WO2019163428A1 - Aerobic organism treatment device and method for operating same - Google Patents

Aerobic organism treatment device and method for operating same Download PDF

Info

Publication number
WO2019163428A1
WO2019163428A1 PCT/JP2019/002702 JP2019002702W WO2019163428A1 WO 2019163428 A1 WO2019163428 A1 WO 2019163428A1 JP 2019002702 W JP2019002702 W JP 2019002702W WO 2019163428 A1 WO2019163428 A1 WO 2019163428A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
water
membrane
fluidized bed
biological treatment
Prior art date
Application number
PCT/JP2019/002702
Other languages
French (fr)
Japanese (ja)
Inventor
哲朗 深瀬
小林 秀樹
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to CN201980007188.3A priority Critical patent/CN111542500A/en
Priority to KR1020207021341A priority patent/KR20200121291A/en
Publication of WO2019163428A1 publication Critical patent/WO2019163428A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • C02F3/085Fluidized beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • B01F21/30Workflow diagrams or layout of plants, e.g. flow charts; Details of workflow diagrams or layout of plants, e.g. controlling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/40Apparatus specially designed for the use of free, immobilised, or carrier-bound enzymes, e.g. apparatus containing a fluidised bed of immobilised enzymes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to an aerobic biological treatment apparatus for organic wastewater and an operation method thereof.
  • the aerobic biological treatment method is widely used as a treatment method for organic wastewater because it is inexpensive. In this method, it is necessary to dissolve oxygen in the water to be treated, and aeration with a diffuser is usually performed.
  • Aeration with a diffuser has a low dissolution efficiency of about 5-20%.
  • more than 2/3 of the power cost in aerobic biological treatment is used for oxygen dissolution.
  • MABR Membrane aeration bioreactor
  • An object of the present invention is to provide an aerobic biological treatment apparatus capable of maintaining a high biological treatment efficiency for a long period of time and a method for operating the same, with a large amount of biological adhesion to a fluidized bed carrier.
  • the aerobic biological treatment apparatus of the present invention includes a reaction tank, a fluidized bed carrier having an average particle size of 0.2 to 1.2 mm filled in the reaction tank, and an aeration direction in the reaction tank in the vertical direction.
  • An oxygen-dissolving membrane module installed so as to be, an oxygen-containing gas supplying means for supplying an oxygen-containing gas to the oxygen-dissolving membrane module, and a water passing means for circulating raw water upward in the reaction tank Become.
  • the fluidized bed carrier is activated carbon.
  • the dissolution membrane is a non-porous hollow fiber membrane.
  • the raw water is circulated upward at LV 7-30 m / hr.
  • the average particle size of the fluidized bed carrier is as small as 1.2 mm or less, the specific surface area of the fluidized bed carrier is large. Therefore, the biofilm area is large, and the amount of load that can be processed can be increased.
  • the average particle size of the fluidized bed carrier is 0.2 mm or more, the cleaning effect of the oxygen-dissolved membrane by the fluidized bed carrier is high, and the organisms are prevented from growing on the surface of the oxygen-dissolved membrane.
  • FIG. 1 It is a longitudinal cross-sectional view of the biological treatment apparatus which concerns on embodiment.
  • (A) is a side view of an oxygen-dissolved membrane unit
  • (b) is a perspective view of the oxygen-dissolved membrane unit.
  • FIG. 1 is a longitudinal sectional view of an aerobic biological treatment apparatus 1 according to an embodiment.
  • the aerobic biological treatment apparatus 1 includes a reaction tank (tank body) 2, a perforated plate such as a punching plate installed horizontally below the reaction tank 2, and a plurality of dispersion nozzles provided uniformly on a flat plate.
  • a fluidized bed F formed of a bioadhesive fluidized bed carrier such as activated carbon, an oxygen-dissolving membrane module 6 at least partially disposed in the fluidized bed F, and a receiving chamber 7 formed below the water permeable plate 3.
  • a trough 10 and an outlet 11 for allowing the treated water to flow out are provided in the upper part of the reaction tank 2.
  • the trough 10 forms an annular flow path along the inner wall of the tank.
  • activated carbon having an average particle size of 0.2 to 1.2 mm, particularly 0.3 to 0.6 mm is suitable.
  • the particle size of the carrier is a value measured using a JIS mesh.
  • FIG. 1 shows that the reaction vessel is filled with a fluidized bed carrier, and the biofilm adheres to the surface of the oxygen-dissolved membrane by the shearing force caused by the flow of the carrier so that most of the biofilm adheres to the fluidized bed carrier.
  • the oxygen-dissolved film is used only for the purpose of supplying oxygen. Since the average particle size of the carrier is 0.2 mm or more, the shearing force applied to the surface of the oxygen-dissolved film by the flowing carrier is increased, and the organisms are prevented from growing and growing. Moreover, when the average particle diameter of the carrier is 1.2 mm or less, the specific surface area of the carrier is increased, the amount of attached biofilm is increased, and sufficient biological treatment is performed.
  • a non-porous oxygen-dissolving film is used as the oxygen-dissolving film, and an oxygen-containing gas is vented from the outside of the tank to the primary side of the oxygen-dissolving film through the pipe, and the exhaust is discharged outside the tank through the pipe. It is configured to do. Therefore, an oxygen-containing gas is passed through the oxygen-dissolved film at a low pressure, passes oxygen as oxygen molecules between constituent atoms of the oxygen-dissolved film (dissolves in the film), and is brought into contact with the water to be treated as oxygen molecules. Since oxygen is dissolved directly in water, no bubbles are generated.
  • This method uses a molecular diffusion mechanism based on a concentration gradient, and does not require aeration using a diffuser tube as in the prior art.
  • a hydrophobic material as the material of the oxygen-dissolving film because it is difficult to infiltrate the film. A trace amount of water vapor enters even a hydrophobic membrane.
  • FIG. 2 shows an example of the oxygen-dissolving membrane module 6.
  • This oxygen dissolution membrane module 6 uses a non-porous hollow fiber membrane 22 as an oxygen dissolution membrane.
  • the hollow fiber membranes 22 are arranged in the vertical direction, and the upper end of each hollow fiber membrane 22 is connected to the upper header 20 and the lower end is connected to the lower header 21.
  • the interior of the hollow fiber membrane 22 communicates with the upper header 20 and the lower header 21, respectively.
  • Each header 20, 21 is a hollow tube. Even when a flat membrane or a spiral membrane is used, it is desirable to arrange the ventilation direction to be the vertical direction.
  • a plurality of units each including a pair of headers 20 and 21 and a hollow fiber membrane 22 are arranged in parallel.
  • an upper manifold 23 is connected to the upper part of each upper header 20 via a pipe
  • a lower part of each lower header 21 is connected to a lower manifold 24 via a pipe.
  • An oxygen-containing gas is supplied to the upper portion of the oxygen-dissolving membrane module 6 and discharged from the lower portion of the oxygen-dissolving membrane module 6.
  • Oxygen-containing gas such as air flows from the upper header 20 through the hollow fiber membrane 22 to the lower header 21, during which oxygen passes through the hollow fiber membrane 22 and dissolves in the water in the reaction vessel 2.
  • Each header 20, 21 and each manifold 23, 24 may be provided to have a running water gradient.
  • the oxygen-dissolving membrane module 6 may be installed in multiple stages up and down.
  • a blower 26 and an air supply pipe 27 for supplying air are provided, and these constitute oxygen-containing gas supply means.
  • the air supply pipe 27 is connected to the upper manifold 23.
  • a relay pipe 28 for exhaust gas is connected to the lower manifold 24.
  • a discharge pipe 29 is connected to the relay pipe 28.
  • the discharge pipe 29 is provided so as to have a downward slope (including a vertically downward direction), and extends to the outside of the reaction tank 2. In FIG. 1, the discharge pipe 29 is drawn to the side of the reaction tank 2, but may be drawn downward from the bottom of the reaction tank 2.
  • the remainder of the oxygen-containing gas that did not dissolve in the oxygen-dissolving film is exhausted outside the tank through the discharge pipe 29.
  • the end of the pipe 29 is arranged to be lower than the lower end of the oxygen-dissolving membrane module 6 (the lowest one among the lower ends of the modules when there are a plurality of modules 6). Therefore, when the condensed water is contained in the exhaust gas, the condensed water flows out to the tank 32 below the discharge pipe 29.
  • the water in the tank 32 may be sent to the reaction tank 2 by the pump 33 and the pipe 34.
  • the discharge pipe 29 is configured to perform both the exhaust out of the tank and the condensed water out of the tank, but the present invention is not limited to this.
  • An exhaust gas pipe 30 that exhausts the exhaust gas to the outside of the tank may be connected to the discharge pipe 29 inside or outside the tank. In this case, the condensed water is discharged through the discharge pipe 29.
  • the end of the exhaust gas pipe 30 may be disposed at a position higher than the lower end of the oxygen-dissolving membrane module.
  • the exhaust gas pipe 30 has only an upward gradient or a vertically upward direction without a downward gradient.
  • a valve (not shown) may be provided on the downstream side of the branch point of the discharge pipe 29 with the exhaust gas pipe 30, and the condensed water may flow out into the tank 32 by opening the valve.
  • the valve may be either an automatic valve or a manual valve.
  • the valve for discharging the condensed water may be opened continuously or intermittently. In the case of intermittent operation, in normal operation, once a day to once every 30 days (at most once a day, at least once a month for 10 seconds), preferably once a day Drain by opening the valve once every 15 days.
  • the filling amount of the fluidized bed carrier is preferably about 30 to 70%, particularly about 40 to 60% of the volume of the reaction vessel.
  • the larger the filling amount the more the biomass and the higher the activity.
  • the carrier may flow out. Accordingly, it is preferable to pass water at an LV in which the fluidized bed develops about 20 to 50%, for example, about 7 to 30 m / hr, particularly about 8 to 15 m / hr. If the expansion rate is lower than 20%, there is a possibility of clogging and short circuit. If the expansion rate is higher than 50%, the carrier may flow out, and the pump power cost increases.
  • the development rate of the activated carbon fluidized bed is about 10 to 20%, but in this case, the activated carbon flow is uneven and flows vertically and horizontally. As a result, the membrane installed at the same time is rubbed by activated carbon and worn out.
  • the fluidized bed carrier such as activated carbon needs to be sufficiently fluidized, and the development rate is desirably 20% or more, for example, about 20 to 50%.
  • a gel material other than activated carbon, a porous material, a non-porous material, etc. can be used under the same conditions as the fluidized bed carrier.
  • polyvinyl alcohol gel, polyacrylamide gel, polyurethane foam, calcium alginate gel, zeolite, plastic and the like can also be used.
  • activated carbon is used as the carrier, it is possible to remove a wide range of pollutants by the interaction between the activated carbon adsorption and biodegradation.
  • the activated carbon is not particularly limited, such as coconut charcoal, coal, charcoal and the like.
  • the shape is preferably spherical charcoal, but may be ordinary granular charcoal or crushed charcoal.
  • the average particle diameter of a carrier such as activated carbon is preferably about 0.2 to 1.2 mm, particularly about 0.3 to 0.6 mm.
  • a carrier such as activated carbon
  • the optimum particle size is determined by the concentration of waste water, and if it is TOC: 50 mg / L, it is preferably about 0.2 to 0.4 mm.
  • raw water is introduced into the receiving chamber 7 through the spray pipe 8, and is circulated upward through the water permeable plate 3 and the large and small diameter particle layers 4 and 5, and SS is generated. Then, in the fluidized bed F of the granular activated carbon adhered to the biofilm, the water is flowed upward in a transient manner, undergoes a biological reaction, and is taken out as treated water from the upper clarified region through the trough 10 and the outlet 11.
  • Oxygen-containing gas such as air supplied from the air supply pipe 27 flows downward through the oxygen-dissolving membrane module 6, and then flows out from the lower end position of the oxygen-dissolving module 6 through the lower header 21 and the lower manifold 24 to exhaust air. Is discharged from the exhaust pipe 29 (or from the exhaust gas pipe 30 when the exhaust gas pipe 30 is provided) into the atmosphere. The condensed water flows out to the tank 32 through the discharge pipe 29. However, an oxygen-containing gas such as air may be ventilated in an upward flow through the oxygen-dissolving membrane module 6.
  • a non-porous oxygen-dissolving membrane is installed in a fluidized bed of a biological carrier such as activated carbon to increase the amount of oxygen supplied, there is no upper limit to the organic wastewater concentration of the target raw water.
  • the dissolution power of oxygen is small compared to preaeration and direct aeration.
  • the average particle diameter of the fluidized bed carrier is 0.2 to 1.2 mm, the surface of the oxygen-dissolved membrane is rubbed with the carrier to prevent organisms from growing and growing. Oxygen dissolves efficiently in water. As a result, the oxygen supply amount from the oxygen-dissolving membrane and the organic matter decomposition rate by the fluidized bed carrier-attached biofilm are balanced, and stable biological treatment is performed.
  • the oxygen-containing gas may be a gas containing oxygen, such as air, oxygen-enriched air, or pure oxygen. It is desirable that the gas to be vented passes through a filter to remove fine particles in advance.
  • the aeration rate is preferably about twice the equivalent amount of oxygen required for biological reactions. If it is less than this, BOD and ammonia will remain in the treated water due to insufficient oxygen, and if it is greater, the air flow will be unnecessarily increased and the pressure loss will be increased, so the economy will be impaired.
  • the aeration pressure is slightly higher than the pressure loss of the hollow fiber generated at a predetermined aeration amount.
  • the blower it is sufficient that the discharge wind pressure is equal to or lower than the water pressure coming from the water depth. However, it is necessary to be more than the pressure loss of piping. Usually, the pipe resistance is about 1 to 2 kPa.
  • a general-purpose blower having a pressure of 0.5 MPa or less can be used even at a water depth of 5 m or more, and a low-pressure blower of 0.1 MPa or less is preferably used.
  • the supply pressure of the oxygen-containing gas is higher than the pressure loss of the hollow fiber membrane, and the membrane must not be crushed by water pressure. Since the pressure loss of the flat membrane and the spiral membrane is negligible compared to the water pressure, the pressure is extremely low, about 5 kPa or more, water depth pressure or less, desirably 20 kPa or less.
  • the pressure loss varies depending on the inner diameter and length. Since the amount of air vent is a membrane 1 m 2 per 50 ⁇ 200 mL / day, film air quantity when the doubled length is doubled, the air quantity even Maku ⁇ becomes doubled only doubles Don't be. Therefore, the pressure loss of the membrane is directly proportional to the membrane length and inversely proportional to the diameter.
  • the value of pressure loss is about 3 to 20 kPa for hollow fibers having an inner diameter of 50 ⁇ m and a length of 2 m.
  • raw water examples include, but are not limited to, semiconductor, liquid crystal manufacturing process wastewater, food factory wastewater, automobile manufacturing wastewater, mechanized wastewater, and chemical petroleum plant wastewater.
  • SS concentration in the raw water is high, it is preferably supplied to the biological treatment apparatus after pretreatment and removal of SS.
  • the biologically treated water from the biological treatment apparatus may be further treated.
  • examples of such treatment include coagulation sedimentation treatment for removing SS and biological sludge in the treated water.

Abstract

An aerobic organism treatment device 1 has: a reaction tank (tank body) 2; a water-permeable plate 3 arranged horizontally at the bottom of the reaction tank 2; a large-diameter particle layer 4 formed on the upper side of the water-permeable plate 3; a small-diameter particle layer 5 formed on the upper side of the large-diameter particle layer 4; an oxygen dissolution film module 6 disposed on the upper side of the small-diameter particle layer 4; a receiving chamber 7 formed on the lower side of the water-permeable plate 3; a raw water dispersion tube 8 that supplies raw water into the receiving chamber 7; an air-diffusing tube 9 arranged so as to diffuse air inside the receiving chamber 7; etc. The average particle diameter of activated carbon in a fluidized bed F is set at 0.2-1.2 mm, and LV is set at 30 m/hr or less.

Description

好気性生物処理装置及びその運転方法Aerobic biological treatment apparatus and operation method thereof
 本発明は、有機性排水の好気性生物処理装置及びその運転方法に関する。 The present invention relates to an aerobic biological treatment apparatus for organic wastewater and an operation method thereof.
 好気性生物処理方法は安価であるため有機性廃水の処理法として多用されている。本方法では、被処理水への酸素の溶解が必要であり、通常は散気管による曝気が行われている。 The aerobic biological treatment method is widely used as a treatment method for organic wastewater because it is inexpensive. In this method, it is necessary to dissolve oxygen in the water to be treated, and aeration with a diffuser is usually performed.
 散気管による曝気は溶解効率が5~20%程度と低い。また、散気管の設置される水深にかかる水圧以上の圧力で曝気することが必要であり、高圧で多量の空気を送風するため、ブロワの電力費が高い。通常は、好気性生物処理における電力費の2/3以上が酸素溶解のために使用されている。 Aeration with a diffuser has a low dissolution efficiency of about 5-20%. In addition, it is necessary to aerate at a pressure higher than the water pressure applied to the water depth where the diffuser pipe is installed, and a large amount of air is blown at a high pressure, so the power cost of the blower is high. Usually, more than 2/3 of the power cost in aerobic biological treatment is used for oxygen dissolution.
 中空糸膜を用いたメンブレンエアレーションバイオリアクター(MABR)は、気泡の発生なしで酸素溶解できる。MABRでは、水深にかかる水圧よりも低い圧力の空気を通気すればよいため、ブロワの必要圧力が低く、また、酸素の溶解効率が高い。 Membrane aeration bioreactor (MABR) using hollow fiber membrane can dissolve oxygen without generating bubbles. In MABR, it is only necessary to ventilate air having a pressure lower than the water pressure applied to the water depth, so that the required pressure of the blower is low and the oxygen dissolution efficiency is high.
特開2006-87310号公報JP 2006-87310 A
 本発明は、流動床担体への生物付着量が多く、高い生物処理効率を長期間維持することができる好気性生物処理装置及びその運転方法を提供することを目的とする。 An object of the present invention is to provide an aerobic biological treatment apparatus capable of maintaining a high biological treatment efficiency for a long period of time and a method for operating the same, with a large amount of biological adhesion to a fluidized bed carrier.
 本発明の好気性生物処理装置は、反応槽と、該反応槽内に充填された、平均粒径が0.2~1.2mmの流動床担体と、該反応槽内に通気方向が上下方向となるように設置された酸素溶解膜モジュールと、該酸素溶解膜モジュールに酸素含有ガスを供給する酸素含有ガス供給手段と、該反応槽に原水を上向流通水する通水手段とを備えてなる。 The aerobic biological treatment apparatus of the present invention includes a reaction tank, a fluidized bed carrier having an average particle size of 0.2 to 1.2 mm filled in the reaction tank, and an aeration direction in the reaction tank in the vertical direction. An oxygen-dissolving membrane module installed so as to be, an oxygen-containing gas supplying means for supplying an oxygen-containing gas to the oxygen-dissolving membrane module, and a water passing means for circulating raw water upward in the reaction tank Become.
 本発明の一態様では、流動床担体が活性炭である。 In one embodiment of the present invention, the fluidized bed carrier is activated carbon.
 本発明の一態様では、溶解膜は非多孔質の中空糸膜である。 In one embodiment of the present invention, the dissolution membrane is a non-porous hollow fiber membrane.
 本発明の好気性生物処理装置を運転する方法では、原水をLV7~30m/hrで上向流通水する。 In the method for operating the aerobic biological treatment apparatus of the present invention, the raw water is circulated upward at LV 7-30 m / hr.
 本発明では、流動床担体の平均粒径を1.2mm以下と小さくしているので、流動床担体の比表面積が大きい。そのため、生物膜面積が大きく、処理可能負荷量を多くすることができる。また、流動床担体の平均粒径を0.2mm以上としているため、流動床担体による酸素溶解膜の洗浄効果が高く、酸素溶解膜表面での生物の付着繁殖が防止される。 In the present invention, since the average particle size of the fluidized bed carrier is as small as 1.2 mm or less, the specific surface area of the fluidized bed carrier is large. Therefore, the biofilm area is large, and the amount of load that can be processed can be increased. In addition, since the average particle size of the fluidized bed carrier is 0.2 mm or more, the cleaning effect of the oxygen-dissolved membrane by the fluidized bed carrier is high, and the organisms are prevented from growing on the surface of the oxygen-dissolved membrane.
実施の形態に係る生物処理装置の縦断面図である。It is a longitudinal cross-sectional view of the biological treatment apparatus which concerns on embodiment. (a)は酸素溶解膜ユニットの側面図、(b)は酸素溶解膜ユニットの斜視図である。(A) is a side view of an oxygen-dissolved membrane unit, and (b) is a perspective view of the oxygen-dissolved membrane unit.
 以下、図面を参照して本発明についてさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to the drawings.
 図1は実施の形態に係る好気性生物処理装置1の縦断面図である。この好気性生物処理装置1は、反応槽(槽体)2と、該反応槽2の下部に水平に設置されたパンチングプレート等の多孔板や平板に複数の分散ノズルを均等に設けたものなどの透水板3と、該透水板3の上側に形成された大径粒子層4と、該大径粒子層4の上側に形成された小径粒子層5と、小径粒子層5の上側に粉粒状活性炭等の生物付着流動床担体により形成された流動床Fと、流動床F内に少なくとも一部が配置された酸素溶解膜モジュール6と、前記透水板3の下側に形成された受入室7と、該受入室7内に原水を供給する原水散布管8と、充填層の洗浄時に逆洗のためのガス等が供給される洗浄配管9等を有する。反応槽2の上部には、処理水を流出させるためのトラフ10及び流出口11が設けられている。トラフ10は槽内壁に沿って環状流路を形成している。流動床担体としては、平均粒径0.2~1.2mm特に0.3~0.6mmの活性炭が好適である。担体の粒径はJISメッシュを用いて測定された値である。 FIG. 1 is a longitudinal sectional view of an aerobic biological treatment apparatus 1 according to an embodiment. The aerobic biological treatment apparatus 1 includes a reaction tank (tank body) 2, a perforated plate such as a punching plate installed horizontally below the reaction tank 2, and a plurality of dispersion nozzles provided uniformly on a flat plate. The water permeable plate 3, the large particle layer 4 formed above the water permeable plate 3, the small particle layer 5 formed above the large particle layer 4, and the granular material above the small particle layer 5 A fluidized bed F formed of a bioadhesive fluidized bed carrier such as activated carbon, an oxygen-dissolving membrane module 6 at least partially disposed in the fluidized bed F, and a receiving chamber 7 formed below the water permeable plate 3. And a raw water spray pipe 8 for supplying raw water into the receiving chamber 7 and a cleaning pipe 9 for supplying a gas for backwashing when the packed bed is cleaned. In the upper part of the reaction tank 2, a trough 10 and an outlet 11 for allowing the treated water to flow out are provided. The trough 10 forms an annular flow path along the inner wall of the tank. As the fluidized bed carrier, activated carbon having an average particle size of 0.2 to 1.2 mm, particularly 0.3 to 0.6 mm is suitable. The particle size of the carrier is a value measured using a JIS mesh.
 図1は、反応槽に流動床担体を充填して、酸素溶解膜の表面への生物膜の付着を担体の流動による剪断力によって抑制して生物膜の大部分が流動床担体に付着するようにしたものであり、このとき、酸素溶解膜は酸素供給の目的のみに用いられる。担体の平均粒径が0.2mm以上であるため、流動する担体によって酸素溶解膜表面に与えられる剪断力が大きくなり、生物の付着繁殖が防止される。また、担体の平均粒径を1.2mm以下としたことにより、担体の比表面積が大きくなり、付着する生物膜量が多くなり、十分な生物処理が行われる。 FIG. 1 shows that the reaction vessel is filled with a fluidized bed carrier, and the biofilm adheres to the surface of the oxygen-dissolved membrane by the shearing force caused by the flow of the carrier so that most of the biofilm adheres to the fluidized bed carrier. At this time, the oxygen-dissolved film is used only for the purpose of supplying oxygen. Since the average particle size of the carrier is 0.2 mm or more, the shearing force applied to the surface of the oxygen-dissolved film by the flowing carrier is increased, and the organisms are prevented from growing and growing. Moreover, when the average particle diameter of the carrier is 1.2 mm or less, the specific surface area of the carrier is increased, the amount of attached biofilm is increased, and sufficient biological treatment is performed.
 図1では、酸素溶解膜として非多孔質(ノンポーラス)の酸素溶解膜を用い、酸素含有気体を槽外から配管を通じて酸素溶解膜の一次側に通気して、排気は配管を通じて槽外に排出するように構成している。そのため、酸素含有気体を、低圧で酸素溶解膜に通気し、酸素を酸素分子として酸素溶解膜の構成原子の間を通過し(膜に溶解し)、酸素分子として被処理水と接触させる。酸素を水に直接溶解させるので気泡が生じない。この方法は、濃度勾配による分子拡散のメカニズムを用いており、従来のように散気管などによる散気が不要となる。 In FIG. 1, a non-porous oxygen-dissolving film is used as the oxygen-dissolving film, and an oxygen-containing gas is vented from the outside of the tank to the primary side of the oxygen-dissolving film through the pipe, and the exhaust is discharged outside the tank through the pipe. It is configured to do. Therefore, an oxygen-containing gas is passed through the oxygen-dissolved film at a low pressure, passes oxygen as oxygen molecules between constituent atoms of the oxygen-dissolved film (dissolves in the film), and is brought into contact with the water to be treated as oxygen molecules. Since oxygen is dissolved directly in water, no bubbles are generated. This method uses a molecular diffusion mechanism based on a concentration gradient, and does not require aeration using a diffuser tube as in the prior art.
 また酸素溶解膜の素材として疎水性の素材を用いると膜中に浸水しづらいので好ましい。疎水性の膜であっても微量の水蒸気は侵入する。 In addition, it is preferable to use a hydrophobic material as the material of the oxygen-dissolving film because it is difficult to infiltrate the film. A trace amount of water vapor enters even a hydrophobic membrane.
 図2は、酸素溶解膜モジュール6の一例を示している。この酸素溶解膜モジュール6は酸素溶解膜として非多孔質の中空糸膜22を用いたものである。この実施の形態では、中空糸膜22は上下方向に配列されており、各中空糸膜22の上端は上部ヘッダー20に連なり、下端は下部ヘッダー21に連なっている。中空糸膜22の内部は、それぞれ上部ヘッダー20及び下部ヘッダー21内に連通している。各ヘッダー20,21は中空管状である。なお、平膜やスパイラル膜を用いる場合にも、通気方向が上下方向となるように配列されることが望ましい。 FIG. 2 shows an example of the oxygen-dissolving membrane module 6. This oxygen dissolution membrane module 6 uses a non-porous hollow fiber membrane 22 as an oxygen dissolution membrane. In this embodiment, the hollow fiber membranes 22 are arranged in the vertical direction, and the upper end of each hollow fiber membrane 22 is connected to the upper header 20 and the lower end is connected to the lower header 21. The interior of the hollow fiber membrane 22 communicates with the upper header 20 and the lower header 21, respectively. Each header 20, 21 is a hollow tube. Even when a flat membrane or a spiral membrane is used, it is desirable to arrange the ventilation direction to be the vertical direction.
 図2(b)の通り、1対のヘッダー20,21と中空糸膜22とからなるユニットが複数個平行に配列されている。図2(a)の通り、各上部ヘッダー20の上部は配管を介して上部マニホルド23が連結され、各下部ヘッダー21の下部は配管を介して下部マニホルド24に連結されていることが好ましい。酸素溶解膜モジュール6の上部に酸素含有ガスを供給し、酸素溶解膜モジュール6の下部から排出する。空気等の酸素含有ガスは上部ヘッダー20から中空糸膜22を通って下部ヘッダー21へ流れ、この間に酸素が中空糸膜22を透過して反応槽2内の水に溶解する。 2B, a plurality of units each including a pair of headers 20 and 21 and a hollow fiber membrane 22 are arranged in parallel. As shown in FIG. 2A, it is preferable that an upper manifold 23 is connected to the upper part of each upper header 20 via a pipe, and a lower part of each lower header 21 is connected to a lower manifold 24 via a pipe. An oxygen-containing gas is supplied to the upper portion of the oxygen-dissolving membrane module 6 and discharged from the lower portion of the oxygen-dissolving membrane module 6. Oxygen-containing gas such as air flows from the upper header 20 through the hollow fiber membrane 22 to the lower header 21, during which oxygen passes through the hollow fiber membrane 22 and dissolves in the water in the reaction vessel 2.
 各ヘッダー20,21及び各マニホルド23,24は流水勾配を有するように設けられてもよい。酸素溶解膜モジュール6は上下に多段に設置されてもよい。 Each header 20, 21 and each manifold 23, 24 may be provided to have a running water gradient. The oxygen-dissolving membrane module 6 may be installed in multiple stages up and down.
 この酸素溶解膜モジュール6に空気を供給するために、ブロワ26と空気供給用の給気配管27とが設けられており、これらにより酸素含有ガス供給手段が構成されている。該給気配管27が上部マニホルド23に接続されている。下部マニホルド24には排ガス用の中継配管28が接続されている。中継配管28に、排出配管29が接続されている。排出配管29は、下り勾配(鉛直下向きを含む)を有するように設けられ、反応槽2外にまで延設されている。図1では排出配管29は反応槽2の側方に引き出されているが、反応槽2の底部から下方に引き出されてもよい。 In order to supply air to the oxygen-dissolving membrane module 6, a blower 26 and an air supply pipe 27 for supplying air are provided, and these constitute oxygen-containing gas supply means. The air supply pipe 27 is connected to the upper manifold 23. A relay pipe 28 for exhaust gas is connected to the lower manifold 24. A discharge pipe 29 is connected to the relay pipe 28. The discharge pipe 29 is provided so as to have a downward slope (including a vertically downward direction), and extends to the outside of the reaction tank 2. In FIG. 1, the discharge pipe 29 is drawn to the side of the reaction tank 2, but may be drawn downward from the bottom of the reaction tank 2.
 図1の通り、酸素溶解膜に溶解しなかった酸素含有気体の残部が排出配管29を通じて槽外に排気される。配管29の末端は、酸素溶解膜モジュール6の下端(モジュール6が複数のときは各モジュール下端の中で最も下位のもの)より低い位置となるよう配置されている。そのため、排気に凝縮水が含まれる場合は排出配管29の下方のタンク32に凝縮水が流出する。タンク32内の水は、ポンプ33及び配管34によって反応槽2に送水されてもよい。 As shown in FIG. 1, the remainder of the oxygen-containing gas that did not dissolve in the oxygen-dissolving film is exhausted outside the tank through the discharge pipe 29. The end of the pipe 29 is arranged to be lower than the lower end of the oxygen-dissolving membrane module 6 (the lowest one among the lower ends of the modules when there are a plurality of modules 6). Therefore, when the condensed water is contained in the exhaust gas, the condensed water flows out to the tank 32 below the discharge pipe 29. The water in the tank 32 may be sent to the reaction tank 2 by the pump 33 and the pipe 34.
 上記構成では、排出配管29が排気の槽外排出と凝縮水の槽外排出とを併せて行うように構成されているが、これに限定されない。槽内または槽外において、排出配管29に、排気を槽外に排出する排ガス配管30を接続してもよい。この場合、凝縮水は排出配管29を通じて排出される。排ガス配管30の末端は、酸素溶解膜モジュールの下端より高い位置に配置されてもよい。凝縮水の溜まりができないようにするために、排ガス配管30を下り勾配を有さず上り勾配または鉛直上向きのみで構成することが好ましい。排出配管29の排ガス配管30との分岐点より下流側にバルブ(図示略)を設け、バルブを開くことにより凝縮水がタンク32に流出するように構成してもよい。 In the above configuration, the discharge pipe 29 is configured to perform both the exhaust out of the tank and the condensed water out of the tank, but the present invention is not limited to this. An exhaust gas pipe 30 that exhausts the exhaust gas to the outside of the tank may be connected to the discharge pipe 29 inside or outside the tank. In this case, the condensed water is discharged through the discharge pipe 29. The end of the exhaust gas pipe 30 may be disposed at a position higher than the lower end of the oxygen-dissolving membrane module. In order to prevent the condensate from accumulating, it is preferable that the exhaust gas pipe 30 has only an upward gradient or a vertically upward direction without a downward gradient. A valve (not shown) may be provided on the downstream side of the branch point of the discharge pipe 29 with the exhaust gas pipe 30, and the condensed water may flow out into the tank 32 by opening the valve.
 バルブは自動弁、手動弁のいずれでもよい。凝縮水を排出するためのバルブの開放は、連続式でも間欠式でもよい。間欠式の場合は、通常の運転では、1日に1回~30日に1回(多くても日に1回数秒、少なければ月に1回数十秒)、好ましくは1日に1回~15日に1回、バルブを開くことにより排水する。 The valve may be either an automatic valve or a manual valve. The valve for discharging the condensed water may be opened continuously or intermittently. In the case of intermittent operation, in normal operation, once a day to once every 30 days (at most once a day, at least once a month for 10 seconds), preferably once a day Drain by opening the valve once every 15 days.
 流動床担体の充填量は反応槽の容積の30~70%程度、特に40~60%程度が好ましい。この充填量は、多いほうが生物量が多く活性は高いが、多すぎると担体が流出するおそれがある。従って、流動床が20~50%程度展開するLV例えば7~30m/hr、特に8~15m/hr程度で通水するのが良い。展開率が20%よりも低いと、目詰まり、短絡のおそれがある。展開率が50%よりも高いと、担体の流出のおそれがあると共に、ポンプ動力コストが高くなる。 The filling amount of the fluidized bed carrier is preferably about 30 to 70%, particularly about 40 to 60% of the volume of the reaction vessel. The larger the filling amount, the more the biomass and the higher the activity. However, if the amount is too large, the carrier may flow out. Accordingly, it is preferable to pass water at an LV in which the fluidized bed develops about 20 to 50%, for example, about 7 to 30 m / hr, particularly about 8 to 15 m / hr. If the expansion rate is lower than 20%, there is a possibility of clogging and short circuit. If the expansion rate is higher than 50%, the carrier may flow out, and the pump power cost increases.
 通常の生物活性炭では、活性炭流動床の展開率は10~20%程度であるがこの場合、活性炭の流動状態が不均一で上下左右に流動する。結果として同時に設置した膜が活性炭によってこすられ、すり減って消耗することになる。これを防止するため、本発明では、活性炭等の流動床担体は十分に流動させることが必要で、展開率は20%以上例えば20~50%程度とするのが望ましい。 In normal biological activated carbon, the development rate of the activated carbon fluidized bed is about 10 to 20%, but in this case, the activated carbon flow is uneven and flows vertically and horizontally. As a result, the membrane installed at the same time is rubbed by activated carbon and worn out. In order to prevent this, in the present invention, the fluidized bed carrier such as activated carbon needs to be sufficiently fluidized, and the development rate is desirably 20% or more, for example, about 20 to 50%.
 なお、平均粒径0.6mmの活性炭をLV15m/hrで流動させると、展開率20~30%の流動状態となる。平均粒径0.3mmの活性炭をLV8~10m/hrで流動させると、展開率は20~30%となる。 Note that when activated carbon having an average particle size of 0.6 mm is flowed at LV 15 m / hr, a flow rate of 20 to 30% is obtained. When activated carbon having an average particle size of 0.3 mm is flowed at LV 8 to 10 m / hr, the development rate is 20 to 30%.
 本発明では、流動床担体として活性炭以外のゲル状物質、多孔質材、非多孔質材等も同様の条件で使用できる。例えば、ポリビニルアルコールゲル、ポリアクリルアミドゲル、ポリウレタンフォーム、アルギン酸カルシウムゲル、ゼオライト、プラスチック等も用いることができる。ただし、担体として活性炭を用いると、活性炭の吸着作用と生物分解作用による相互作用により、広範囲な汚濁物質の除去を行うことが可能である。なお、活性炭は、やしがら炭、石炭、木炭等特に限定されない。形状は球状炭が好ましいが、通常の粒状炭や破砕炭でも良い。 In the present invention, a gel material other than activated carbon, a porous material, a non-porous material, etc. can be used under the same conditions as the fluidized bed carrier. For example, polyvinyl alcohol gel, polyacrylamide gel, polyurethane foam, calcium alginate gel, zeolite, plastic and the like can also be used. However, when activated carbon is used as the carrier, it is possible to remove a wide range of pollutants by the interaction between the activated carbon adsorption and biodegradation. The activated carbon is not particularly limited, such as coconut charcoal, coal, charcoal and the like. The shape is preferably spherical charcoal, but may be ordinary granular charcoal or crushed charcoal.
 活性炭等の担体の平均粒径は0.2~1.2mm特に0.3~0.6mm程度が好ましい。平均粒径が大きいと高LVとすることが可能であり、処理水の一部を反応槽に循環する場合は循環量を増やせるため高負荷が可能となる。しかし、比表面積が小さくなるため、生物量が少なくなる。平均粒径が小さいと、低LVで流動できるため、ポンプ動力が安価となる。かつ、比表面積が大きいため、付着生物量が増える。 The average particle diameter of a carrier such as activated carbon is preferably about 0.2 to 1.2 mm, particularly about 0.3 to 0.6 mm. When the average particle size is large, it is possible to increase the LV, and when a part of the treated water is circulated to the reaction tank, the amount of circulation can be increased, so that a high load is possible. However, since the specific surface area is small, the biomass is reduced. If the average particle size is small, the pump power can be reduced because it can flow at a low LV. And since the specific surface area is large, the amount of attached organisms increases.
 最適粒径は廃水の濃度によって決定され、TOC:50mg/Lであれば0.2~0.4mm程度が好ましい。 The optimum particle size is determined by the concentration of waste water, and if it is TOC: 50 mg / L, it is preferably about 0.2 to 0.4 mm.
 このように構成された好気性生物処理装置1において、原水は散布管8を通じて受入室7に導入され、透水板3及び大径・小径の粒子層4,5を上向流通水されてSSが濾過され、次いで生物膜付着の粉粒状活性炭の流動床Fにおいて、一過式で上向流通水され生物反応を行って上部清澄領域からトラフ10と流出口11を通じて処理水として取り出される。 In the aerobic biological treatment apparatus 1 configured as described above, raw water is introduced into the receiving chamber 7 through the spray pipe 8, and is circulated upward through the water permeable plate 3 and the large and small diameter particle layers 4 and 5, and SS is generated. Then, in the fluidized bed F of the granular activated carbon adhered to the biofilm, the water is flowed upward in a transient manner, undergoes a biological reaction, and is taken out as treated water from the upper clarified region through the trough 10 and the outlet 11.
 給気配管27から供給された空気等の酸素含有気体は、酸素溶解膜モジュール6を下向流通気した後、酸素溶解モジュール6の下端位置より下部ヘッダー21、下部マニホルド24を通じて流出し、排空気は排出配管29から(または排ガス配管30を設けたときは排ガス配管30から)大気中へ排出される。凝縮水は排出配管29を通じてタンク32へ流出する。ただし、空気等の酸素含有気体は、酸素溶解膜モジュール6に上向流で通気されてもよい。 Oxygen-containing gas such as air supplied from the air supply pipe 27 flows downward through the oxygen-dissolving membrane module 6, and then flows out from the lower end position of the oxygen-dissolving module 6 through the lower header 21 and the lower manifold 24 to exhaust air. Is discharged from the exhaust pipe 29 (or from the exhaust gas pipe 30 when the exhaust gas pipe 30 is provided) into the atmosphere. The condensed water flows out to the tank 32 through the discharge pipe 29. However, an oxygen-containing gas such as air may be ventilated in an upward flow through the oxygen-dissolving membrane module 6.
 なお、酸素溶解膜として中空糸膜を用いるときは通気部の断面積が小さいため通気の阻害となりやすく影響が大きいので、酸素溶解膜が中空糸膜である好気性生物処理装置に上記の凝縮水の除去機構をより好適に用いることができる。 When a hollow fiber membrane is used as the oxygen-dissolving membrane, since the cross-sectional area of the ventilation portion is small, it is likely to hinder ventilation, and the influence is large. The removal mechanism can be used more suitably.
 本発明では、活性炭等の生物担体の流動床に非多孔性の酸素溶解膜を設置することで、供給酸素量が多くなるため、対象とする原水の有機性排水濃度に上限が無い。 In the present invention, since a non-porous oxygen-dissolving membrane is installed in a fluidized bed of a biological carrier such as activated carbon to increase the amount of oxygen supplied, there is no upper limit to the organic wastewater concentration of the target raw water.
 また、平均粒径0.2~1.2mmの生物担体をLV7~30m/hrの上向流により流動させて形成した流動床で運転するため、激しい撹乱にさらされることがない。したがって、多量の生物を安定して維持できるため、負荷を高くとることができる。 In addition, since it is operated in a fluidized bed formed by flowing a biological carrier having an average particle size of 0.2 to 1.2 mm by an upward flow of LV 7 to 30 m / hr, it is not exposed to intense disturbance. Therefore, since a large amount of organisms can be stably maintained, the load can be increased.
 また、本発明では酸素溶解膜を使用するため、プリエアレーション、直接曝気と比較すると、酸素の溶解動力が小さい。本発明では、流動床担体の平均粒径を0.2~1.2mmとしているので、酸素溶解膜の表面が担体で擦られて生物の付着繁殖が防止されるので、酸素溶解膜から被処理水中に酸素が効率よく溶解する。これにより、酸素溶解膜からの酸素供給量と、流動床担体付着生物膜による有機物分解速度のバランスがとれ、安定した生物処理が行われる。 In addition, since an oxygen-dissolving film is used in the present invention, the dissolution power of oxygen is small compared to preaeration and direct aeration. In the present invention, since the average particle diameter of the fluidized bed carrier is 0.2 to 1.2 mm, the surface of the oxygen-dissolved membrane is rubbed with the carrier to prevent organisms from growing and growing. Oxygen dissolves efficiently in water. As a result, the oxygen supply amount from the oxygen-dissolving membrane and the organic matter decomposition rate by the fluidized bed carrier-attached biofilm are balanced, and stable biological treatment is performed.
 これらのことから、本発明によると、低濃度から高濃度までの有機性排水を高負荷で、かつ安定して処理することが可能となる。 For these reasons, according to the present invention, it is possible to stably treat organic wastewater from a low concentration to a high concentration with a high load.
<酸素含有ガス>
 酸素含有ガスは空気、酸素富化空気、純酸素等、酸素を含む気体であればよい。通気する気体はフィルターを通過させて微細粒子を予め除去することが望ましい。
<Oxygen-containing gas>
The oxygen-containing gas may be a gas containing oxygen, such as air, oxygen-enriched air, or pure oxygen. It is desirable that the gas to be vented passes through a filter to remove fine particles in advance.
 通気量は生物反応に必要な酸素量の当量から2倍程度が望ましい。これよりも少ないと酸素不足で処理水中にBODやアンモニアが残存し、多いと通気量が不必要に多くなることに加えて圧力損失が高くなるため、経済性が損なわれる。 The aeration rate is preferably about twice the equivalent amount of oxygen required for biological reactions. If it is less than this, BOD and ammonia will remain in the treated water due to insufficient oxygen, and if it is greater, the air flow will be unnecessarily increased and the pressure loss will be increased, so the economy will be impaired.
 通気圧力は所定の通気量で生ずる中空糸の圧力損失よりもわずかに高い程度が望ましい。 It is desirable that the aeration pressure is slightly higher than the pressure loss of the hollow fiber generated at a predetermined aeration amount.
<ブロワ>
 ブロワは、吐出風圧が水深からくる水圧以下のもので十分である。但し、配管等の圧損以上であることは必要である。通常、配管抵抗は1~2kPa程度である。
<Blower>
As the blower, it is sufficient that the discharge wind pressure is equal to or lower than the water pressure coming from the water depth. However, it is necessary to be more than the pressure loss of piping. Usually, the pipe resistance is about 1 to 2 kPa.
 5mの水深の場合、通常は0.55MPa程度までの出力の汎用ブロワが用いられ、それ以上の水深では高圧ブロワが用いられてきている。 In the case of a water depth of 5 m, a general-purpose blower with an output of up to about 0.55 MPa is usually used, and a high-pressure blower has been used at a depth higher than that.
 本発明では、5m以上の水深であっても0.5MPa以下の圧力の汎用ブロワを用いることができ、0.1MPa以下の低圧ブロワを用いることが好ましい。 In the present invention, a general-purpose blower having a pressure of 0.5 MPa or less can be used even at a water depth of 5 m or more, and a low-pressure blower of 0.1 MPa or less is preferably used.
 酸素含有ガスの供給圧は、中空糸膜の圧力損失より高く、さらに膜が水圧でつぶれないこと、が条件となる。平膜、スパイラル膜は膜の圧損が水圧と比較すると無視できるため、極めて低い圧力、5kPa程度以上、水深圧力以下、望ましくは20kPa以下である。 The supply pressure of the oxygen-containing gas is higher than the pressure loss of the hollow fiber membrane, and the membrane must not be crushed by water pressure. Since the pressure loss of the flat membrane and the spiral membrane is negligible compared to the water pressure, the pressure is extremely low, about 5 kPa or more, water depth pressure or less, desirably 20 kPa or less.
 中空糸膜の場合、内径と長さによって圧力損失は変化する。通気する空気量は膜1mあたり50~200mL/dayであるから、膜長さが2倍になると空気量は2倍になり、膜径が2倍になっても空気量は2倍にしかならない。したがって、膜の圧力損失は膜長さに正比例し、直径に反比例する。 In the case of a hollow fiber membrane, the pressure loss varies depending on the inner diameter and length. Since the amount of air vent is a membrane 1 m 2 per 50 ~ 200 mL / day, film air quantity when the doubled length is doubled, the air quantity even Maku径becomes doubled only doubles Don't be. Therefore, the pressure loss of the membrane is directly proportional to the membrane length and inversely proportional to the diameter.
 圧力損失の値は、内径50μm、長さ2mの中空糸で3~20kPa程度である。 The value of pressure loss is about 3 to 20 kPa for hollow fibers having an inner diameter of 50 μm and a length of 2 m.
<原水の前処理及び生物処理水の後処理>
 本発明では、原水としては、半導体、液晶製造工程排水、食品工場排水、自動車製造排水、機械化工排水、化学石油プラント排水などが例示されるが、これらに限定されない。原水中のSS濃度が高い場合には、前処理してSSを除去した後、生物処理装置に供給するのが好ましい。
<Pretreatment of raw water and post-treatment of biologically treated water>
In the present invention, examples of raw water include, but are not limited to, semiconductor, liquid crystal manufacturing process wastewater, food factory wastewater, automobile manufacturing wastewater, mechanized wastewater, and chemical petroleum plant wastewater. When the SS concentration in the raw water is high, it is preferably supplied to the biological treatment apparatus after pretreatment and removal of SS.
 本発明では、生物処理装置からの生物処理水をさらに処理してもよい。このような処理としては、処理水中のSSや生物汚泥を除去するための凝集沈殿処理などが例示される。 In the present invention, the biologically treated water from the biological treatment apparatus may be further treated. Examples of such treatment include coagulation sedimentation treatment for removing SS and biological sludge in the treated water.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2018年2月20日付で出願された日本特許出願2018-028199に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2018-028199 filed on Feb. 20, 2018, which is incorporated by reference in its entirety.
 1 好気性生物処理装置
 2 反応槽
 6 酸素溶解膜モジュール
 20,21 ヘッダー
 22 中空糸膜
 27 給気配管
 29 排出配管
 30 排ガス配管
 31 バルブ
 32 タンク
DESCRIPTION OF SYMBOLS 1 Aerobic biological treatment apparatus 2 Reaction tank 6 Oxygen dissolution membrane module 20, 21 Header 22 Hollow fiber membrane 27 Air supply piping 29 Exhaust piping 30 Exhaust gas piping 31 Valve 32 Tank

Claims (4)

  1.  反応槽と、
     該反応槽内に充填された、平均粒径が0.2~0.6mmの流動床担体と、
     該反応槽内に通気方向が上下方向となるように設置された酸素溶解膜モジュールと、
     該酸素溶解膜モジュールに酸素含有ガスを供給する酸素含有ガス供給手段と、
     該反応槽に原水を上向流通水する通水手段と
    を備えてなる好気性生物処理装置。
    A reaction vessel;
    A fluidized bed carrier having an average particle size of 0.2 to 0.6 mm, filled in the reaction vessel;
    An oxygen-dissolved membrane module installed in the reaction tank so that the aeration direction is the vertical direction;
    Oxygen-containing gas supply means for supplying an oxygen-containing gas to the oxygen-dissolving membrane module;
    An aerobic biological treatment apparatus comprising a water flow means for upwardly circulating raw water in the reaction tank.
  2.  前記流動床担体が活性炭である請求項1の好気性生物処理装置。 The aerobic biological treatment apparatus according to claim 1, wherein the fluidized bed carrier is activated carbon.
  3.  前記酸素溶解膜は中空糸膜である請求項1又は2の好気性生物処理装置。 The aerobic biological treatment apparatus according to claim 1 or 2, wherein the oxygen-dissolving membrane is a hollow fiber membrane.
  4.  請求項1ないし3のいずれかの好気性生物処理装置の運転方法であって、原水をLV7~30m/hrで上向流通水する好気性生物処理装置の運転方法。 A method for operating an aerobic biological treatment apparatus according to any one of claims 1 to 3, wherein raw water is circulated upward at LV 7 to 30 m / hr.
PCT/JP2019/002702 2018-02-20 2019-01-28 Aerobic organism treatment device and method for operating same WO2019163428A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980007188.3A CN111542500A (en) 2018-02-20 2019-01-28 Aerobic biological treatment apparatus and method for operating the same
KR1020207021341A KR20200121291A (en) 2018-02-20 2019-01-28 Aerobic biological treatment device and operation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018028199A JP6858146B2 (en) 2018-02-20 2018-02-20 Aerobic biological treatment equipment and its operation method
JP2018-028199 2018-02-20

Publications (1)

Publication Number Publication Date
WO2019163428A1 true WO2019163428A1 (en) 2019-08-29

Family

ID=67687238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002702 WO2019163428A1 (en) 2018-02-20 2019-01-28 Aerobic organism treatment device and method for operating same

Country Status (5)

Country Link
JP (1) JP6858146B2 (en)
KR (1) KR20200121291A (en)
CN (1) CN111542500A (en)
TW (1) TW201936497A (en)
WO (1) WO2019163428A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114314828B (en) * 2021-12-31 2022-11-29 西南交通大学 Anaerobic fluidized bed membrane bioreactor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6490093A (en) * 1987-10-01 1989-04-05 Komatsu Mfg Co Ltd Apparatus for treating waste water
JPH0338289A (en) * 1989-07-06 1991-02-19 Toshiba Corp Biologically activated carbon water-treatment apparatus
JP2008043882A (en) * 2006-08-17 2008-02-28 Hiroshima Pref Gov Method and apparatus for improving poorly oxygenated water quality environment
JP2013515605A (en) * 2010-03-08 2013-05-09 仁何大学 産学協力団 Fluidized bed separation membrane bioreactor
US20160009578A1 (en) * 2013-02-22 2016-01-14 General Electric Company Membrane assembly for supporting a biofilm

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69230529T2 (en) * 1991-04-12 2000-06-21 Vito Mol Membranes with immobilized microorganisms on or in them, processes for producing such membranes, reactor with such membranes and processes using these membranes, in particular for removing metals or for settling organic, xenobiotic compounds
CN1164507C (en) * 2002-03-15 2004-09-01 清华大学 Stuffing-throwing fluidized bed membrane bioreactor and water treating method
JP2006087310A (en) 2004-09-21 2006-04-06 Japan Organo Co Ltd Membrane-type bioreactor and liquid treatment method using the same
JP2010234298A (en) * 2009-03-31 2010-10-21 Kurita Water Ind Ltd Device for supplying water containing dissolved gas and method for producing water containing dissolved gas
CN102863075A (en) * 2011-07-07 2013-01-09 河南工业大学 External membrane bioreactor with self-suction jet nozzle aerating function
KR101342678B1 (en) * 2012-02-07 2014-01-02 인하대학교 산학협력단 Waste water treatment system by two stage anaerobic reactors coupled with nitrogen removal process
CN107285466A (en) * 2017-07-10 2017-10-24 天津城建大学 The sewage-treatment plant and processing method of bubble-free aeration bioreactor synchronous nitration and denitrification

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6490093A (en) * 1987-10-01 1989-04-05 Komatsu Mfg Co Ltd Apparatus for treating waste water
JPH0338289A (en) * 1989-07-06 1991-02-19 Toshiba Corp Biologically activated carbon water-treatment apparatus
JP2008043882A (en) * 2006-08-17 2008-02-28 Hiroshima Pref Gov Method and apparatus for improving poorly oxygenated water quality environment
JP2013515605A (en) * 2010-03-08 2013-05-09 仁何大学 産学協力団 Fluidized bed separation membrane bioreactor
US20160009578A1 (en) * 2013-02-22 2016-01-14 General Electric Company Membrane assembly for supporting a biofilm

Also Published As

Publication number Publication date
JP6858146B2 (en) 2021-04-14
CN111542500A (en) 2020-08-14
TW201936497A (en) 2019-09-16
KR20200121291A (en) 2020-10-23
JP2019141785A (en) 2019-08-29

Similar Documents

Publication Publication Date Title
WO2019159667A1 (en) Aerobic biological treatment device
WO2018168022A1 (en) Aerobic biological treatment device
WO2019163423A1 (en) Aerobic organism treatment device
WO2018100841A1 (en) Biologically activated carbon processing device
WO2019163428A1 (en) Aerobic organism treatment device and method for operating same
JP6601517B2 (en) Operating method of aerobic biological treatment equipment
WO2019163422A1 (en) Method for operating aerobic biological treatment device
WO2019163424A1 (en) Aerobic biological treatment device and method for operating same
JP6558455B1 (en) Aerobic biological treatment equipment
WO2019163426A1 (en) Aerobic biological treatment device
JP6866918B2 (en) Aerobic biological treatment equipment
WO2018168023A1 (en) Aerobe treatment method
JP2021010853A (en) Aerobic biological treatment device and its operation method
JP2019005755A (en) Biological activated carbon treatment device
JP2019005756A (en) Biological activated carbon treatment device
JP2019025483A (en) Biological activated carbon treatment device
JP2019005757A (en) Biological activated carbon treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757830

Country of ref document: EP

Kind code of ref document: A1