WO2019163427A1 - Aerobic biological treatment device - Google Patents

Aerobic biological treatment device Download PDF

Info

Publication number
WO2019163427A1
WO2019163427A1 PCT/JP2019/002701 JP2019002701W WO2019163427A1 WO 2019163427 A1 WO2019163427 A1 WO 2019163427A1 JP 2019002701 W JP2019002701 W JP 2019002701W WO 2019163427 A1 WO2019163427 A1 WO 2019163427A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
water
biological treatment
reaction tank
aerobic biological
Prior art date
Application number
PCT/JP2019/002701
Other languages
French (fr)
Japanese (ja)
Inventor
小林 秀樹
哲朗 深瀬
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2019163427A1 publication Critical patent/WO2019163427A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to an aerobic biological treatment apparatus for organic wastewater.
  • the aerobic biological treatment method is widely used as a treatment method for organic wastewater because it is inexpensive. In this method, it is necessary to dissolve oxygen in the water to be treated, and aeration with a diffuser is usually performed.
  • Aeration with a diffuser has a low dissolution efficiency of about 5-20%.
  • more than 2/3 of the power cost in aerobic biological treatment is used for oxygen dissolution.
  • MABR Membrane aeration bioreactor
  • the carrier In order to increase the raw water to be treated, if the amount of the carrier is increased or the LV in the fluidized bed reaction vessel is increased, the carrier easily flows out of the reaction vessel.
  • An object of the present invention is to provide an aerobic biological treatment apparatus that can increase the filling amount of a carrier or have a high LV.
  • the aerobic biological treatment apparatus of the present invention includes a reaction vessel, an oxygen-dissolving membrane module installed in the reaction vessel, an oxygen-containing gas supply means for supplying an oxygen-containing gas to the oxygen-dissolving membrane module, and a reaction vessel
  • An aerobic biological treatment apparatus comprising a fluidized bed of a carrier formed in the upper part of the reaction tank, wherein the upper part of the reaction tank is a widened part having a larger horizontal sectional area than the lower part thereof.
  • the upper surface of the carrier fluidized bed is positioned in the widened portion when water is passed through a normal LV during steady operation.
  • the oxygen-dissolving membrane module includes a non-porous oxygen-dissolving membrane.
  • the oxygen-dissolving film is hydrophobic.
  • the upper part of the reaction tank is a widened part having a large horizontal cross-sectional area, the upper part of the reaction tank can be used even when the filling amount of the carrier is increased or the raw water is passed through high LV.
  • the LV at this point becomes smaller than the lower part, and the outflow of the carrier is suppressed.
  • FIG. 1 is a longitudinal sectional view of an aerobic biological treatment apparatus 1 according to an embodiment.
  • the aerobic biological treatment apparatus 1 includes a reaction tank (tank) 2 having a circular horizontal section, a perforated plate such as a punching plate installed horizontally below the reaction tank 2, and a plurality of dispersion nozzles on a flat plate.
  • a water permeable plate 3 such as one provided uniformly, a large particle layer 4 formed on the upper side of the water permeable plate 3, a small particle layer 5 formed on the large particle layer 4, and a small particle layer
  • a fluidized bed F formed by filling a bioadhesive carrier such as granular activated carbon on the upper side of 5, an oxygen-dissolving membrane module 6 at least partially disposed in the fluidized bed F, and a lower side of the water permeable plate 3. It has a receiving chamber 7 formed, a raw water spray tube 8 for supplying raw water into the receiving chamber 7, an aeration tube 9 installed in the receiving chamber 7, and the like. Air is supplied to the air diffuser 9 from a compressor (or blower) 13.
  • the raw water spray pipe 8 is supplied with raw water by a pump.
  • a high capacity pump it is preferable to use a high capacity pump as a pump.
  • the upper part of the reaction tank 2 is a widened part 2W having a larger horizontal cross-sectional area than the lower side.
  • a tapered portion 2T whose horizontal cross-sectional area decreases as it goes downward.
  • a small horizontal cross-sectional area 2S having a uniform horizontal cross-sectional area up to the bottom of the reaction vessel 2.
  • the horizontal cross-sectional area of the widened portion 2W is preferably larger by 150 to 300%, particularly 175 to 225% than the horizontal cross-sectional area of the small horizontal cross-sectional area 2S.
  • the trough 10 and the outflow port 11 for making treated water flow out are provided in the upper part of the widening part 2W.
  • the trough 10 forms an annular flow path along the inner wall of the tank.
  • FIG. 1 shows that the reaction vessel is filled with a fluidized bed carrier, and the biofilm adheres to the surface of the oxygen-dissolved membrane by the shearing force caused by the flow of the carrier so that most of the biofilm adheres to the fluidized bed carrier.
  • the oxygen-dissolved film is used only for the purpose of supplying oxygen.
  • a non-porous oxygen-dissolving film is used as the oxygen-dissolving film, and an oxygen-containing gas is vented from the outside of the tank to the primary side of the oxygen-dissolving film through the pipe, and the exhaust is discharged outside the tank through the pipe. It is configured to do. Therefore, an oxygen-containing gas is passed through the oxygen-dissolved film at a low pressure, passes oxygen as oxygen molecules between constituent atoms of the oxygen-dissolved film (dissolves in the film), and is brought into contact with the water to be treated as oxygen molecules. Since oxygen is dissolved directly in water, no bubbles are generated.
  • This method uses a molecular diffusion mechanism based on a concentration gradient, and does not require aeration using a diffuser tube as in the prior art.
  • a hydrophobic material as the material of the oxygen-dissolving film because it is difficult to be immersed in the film. A trace amount of water vapor enters even a hydrophobic film.
  • FIG. 2 shows an example of the oxygen-dissolving membrane module 6.
  • This oxygen dissolution membrane module 6 uses a non-porous hollow fiber membrane 22 as an oxygen dissolution membrane.
  • the hollow fiber membranes 22 are arranged in the vertical direction, and the upper end of each hollow fiber membrane 22 is connected to the upper header 20 and the lower end is connected to the lower header 21.
  • the interior of the hollow fiber membrane 22 communicates with the upper header 20 and the lower header 21, respectively.
  • Each header 20, 21 is a hollow tube. Even when a flat membrane or a spiral membrane is used, it is desirable to arrange the ventilation direction to be the vertical direction.
  • FIG. 1 illustrates an example of a reaction tank having a circular horizontal cross-sectional area, but a reaction tank having a square horizontal cross-section can also be used, and an example of this case is shown in FIG.
  • the reaction tank having a square cross section is not an inversely tapered shape when the portion where the width is widened toward the widened portion above the reaction region is circular, but has a shape in which only the horizontal and vertical widths are expanded as shown in FIG. A reaction tank of this shape is easily multistaged in series.
  • each upper header 20 are preferably connected to the upper manifold 23, and one end or both ends of each lower header 21 are preferably connected to the lower manifold 24.
  • An oxygen-containing gas is supplied to the upper part of the oxygen-dissolving membrane module 6 through the air supply pipe 27 and discharged from the lower part of the oxygen-dissolving membrane module 6 to the outside of the tank through the discharge pipe 29.
  • Oxygen-containing gas such as air flows from the upper header 20 through the hollow fiber membrane 22 to the lower header 21, during which oxygen passes through the hollow fiber membrane 22 and dissolves in the water in the reaction vessel 2.
  • Each header 20, 21 and each manifold 23, 24 may be provided so as to have a running water gradient.
  • the oxygen-dissolving membrane module 6 may be installed in multiple stages up and down.
  • a blower 26 and an air supply pipe 27 for supplying air are provided, and the air supply pipe 27 is connected to the upper manifold 23.
  • a relay pipe 28 for exhaust gas is connected to the lower manifold 24.
  • the relay pipe 28 is connected to a discharge pipe 29.
  • the discharge pipe 29 is provided to have a downward slope and extends to the outside of the reaction tank 2. In FIG. 1, the discharge pipe 29 is drawn to the side of the reaction tank 2, but may be drawn downward from the bottom of the reaction tank 2.
  • the remainder of the oxygen-containing gas that did not dissolve in the oxygen-dissolving film is exhausted outside the tank through the discharge pipe 29.
  • the end of the pipe 29 is disposed so as to be lower than the lower end of the oxygen-dissolving membrane module 6 (the lowest one among the lower ends of the modules when there are a plurality of modules 6). Therefore, when the condensed water is contained in the exhaust gas, the condensed water flows out to the tank 32 installed below the discharge pipe 29.
  • the water in the tank 32 may be sent to the reaction tank 2 by the pump 33 and the pipe 34.
  • An exhaust gas pipe 30 for exhausting the exhaust gas to the outside of the tank may be connected to the discharge pipe 29 inside or outside the tank.
  • the condensed water is discharged through the discharge pipe 29.
  • the exhaust part at the end of the exhaust gas pipe 30 may be disposed at a position higher than the lower end of the oxygen-dissolving membrane module.
  • the exhaust gas pipe 30 has only an upward gradient or a vertically upward direction without a downward gradient.
  • a valve (not shown) may be provided on the downstream side of the branch point of the discharge pipe 29 with the exhaust gas pipe 30 so that the condensed water flows out into the tank 32 by opening the valve.
  • the valve may be either an automatic valve or a manual valve.
  • the valve for discharging the condensed water may be opened continuously or intermittently. In the case of intermittent operation, in normal operation, once a day to once every 30 days (at most once a day, at least once a month for 10 seconds), preferably once a day Drain by opening the valve once every 15 days.
  • raw water is introduced into the receiving chamber 7 through the spray pipe 8, and is circulated upward through the water permeable plate 3 and the large and small diameter particle layers 4 and 5, and SS is generated. Then, in the fluidized bed F of the granular activated carbon adhered to the biofilm, the water is flowed upward in a transient manner, undergoes a biological reaction, and is taken out as treated water from the upper clarified region through the trough 10 and the outlet 11. In LV during steady operation, the upper surface of the fluidized bed F is located in the widened portion 2W.
  • the oxygen-containing gas such as air supplied from the air supply pipe 27 flows downward through the oxygen-dissolving membrane module 6 and then the lower header 21 and the lower part from the lower end position of the oxygen-dissolving module 6. It flows out through the manifold 24, and the exhaust air is exhausted from the exhaust pipe 29 (or from the exhaust gas pipe 30 when the exhaust gas pipe 30 is provided) to the atmosphere.
  • the condensed water flows out to the tank 32 through the discharge pipe 29.
  • the compressor 13 is operated periodically or based on the observation result of the flow state in the reaction tank 2, the air is caused to flow out from the air diffuser 9, and the reaction tank 2 is aerated. By this aeration, the excess sludge on the surface of the carrier is peeled off by the shearing force of the water flow.
  • the raw water After performing this air aeration, it is preferable to feed the raw water into the reaction tank 2 at a higher LV than the LV during normal treatment. Thereby, the sludge which peeled and existed in the reaction tank 2 flows out from the outflow port 11.
  • the discharged water at this time is discharged as treated water and processed in a subsequent process (such as coagulation sedimentation), separately processed as washing wastewater, or sent to the raw water tank. In this way, sticking of the carriers can be suppressed, and drift and blockage in the reaction tank 2 can be prevented.
  • the expansion rate of the fluidized bed F increases and the interface of the fluidized bed F rises, but the horizontal cross-sectional area of the widened portion 2W is large, so the rising flow velocity in the widened portion 2W is small. Since it becomes smaller than the horizontal cross-sectional area 2S, the loss of the carrier is suppressed.
  • the LV is returned to the normal LV, and the normal biological treatment operation is resumed.
  • a non-porous oxygen-dissolving membrane is installed in a fluidized bed of a biological carrier such as activated carbon to increase the amount of oxygen supplied, there is no upper limit to the organic wastewater concentration of the target raw water.
  • the biological carrier since the biological carrier is operated in a fluidized bed, it is not exposed to intense disturbance. Therefore, since a large amount of organisms can be stably maintained, the load can be increased.
  • the dissolution power of oxygen is small compared to preaeration and direct aeration.
  • the aeration maintains the pH in the reaction tank 2 in the vicinity of neutrality with little or no use of a neutralizing agent, and organic wastewater from low concentration to high concentration can be loaded with high load. In addition, it is possible to stably process at a low cost.
  • Activated carbon is suitable as the biological carrier.
  • the packed amount of the fluidized bed carrier such as activated carbon is preferably about 30 to 70%, particularly about 40 to 60% of the volume of the reaction vessel.
  • the water flow LV is about 7 to 30 m / h, particularly about 8 to 15 m / hr.
  • a gel material other than activated carbon, a porous material, a non-porous material, etc. can be used under the same conditions.
  • polyvinyl alcohol gel polyacrylamide gel, polyurethane foam, calcium alginate gel, zeolite, plastic and the like can also be used.
  • activated carbon when used as the carrier, it is possible to remove a wide range of pollutants by the interaction between the activated carbon adsorption and biodegradation.
  • the average particle diameter of the activated carbon is preferably 0.2 to 1.2 mm, particularly preferably about 0.3 to 0.6 mm.
  • the average particle size is large, it is possible to increase the LV, and when a part of the treated water is circulated to the reaction tank, the amount of circulation can be increased, so that a high load is possible.
  • the specific surface area is small, the biomass is reduced. If the average particle size is small, the specific surface area is large and the amount of attached organisms increases, but the carrier tends to flow out when the LV is high.
  • the deployment rate of activated carbon during normal operation is preferably about 20 to 50%. If the expansion rate is lower than 20%, there is a possibility of clogging and short circuit. If the development rate is higher than 50%, there is a risk of carrier outflow, and the pump power cost increases.
  • the development rate of the activated carbon fluidized bed is about 10 to 20%, but in this case, the activated carbon flow is uneven and flows vertically and horizontally. As a result, the membrane installed at the same time is rubbed by activated carbon and worn out.
  • the fluidized bed carrier such as activated carbon needs to be sufficiently fluidized, and the development rate is desirably 20% or more, for example, 20 to 50%.
  • the particle size of the carrier is preferably smaller than that of normal biological activated carbon.
  • activated carbon it is not specifically limited, such as coconut charcoal, coal, charcoal.
  • the shape is preferably spherical charcoal, but may be ordinary granular charcoal or crushed charcoal.
  • the oxygen-containing gas may be a gas containing oxygen, such as air, oxygen-enriched air, or pure oxygen. It is desirable that the gas to be vented passes through a filter to remove fine particles in advance.
  • the aeration rate is preferably about twice the amount of oxygen required for biological reactions. If it is less than this, BOD and ammonia will remain in the treated water due to insufficient oxygen, and if it is greater, the air flow will be unnecessarily increased and the pressure loss will be increased, so the economy will be impaired.
  • the aeration pressure is slightly higher than the pressure loss of the hollow fiber generated at a predetermined aeration amount.
  • the flow rate in the reaction tank of the water to be treated during normal operation is LV 7 m / hr or more, and the low-concentration waste water having a TOC concentration of 20 mg / L or less can be treated in one pass without circulating the treated water. Pumping power can be reduced by a one-time process. However, in order to obtain a high LV, a part of the treated water from the outlet 11 may be returned to the raw water spray pipe 8.
  • the oxygen dissolution rate is increased proportionally.
  • LV is high, it is preferable to use activated carbon having a large particle size so that the expansion rate is not so large. From the biomass and oxygen dissolution rate, the optimum LV range is about 7 to 30 m / hr, particularly about 8 to 15 m / hr.
  • the residence time is preferably set so that the tank load is 0.5 to 4 kg-TOC / m 3 / day.
  • the blower 26 is sufficient if the discharge wind pressure is equal to or lower than the water pressure coming from the water depth. However, it is necessary to be more than the pressure loss of piping. Usually, the pipe resistance is about 1 to 2 kPa.
  • a general-purpose blower having a pressure of 0.5 MPa or less can be used even at a water depth of 5 m or more, and a low-pressure blower of 0.1 MPa or less is preferably used.
  • the supply pressure of the oxygen-containing gas is higher than the pressure loss of the hollow fiber membrane, and the membrane must not be crushed by water pressure. Since the pressure loss of the flat membrane and the spiral membrane is negligible compared to the water pressure, the pressure is extremely low, about 5 kPa or more, water depth pressure or less, desirably 20 kPa or less.
  • the pressure loss varies depending on the inner diameter and length. Since the amount of air vent is a membrane 1 m 2 per 50 ⁇ 200 mL / day, film air quantity when the doubled length is doubled, the air quantity even Maku ⁇ becomes doubled only doubles Don't be. Therefore, the pressure loss of the membrane is directly proportional to the membrane length and inversely proportional to the diameter.
  • the value of pressure loss is about 3 to 20 kPa for hollow fibers having an inner diameter of 50 ⁇ m and a length of 2 m.
  • air is allowed to flow downward through the oxygen-dissolving membrane module 6, but it may be allowed to flow upward.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Microbiology (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Provided is an aerobic biological treatment device 1 comprising: a reaction tank (a tank body) 2; a water-permeable plate 3 installed horizontally in the lower part of the reaction tank 2; a large-diameter particle layer 4 formed on the upper side of the water-permeable plate 3; a small-diameter particle layer 5 formed on the upper side of the large-diameter particle layer 4; an oxygen-dissolving membrane module 6 arranged on the upper side of the small-diameter particle layer 5; a reception chamber 7 formed on the lower side of the water-permeable plate 3; a raw water spray tube 8 for supplying raw water within the reception chamber 7; and an air diffuser tube 9 installed for the purpose of diffusing air within the reception chamber 7. The upper part of the reaction tank 2 is a widened section 2W having a large horizontal cross-sectional area.

Description

好気性生物処理装置Aerobic biological treatment equipment
 本発明は、有機性排水の好気性生物処理装置に関する。 The present invention relates to an aerobic biological treatment apparatus for organic wastewater.
 好気性生物処理方法は安価であるため有機性廃水の処理法として多用されている。本方法では、被処理水への酸素の溶解が必要であり、通常は散気管による曝気が行われている。 The aerobic biological treatment method is widely used as a treatment method for organic wastewater because it is inexpensive. In this method, it is necessary to dissolve oxygen in the water to be treated, and aeration with a diffuser is usually performed.
 散気管による曝気は溶解効率が5~20%程度と低い。また、散気管の設置される水深にかかる水圧以上の圧力で曝気することが必要であり、高圧で多量の空気を送風するため、ブロワの電力費が高い。通常は、好気性生物処理における電力費の2/3以上が酸素溶解のために使用されている。 Aeration with a diffuser has a low dissolution efficiency of about 5-20%. In addition, it is necessary to aerate at a pressure higher than the water pressure applied to the water depth where the diffuser pipe is installed, and a large amount of air is blown at a high pressure, so the power cost of the blower is high. Usually, more than 2/3 of the power cost in aerobic biological treatment is used for oxygen dissolution.
 中空糸膜を用いたメンブレンエアレーションバイオリアクター(MABR)は、気泡の発生なしで酸素溶解できる。MABRでは、水深にかかる水圧よりも低い圧力の空気を通気すればよいため、ブロワの必要圧力が低く、また、酸素の溶解効率が高い。 Membrane aeration bioreactor (MABR) using hollow fiber membrane can dissolve oxygen without generating bubbles. In MABR, it is only necessary to ventilate air having a pressure lower than the water pressure applied to the water depth, so that the required pressure of the blower is low and the oxygen dissolution efficiency is high.
特開2006-87310号公報JP 2006-87310 A
 処理する原水を多くするために、担体の充填量を多くしたり、流動床反応槽内のLVを大きくすると、担体が反応槽から流出し易くなる。 In order to increase the raw water to be treated, if the amount of the carrier is increased or the LV in the fluidized bed reaction vessel is increased, the carrier easily flows out of the reaction vessel.
 本発明は、担体の充填量を多くしたり、高LVとすることができる好気性生物処理装置を提供することを目的とする。 An object of the present invention is to provide an aerobic biological treatment apparatus that can increase the filling amount of a carrier or have a high LV.
 本発明の好気性生物処理装置は、反応槽と、該反応槽内に設置された酸素溶解膜モジュールと、該酸素溶解膜モジュールに酸素含有ガスを供給する酸素含有ガス供給手段と、反応槽内に形成された担体の流動床とを備えてなる好気性生物処理装置であって、該反応槽の上部は、その下側よりも水平断面積が大きい拡幅部となっている。 The aerobic biological treatment apparatus of the present invention includes a reaction vessel, an oxygen-dissolving membrane module installed in the reaction vessel, an oxygen-containing gas supply means for supplying an oxygen-containing gas to the oxygen-dissolving membrane module, and a reaction vessel An aerobic biological treatment apparatus comprising a fluidized bed of a carrier formed in the upper part of the reaction tank, wherein the upper part of the reaction tank is a widened part having a larger horizontal sectional area than the lower part thereof.
 本発明の一態様では、定常運転時の通常のLVでの通水時に、担体流動床の上面を該拡幅部に位置させる。 In one aspect of the present invention, the upper surface of the carrier fluidized bed is positioned in the widened portion when water is passed through a normal LV during steady operation.
 本発明の一態様では、酸素溶解膜モジュールは非多孔質の酸素溶解膜を備えている。 In one embodiment of the present invention, the oxygen-dissolving membrane module includes a non-porous oxygen-dissolving membrane.
 本発明の一態様では、酸素溶解膜が疎水性である。 In one embodiment of the present invention, the oxygen-dissolving film is hydrophobic.
 本発明の好気性生物処理装置では、反応槽の上部が水平断面積の大きい拡幅部となっているので、担体の充填量を多くしたり、原水を高LV通水した場合でも、反応槽上部でのLVが下部よりも小さくなり、担体の流出が抑制される。 In the aerobic biological treatment apparatus of the present invention, since the upper part of the reaction tank is a widened part having a large horizontal cross-sectional area, the upper part of the reaction tank can be used even when the filling amount of the carrier is increased or the raw water is passed through high LV. The LV at this point becomes smaller than the lower part, and the outflow of the carrier is suppressed.
実施の形態に係る生物処理装置の縦断面図である。It is a longitudinal cross-sectional view of the biological treatment apparatus which concerns on embodiment. (a)は酸素溶解膜ユニットの側面図、(b)は酸素溶解膜ユニットの斜視図である。(A) is a side view of an oxygen-dissolved membrane unit, and (b) is a perspective view of the oxygen-dissolved membrane unit. 反応槽の別例を示す斜視図である。It is a perspective view which shows another example of a reaction tank.
 以下、図面を参照して本発明についてさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to the drawings.
 図1は実施の形態に係る好気性生物処理装置1の縦断面図である。この好気性生物処理装置1は、水平断面が円形の反応槽(槽体)2と、該反応槽2の下部に水平に設置されたパンチングプレート等の多孔板や、平板に複数の分散ノズルを均等に設けたものなどの透水板3と、該透水板3の上側に形成された大径粒子層4と、該大径粒子層4の上側に形成された小径粒子層5と、小径粒子層5の上側に粉粒状活性炭等の生物付着担体の充填により形成された流動床Fと、流動床F内に少なくとも一部が配置された酸素溶解膜モジュール6と、前記透水板3の下側に形成された受入室7と、該受入室7内に原水を供給する原水散布管8と、受入室7内に設置された散気管9等を有する。この散気管9にはコンプレッサ(又はブロワ)13から空気が供給される。 FIG. 1 is a longitudinal sectional view of an aerobic biological treatment apparatus 1 according to an embodiment. The aerobic biological treatment apparatus 1 includes a reaction tank (tank) 2 having a circular horizontal section, a perforated plate such as a punching plate installed horizontally below the reaction tank 2, and a plurality of dispersion nozzles on a flat plate. A water permeable plate 3 such as one provided uniformly, a large particle layer 4 formed on the upper side of the water permeable plate 3, a small particle layer 5 formed on the large particle layer 4, and a small particle layer A fluidized bed F formed by filling a bioadhesive carrier such as granular activated carbon on the upper side of 5, an oxygen-dissolving membrane module 6 at least partially disposed in the fluidized bed F, and a lower side of the water permeable plate 3. It has a receiving chamber 7 formed, a raw water spray tube 8 for supplying raw water into the receiving chamber 7, an aeration tube 9 installed in the receiving chamber 7, and the like. Air is supplied to the air diffuser 9 from a compressor (or blower) 13.
 原水散布管8には、ポンプによって原水が供給される。なお、高LV通水する場合には、ポンプとして高容量ポンプを用いるのが好ましい。 The raw water spray pipe 8 is supplied with raw water by a pump. In addition, when passing high LV water, it is preferable to use a high capacity pump as a pump.
 反応槽2の上部は、その下側よりも水平断面積が大きい拡幅部2Wとなっている。拡幅部2Wの下側に、下方ほど水平断面積が小さくなるテーパ状部2Tが設けられている。テーパ状部2Tよりも下側は、反応槽2の下部まで水平断面積が一様な小水平断面積部2Sとなっている。なお、拡幅部2Wの水平断面積は、小水平断面積2Sの水平断面積よりも150~300%特に175~225%程度大きいことが好ましい。 The upper part of the reaction tank 2 is a widened part 2W having a larger horizontal cross-sectional area than the lower side. Below the widened portion 2W, there is provided a tapered portion 2T whose horizontal cross-sectional area decreases as it goes downward. Below the tapered portion 2T is a small horizontal cross-sectional area 2S having a uniform horizontal cross-sectional area up to the bottom of the reaction vessel 2. The horizontal cross-sectional area of the widened portion 2W is preferably larger by 150 to 300%, particularly 175 to 225% than the horizontal cross-sectional area of the small horizontal cross-sectional area 2S.
 拡幅部2Wの上部には、処理水を流出させるためのトラフ10及び流出口11が設けられている。トラフ10は槽内壁に沿って環状流路を形成している。 The trough 10 and the outflow port 11 for making treated water flow out are provided in the upper part of the widening part 2W. The trough 10 forms an annular flow path along the inner wall of the tank.
 図1は、反応槽に流動床担体を充填して、酸素溶解膜の表面への生物膜の付着を担体の流動による剪断力によって抑制して生物膜の大部分が流動床担体に付着するようにしたものであり、酸素溶解膜は酸素供給の目的のみに用いられる。 FIG. 1 shows that the reaction vessel is filled with a fluidized bed carrier, and the biofilm adheres to the surface of the oxygen-dissolved membrane by the shearing force caused by the flow of the carrier so that most of the biofilm adheres to the fluidized bed carrier. The oxygen-dissolved film is used only for the purpose of supplying oxygen.
 図1では、酸素溶解膜として非多孔質(ノンポーラス)の酸素溶解膜を用い、酸素含有気体を槽外から配管を通じて酸素溶解膜の一次側に通気して、排気は配管を通じて槽外に排出するように構成している。そのため、酸素含有気体を、低圧で酸素溶解膜に通気し、酸素を酸素分子として酸素溶解膜の構成原子の間を通過し(膜に溶解し)、酸素分子として被処理水と接触させる。酸素を水に直接溶解させるので気泡が生じない。この方法は、濃度勾配による分子拡散のメカニズムを用いており、従来のように散気管などによる散気が不要となる。また酸素溶解膜の素材として疎水性の素材を用いると膜中に浸水しづらいので好ましい。疎水性の膜であっても微量の水蒸気は浸入する。 In FIG. 1, a non-porous oxygen-dissolving film is used as the oxygen-dissolving film, and an oxygen-containing gas is vented from the outside of the tank to the primary side of the oxygen-dissolving film through the pipe, and the exhaust is discharged outside the tank through the pipe. It is configured to do. Therefore, an oxygen-containing gas is passed through the oxygen-dissolved film at a low pressure, passes oxygen as oxygen molecules between constituent atoms of the oxygen-dissolved film (dissolves in the film), and is brought into contact with the water to be treated as oxygen molecules. Since oxygen is dissolved directly in water, no bubbles are generated. This method uses a molecular diffusion mechanism based on a concentration gradient, and does not require aeration using a diffuser tube as in the prior art. In addition, it is preferable to use a hydrophobic material as the material of the oxygen-dissolving film because it is difficult to be immersed in the film. A trace amount of water vapor enters even a hydrophobic film.
 図2は、酸素溶解膜モジュール6の一例を示している。この酸素溶解膜モジュール6は酸素溶解膜として非多孔質の中空糸膜22を用いたものである。この実施の形態では、中空糸膜22は上下方向に配列されており、各中空糸膜22の上端は上部ヘッダー20に連なり、下端は下部ヘッダー21に連なっている。中空糸膜22の内部は、それぞれ上部ヘッダー20及び下部ヘッダー21内に連通している。各ヘッダー20,21は中空管状である。なお、平膜やスパイラル膜を用いる場合にも、通気方向が上下方向となるように配列されることが望ましい。 FIG. 2 shows an example of the oxygen-dissolving membrane module 6. This oxygen dissolution membrane module 6 uses a non-porous hollow fiber membrane 22 as an oxygen dissolution membrane. In this embodiment, the hollow fiber membranes 22 are arranged in the vertical direction, and the upper end of each hollow fiber membrane 22 is connected to the upper header 20 and the lower end is connected to the lower header 21. The interior of the hollow fiber membrane 22 communicates with the upper header 20 and the lower header 21, respectively. Each header 20, 21 is a hollow tube. Even when a flat membrane or a spiral membrane is used, it is desirable to arrange the ventilation direction to be the vertical direction.
 図1は、水平断面積が円形の反応槽を例に説明したが、水平断面が角形の反応槽を用いることもでき、この場合の一例を図3に示す。断面が角形の反応槽は、反応領域の上方の拡幅部に向け幅が広がる部分が円形の場合の逆テーパ状ではなく、図3のように縦横の横幅だけが拡張するような形状となる。この形状の反応槽は、直列多段化しやすい。 FIG. 1 illustrates an example of a reaction tank having a circular horizontal cross-sectional area, but a reaction tank having a square horizontal cross-section can also be used, and an example of this case is shown in FIG. The reaction tank having a square cross section is not an inversely tapered shape when the portion where the width is widened toward the widened portion above the reaction region is circular, but has a shape in which only the horizontal and vertical widths are expanded as shown in FIG. A reaction tank of this shape is easily multistaged in series.
 図2(b)の通り、1対のヘッダー20,21と中空糸膜22とからなるユニットが複数個平行に配列されている。図2(a)の通り、各上部ヘッダー20の一端又は両端が上部マニホルド23に連結され、各下部ヘッダー21の一端又は両端が下部マニホルド24に連結されていることが好ましい。酸素溶解膜モジュール6の上部に給気配管27を通じて酸素含有ガスを供給し、酸素溶解膜モジュール6の下部から排出配管29を通じて槽外に排出する。空気等の酸素含有ガスは上部ヘッダー20から中空糸膜22を通って下部ヘッダー21へ流れ、この間に酸素が中空糸膜22を透過して反応槽2内の水に溶解する。 2B, a plurality of units each including a pair of headers 20 and 21 and a hollow fiber membrane 22 are arranged in parallel. As shown in FIG. 2A, one end or both ends of each upper header 20 are preferably connected to the upper manifold 23, and one end or both ends of each lower header 21 are preferably connected to the lower manifold 24. An oxygen-containing gas is supplied to the upper part of the oxygen-dissolving membrane module 6 through the air supply pipe 27 and discharged from the lower part of the oxygen-dissolving membrane module 6 to the outside of the tank through the discharge pipe 29. Oxygen-containing gas such as air flows from the upper header 20 through the hollow fiber membrane 22 to the lower header 21, during which oxygen passes through the hollow fiber membrane 22 and dissolves in the water in the reaction vessel 2.
 各ヘッダー20,21及び各マニホルド23,24は流水勾配を有するように設けられていてもよい。酸素溶解膜モジュール6は上下に多段に設置されてもよい。 Each header 20, 21 and each manifold 23, 24 may be provided so as to have a running water gradient. The oxygen-dissolving membrane module 6 may be installed in multiple stages up and down.
 この酸素溶解膜モジュール6に空気を供給するために、ブロワ26と空気供給用の給気配管27とが設けられており、該給気配管27が上部マニホルド23に接続されている。下部マニホルド24には排ガス用の中継配管28が接続されている。中継配管28は排出配管29が接続している。排出配管29は、下り勾配を有するように設けられ、反応槽2外にまで延設されている。図1では排出配管29は反応槽2の側方に引き出されているが、反応槽2の底部から下方に引き出されてもよい。 In order to supply air to the oxygen-dissolving membrane module 6, a blower 26 and an air supply pipe 27 for supplying air are provided, and the air supply pipe 27 is connected to the upper manifold 23. A relay pipe 28 for exhaust gas is connected to the lower manifold 24. The relay pipe 28 is connected to a discharge pipe 29. The discharge pipe 29 is provided to have a downward slope and extends to the outside of the reaction tank 2. In FIG. 1, the discharge pipe 29 is drawn to the side of the reaction tank 2, but may be drawn downward from the bottom of the reaction tank 2.
 図1の通り、酸素溶解膜に溶解しなかった酸素含有気体の残部が排出配管29を通じて槽外に排気される。配管29その末端は、酸素溶解膜モジュール6の下端(モジュール6が複数のときは各モジュール下端の中で最も下位のもの)より低い位置となるよう配置されている。そのため、排気に凝縮水が含まれる場合は排出配管29の下方に設置のタンク32に凝縮水が流出する。タンク32内の水は、ポンプ33及び配管34によって反応槽2に送水されてもよい。 As shown in FIG. 1, the remainder of the oxygen-containing gas that did not dissolve in the oxygen-dissolving film is exhausted outside the tank through the discharge pipe 29. The end of the pipe 29 is disposed so as to be lower than the lower end of the oxygen-dissolving membrane module 6 (the lowest one among the lower ends of the modules when there are a plurality of modules 6). Therefore, when the condensed water is contained in the exhaust gas, the condensed water flows out to the tank 32 installed below the discharge pipe 29. The water in the tank 32 may be sent to the reaction tank 2 by the pump 33 and the pipe 34.
 槽内または槽外において、排出配管29に、排気を槽外に排出する排ガス配管30を接続してもよい。この場合、凝縮水は排出配管29を通じて排出される。排ガス配管30の末端の排気部が酸素溶解膜モジュールの下端より高い位置に配置されてもよい。凝縮水の溜まりができないようにするために、排ガス配管30を下り勾配を有さず上り勾配または鉛直上向きのみで構成することが好ましい。またこのとき排出配管29の排ガス配管30との分岐点より下流側にバルブ(図示略)を設け、バルブを開くことにより凝縮水がタンク32に流出するように構成してもよい。 An exhaust gas pipe 30 for exhausting the exhaust gas to the outside of the tank may be connected to the discharge pipe 29 inside or outside the tank. In this case, the condensed water is discharged through the discharge pipe 29. The exhaust part at the end of the exhaust gas pipe 30 may be disposed at a position higher than the lower end of the oxygen-dissolving membrane module. In order to prevent the condensate from accumulating, it is preferable that the exhaust gas pipe 30 has only an upward gradient or a vertically upward direction without a downward gradient. Further, at this time, a valve (not shown) may be provided on the downstream side of the branch point of the discharge pipe 29 with the exhaust gas pipe 30 so that the condensed water flows out into the tank 32 by opening the valve.
 バルブは自動弁、手動弁のいずれでもよい。凝縮水を排出するためのバルブの開放は、連続式でも間欠式でもよい。間欠式の場合は、通常の運転では、1日に1回~30日に1回(多くても日に1回数秒、少なければ月に1回数十秒)、好ましくは1日に1回~15日に1回、バルブを開くことにより排水する。 The valve may be either an automatic valve or a manual valve. The valve for discharging the condensed water may be opened continuously or intermittently. In the case of intermittent operation, in normal operation, once a day to once every 30 days (at most once a day, at least once a month for 10 seconds), preferably once a day Drain by opening the valve once every 15 days.
 このように構成された好気性生物処理装置1において、原水は散布管8を通じて受入室7に導入され、透水板3及び大径・小径の粒子層4,5を上向流通水されてSSが濾過され、次いで生物膜付着の粉粒状活性炭の流動床Fにおいて、一過式で上向流通水され生物反応を行って上部清澄領域からトラフ10と流出口11を通じて処理水として取り出される。定常運転時のLVでは、流動床Fの上面は拡幅部2Wに位置している。 In the aerobic biological treatment apparatus 1 configured as described above, raw water is introduced into the receiving chamber 7 through the spray pipe 8, and is circulated upward through the water permeable plate 3 and the large and small diameter particle layers 4 and 5, and SS is generated. Then, in the fluidized bed F of the granular activated carbon adhered to the biofilm, the water is flowed upward in a transient manner, undergoes a biological reaction, and is taken out as treated water from the upper clarified region through the trough 10 and the outlet 11. In LV during steady operation, the upper surface of the fluidized bed F is located in the widened portion 2W.
 通常の生物処理運転時では、給気配管27から供給された空気等の酸素含有気体は、酸素溶解膜モジュール6を下向流通気した後、酸素溶解モジュール6の下端位置より下部ヘッダー21、下部マニホルド24を通じて流出し、排空気は排出配管29から(または排ガス配管30を設けたときは排ガス配管30から)大気中へ排出される。凝縮水は排出配管29を通じてタンク32へ流出する。 In a normal biological treatment operation, the oxygen-containing gas such as air supplied from the air supply pipe 27 flows downward through the oxygen-dissolving membrane module 6 and then the lower header 21 and the lower part from the lower end position of the oxygen-dissolving module 6. It flows out through the manifold 24, and the exhaust air is exhausted from the exhaust pipe 29 (or from the exhaust gas pipe 30 when the exhaust gas pipe 30 is provided) to the atmosphere. The condensed water flows out to the tank 32 through the discharge pipe 29.
 生物処理運転を継続すると、担体表面の生物膜が次第に厚くなってくる。この生物膜が過度に厚くなると、担体が流出したり、生物処理効率が低下する。(生物膜の深部すなわち担体に近い側では、酸素が行き届かないために好気性生物処理が行われない。)また、成長した生物膜を介して担体同士が固着し、さらに担体が流出したり生物処理効率が低下したりする。 When the biological treatment operation is continued, the biological film on the surface of the carrier becomes gradually thicker. When this biofilm becomes excessively thick, the carrier flows out and the biological treatment efficiency decreases. (Aerobic biological treatment is not performed in the deep part of the biofilm, that is, on the side close to the carrier, because oxygen does not reach it.) Also, the carriers adhere to each other through the grown biofilm, and the carrier flows out. Biological treatment efficiency is reduced.
 そこで、定期的に、又は反応槽2内の流動状況の観察結果に基づいて、コンプレッサ13を作動させ、散気管9から空気を流出させ、反応槽2内を曝気する。この曝気により、担体表面の余剰汚泥が水流の剪断力で剥離する。 Therefore, the compressor 13 is operated periodically or based on the observation result of the flow state in the reaction tank 2, the air is caused to flow out from the air diffuser 9, and the reaction tank 2 is aerated. By this aeration, the excess sludge on the surface of the carrier is peeled off by the shearing force of the water flow.
 この空気曝気を行った後、反応槽2内に原水を通常の処理時のLVよりも高LVにて上向流通水することが好ましい。これにより、剥離して反応槽2内に存在していた汚泥が流出口11から流出する。この際の排出水は、処理水として排出され後工程(凝集沈殿など)で処理されるか、洗浄排水として別途処理されるか、原水槽に送水される。このようにして、担体同士の固着を抑制し、反応槽2内の偏流や閉塞を防止することができる。 After performing this air aeration, it is preferable to feed the raw water into the reaction tank 2 at a higher LV than the LV during normal treatment. Thereby, the sludge which peeled and existed in the reaction tank 2 flows out from the outflow port 11. The discharged water at this time is discharged as treated water and processed in a subsequent process (such as coagulation sedimentation), separately processed as washing wastewater, or sent to the raw water tank. In this way, sticking of the carriers can be suppressed, and drift and blockage in the reaction tank 2 can be prevented.
 上記の高LV通水の際、流動床Fの展開率が大きくなり、流動床Fの界面は上昇するが、拡幅部2Wの水平断面積が大きいので、拡幅部2W内での上昇流速は小水平断面積2Sよりも小さくなるので、担体の流失が抑制される。所定時間、この高LV運転を行った後、LVを通常LVに戻し、通常の生物処理運転を再開する。 When the above-described high LV water flow, the expansion rate of the fluidized bed F increases and the interface of the fluidized bed F rises, but the horizontal cross-sectional area of the widened portion 2W is large, so the rising flow velocity in the widened portion 2W is small. Since it becomes smaller than the horizontal cross-sectional area 2S, the loss of the carrier is suppressed. After performing the high LV operation for a predetermined time, the LV is returned to the normal LV, and the normal biological treatment operation is resumed.
 なお、この曝気により、反応槽2内が脱炭酸され、低下したpHが上昇したり、担体(活性炭)間に蓄積した炭酸が脱炭酸されるという効果も奏される。 In addition, by this aeration, the inside of the reaction tank 2 is decarboxylated, and the effect that the lowered pH rises or the carbonic acid accumulated between the carriers (activated carbon) is decarboxylated is also exhibited.
 本発明では、活性炭等の生物担体の流動床に非多孔性の酸素溶解膜を設置することで、供給酸素量が多くなるため、対象とする原水の有機性排水濃度に上限が無い。 In the present invention, since a non-porous oxygen-dissolving membrane is installed in a fluidized bed of a biological carrier such as activated carbon to increase the amount of oxygen supplied, there is no upper limit to the organic wastewater concentration of the target raw water.
 また、生物担体を流動床で運転するため、激しい撹乱にさらされることがない。したがって、多量の生物を安定して維持できるため、負荷を高くとることができる。 Also, since the biological carrier is operated in a fluidized bed, it is not exposed to intense disturbance. Therefore, since a large amount of organisms can be stably maintained, the load can be increased.
 また、本発明では酸素溶解膜を使用するため、プリエアレーション、直接曝気と比較すると、酸素の溶解動力が小さい。 In addition, since an oxygen-dissolving film is used in the present invention, the dissolution power of oxygen is small compared to preaeration and direct aeration.
 これらのことから、前記曝気によって、中和剤を全く又は殆ど使用することなく、反応槽2内のpHを、中性付近に維持し、低濃度から高濃度までの有機性排水を高負荷で、かつ安価に安定して処理することが可能となる。 From these facts, the aeration maintains the pH in the reaction tank 2 in the vicinity of neutrality with little or no use of a neutralizing agent, and organic wastewater from low concentration to high concentration can be loaded with high load. In addition, it is possible to stably process at a low cost.
<生物担体>
 生物担体としては、活性炭が好適である。
<Biological carrier>
Activated carbon is suitable as the biological carrier.
 活性炭等の流動床担体の充填量は反応槽の容積の30~70%程度、特に40~60%程度が好ましい。この充填量は、多いほうが生物量が多く活性は高いが、多すぎると担体が流出するおそれがある。従って、流動床が20~50%程度展開するLVで通水するのが良い。通水LVは7~30m/h特に8~15m/hr程度である。なお、流動床担体として活性炭以外のゲル状物質、多孔質材、非多孔質材等も同様の条件で使用できる。例えば、ポリビニルアルコールゲル、ポリアクリルアミドゲル、ポリウレタンフォーム、アルギン酸カルシウムゲル、ゼオライト、プラスチック等も用いることができる。ただし、担体として活性炭を用いると、活性炭の吸着作用と生物分解作用による相互作用により、広範囲な汚濁物質の除去を行うことが可能である。 The packed amount of the fluidized bed carrier such as activated carbon is preferably about 30 to 70%, particularly about 40 to 60% of the volume of the reaction vessel. The larger the filling amount, the more the biomass and the higher the activity. However, if the amount is too large, the carrier may flow out. Therefore, it is preferable to pass water through an LV in which the fluidized bed develops about 20 to 50%. The water flow LV is about 7 to 30 m / h, particularly about 8 to 15 m / hr. As the fluidized bed carrier, a gel material other than activated carbon, a porous material, a non-porous material, etc. can be used under the same conditions. For example, polyvinyl alcohol gel, polyacrylamide gel, polyurethane foam, calcium alginate gel, zeolite, plastic and the like can also be used. However, when activated carbon is used as the carrier, it is possible to remove a wide range of pollutants by the interaction between the activated carbon adsorption and biodegradation.
 活性炭の平均粒径は0.2~1.2mm、特に0.3~0.6mm程度が好ましい。平均粒径が大きいと高LVとすることが可能であり、処理水の一部を反応槽に循環する場合は循環量を増やせるため高負荷が可能となる。しかし、比表面積が小さくなるため、生物量が少なくなる。平均粒径が小さいと比表面積が大きいため、付着生物量が増えるが、高LVとしたときに担体が流出し易くなる。 The average particle diameter of the activated carbon is preferably 0.2 to 1.2 mm, particularly preferably about 0.3 to 0.6 mm. When the average particle size is large, it is possible to increase the LV, and when a part of the treated water is circulated to the reaction tank, the amount of circulation can be increased, so that a high load is possible. However, since the specific surface area is small, the biomass is reduced. If the average particle size is small, the specific surface area is large and the amount of attached organisms increases, but the carrier tends to flow out when the LV is high.
 通常運転時の活性炭の展開率は、20~50%程度が好ましい。展開率が20%よりも低いと、目詰まり、短絡のおそれがある。展開率が50%よりも高いと、担体流出のおそれがあると共に、ポンプ動力コストが高くなる。 The deployment rate of activated carbon during normal operation is preferably about 20 to 50%. If the expansion rate is lower than 20%, there is a possibility of clogging and short circuit. If the development rate is higher than 50%, there is a risk of carrier outflow, and the pump power cost increases.
 通常の生物活性炭では、活性炭流動床の展開率は10~20%程度であるがこの場合、活性炭の流動状態が不均一で上下左右に流動する。結果として同時に設置した膜が活性炭によってこすられ、すり減って消耗することになる。これを防止するため、本発明では、活性炭等の流動床担体は十分に流動させることが必要で、展開率は20%以上例えば20~50%とするのが望ましい。このため、担体の粒径は通常の生物活性炭よりも小さいほうが好ましい。なお、活性炭の場合、やしがら炭、石炭、木炭等特に限定されない。形状は球状炭が好ましいが、通常の粒状炭や破砕炭でも良い。 In normal biological activated carbon, the development rate of the activated carbon fluidized bed is about 10 to 20%, but in this case, the activated carbon flow is uneven and flows vertically and horizontally. As a result, the membrane installed at the same time is rubbed by activated carbon and worn out. In order to prevent this, in the present invention, the fluidized bed carrier such as activated carbon needs to be sufficiently fluidized, and the development rate is desirably 20% or more, for example, 20 to 50%. For this reason, the particle size of the carrier is preferably smaller than that of normal biological activated carbon. In addition, in the case of activated carbon, it is not specifically limited, such as coconut charcoal, coal, charcoal. The shape is preferably spherical charcoal, but may be ordinary granular charcoal or crushed charcoal.
<酸素含有ガス>
 酸素含有ガスは空気、酸素富化空気、純酸素等、酸素を含む気体であればよい。通気する気体はフィルターを通過させて微細粒子を予め除去することが望ましい。
<Oxygen-containing gas>
The oxygen-containing gas may be a gas containing oxygen, such as air, oxygen-enriched air, or pure oxygen. It is desirable that the gas to be vented passes through a filter to remove fine particles in advance.
 通気量は生物反応に必要な酸素量の等量から2倍程度が望ましい。これよりも少ないと酸素不足で処理水中にBODやアンモニアが残存し、多いと通気量が不必要に多くなることに加えて圧力損失が高くなるため、経済性が損なわれる。 The aeration rate is preferably about twice the amount of oxygen required for biological reactions. If it is less than this, BOD and ammonia will remain in the treated water due to insufficient oxygen, and if it is greater, the air flow will be unnecessarily increased and the pressure loss will be increased, so the economy will be impaired.
 通気圧力は所定の通気量で生ずる中空糸の圧力損失よりもわずかに高い程度が望ましい。 It is desirable that the aeration pressure is slightly higher than the pressure loss of the hollow fiber generated at a predetermined aeration amount.
<被処理水の流速>
 通常運転時の被処理水の反応槽内の流速はLV7m/hr以上とし、TOC濃度20mg/L以下の低濃度排水では処理水を循環せず、ワンパスで処理することもできる。一過式で処理するとポンプ動力を削減することができる。ただし、高LVとするために、流出口11からの処理水の一部を原水散布管8に返送してもよい。
<Flow rate of treated water>
The flow rate in the reaction tank of the water to be treated during normal operation is LV 7 m / hr or more, and the low-concentration waste water having a TOC concentration of 20 mg / L or less can be treated in one pass without circulating the treated water. Pumping power can be reduced by a one-time process. However, in order to obtain a high LV, a part of the treated water from the outlet 11 may be returned to the raw water spray pipe 8.
 LVを高くすると、それに比例して酸素溶解速度が向上する。LVが高い場合は、粒径が大きい活性炭を使い、展開率をあまり大きくしないようにするのが好ましい。生物量、酸素溶解速度から、最適LV範囲は7~30m/hr特に8~15m/hr程度である。 When the LV is increased, the oxygen dissolution rate is increased proportionally. When LV is high, it is preferable to use activated carbon having a large particle size so that the expansion rate is not so large. From the biomass and oxygen dissolution rate, the optimum LV range is about 7 to 30 m / hr, particularly about 8 to 15 m / hr.
<滞留時間>
 槽負荷0.5~4kg-TOC/m/dayとなるように滞留時間を設定するのが好ましい。
<Residence time>
The residence time is preferably set so that the tank load is 0.5 to 4 kg-TOC / m 3 / day.
<ブロワ>
 ブロワ26は、吐出風圧が水深からくる水圧以下のもので十分である。但し、配管等の圧損以上であることは必要である。通常、配管抵抗は1~2kPa程度である。
<Blower>
The blower 26 is sufficient if the discharge wind pressure is equal to or lower than the water pressure coming from the water depth. However, it is necessary to be more than the pressure loss of piping. Usually, the pipe resistance is about 1 to 2 kPa.
 5mの水深の場合、通常は0.55MPa程度までの出力の汎用ブロワが用いられ、それ以上の水深では高圧ブロワが用いられてきている。 In the case of a water depth of 5 m, a general-purpose blower with an output of up to about 0.55 MPa is usually used, and a high-pressure blower has been used at a depth higher than that.
 本発明では、5m以上の水深であっても0.5MPa以下の圧力の汎用ブロワを用いることができ、0.1MPa以下の低圧ブロワを用いることが好ましい。 In the present invention, a general-purpose blower having a pressure of 0.5 MPa or less can be used even at a water depth of 5 m or more, and a low-pressure blower of 0.1 MPa or less is preferably used.
 酸素含有ガスの供給圧は、中空糸膜の圧力損失より高く、さらに膜が水圧でつぶれないこと、が条件となる。平膜、スパイラル膜は膜の圧損が水圧と比較すると無視できるため、極めて低い圧力、5kPa程度以上、水深圧力以下、望ましくは20kPa以下である。 The supply pressure of the oxygen-containing gas is higher than the pressure loss of the hollow fiber membrane, and the membrane must not be crushed by water pressure. Since the pressure loss of the flat membrane and the spiral membrane is negligible compared to the water pressure, the pressure is extremely low, about 5 kPa or more, water depth pressure or less, desirably 20 kPa or less.
 中空糸膜の場合、内径と長さによって圧力損失は変化する。通気する空気量は膜1mあたり50~200mL/dayであるから、膜長さが2倍になると空気量は2倍になり、膜径が2倍になっても空気量は2倍にしかならない。したがって、膜の圧力損失は膜長さに正比例し、直径に反比例する。 In the case of a hollow fiber membrane, the pressure loss varies depending on the inner diameter and length. Since the amount of air vent is a membrane 1 m 2 per 50 ~ 200 mL / day, film air quantity when the doubled length is doubled, the air quantity even Maku径becomes doubled only doubles Don't be. Therefore, the pressure loss of the membrane is directly proportional to the membrane length and inversely proportional to the diameter.
 圧力損失の値は、内径50μm、長さ2mの中空糸で3~20kPa程度である。 The value of pressure loss is about 3 to 20 kPa for hollow fibers having an inner diameter of 50 μm and a length of 2 m.
 上記実施の形態では、酸素溶解膜モジュール6に空気を下向きに流すようにしているが、上向きに流すようにしてもよい。 In the above embodiment, air is allowed to flow downward through the oxygen-dissolving membrane module 6, but it may be allowed to flow upward.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2018年2月20日付で出願された日本特許出願2018-028198に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2018-028198 filed on Feb. 20, 2018, which is incorporated by reference in its entirety.
 1 好気性生物処理装置
 2 反応槽
 2W 拡幅部
 6 酸素溶解膜モジュール
 9 散気管
 20,21 ヘッダー
 22 中空糸膜
 27 給気配管
 29 排出配管
 30 排ガス配管
 32 タンク
DESCRIPTION OF SYMBOLS 1 Aerobic biological treatment apparatus 2 Reaction tank 2W Widening part 6 Oxygen dissolution membrane module 9 Air diffuser pipe 20,21 Header 22 Hollow fiber membrane 27 Air supply piping 29 Exhaust piping 30 Exhaust gas piping 32 Tank

Claims (4)

  1.  反応槽と、
     該反応槽内に設置された酸素溶解膜モジュールと、
     該酸素溶解膜モジュールに酸素含有ガスを供給する酸素含有ガス供給手段と、
     反応槽内に形成された担体の流動床と
    を備えてなる好気性生物処理装置であって、
     該反応槽の上部は、その下側よりも水平断面積が大きい拡幅部となっている好気性生物処理装置。
    A reaction vessel;
    An oxygen-dissolving membrane module installed in the reaction vessel;
    Oxygen-containing gas supply means for supplying an oxygen-containing gas to the oxygen-dissolving membrane module;
    An aerobic biological treatment apparatus comprising a fluidized bed of a carrier formed in a reaction vessel,
    An aerobic biological treatment apparatus in which the upper part of the reaction tank is a widened part having a larger horizontal cross-sectional area than the lower side.
  2.  定常運転時に前記流動床の上面が前記拡幅部に位置することを特徴とする請求項1の好気性生物処理装置。 The aerobic biological treatment apparatus according to claim 1, wherein an upper surface of the fluidized bed is located in the widened portion during steady operation.
  3.  酸素溶解膜モジュールは非多孔質の酸素溶解膜を備えている請求項1又は2の好気性生物処理装置。 The aerobic biological treatment apparatus according to claim 1 or 2, wherein the oxygen-dissolving membrane module includes a non-porous oxygen-dissolving membrane.
  4.  酸素溶解膜が疎水性である請求項3の好気性生物処理装置。 The aerobic biological treatment apparatus according to claim 3, wherein the oxygen-dissolving membrane is hydrophobic.
PCT/JP2019/002701 2018-02-20 2019-01-28 Aerobic biological treatment device WO2019163427A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018028198A JP6558455B1 (en) 2018-02-20 2018-02-20 Aerobic biological treatment equipment
JP2018-028198 2018-02-20

Publications (1)

Publication Number Publication Date
WO2019163427A1 true WO2019163427A1 (en) 2019-08-29

Family

ID=67614837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002701 WO2019163427A1 (en) 2018-02-20 2019-01-28 Aerobic biological treatment device

Country Status (3)

Country Link
JP (1) JP6558455B1 (en)
TW (1) TW201936519A (en)
WO (1) WO2019163427A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55153195U (en) * 1979-04-17 1980-11-05
JPS56100694A (en) * 1980-01-14 1981-08-12 Ebara Infilco Co Ltd Biological treatment for sewage
JPS6490093A (en) * 1987-10-01 1989-04-05 Komatsu Mfg Co Ltd Apparatus for treating waste water
JPH059697U (en) * 1991-07-29 1993-02-09 三菱重工業株式会社 Biological treatment tank for wastewater
JP2005034739A (en) * 2003-07-15 2005-02-10 Mitsubishi Rayon Co Ltd Waste water treatment method
CN205472890U (en) * 2016-01-09 2016-08-17 深圳市科恩环保有限公司 Biological fluidized bed that industrial wastewater treatment used

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55153195U (en) * 1979-04-17 1980-11-05
JPS56100694A (en) * 1980-01-14 1981-08-12 Ebara Infilco Co Ltd Biological treatment for sewage
JPS6490093A (en) * 1987-10-01 1989-04-05 Komatsu Mfg Co Ltd Apparatus for treating waste water
JPH059697U (en) * 1991-07-29 1993-02-09 三菱重工業株式会社 Biological treatment tank for wastewater
JP2005034739A (en) * 2003-07-15 2005-02-10 Mitsubishi Rayon Co Ltd Waste water treatment method
CN205472890U (en) * 2016-01-09 2016-08-17 深圳市科恩环保有限公司 Biological fluidized bed that industrial wastewater treatment used

Also Published As

Publication number Publication date
JP2019141784A (en) 2019-08-29
TW201936519A (en) 2019-09-16
JP6558455B1 (en) 2019-08-14

Similar Documents

Publication Publication Date Title
WO2019159667A1 (en) Aerobic biological treatment device
WO2018168022A1 (en) Aerobic biological treatment device
WO2019163423A1 (en) Aerobic organism treatment device
WO2018100841A1 (en) Biologically activated carbon processing device
WO2019163422A1 (en) Method for operating aerobic biological treatment device
WO2019163428A1 (en) Aerobic organism treatment device and method for operating same
JP6601517B2 (en) Operating method of aerobic biological treatment equipment
WO2019163427A1 (en) Aerobic biological treatment device
WO2019163424A1 (en) Aerobic biological treatment device and method for operating same
JP6866918B2 (en) Aerobic biological treatment equipment
WO2019163426A1 (en) Aerobic biological treatment device
WO2018168023A1 (en) Aerobe treatment method
JP6652147B2 (en) Aerobic biological treatment equipment
JP2021010853A (en) Aerobic biological treatment device and its operation method
JP2019005755A (en) Biological activated carbon treatment device
JP2019005756A (en) Biological activated carbon treatment device
JP2019005757A (en) Biological activated carbon treatment device
JP2019025483A (en) Biological activated carbon treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757942

Country of ref document: EP

Kind code of ref document: A1