on the oxygen supply side, so it is particularly excellent among various carriers. It is more suitable in terms of exhibiting the nitrogen removal performance.

これに対して、通常の粒状担体の場合、BOD、窒素、及び酸素が同じ方向から担体表面の生物膜に供給されるため、1~1.5kg-BOD/m3/dの負荷では酸素はBODの酸化で消費しきってしまい、硝化-脱窒反応が進みにくくなる場合もある。加えて、膜状担体は、他の形状の担体を使用する処理方式と比較して、1.5kg-BOD/m3/d以上の高負荷条件でも閉塞せず安定して運転できるという利点を有している。これは、膜状担体では担体垂直方向に並べられ、担体から剥離した生物膜は担体間で閉塞することなく槽外に排出されるためである。 On the other hand, in the case of a normal granular carrier, BOD, nitrogen, and oxygen are supplied to the biofilm on the carrier surface from the same direction. In some cases, the BOD is completely consumed by oxidation, making it difficult for the nitrification-denitrification reaction to proceed. In addition, the film carrier has the advantage of being able to operate stably without clogging even under high load conditions of 1.5 kg-BOD/m 3 /d or more, compared to treatment methods using carriers of other shapes. have. This is because the film-like carriers are arranged in the vertical direction, and the biofilm separated from the carriers is discharged out of the tank without clogging between the carriers.

固液分離後の分離液の散水ろ床への流入は、サイフォン等を用いて散水ろ床の上方へ移送された後に行われる。散水にあたっては、ろ床全体に分離液が散水されればよく、多孔板、スプリンクラー型、スパイラル型のノズル、自走式の回転散水機等の任意の散水装置を用いることができる。 Flow of the separated liquid after solid-liquid separation into the trickling filter is performed after being transferred above the trickling filter using a siphon or the like. For watering, the separation liquid may be watered over the entire filter bed, and any watering device such as a perforated plate, sprinkler type, spiral type nozzle, or self-propelled rotary watering machine can be used.

-流動担体法-
流動担体法は、生物処理槽内に担体を収容し、担体が生物処理槽内で流動することにより微生物を被処理水中の有機物や酸素などと接触させて生物処理水を得る方法である。流動担体法を利用する生物処理槽は新設してもよいし、既存の貯留槽等に担体、散気装置等を導入してもよい。流動担体に使用される担体には特に制限はないが、代表的なものとして以下のものが挙げられる。
- Fluid carrier method -
The fluid carrier method is a method in which a carrier is placed in a biological treatment tank, and the carrier flows in the biological treatment tank to bring the microorganisms into contact with organic matter, oxygen, and the like in the water to be treated, thereby obtaining biologically treated water. A biological treatment tank using the fluid carrier method may be newly installed, or a carrier, an aeration device, etc. may be introduced into an existing storage tank or the like. The carrier used for the fluid carrier is not particularly limited, but the following are typical examples.

使用する担体は、微生物が付着し、かつ曝気により流動する担体であればどのような担体でも良い。担体の素材としては、例えば曝気により流動すればどのような担体でも良く、例えば、プラスチック(ポリウレタン(PU)、ポリエチレン(PE)、ポリエチレングリコール(PEG)、ポリビニルアルコール(PVA))、木製チップ、砂、等が利用される。担体の性状は、スポンジ状、ゲル状、固形状等であり得る。担体の形状は、球状、立方体状、円筒状、ハニカム状等の任意の形状とすることができる。中でも担体の外表面に微生物を付着させる結合固定化担体を利用することにより、生物処理槽内の環境に適した微生物を担体に付着させることができ、流入水の性状変動の影響を受けにくくより安定した生物処理を行うことができる。担体の充填率としては、流動性と性能の観点から、20~40%が好ましい。充填率を20%以上とすることで槽内に多量の微生物を保持することができ、40%以下として適切な空隙をつくることで流動性を良好に保つことができるのである。流動担体法のBOD負荷としては、0.5~5.0kg-BOD/m3/d、望ましくは1.0~3.0kg-BOD/m3/dが好ましい。流動担体法は既設活性汚泥の曝気槽を利用する場合などに適している。 Any carrier may be used as long as the carrier adheres to the microorganisms and is fluidized by aeration. The material of the carrier may be, for example, any carrier that is fluidized by aeration, such as plastics (polyurethane (PU), polyethylene (PE), polyethylene glycol (PEG), polyvinyl alcohol (PVA)), wood chips, sand. , etc. are used. The shape of the carrier may be sponge-like, gel-like, solid-like, and the like. The shape of the carrier can be any shape such as spherical, cubic, cylindrical, and honeycomb. In particular, by using a bonded immobilized carrier that attaches microorganisms to the outer surface of the carrier, it is possible to attach microorganisms suitable for the environment in the biological treatment tank to the carrier, making it less susceptible to changes in the properties of influent water. Stable biological treatment can be performed. The filling rate of the carrier is preferably 20 to 40% from the viewpoint of fluidity and performance. A filling rate of 20% or more can retain a large amount of microorganisms in the tank, and a filling rate of 40% or less to create appropriate voids can maintain good fluidity. The BOD load in the fluid carrier method is preferably 0.5 to 5.0 kg-BOD/m 3 /d, preferably 1.0 to 3.0 kg-BOD/m 3 /d. The fluidized carrier method is suitable for using an existing activated sludge aeration tank.

-回転円板法-
回転円板法は、回転する円板の一部を被処理水と外気に触れさせることによって、円板の表面に生物膜を形成させ、被処理水(分離液)中の有機分を分解させて生物処理水を得る方法である。曝気、エアレーションを行なわないため、風量調整が必要なブロワの設置が不要で、活性汚泥法等のように返送汚泥を供給する必要も無いため、より簡易な設備を供給できる点で有利である。回転円板法のBOD負荷としては、0.1~1.5kg-BOD/m3/dが好ましく、過剰な負荷をかけると、円板に過剰に微生物が付着し、回転軸が破損するという問題が発生する場合がある。
-Rotating disk method-
In the rotating disk method, a part of the rotating disk is exposed to the water to be treated and the outside air to form a biofilm on the surface of the disk and decompose the organic matter in the water to be treated (separated liquid). It is a method of obtaining biologically treated water. Since no aeration or aeration is performed, there is no need to install a blower that requires air volume adjustment, and unlike the activated sludge method, there is no need to supply returned sludge, which is advantageous in that simpler equipment can be supplied. The BOD load in the rotating disk method is preferably 0.1 to 1.5 kg-BOD/m 3 /d, and if an excessive load is applied, microorganisms adhere excessively to the disk and the rotating shaft is damaged. Problems can occur.

円板の材質及び具体的形状に特に制限は無く、任意の装置を用いることができる。例えば、円板としての材質としては発泡スチロール、プラスチック、塩化ビニル、耐水ベニヤ、アルミニウム等の金属板が利用でき、直径1~3m、厚さ0.7~20mmの円板状にして使用することができる。 There are no particular restrictions on the material and specific shape of the disk, and any device can be used. For example, as a material for the disk, styrene foam, plastic, vinyl chloride, water-resistant veneer, metal plate such as aluminum can be used. can.

―固定床法(接触酸化法)―
接触酸化法は、反応槽に固定床担体を浸漬させ、被処理水を通水させながら曝気を行うことによって、担体表面に生物膜を形成させ、被処理水(分離液)中の有機分を分解させて生物処理水を得る方法である。担体に付着した生物膜によって処理を行うため、活性汚泥法のように返送による汚泥量のコントロールが不要であり、維持管理が容易となる。BOD負荷としては、0.1~1.0kg-BOD/m3/dが好ましく、高負荷で運転すると生物膜が肥大して接触材が目詰まりすることがある。
-Fixed bed method (contact oxidation method)-
In the catalytic oxidation method, a fixed bed carrier is immersed in a reaction tank, and water to be treated is passed through while aeration is performed to form a biofilm on the carrier surface and remove organic matter from the water to be treated (separate liquid). It is a method of decomposing to obtain biologically treated water. Since treatment is performed using biofilms attached to the carrier, there is no need to control the amount of sludge by returning it, unlike the activated sludge method, and maintenance is easy. The BOD load is preferably 0.1 to 1.0 kg-BOD/m 3 /d, and when operated at a high load, the biofilm may enlarge and clog the contact material.

接触酸化法の担体の材質及び具体的形状に特に制限は無く、任意の装置を用いることができる。担体の材質としては、ポリエチレン、プラスチック等が利用でき、形状としてはチューブ型、ひも状、網状、平板状、ボール状、等の任意の形状とすることができる。 There are no particular restrictions on the material and specific shape of the carrier for the catalytic oxidation method, and any device can be used. As the material of the carrier, polyethylene, plastic, etc. can be used, and the shape can be any shape such as tube, string, net, plate, ball, and the like.

(希釈倍率)
上記の生物処理によって得られた生物処理水は希釈槽に送られ、希釈水と混合して下水排除基準を満たすように希釈される。本実施形態によれば、希釈倍率を典型的には1~4倍、より典型的には1~3倍、さらには1~2倍とすることにより、下水排除基準を満たす量とすることができる。希釈は常時行っても良いし、下水排除基準を満たすために必要な場合にのみ行っても良い。これにより、従来の手法に比べてより少ない希釈水量で、下水道放流のための水質基準に応じたより効率的且つ適切な処理が行える。
(Dilution ratio)
The biologically treated water obtained by the above biological treatment is sent to a dilution tank and mixed with dilution water to be diluted so as to meet sewage disposal standards. According to this embodiment, the dilution rate is typically 1 to 4 times, more typically 1 to 3 times, and further 1 to 2 times, so that the amount that satisfies the sewage removal standard can be obtained. can. Dilution may be done at all times or only when necessary to meet sewage rejection standards. As a result, more efficient and appropriate treatment can be performed in accordance with the water quality standards for sewage discharge with a smaller amount of dilution water than in the conventional method.

本実施形態によれば、上述の生物処理を行うことにより、生物処理水の希釈を行わなくてもよい程度にまで生物処理水が処理される場合もある。その場合は、分離液の少なくとも一部に対し、散水ろ床法または流動担体法のいずれかを含む無閉塞型の生物膜法を用いた生物処理を行った後の生物処理水に対し、希釈を行うことなくそのまま下水道放流を行ってもよいことは勿論である。 According to this embodiment, by performing the biological treatment described above, the biologically treated water may be treated to such an extent that the biologically treated water does not need to be diluted. In that case, at least part of the separated liquid is diluted with the biologically treated water after biological treatment using the non-clogging biofilm method including either the trickling filter method or the fluidized carrier method. Needless to say, the sewage can be discharged as it is without carrying out the

本発明の実施の形態に係る水処理方法によれば、浄化槽汚泥及びし尿系汚泥の少なくともいずれかを含む被処理水を固液分離した分離液の少なくとも一部に対して上述の無閉塞型の生物膜法による生物処理を行った後に希釈することで、下水道放流することが可能な処理水を、少ない希釈水量でより効率良く安定して得ることが可能となる。 According to the water treatment method according to the embodiment of the present invention, the above-described non-clogging type is applied to at least a part of the separated liquid obtained by solid-liquid separation of the water to be treated containing at least one of septic tank sludge and night soil sludge. Dilution after biological treatment by the biofilm method makes it possible to obtain treated water that can be discharged into the sewage system more efficiently and stably with a small amount of diluted water.

また、本実施の形態に係る水処理方法によれば、固液分離によって得られた分離液の処理に生物処理を採用しているため、生物処理槽内の微生物の生育に必要なだけのリンを供給することで、生物処理による処理水の水質をより高く保ち、且つ安定化させることができる。 In addition, according to the water treatment method according to the present embodiment, since biological treatment is adopted for the treatment of the separated liquid obtained by solid-liquid separation, the amount of phosphorus necessary for the growth of microorganisms in the biological treatment tank is By supplying, the water quality of the treated water by biological treatment can be kept higher and stabilized.

一般的に、生物処理においては、BOD100mg/Lに対し、1mg/L程度のリンが必要とされている。このため、流入水(分離液)のBODに対し、この比を満足するようにリンを供給することが望ましい。処理が良好であれば、リンの濃度は1mg/L以下、好ましくは0.7mg/L以下、より好ましくは0.5mg/L以下に減らして供給しても良い。 Generally, in biological treatment, about 1 mg/L of phosphorus is required for BOD of 100 mg/L. Therefore, it is desirable to supply phosphorus to the BOD of the influent (separated liquid) so as to satisfy this ratio. If the treatment is good, the concentration of phosphorus may be reduced to 1 mg/L or less, preferably 0.7 mg/L or less, more preferably 0.5 mg/L or less.

特に、浄化槽汚泥及びし尿系汚泥の脱水工程において鉄系、アルミ系の凝集剤を使用する場合、リンは汚泥に取り込まれ、脱水分離液に含まれるリン濃度が低下するため、リンの添加を行うことでより安定した水質の処理水が得られる。粗処理では、リンのような栄養塩類の供給が軽視されがちであるが、リンが欠乏するとBODがほとんど除去できなくなることもあるため、実は、粗処理であっても、リンを供給することが重要となる場合が多いためである。 In particular, when iron-based or aluminum-based flocculants are used in the dehydration process of septic tank sludge and night soil sludge, phosphorus is taken into the sludge and the concentration of phosphorus contained in the dewatered separation liquid decreases, so phosphorus is added. As a result, treated water with more stable quality can be obtained. In rough processing, the supply of nutrients such as phosphorus tends to be neglected. This is because it is important in many cases.

以下、図面を参照しながら、本発明の第1~第7の実施の形態について説明する。以下の図面の記載においては、同一又は類似の部分には同一又は類似の符号を付している。なお、以下に示す実施の形態はこの発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の構造、配置等を下記のものに特定するものではない。また、以下に示す各実施の形態において説明された各構成を別の実施の形態に係る水処理装置に組み合わせることが可能であることは勿論である。 First to seventh embodiments of the present invention will be described below with reference to the drawings. In the description of the drawings below, the same or similar parts are denoted by the same or similar reference numerals. It should be noted that the embodiments shown below are examples of devices and methods for embodying the technical idea of the present invention. It does not specify anything. Moreover, it is of course possible to combine each configuration described in each embodiment shown below with a water treatment apparatus according to another embodiment.

(第1の実施の形態)
第1の実施の形態に係る水処理装置は、図1に示すように、浄化槽汚泥及びし尿系汚泥の少なくともいずれかを含む被処理水を固液分離して分離汚泥と分離液とに分離する固液分離装置1と、分離液に対し、無閉塞型の生物膜法、即ち、散水ろ床法、流動担体法、回転円板法、固定床法のいずれかの生物処理を行う生物処理槽2と、生物処理による生物処理水を下水排除基準を満たすように希釈する希釈槽3とを備える。
(First embodiment)
As shown in FIG. 1, the water treatment apparatus according to the first embodiment separates water to be treated containing at least one of septic tank sludge and night soil sludge into solid-liquid separation into separated sludge and separated liquid. A solid-liquid separation device 1 and a biological treatment tank for performing biological treatment on the separated liquid by any of a non-clogging biofilm method, that is, a trickling filter method, a fluid carrier method, a rotating disk method, or a fixed bed method. 2 and a dilution tank 3 for diluting the biologically treated water so as to meet the sewage disposal standards.

生物処理水中のBODが希釈倍率を決定する場合の基準となる処理(BOD除去型)の実施態様においては、固液分離装置1として脱水機を備え、生物処理槽2として散水ろ床を備えることが好ましい。散水ろ床の処理条件としては、例えば、BOD容積負荷を0.5~7.5kg-BOD/m3/d、更に別の態様では1.0~5.0kg-BOD/m3/dとすることができる。 In the embodiment of the treatment (BOD removal type) that serves as a reference when the BOD in the biologically treated water determines the dilution ratio, a dehydrator is provided as the solid-liquid separator 1, and a trickling filter is provided as the biological treatment tank 2. is preferred. Treatment conditions for the trickling filter include, for example, a BOD volume load of 0.5 to 7.5 kg-BOD/m 3 /d, and in still another embodiment, 1.0 to 5.0 kg-BOD/m 3 /d. can do.

被処理水は、固液分離装置1によって固液分離され、例えばBODが600~10000mg/L、より典型的には1000~5000mg/Lの分離液と分離汚泥が得られる。分離液はその後、生物処理槽2に導入され、BODが粗取りされて、BODが600~3000mg/L程度の生物処理水が得られる。生物処理水は希釈槽3において希釈水と混合され、下水排除基準を満足するまで希釈された後、下水道放流される。なお、生物処理槽2として、散水ろ床の代わりに、流動担体槽、接触酸化槽或いは回転円板装置を利用することも可能である。 The water to be treated is solid-liquid separated by the solid-liquid separator 1 to obtain a separated liquid and separated sludge having a BOD of, for example, 600 to 10000 mg/L, more typically 1000 to 5000 mg/L. The separated liquid is then introduced into the biological treatment tank 2 and BOD is roughly removed to obtain biologically treated water having a BOD of about 600 to 3000 mg/L. The biologically treated water is mixed with dilution water in the dilution tank 3, diluted to satisfy the sewage disposal standards, and then discharged into the sewage system. As the biological treatment tank 2, instead of the trickling filter bed, a fluid carrier tank, a contact oxidation tank, or a rotating disc apparatus can be used.

第1の実施の形態に係る水処理装置及び水処理方法によれば、浄化槽汚泥及びし尿系汚泥生物処理槽2として従来から利用される散水ろ床、流動担体槽、接触酸化槽、回転円板装置等を用いて生物処理した生物処理水を希釈水で希釈することにより、活性汚泥法等による処理等と比べて曝気のための動力等を省略でき、設備面においてもより簡易な装置で下水道放流のための処理水を効率良く得ることができる。 According to the water treatment apparatus and the water treatment method according to the first embodiment, the trickling filter bed, the fluidized carrier tank, the contact oxidation tank, and the rotating disk conventionally used as the septic tank sludge and night soil sludge biological treatment tank 2 By diluting biologically treated water that has been biologically treated using a device, etc., it is possible to omit power for aeration compared to treatment by the activated sludge method, etc., and sewage with simpler equipment in terms of equipment. Treated water for discharge can be obtained efficiently.

(第2の実施の形態)
第2の実施の形態に係る水処理装置は、図1の生物処理槽2内に、分離液と酸素とが膜面を挟んで対向して浸透する構造を有する膜状担体20(図2及び図3参照)が配置されていることを含む。
(Second embodiment)
The water treatment apparatus according to the second embodiment includes a film-like carrier 20 (FIGS. 2 and 3) are arranged.

図2に示すように、膜状担体20は、支持体21と支持体21に支持される膜22を備え、膜22が支持体21を覆うループ形状を有しており、分離液がループ形状の膜22の外面から浸透し、酸素がループ形状の膜22の内面に形成された空間23から膜の外面へ浸透するように構成されている。膜22は支持体21の外側で湾曲する湾曲部22aと、湾曲部22aの両端から互いに略平行に延伸する延伸部22b、22cとを備え、膜22の下端側、即ち、膜22の生物処理槽2の底面と対向する側に、膜22の内面に堆積してその後剥離する汚泥(不図示)を空間23の外へ排出するための開口部22dが形成されている。 As shown in FIG. 2, the membrane-like carrier 20 includes a support 21 and a membrane 22 supported by the support 21, the membrane 22 has a loop shape covering the support 21, and the separation liquid has a loop shape. and oxygen permeates from the space 23 formed on the inner surface of the loop-shaped membrane 22 to the outer surface of the membrane. The membrane 22 has a curved portion 22a that curves outside the support 21, and extension portions 22b and 22c that extend substantially parallel to each other from both ends of the curved portion 22a. An opening 22 d is formed on the side facing the bottom surface of the tank 2 for discharging sludge (not shown) deposited on the inner surface of the membrane 22 and then peeled off to the outside of the space 23 .

図2及び図3に示す構造の膜状担体20が、生物処理槽2としての散水ろ床内に収容されることにより、分離液供給側である膜状担体20の膜22の外側はBODが豊富で酸素が乏しいエリアとなる一方で、膜22の内側の酸素供給側はBODが乏しく酸素が豊富なエリアとなる。そのため、分離液の供給側に脱窒反応の進行に適した条件を作り出しながら、酸素供給側に硝化反応に適した条件を作り出すことができる。 The film-like carrier 20 having the structure shown in FIGS. 2 and 3 is housed in a trickling filter bed as the biological treatment tank 2, so that BOD is not present outside the membrane 22 of the film-like carrier 20 on the separated liquid supply side. The oxygen-supplying side inside the membrane 22 will be a BOD-poor and oxygen-rich area, while the oxygen-rich area will be an oxygen-poor area. Therefore, it is possible to create conditions suitable for the nitrification reaction on the oxygen supply side while creating conditions suitable for the progress of the denitrification reaction on the supply side of the separated liquid.

第2の実施の形態に係る水処理装置及び水処理方法によれば、図2及び図3に示す構造の膜状担体20を用いることにより、ろ材として砂や石などを使用する場合に比べて、酸素が乏しいエリアと酸素が豊富なエリアを一定の領域内に確実に形成させることができる。そのため、砂や石などのろ材を使用する場合に比べて硝化-脱窒反応が進行しやすい環境を作り出すことができる。また、開口部22dから膜22の内面に堆積した汚泥を排出させることができるため、より長期間安定した処理が行えるようになる。排出汚泥の中には生物から剥離したものが多く、これらの汚泥は沈降性が良いため、沈殿槽などの固液分離装置を経由して希釈槽に固液分離水を供給すると良い。分離汚泥は浄化槽汚泥及びし尿系汚泥の脱水設備前の受槽に戻して、脱水処理を行い、脱水ケーキとして場外に排出すると良い。 According to the water treatment apparatus and the water treatment method according to the second embodiment, by using the film-like carrier 20 having the structure shown in FIGS. , an oxygen-poor area and an oxygen-rich area can be reliably formed within a certain region. Therefore, an environment can be created in which the nitrification-denitrification reaction proceeds more easily than when a filter medium such as sand or stone is used. Moreover, since the sludge deposited on the inner surface of the membrane 22 can be discharged from the opening 22d, stable treatment can be performed for a longer period of time. Many of the discharged sludge are separated from living organisms, and since these sludge have good sedimentation properties, it is preferable to supply solid-liquid separated water to the dilution tank via a solid-liquid separation device such as a sedimentation tank. The separated sludge should be returned to the receiving tank in front of the dehydration equipment for septic tank sludge and night soil sludge, dehydrated, and discharged outside as a dehydrated cake.

(第3の実施の形態)
第3の実施の形態に係る水処理装置は、図4に示すように、生物処理槽2として、分離液中のBODを除去するための生物処理槽(高負荷生物処理槽)2aと、分離液中の窒素を除去するための生物処理槽(低負荷生物処理槽)2bとを並列に接続して処理することを含む。
(Third Embodiment)
As shown in FIG. 4, the water treatment apparatus according to the third embodiment includes a biological treatment tank 2 (high-load biological treatment tank) 2a for removing BOD in the separated liquid, It includes parallel connection with a biological treatment tank (low-load biological treatment tank) 2b for removing nitrogen in the liquid.

生物処理槽2aのBOD負荷条件としては、以下に限定されるものではないが、例えば3.0~10.0kg-BOD/m3/dとし、他の態様では3.0~8.0kg-BOD/m3/d、更に別の態様では3.0~5.0kg-BOD/m3/dとすることができる。生物処理槽2aでは、分離液中のBODの粗取りを目的とした処理を行う。 The BOD load condition of the biological treatment tank 2a is not limited to the following, but is, for example, 3.0 to 10.0 kg-BOD/m 3 /d, and 3.0 to 8.0 kg- in other embodiments. BOD/m 3 /d, and in still another embodiment, 3.0 to 5.0 kg-BOD/m 3 /d. In the biological treatment tank 2a, treatment is performed for the purpose of roughly removing BOD in the separated liquid.

生物処理槽2bのBOD負荷条件としては、生物処理槽2aよりも低負荷で運転することが望ましく、以下に限定されるものではないが、例えば0.5~2.0kg-BOD/m3/dとし、他の態様では0.5~1.5kg-BOD/m3/d、更に別の態様では他の態様では0.5~1.0kg-BOD/m3/dとすることができる。生物処理槽2bでは、分離液中のT-N(全窒素)を除去することを目的とした処理を行う。 As for the BOD load condition of the biological treatment tank 2b, it is desirable to operate at a lower load than the biological treatment tank 2a . d, and in another embodiment, 0.5 to 1.5 kg-BOD/m 3 /d, and in still another embodiment, 0.5 to 1.0 kg-BOD/m 3 /d. . In the biological treatment tank 2b, treatment is performed for the purpose of removing TN (total nitrogen) in the separated liquid.

生物処理槽2a及び生物処理槽2bへの分離液の流入比は、分離液の水質(BOD、T-N)によって調整することができる。図示していないが、分離液の水質に基づいて生物処理槽2a及び生物処理槽2bの分離液の流入比を制御する制御手段が設けられていても良い。なお、図4においては、生物処理槽2として、生物処理槽2a及び生物処理槽2bを二槽並列に接続する例を示しているが、二槽以上の生物処理槽が備えられていてもよいことは勿論である。 The inflow ratio of the separated liquid into the biological treatment tank 2a and the biological treatment tank 2b can be adjusted by the water quality (BOD, TN) of the separated liquid. Although not shown, control means may be provided for controlling the inflow ratio of the separated liquids to the biological treatment tanks 2a and 2b based on the quality of the separated liquids. In addition, although FIG. 4 shows an example in which two biological treatment tanks 2a and 2b are connected in parallel as the biological treatment tank 2, two or more biological treatment tanks may be provided. Of course.

第3の実施の形態に係る水処理装置及び水処理方法によれば、分離液中の有機物の除去目的に応じて、複数の生物処理槽2を用いてより適切な処理を行うことができるため、下水排除基準を満たす処理水をより効率的に作り出すことができる。 According to the water treatment apparatus and the water treatment method according to the third embodiment, more appropriate treatment can be performed using a plurality of biological treatment tanks 2 according to the purpose of removing organic matter in the separated liquid. , more efficiently produce treated water that meets sewage rejection standards.

(第4の実施の形態)
第4の実施の形態に係る水処理装置は、図5に示すように、生物処理槽2として、分離液中のBODを除去するための生物処理槽(高負荷生物処理槽)2aと、分離液中の窒素を除去するための生物処理槽(低負荷生物処理槽)2bとを直列に接続して処理することを含む。生物処理槽2a、2bにおける処理によって最終的に得られる生物処理水は、返送手段4を介して生物処理槽2a、2bの前段に循環させる。
(Fourth embodiment)
As shown in FIG. 5, the water treatment apparatus according to the fourth embodiment includes a biological treatment tank 2 (high-load biological treatment tank) 2a for removing BOD in the separated liquid, It includes connecting in series with a biological treatment tank (low load biological treatment tank) 2b for removing nitrogen in the liquid. The biologically treated water finally obtained by the treatment in the biological treatment tanks 2a, 2b is circulated through the return means 4 to the front stage of the biological treatment tanks 2a, 2b.

第4の実施の形態に係る水処理装置及び水処理方法によれば、前段の生物処理槽2aでBOD除去を行い、後段の生物処理槽2bで硝化反応を進行させることができ、更に返送手段4を用いて生物処理水を返流することで、循環型硝化脱窒をより促進することができるため、下水道放流用のためのより安定化した水処理を行うことができる。 According to the water treatment apparatus and the water treatment method according to the fourth embodiment, the BOD can be removed in the biological treatment tank 2a at the front stage, and the nitrification reaction can proceed in the biological treatment tank 2b at the rear stage. By using 4 to return the biologically treated water, circulation-type nitrification and denitrification can be further promoted, so that more stable water treatment for sewage discharge can be performed.

(第5の実施の形態)
第5の実施の形態に係る水処理装置は、図6に示すように、直列に接続された二段以上の生物処理槽2a、2b、・・・2nを備え、各生物処理槽2a、2b、・・・2nに対して分離液をステップ流入させるための流入手段5を備えている。
(Fifth embodiment)
As shown in FIG. 6, the water treatment apparatus according to the fifth embodiment includes two or more stages of biological treatment tanks 2a, 2b, . . . 2n connected in series. , . . . , and 2n.

各生物処理槽2a、2b、・・・2nへの流入量(ステップ比)は任意に変更することが可能であるが、窒素除去の観点からは、BOD容積負荷として1.0~4.0kg-BOD/m3/d、望ましくは1.5~3.0kg-BOD/m3/d、TN容積負荷として0.5~2.0kg-N/m3/d、望ましくは0.7~1.5kg-N/m3/d、となる生物処理槽2a、2b、・・・2nを1以上含むようにし、このような槽が更に増えるように各ステップ比を決定することが望ましい。 The amount of inflow (step ratio) to each biological treatment tank 2a, 2b, . -BOD/m 3 /d, preferably 1.5 to 3.0 kg-BOD/m 3 /d, TN volume load of 0.5 to 2.0 kg-N/m 3 /d, preferably 0.7 to It is desirable to include one or more biological treatment tanks 2a, 2b, .

被処理水の流量が12m3/d、BODが2000mg/L、NH4-Nが700mg/Lで生物処理槽2を三段直列に接続し、各生物処理槽2の容積を2m3として、流入手段5から供給する分離液のステップ流入量を変更した場合のBOD、T-Nの処理水質の例を表1に表す。表1のケースA~Cにおいて最も良い処理水質を示す例を◎、二番目に良い処理水質を示す例を○、三番目に良い処理水質を示す例を△に示す。 The flow rate of the water to be treated is 12 m 3 /d, the BOD is 2000 mg/L, and the NH 4 --N is 700 mg/L. Table 1 shows an example of BOD and TN treated water quality when the step inflow amount of the separated liquid supplied from the inflow means 5 is changed. Cases A to C in Table 1 show the best treated water quality as ◎, the second best treated water quality as ○, and the third best treated water quality as △.

Figure 0007303643000001
Figure 0007303643000001

表1に示すように、ケースAのように前段へのステップ流入量を低くした場合にはT-Nの処理性能が向上し、ケースCのように前段へのステップ流入量を高くした場合はBODの処理性能が向上する傾向となる。これは、処理水量を少なくすることが可能な前段側において硝化が進行可能な負荷に調整することがプロセス全体の窒素除去に寄与するためである。 As shown in Table 1, when the step flow rate to the front stage is low as in Case A, the TN processing performance improves, and when the step flow rate to the front stage is high as in Case C, BOD processing performance tends to improve. This is because adjusting the load so that nitrification can proceed on the upstream side, where the amount of treated water can be reduced, contributes to nitrogen removal in the entire process.

第5の実施の形態に係る水処理装置によれば、流入手段5により、各生物処理槽2a、2b、・・・2nに流入する水量の分配比を調整できるため、例えば、生物処理槽2a、2b、・・・2nの前段側の流入量を下げて硝化を進行させて処理水中のNO3-N濃度を上げ、後段側において前段で生成されたNO3-Nとステップ流入される分離液中に含まれるBOD成分とで脱窒反応を進行させることにより、被処理水中のBOD、T-Nを効率的に除去することができる。 According to the water treatment apparatus according to the fifth embodiment, the inflow means 5 can adjust the distribution ratio of the amount of water flowing into each of the biological treatment tanks 2a, 2b, . , 2b , . BOD and TN in the water to be treated can be efficiently removed by advancing the denitrification reaction with the BOD component contained in the liquid.

また、第5の実施の形態に係る水処理装置によれば、循環式硝化脱窒法のように処理水の循環を行わないため、循環式硝化脱窒法に比べてポンプ動力を削減することが可能となる。 Moreover, according to the water treatment apparatus according to the fifth embodiment, unlike the circulation-type nitrification-denitrification method, the treated water is not circulated, so it is possible to reduce pump power compared to the circulation-type nitrification-denitrification method. becomes.

(第6の実施の形態)
第6の実施の形態に係る水処理装置は、図7に示すように、各生物処理槽2a、2b、・・・2nに対して分離液をステップ流入させるための流入手段5と、生物処理槽2a、2b、・・・2nへ流入させる分離液のステップ比を制御する制御手段6を備える。
(Sixth embodiment)
The water treatment apparatus according to the sixth embodiment, as shown in FIG. A control means 6 is provided for controlling the step ratio of the separated liquid flowing into the tanks 2a, 2b, . . . 2n.

流入手段5による分離液のステップ比は、各生物処理槽2a、2b、・・・2nの容積負荷と固液分離装置1から得られる分離液又は生物処理槽2a、2b、・・・2nから得られる生物処理水の水質に応じて、各生物処理槽2a、2b、・・・2nでの処理がより安定的に行われるように、図7に示す制御手段6によって制御することができる。 The step ratio of the separated liquid by the inflow means 5 is the volume load of each biological treatment tank 2a, 2b, ... 2n and the separated liquid obtained from the solid-liquid separation device 1 or from the biological treatment tank 2a, 2b, ... 2n Control means 6 shown in FIG. 7 can control the treatment in each of the biological treatment tanks 2a, 2b, .

例えば、制御手段6は、固液分離装置1で得られた分離液の水質を測定する測定手段11、各生物処理槽2a、2b、・・・2nで得られた生物処理水の水質を測定する測定手段12、13、14の測定結果をモニタリングするモニタリング手段7を備え、モニタリング手段7のモニタリング結果に基づいて、制御手段6が各生物処理槽2a、2b、・・・2nの容積負荷に応じてより最適な流量比となるように、流入手段5からの各生物処理槽2a、2b、・・・2nへ流入させる分離液のステップ比を調整する。 For example, the control means 6 includes a measuring means 11 for measuring the water quality of the separated liquid obtained by the solid-liquid separator 1, and the biologically treated water obtained by each of the biological treatment tanks 2a, 2b, . . . 2n. Monitoring means 7 for monitoring the measurement results of the measuring means 12, 13, 14 are provided, and based on the monitoring results of the monitoring means 7, the control means 6 controls the volume load of each biological treatment tank 2a, 2b, ... 2n Accordingly, the step ratio of the separated liquid flowing from the inflow means 5 into each of the biological treatment tanks 2a, 2b, . . .

モニタリング手段7がモニタリングする項目に特に制限はないが、例えば、流量、水温、pH、ORP、BOD、COD、TOC、アンモニア態窒素、硝酸態窒素等をモニタリングすることができる。モニタリング手段7がモニタリングする箇所は図7の例に限定されるものではなく、代表的な生物処理槽2a、2b、・・・2nのいずれかをピックアップしてモニタリングすることも可能である。 Items monitored by the monitoring means 7 are not particularly limited, but for example, flow rate, water temperature, pH, ORP, BOD, COD, TOC, ammonium nitrogen, nitrate nitrogen, etc. can be monitored. The location monitored by the monitoring means 7 is not limited to the example of FIG. 7, and it is also possible to pick up and monitor any of the typical biological treatment tanks 2a, 2b, . . . 2n.

制御手段6には、モニタリング手段7がモニタリングした項目に基づいて各2a、2b、・・・2nへ流入させる分離液のステップ比を計算する計算手段(不図示)を備え、計算手段による計算結果に基づいて、流入手段5から流入する分離液の流量を流量調整装置で調整する。流量調整装置としては、電磁弁、手動弁等が挙げられる。 The control means 6 is provided with a calculation means (not shown) for calculating the step ratio of the separated liquid flowing into each of 2a, 2b, . . . 2n based on the items monitored by the monitoring means 7, and Based on the above, the flow rate of the separation liquid flowing in from the inflow means 5 is adjusted by the flow rate adjusting device. A solenoid valve, a manual valve, etc. are mentioned as a flow control device.

第6の実施の形態に係る水処理装置によれば、固液分離装置1から得られる分離液又は生物処理槽2a、2b、・・・2nから得られる生物処理水の水質をリアルタイムに把握することができるため、被処理水の水質変動が生じた場合においても各生物処理槽2a、2b、・・・2nにおいてより適切な生物処理が行われるように分離液のステップ比を設定することができ、より安定した処理を行うことができる。 According to the water treatment apparatus according to the sixth embodiment, the quality of the separated liquid obtained from the solid-liquid separator 1 or the biologically treated water obtained from the biological treatment tanks 2a, 2b, . Therefore, even if the water quality of the water to be treated fluctuates, the step ratio of the separated liquid can be set so that more appropriate biological treatment is performed in each of the biological treatment tanks 2a, 2b, . . . 2n. This allows for more stable processing.

(第7の実施の形態)
第7の実施の形態に係る水処理装置は、図8に示すように、生物処理槽2aと生物処理槽2bとが並行に接続されている。生物処理槽2aは、分離液中のBODの好気的分解及びアンモニア態窒素の硝化を行って生物処理水を得る散水ろ床201aと、散水ろ床201aで得られた生物処理水を散水ろ床201aに循環させる循環ライン203aと、散水ろ床201aに循環させる循環水を収容する循環槽202aとを備える。生物処理槽2bは、分離液中のBODの好気的分解及びアンモニア態窒素の硝化を行って生物処理水を得る散水ろ床201bと、散水ろ床201bで得られた生物処理水を散水ろ床201bに循環させる循環ライン203bと、散水ろ床201bに循環させる循環水を収容する循環槽202bとを備える。
(Seventh embodiment)
In the water treatment apparatus according to the seventh embodiment, as shown in FIG. 8, a biological treatment tank 2a and a biological treatment tank 2b are connected in parallel. The biological treatment tank 2a includes a trickling filter 201a for obtaining biologically treated water by aerobic decomposition of BOD and nitrification of ammonium nitrogen in the separated liquid, and a trickling filter for the biologically treated water obtained by the trickling filter 201a. A circulation line 203a for circulating through the bed 201a and a circulation tank 202a containing circulating water to be circulated through the trickling filter 201a are provided. The biological treatment tank 2b includes a trickling filter 201b for obtaining biologically treated water by aerobic decomposition of BOD and nitrification of ammonium nitrogen in the separated liquid, and a trickling filter for the biologically treated water obtained by the trickling filter 201b. A circulation line 203b for circulating through the bed 201b and a circulation tank 202b containing circulating water to be circulated through the trickling filter 201b are provided.

浄化槽汚泥及びし尿系汚泥の少なくともいずれかを含む被処理水を固液分離した後の分離液は貯留槽2xに貯留された後、各生物処理槽2a、2bの循環槽202a、202bへそれぞれ供給される。浄化槽汚泥及びし尿系汚泥の脱水処理では、凝集剤として金属塩(ポリ鉄、硫酸バンド等)を使用すると原水中のリンは鉄やAlに化学的に固定されるため、分離液中のリン濃度は下がる。このため、循環槽202a、202bの前段には、散水ろ床201a、201b内の微生物の生育に必要なだけのリンを供給するためのリン供給手段2yがそれぞれ接続されている。リン供給手段2yから供給されるリンの形態としては特に制限はないが、リン酸、リン酸二水素カリウム等の薬品、或いはし尿系汚泥、浄化槽汚泥の一部を投入する等の方法がある。浄化槽汚泥及びし尿系汚泥を利用する場合、不足したりん量に応じて脱水後の分離液貯槽に浄化槽汚泥及びし尿系汚泥を分注しても良い。 After solid-liquid separation of the water to be treated containing at least one of septic tank sludge and night soil sludge, the separated liquid is stored in the storage tank 2x and then supplied to the circulation tanks 202a and 202b of the biological treatment tanks 2a and 2b, respectively. be done. In the dehydration treatment of septic tank sludge and night soil sludge, when metal salts (polyiron, aluminum sulfate, etc.) are used as flocculating agents, phosphorus in the raw water is chemically fixed to iron and Al. goes down. For this reason, phosphorus supplying means 2y for supplying the necessary amount of phosphorus for the growth of microorganisms in the trickling filters 201a and 201b are connected to the upstream stages of the circulation tanks 202a and 202b, respectively. The form of phosphorus supplied from the phosphorus supplying means 2y is not particularly limited, but there are methods such as adding chemicals such as phosphoric acid and potassium dihydrogen phosphate, night soil sludge, and part of septic tank sludge. When using septic tank sludge and night soil sludge, the septic tank sludge and night soil sludge may be dispensed into the separated liquid storage tank after dehydration according to the insufficient amount of phosphorus.

図9に示すように、循環槽202内には、担体を充填することもできる。この場合、表面に微生物を付着させた担体を10~40%V/V循環槽202内へ収容することで、循環槽202内に収容された微生物により脱窒反応が進行する。微生物を付着させた担体が収容された循環槽202で脱窒反応を進行させた後、循環水を散水ろ床201へ循環させ、その処理水を再び循環槽202へ戻すことができる。 As shown in FIG. 9, the circulation tank 202 can also be filled with a carrier. In this case, by housing the carrier with microorganisms attached to the surface in the 10 to 40% V/V circulation tank 202, the denitrification reaction proceeds by the microorganisms contained in the circulation tank 202. After the denitrification reaction progresses in the circulation tank 202 containing the carrier to which the microorganisms are adhered, the circulating water can be circulated to the trickling filter bed 201 and the treated water can be returned to the circulation tank 202 again.

図9に示す水処理装置によれば、循環槽202内に表面に微生物を付着させた担体が収容されることにより、被処理水の変動によらず安定して分離液中に含まれる有機物(BOD)及び窒素(T-N)を効率良く粗取りすることができる。 According to the water treatment apparatus shown in FIG. 9, the carrier with microorganisms attached to its surface is accommodated in the circulation tank 202, so that the organic matter ( BOD) and nitrogen (TN) can be efficiently roughly removed.

第7の実施の形態に係る水処理装置によれば、返送等による汚泥濃度制御が不要で、汚泥の再浮上等のトラブルが発生しない容易な維持管理にて、分離液中に含まれる有機物(BOD)及び窒素(T-N)を効率良く粗取りすることが可能となり、これにより下水排除基準を満足するための希釈水量の削減し、施設の運転費用の削減することが可能となる。 According to the water treatment apparatus according to the seventh embodiment, sludge concentration control by return etc. is unnecessary, and troubles such as re-floating of sludge do not occur, with easy maintenance and management, organic matter contained in the separated liquid ( BOD) and nitrogen (TN) can be efficiently removed, which reduces the amount of dilution water required to meet sewage disposal standards and reduces facility operating costs.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Examples of the present invention are presented below along with comparative examples, which are provided for a better understanding of the invention and its advantages and are not intended to be limiting of the invention.

分離液として、し尿処理施設の脱水分離液を図8に示す水処理装置に供給して処理水を得た。脱水分離液には栄養塩(りん酸一カリウム(KH2PO4))を添加した。表2に、実験期間中の代表的な脱水分離液の性状を示す。 As a separation liquid, a dehydration separation liquid from a night soil treatment facility was supplied to the water treatment apparatus shown in FIG. 8 to obtain treated water. A nutrient (monopotassium phosphate (KH 2 PO 4 )) was added to the dehydrated liquid. Table 2 shows the properties of typical dehydrated liquids during the experiment.

Figure 0007303643000002
Figure 0007303643000002

処理フローとしては、図8の一方の散水ろ床201aを高負荷型(No.1)、他方の散水ろ床201bを低負荷型(No.2)として並列に接続し、それぞれに脱水分離液を流入させた。各槽の設定負荷を段階的に増加させて、各負荷での処理水質の確認を行った(図10参照)。散水ろ床201a、散水ろ床201bの外径寸法は0.05mW×1.15mD×2.42mHとし、有効容積2m3とした。散水ろ床201a、散水ろ床201bのろ床として、図2及び図3に示す膜状担体を使用した。膜状担体の表面積は246m2であった。実験期間中、処理槽からの汚泥の返送等は一切行わず、汚泥量のコントロールは行わなかった。実験結果を表3に示す。 As a processing flow, one trickling filter 201a in FIG. was allowed to flow in. The set load of each tank was increased stepwise, and the treated water quality at each load was confirmed (see FIG. 10). The outer diameter dimensions of the trickling filter bed 201a and the trickling filter bed 201b were 0.05 mW×1.15 mD×2.42 mH, and the effective volume was 2 m 3 . As the filter beds of the trickling filter bed 201a and the trickling filter bed 201b, the membrane carriers shown in FIGS. 2 and 3 were used. The surface area of the membrane carrier was 246 m 2 . During the experiment period, the sludge was not returned from the treatment tank and the amount of sludge was not controlled. Table 3 shows the experimental results.

Figure 0007303643000003
Figure 0007303643000003

高負荷条件(3.0~10kg-BOD/m3/d)では、T-N除去率は18%以下と低いものの、BOD除去率は38~62%を示し、BODの粗取りが可能であることを示した。低負荷条件(0.5~2.0kg-BOD/m3/d)では、BOD除去率は80%以上と高いことに加え、T-N除去率も30~70%を示し、T-Nの粗取りも可能であることを示した。また、いずれの負荷条件においても、汚泥の流出や目詰まりによる閉塞等のトラブルは一切起こらなかった。 Under high load conditions (3.0 to 10 kg-BOD/m 3 /d), although the TN removal rate is as low as 18% or less, the BOD removal rate is 38 to 62%, and rough removal of BOD is possible. showed that there is Under low load conditions (0.5 to 2.0 kg-BOD/m 3 /d), the BOD removal rate is as high as 80% or more, and the TN removal rate is also 30 to 70%. It was shown that rough removal of In addition, under any load conditions, troubles such as outflow of sludge and blockage due to clogging did not occur at all.

上記実験により得られた負荷と硝化量の関係を表4に示す。硝化量は、2.5kg-BOD/m3/d近傍で最大となった。この結果より、窒素除去を目的とする場合は、BOD負荷として1.5~6.0kg-BOD/m3/d、更には1.5~4.0kg-BOD/m3/d、より更には2.0~3.0kg/m3/dの負荷条件で運転することにより、窒素除去効率を高くできることがわかった。 Table 4 shows the relationship between the load and the amount of nitrification obtained from the above experiment. The nitrification amount reached a maximum around 2.5 kg-BOD/m 3 /d. From this result, when aiming at nitrogen removal, the BOD load should be 1.5 to 6.0 kg-BOD/m 3 /d, further 1.5 to 4.0 kg-BOD/m 3 /d, and even more It was found that the nitrogen removal efficiency can be increased by operating under load conditions of 2.0 to 3.0 kg/m 3 /d.

Figure 0007303643000004
Figure 0007303643000004

下水排除基準をBOD600mg/L、T-N380mg/Lとしたときの、各負荷の除去率から求めた希釈倍率の計算値を表5に示す。生物処理の無い場合は3.8倍希釈が必要であったが、本実施例によれば、希釈倍率を1.0~1.7倍に低減可能であることがわかった。なお、下記の計算は脱水ろ液の全量を生物処理に流入させた場合を想定したが、敷地面積等の制限により、脱水ろ液の一部を生物処理する形であっても、希釈水量を低減可能なことは自明である。 Table 5 shows the calculated dilution factor obtained from the removal rate of each load when the sewage rejection standards are BOD 600 mg/L and TN 380 mg/L. In the case of no biological treatment, 3.8-fold dilution was required, but according to this example, it was found that the dilution ratio can be reduced to 1.0 to 1.7-fold. The calculation below assumes that the entire amount of the dehydrated filtrate is flowed into the biological treatment. It is self-evident that it can be reduced.

Figure 0007303643000005
Figure 0007303643000005

1…固液分離装置
2、2a~2n…生物処理槽
3…希釈槽
4…返送手段
5…流入手段
6…制御手段
7…モニタリング手段
11~14…測定手段
20…膜状担体
20…支持体
22…膜
23…空間
200、201a、201b…散水ろ床
202、202a、202b…循環槽
203、203a、203b…循環ライン
1 Solid-liquid separation device 2, 2a to 2n Biological treatment tank 3 Dilution tank 4 Return means 5 Inflow means 6 Control means 7 Monitoring means 11 to 14 Measurement means 20 Membrane carrier 20 Support 22 Membrane 23 Space 200, 201a, 201b Trickling filter bed 202, 202a, 202b Circulation tank 203, 203a, 203b Circulation line

Claims (8)

浄化槽汚泥及びし尿系汚泥の少なくともいずれかを含む被処理水を固液分離して分離汚泥と分離液とに分離し、
前記分離液の少なくとも一部に対し、散水ろ床法による無閉塞型の生物膜法を用いた生物処理を行い、
前記生物処理で得られる生物処理水を下水排除基準を満たすように希釈すること
を含み、
前記生物処理が、前記分離液と酸素とが膜面を挟んで対向して浸透する構造を有する膜状担体であって、支持体と前記支持体に支持される膜を備え、前記膜が前記支持体を覆うループ形状を有し、前記分離液が前記膜の外面から浸透し、前記酸素が前記膜の内面に形成された空間から前記膜の外面へ浸透し、前記膜の前記内面から剥離する汚泥を前記空間の外へ排出するための開口部が前記膜に形成されている前記膜状担体を備えた生物処理槽を用いて、BOD容積負荷1.5~10.0kg-BOD/m 3 /dで前記生物処理を行う工程を含むことを特徴とする水処理方法。
Solid-liquid separation of water to be treated containing at least one of septic tank sludge and night soil sludge to separate into separated sludge and separated liquid,
At least part of the separated liquid is subjected to biological treatment using a non-clogging biofilm method by a trickling filter method,
diluting the biologically treated water obtained from the biological treatment to meet sewage disposal standards;
The biological treatment comprises a membrane-like carrier having a structure in which the separation liquid and oxygen permeate facing each other across a membrane surface, comprising a support and a membrane supported by the support, wherein the membrane is the Having a loop shape covering the support, the separation liquid permeates from the outer surface of the membrane, the oxygen permeates from the space formed on the inner surface of the membrane to the outer surface of the membrane, and is peeled off from the inner surface of the membrane. Using a biological treatment tank provided with the membrane carrier in which the membrane has an opening for discharging the sludge to the outside of the space , the BOD volume load of 1.5 to 10.0 kg-BOD / m A water treatment method comprising the step of performing the biological treatment at 3 /d .
浄化槽汚泥及びし尿系汚泥の少なくともいずれかを含む被処理水を固液分離して分離汚泥と分離液とに分離し、
前記分離液の少なくとも一部に対し、散水ろ床法による無閉塞型の生物膜法を用いた生物処理を行い、
前記生物処理で得られる生物処理水を下水排除基準を満たすように希釈すること
を含み、
前記生物処理が、二段以上に直列に直接接続した生物処理槽に対し、前記分離液をステップ流入させることを含み、
前記生物処理が、前記分離液と酸素とが膜面を挟んで対向して浸透する構造を有する膜状担体であって、支持体と前記支持体に支持される膜を備え、前記膜が前記支持体を覆うループ形状を有し、前記分離液が前記膜の外面から浸透し、前記酸素が前記膜の内面に形成された空間から前記膜の外面へ浸透し、前記膜の前記内面から剥離する汚泥を前記空間の外へ排出するための開口部が前記膜に形成されている前記膜状担体を備えた生物処理槽を用いて前記生物処理を行うことを特徴とする水処理方法
Solid-liquid separation of water to be treated containing at least one of septic tank sludge and night soil sludge to separate into separated sludge and separated liquid,
At least part of the separated liquid is subjected to biological treatment using a non-clogging biofilm method by a trickling filter method,
Diluting the biologically treated water obtained by the biological treatment so as to meet sewage disposal standards
including
The biological treatment includes stepwise inflow of the separated liquid into a biological treatment tank directly connected in series in two or more stages,
The biological treatment comprises a membrane-like carrier having a structure in which the separation liquid and oxygen permeate facing each other across a membrane surface, comprising a support and a membrane supported by the support, wherein the membrane is the Having a loop shape covering the support, the separation liquid permeates from the outer surface of the membrane, the oxygen permeates from the space formed on the inner surface of the membrane to the outer surface of the membrane, and is peeled off from the inner surface of the membrane. a water treatment method, wherein the biological treatment is performed using a biological treatment tank provided with the membrane-like carrier in which an opening is formed in the membrane for discharging the sludge to the outside of the space.
少なくとも1の前記生物処理槽のBOD容積負荷が1.0~4.0kg-BOD/mBOD volume load of at least one biological treatment tank is 1.0 to 4.0 kg-BOD/m 33 /dであることを特徴とする請求項2に記載の水処理方法。/d, the water treatment method according to claim 2. 浄化槽汚泥及びし尿系汚泥の少なくともいずれかを含む被処理水を固液分離して分離汚泥と分離液とに分離し、Solid-liquid separation of water to be treated containing at least one of septic tank sludge and night soil sludge to separate into separated sludge and separated liquid,
前記分離液の少なくとも一部に対し、散水ろ床法による無閉塞型の生物膜法を用いた生物処理を行い、At least part of the separated liquid is subjected to biological treatment using a non-clogging biofilm method by a trickling filter method,
前記生物処理で得られる生物処理水を下水排除基準を満たすように希釈することDiluting the biologically treated water obtained by the biological treatment so as to meet sewage disposal standards
を含み、including
前記生物処理が、高負荷生物処理槽と、前記高負荷生物処理槽よりもBOD容積負荷が低い低負荷生物処理槽とを並列に接続して生物処理することを含み、The biological treatment includes connecting a high-load biological treatment tank and a low-load biological treatment tank having a lower BOD volume load than the high-load biological treatment tank in parallel for biological treatment,
前記生物処理が、前記分離液と酸素とが膜面を挟んで対向して浸透する構造を有する膜状担体であって、支持体と前記支持体に支持される膜を備え、前記膜が前記支持体を覆うループ形状を有し、前記分離液が前記膜の外面から浸透し、前記酸素が前記膜の内面に形成された空間から前記膜の外面へ浸透し、前記膜の前記内面から剥離する汚泥を前記空間の外へ排出するための開口部が前記膜に形成されている前記膜状担体を備えた生物処理槽を用いて前記生物処理を行うことを特徴とする水処理方法。The biological treatment comprises a membrane-like carrier having a structure in which the separation liquid and oxygen permeate facing each other across a membrane surface, comprising a support and a membrane supported by the support, wherein the membrane is the Having a loop shape covering the support, the separation liquid permeates from the outer surface of the membrane, the oxygen permeates from the space formed on the inner surface of the membrane to the outer surface of the membrane, and is peeled off from the inner surface of the membrane. a water treatment method, wherein the biological treatment is performed using a biological treatment tank provided with the membrane-like carrier in which an opening is formed in the membrane for discharging the sludge to the outside of the space.
前記高負荷生物処理槽のBOD容積負荷が3.0~5.0kg-BOD/mThe BOD volume load of the high load biological treatment tank is 3.0 to 5.0 kg-BOD/m 33 /dであり、前記低負荷生物処理槽のBOD容積負荷が0.5~1.0kg-BOD/m/d, and the BOD volume load of the low-load biological treatment tank is 0.5 to 1.0 kg-BOD/m 33 /dであることを特徴とする請求項4に記載の水処理方法。/d, the water treatment method according to claim 4. 浄化槽汚泥及びし尿系汚泥の少なくともいずれかを含む被処理水を固液分離して分離汚泥と分離液とに分離する固液分離装置と、
前記分離液の少なくとも一部に対し、散水ろ床法による無閉塞型の生物膜法を用いて生物処理を行う生物処理槽と、
前記生物処理で得られる生物処理水を下水排除基準を満たすように希釈する希釈槽と
を備え、
前記生物処理槽内に、前記分離液と酸素とが膜面を挟んで対向して浸透する構造を有する膜状担体が配置されており、前記膜状担体が、支持体と前記支持体に支持される膜を備え、前記膜が前記支持体を覆うループ形状を有し、前記分離液が前記膜の外面から浸透し、前記酸素が前記膜の内面に形成された空間から前記膜の外面へ浸透し、前記膜の前記内面から剥離する汚泥を前記空間の外へ排出するための開口部が前記膜に形成されている前記膜状担体を用いて、BOD容積負荷1.5~10.0kg-BOD/m 3 /dで前記生物処理するように調整されていることを特徴とする水処理装置。
a solid-liquid separation device for solid-liquid separating water to be treated containing at least one of septic tank sludge and night soil sludge into separated sludge and separated liquid;
a biological treatment tank for subjecting at least part of the separated liquid to biological treatment using a non-clogging biofilm method based on a trickling filter;
a dilution tank for diluting the biologically treated water obtained in the biological treatment so as to meet sewage disposal standards;
In the biological treatment tank, a film-like carrier having a structure in which the separated liquid and oxygen permeate facing each other across a membrane surface is arranged, and the film-like carrier is supported by a support and the support. wherein the membrane has a loop shape covering the support, the separated liquid permeates from the outer surface of the membrane, and the oxygen passes from the space formed on the inner surface of the membrane to the outer surface of the membrane. Using the film-like carrier having openings formed in the membrane for discharging sludge that permeates and separates from the inner surface of the membrane to the outside of the space, the BOD volume load is 1.5 to 10.0 kg. - A water treatment device, characterized in that it is adjusted to the said biological treatment at BOD/m 3 /d.
浄化槽汚泥及びし尿系汚泥の少なくともいずれかを含む被処理水を固液分離して分離汚泥と分離液とに分離する固液分離装置と、
前記分離液の少なくとも一部に対し、散水ろ床法による無閉塞型の生物膜法を用いて生物処理を行う、二段以上に直列に直接接続した生物処理槽と、
前記生物処理で得られる生物処理水を下水排除基準を満たすように希釈する希釈槽と、
直列に直接接続された前記生物処理槽のそれぞれに対し、前記分離液をステップ流入させるための流入手段と、
前記生物処理槽の容積負荷と前記分離液又は前記生物処理水の水質とに基づいて、前記生物処理槽へ流入させる前記分離液のステップ比を制御する制御手段と
を備え
前記生物処理槽内に、前記分離液と酸素とが膜面を挟んで対向して浸透する構造を有する膜状担体が配置されており、前記膜状担体が、支持体と前記支持体に支持される膜を備え、前記膜が前記支持体を覆うループ形状を有し、前記分離液が前記膜の外面から浸透し、前記酸素が前記膜の内面に形成された空間から前記膜の外面へ浸透し、前記膜の前記内面から剥離する汚泥を前記空間の外へ排出するための開口部が前記膜に形成されていることを特徴とする水処理装置。
a solid-liquid separation device for solid-liquid separating water to be treated containing at least one of septic tank sludge and night soil sludge into separated sludge and separated liquid;
a biological treatment tank directly connected in series in two or more stages, in which at least part of the separated liquid is subjected to biological treatment using a non-clogging biofilm method based on a trickling filter;
a dilution tank for diluting the biologically treated water obtained by the biological treatment so as to meet sewage disposal standards;
an inflow means for stepwise inflow of the separated liquid into each of the biological treatment tanks directly connected in series;
a control means for controlling the step ratio of the separated liquid flowing into the biological treatment tank based on the volumetric load of the biological treatment tank and the quality of the separated liquid or the biologically treated water ;
In the biological treatment tank, a film-like carrier having a structure in which the separated liquid and oxygen permeate facing each other across a membrane surface is arranged, and the film-like carrier is supported by a support and the support. wherein the membrane has a loop shape covering the support, the separated liquid permeates from the outer surface of the membrane, and the oxygen passes from the space formed on the inner surface of the membrane to the outer surface of the membrane. A water treatment apparatus, wherein an opening is formed in said membrane for discharging sludge that permeates and separates from said inner surface of said membrane to the outside of said space.
浄化槽汚泥及びし尿系汚泥の少なくともいずれかを含む被処理水を固液分離して分離汚泥と分離液とに分離する固液分離装置と、a solid-liquid separation device for solid-liquid separating water to be treated containing at least one of septic tank sludge and night soil sludge into separated sludge and separated liquid;
前記分離液の少なくとも一部に対し、散水ろ床法による無閉塞型の生物膜法を用いて生物処理を行う生物処理槽と、a biological treatment tank for subjecting at least part of the separated liquid to biological treatment using a non-clogging biofilm method based on a trickling filter;
前記生物処理で得られる生物処理水を下水排除基準を満たすように希釈する希釈槽とa dilution tank for diluting the biologically treated water obtained by the biological treatment so as to meet the sewage disposal standards;
を備え、with
前記生物処理槽内に、前記分離液と酸素とが膜面を挟んで対向して浸透する構造を有する膜状担体が配置されており、前記膜状担体が、支持体と前記支持体に支持される膜を備え、前記膜が前記支持体を覆うループ形状を有し、前記分離液が前記膜の外面から浸透し、前記酸素が前記膜の内面に形成された空間から前記膜の外面へ浸透し、前記膜の前記内面から剥離する汚泥を前記空間の外へ排出するための開口部が前記膜に形成されており、In the biological treatment tank, a film-like carrier having a structure in which the separated liquid and oxygen permeate facing each other across a membrane surface is arranged, and the film-like carrier is supported by a support and the support. wherein the membrane has a loop shape covering the support, the separated liquid permeates from the outer surface of the membrane, and the oxygen passes from the space formed on the inner surface of the membrane to the outer surface of the membrane. an opening formed in the membrane for discharging sludge that permeates and detaches from the inner surface of the membrane out of the space;
前記生物処理槽が、第1の生物処理槽と、前記第1の生物処理槽に並列に接続され、前記第1の生物処理槽よりも低いBOD容積負荷で生物処理を行う第2の生物処理槽とを備えることを特徴とする水処理装置。The biological treatment tank is a first biological treatment tank, and a second biological treatment that is connected in parallel to the first biological treatment tank and performs biological treatment with a BOD volume load lower than that of the first biological treatment tank. A water treatment device comprising a tank.
JP2019040061A 2019-03-05 2019-03-05 Water treatment method and water treatment equipment Active JP7303643B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019040061A JP7303643B2 (en) 2019-03-05 2019-03-05 Water treatment method and water treatment equipment
JP2022140115A JP7420887B2 (en) 2019-03-05 2022-09-02 Water treatment method and water treatment equipment
JP2024002755A JP2024026729A (en) 2019-03-05 2024-01-11 water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019040061A JP7303643B2 (en) 2019-03-05 2019-03-05 Water treatment method and water treatment equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022140115A Division JP7420887B2 (en) 2019-03-05 2022-09-02 Water treatment method and water treatment equipment

Publications (3)

Publication Number Publication Date
JP2020142179A JP2020142179A (en) 2020-09-10
JP2020142179A5 JP2020142179A5 (en) 2021-10-07
JP7303643B2 true JP7303643B2 (en) 2023-07-05

Family

ID=72355009

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2019040061A Active JP7303643B2 (en) 2019-03-05 2019-03-05 Water treatment method and water treatment equipment
JP2022140115A Active JP7420887B2 (en) 2019-03-05 2022-09-02 Water treatment method and water treatment equipment
JP2024002755A Pending JP2024026729A (en) 2019-03-05 2024-01-11 water treatment equipment

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2022140115A Active JP7420887B2 (en) 2019-03-05 2022-09-02 Water treatment method and water treatment equipment
JP2024002755A Pending JP2024026729A (en) 2019-03-05 2024-01-11 water treatment equipment

Country Status (1)

Country Link
JP (3) JP7303643B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7372859B2 (en) 2020-03-13 2023-11-01 水ing株式会社 Organic wastewater treatment method and treatment equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005021733A (en) 2003-06-30 2005-01-27 Takuma Co Ltd Method and system for treating human waste or the like
JP2005034739A (en) 2003-07-15 2005-02-10 Mitsubishi Rayon Co Ltd Waste water treatment method
JP2005103338A (en) 2003-09-26 2005-04-21 Hitachi Plant Eng & Constr Co Ltd Operation controller of nitrogen removal system
JP2007296499A (en) 2006-05-08 2007-11-15 Japan Organo Co Ltd Waste water treatment method
JP2008012407A (en) 2006-07-04 2008-01-24 Japan Sewage Works Agency Water distribution method and water distribution device
JP2017051922A (en) 2015-09-11 2017-03-16 独立行政法人国立高等専門学校機構 Wastewater treatment method and apparatus
US10202295B2 (en) 2014-04-23 2019-02-12 Biogill Environmental Pty Limited Water biotreatment unit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03198A (en) * 1989-05-27 1991-01-07 Yoshikimi Watanabe Sewage cleaning device
JP2584392B2 (en) * 1992-07-31 1997-02-26 株式会社荏原製作所 Undiluted advanced treatment method for night soil and septic tank sludge
JP2000317477A (en) 1999-05-11 2000-11-21 Sanyo Electric Co Ltd Sewage treating device
KR100474106B1 (en) 2002-07-09 2005-03-08 주식회사 덕진엔지니어링 Method for wastewater and night soil treatment utilizing microbial actuator and its apparatus
JP2009142810A (en) 2007-11-21 2009-07-02 Kato Construction Co Ltd Water purifying treatment method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005021733A (en) 2003-06-30 2005-01-27 Takuma Co Ltd Method and system for treating human waste or the like
JP2005034739A (en) 2003-07-15 2005-02-10 Mitsubishi Rayon Co Ltd Waste water treatment method
JP2005103338A (en) 2003-09-26 2005-04-21 Hitachi Plant Eng & Constr Co Ltd Operation controller of nitrogen removal system
JP2007296499A (en) 2006-05-08 2007-11-15 Japan Organo Co Ltd Waste water treatment method
JP2008012407A (en) 2006-07-04 2008-01-24 Japan Sewage Works Agency Water distribution method and water distribution device
US10202295B2 (en) 2014-04-23 2019-02-12 Biogill Environmental Pty Limited Water biotreatment unit
JP2017051922A (en) 2015-09-11 2017-03-16 独立行政法人国立高等専門学校機構 Wastewater treatment method and apparatus

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
2-4-4 ステップ A2O 法の処理特性及び NH4-N 制御の有効性について,東京都下水道局 技術調査年報 2014, Vol.38,2014年
PRODUCT BIOGILL TOWER PLUS,2018年11月
中部汚泥再生処理センターにおける生物処理停止時の水質調査,平成28年度 福岡市保健環境研究所報42号,2016年,p. 165-167
施設紹介解説 福岡市中部汚泥再生処理センター,都市清掃,2017年01月01日,Vol.70, No.335,p.85-89
既存施設を利用した汚泥再生処理センターへの改造工事,第38回 全国都市清掃研究・事例発表会講演論文集,2016年12月20日,p.300-302
日本下水道事業団,ステップ流入式多段硝化脱窒法,2011年08月

Also Published As

Publication number Publication date
JP2020142179A (en) 2020-09-10
JP2024026729A (en) 2024-02-28
JP7420887B2 (en) 2024-01-23
JP2022164901A (en) 2022-10-27

Similar Documents

Publication Publication Date Title
AU2002301606B2 (en) Batch Style Wastewater Treatment Apparatus Using Biological Filtering Process and Wastewater Treatment Method Using The Same
US6605220B2 (en) Apparatus and method for wastewater treatment with enhanced solids reduction (ESR)
CN101318758A (en) Air-float and bio-filter combined water treatment process
CN102583743A (en) Dual-sludge denitrification dephosphorizing and denitrifying A/A-O device and method
JP2024026729A (en) water treatment equipment
JP5597002B2 (en) Waste water treatment apparatus and waste water treatment method
JP4568528B2 (en) Water treatment equipment
US11760670B2 (en) Fixed biofilm anaerobic-aerobic combined reactor for treating wastewater
CN208071544U (en) A kind of railway communication system production wastewater treatment system
KR100762376B1 (en) Eco-friendly sewage treatment system
JP4368857B2 (en) Wastewater treatment system and toilet device
CN207210068U (en) A kind of integrated expanded bed biomembrane Compound filter pool
KR101827525B1 (en) Method for small medium size sewage advanced treatment using float media filtering
IL155193A (en) Apparatus and method for wastewater treatment with enhanced solids reduction (esr)
CN210711166U (en) Villages and towns sewage treatment plant
KR100336263B1 (en) Apparatus for treating waste water
JP3607088B2 (en) Method and system for continuous simultaneous removal of nitrogen and suspended solids from wastewater
KR20040020325A (en) A method for treating the graywater by membrane
CN208562060U (en) Sewage disposal system
HU230285B1 (en) Modified continuos flow sequencing batch reactor and a method for treating waste water
CN1318327C (en) Advanced wastewater treatment using floating filter media
JP7378370B2 (en) Water treatment method and water treatment equipment
JP7372859B2 (en) Organic wastewater treatment method and treatment equipment
CN207313384U (en) Domestic sewage processing system
KR200430175Y1 (en) eco-friendly sewage treatment system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210826

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230623

R150 Certificate of patent or registration of utility model

Ref document number: 7303643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150