JP6866918B2 - Aerobic biological treatment equipment - Google Patents

Aerobic biological treatment equipment Download PDF

Info

Publication number
JP6866918B2
JP6866918B2 JP2019223738A JP2019223738A JP6866918B2 JP 6866918 B2 JP6866918 B2 JP 6866918B2 JP 2019223738 A JP2019223738 A JP 2019223738A JP 2019223738 A JP2019223738 A JP 2019223738A JP 6866918 B2 JP6866918 B2 JP 6866918B2
Authority
JP
Japan
Prior art keywords
oxygen
membrane
biological treatment
pipe
aerobic biological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019223738A
Other languages
Japanese (ja)
Other versions
JP2020037111A (en
Inventor
哲朗 深瀬
哲朗 深瀬
小林 秀樹
秀樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2019223738A priority Critical patent/JP6866918B2/en
Publication of JP2020037111A publication Critical patent/JP2020037111A/en
Application granted granted Critical
Publication of JP6866918B2 publication Critical patent/JP6866918B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Description

本発明は、有機性排水の好気性生物処理装置に関する。 The present invention relates to an aerobic biological treatment apparatus for organic wastewater.

好気性生物処理方法は安価であるため有機性廃水の処理法として多用されている。本方法では、被処理水への酸素の溶解が必要であり、通常は散気管による曝気が行われている。 Since aerobic organism treatment methods are inexpensive, they are often used as treatment methods for organic wastewater. In this method, it is necessary to dissolve oxygen in the water to be treated, and aeration is usually performed by an air diffuser.

散気管による曝気は溶解効率が5〜20%程度と低い。また、散気管の設置される水深にかかる水圧以上の圧力で曝気することが必要であり、高圧で多量の空気を送風するため、ブロワの電力費が高い。通常は、好気性生物処理における電力費の2/3以上が酸素溶解のために使用されている。 Aeration with an air diffuser has a low dissolution efficiency of about 5 to 20%. In addition, it is necessary to aerate at a pressure higher than the water pressure applied to the water depth where the air diffuser is installed, and a large amount of air is blown at a high pressure, so that the power cost of the blower is high. Usually, more than two-thirds of the electricity costs in aerobic biotreatment are used for oxygen dissolution.

中空糸膜の外側に生物膜を付着させ、内側から酸素を供給することで好気性生物処理を行うメンブレンエアレーションバイオリアクター(MABR)は、気泡の発生なしで酸素溶解できる。MABRでは、水深にかかる水圧よりも低い圧力の空気を通気すればよいため、ブロワの必要圧力が低く、また、酸素の溶解効率が高い。 A membrane aeration bioreactor (MABR) that performs aerobic biological treatment by attaching a biofilm to the outside of the hollow fiber membrane and supplying oxygen from the inside can dissolve oxygen without generating bubbles. In MABR, since it is sufficient to ventilate air having a pressure lower than the water pressure applied to the water depth, the required pressure of the blower is low and the oxygen dissolution efficiency is high.

特開2006−87310号公報Japanese Unexamined Patent Publication No. 2006-87310

MABRにおいては、反応槽からの水蒸気の浸透や通気ガス中の水蒸気の凝縮によって、酸素溶解膜内部に凝縮水が生成し、ガス流路や中空糸膜の一部が閉塞し、通気効率が低下するという問題があった。 In MABR, condensed water is generated inside the oxygen dissolution membrane due to the permeation of water vapor from the reaction tank and the condensation of water vapor in the ventilation gas, and the gas flow path and a part of the hollow fiber membrane are blocked, resulting in a decrease in ventilation efficiency. There was a problem of doing.

即ち、MABRの中空糸膜に通気する空気量は少なく、通常使用される中空糸酸素溶解膜では中空糸内の空気流速は1mm/sec以下と極めて遅い。そのため、一部の中空糸内にわずかな凝縮水が入り込むだけで、他の中空糸と大きな圧力差が生じ、ガスの流れが止まってしまう。凝縮水が多量にヘッダー管にたまると、多量の凝縮水が中空糸内に入り込み、多くの中空糸が通気不能になり、酸素溶解効率が大きく低下する。 That is, the amount of air ventilated through the hollow fiber membrane of MABR is small, and the air flow velocity in the hollow fiber is extremely slow at 1 mm / sec or less in the normally used hollow fiber oxygen-dissolved membrane. Therefore, even if a small amount of condensed water enters some of the hollow fibers, a large pressure difference is generated with the other hollow fibers, and the gas flow is stopped. When a large amount of condensed water accumulates in the header pipe, a large amount of condensed water enters the hollow fiber membrane, and many hollow fiber membranes cannot be ventilated, resulting in a large decrease in oxygen dissolution efficiency.

特許文献1では、多数の中空糸膜を上下方向に配列し、各中空糸膜に下側からコンプレッサで空気を供給している。仮にこの特許文献1のMABRにおいて凝縮水を空気圧によって中空糸膜外へ排出しようとした場合には、コンプレッサとして反応槽の水圧以上の高圧力のものが必要なうえに、電力消費量が著しく多くなる。 In Patent Document 1, a large number of hollow fiber membranes are arranged in the vertical direction, and air is supplied to each hollow fiber membrane from below by a compressor. If the MABR of Patent Document 1 attempts to discharge condensed water to the outside of the hollow fiber membrane by air pressure, a compressor having a pressure higher than the water pressure of the reaction tank is required and the power consumption is extremely large. Become.

本発明は酸素溶解膜内から凝縮水が容易に排出され、高い酸素溶解効率を長期間維持することができる好気性生物処理装置を提供することを目的とする。 An object of the present invention is to provide an aerobic biological treatment apparatus capable of easily discharging condensed water from the oxygen dissolution membrane and maintaining a high oxygen dissolution efficiency for a long period of time.

本発明の好気性生物処理装置は、反応槽と、該反応槽内に通気方向が上下方向となるように設置された酸素溶解膜モジュールと、該酸素溶解膜モジュールに酸素含有ガスを供給する酸素含有ガス供給手段と、酸素溶解膜モジュールから排ガスを槽外に排出する排ガス配管と、酸素溶解膜モジュールから凝縮水を反応槽外へ排出する排水配管とを備えてなる。 The aerobic biological treatment apparatus of the present invention comprises a reaction vessel, an oxygen dissolution membrane module installed in the reaction vessel so that the ventilation direction is in the vertical direction, and oxygen for supplying oxygen-containing gas to the oxygen dissolution membrane module. It is provided with a gas-containing gas supply means, an exhaust gas pipe for discharging exhaust gas from the oxygen dissolution film module to the outside of the tank, and a drainage pipe for discharging condensed water from the oxygen dissolution film module to the outside of the reaction tank.

本発明の一態様では、凝縮水を酸素溶解膜モジュールの下端より低い(複数モジュールを使用の場合は各モジュールの下端の中でも最も下位のものより低い)位置へ排出し、酸素溶解膜モジュールから排出された凝縮水を槽外に排出するよう設けられている。 In one aspect of the present invention, the condensed water is discharged to a position lower than the lower end of the oxygen dissolution membrane module (when a plurality of modules are used, it is lower than the lowest one among the lower ends of each module) and discharged from the oxygen dissolution membrane module. It is provided so that the condensed water is discharged to the outside of the tank.

本発明の一態様では、前記排水配管は鉛直下方向又は下り勾配を有するように設けられている。 In one aspect of the present invention, the drainage pipe is provided so as to have a vertical downward direction or a downward slope.

本発明の一態様では、排水配管の内径は50mm以下であり、その末端は酸素溶解膜モジュールの上端より高い位置に配置される。 In one aspect of the present invention, the inner diameter of the drainage pipe is 50 mm or less, and the end thereof is arranged at a position higher than the upper end of the oxygen dissolution membrane module.

本発明の一態様では、前記排水配管から流出する凝縮水を受け入れるタンクと、該タンク内の水を前記反応槽へ送水するポンプとを備える。 In one aspect of the present invention, a tank that receives the condensed water flowing out of the drainage pipe and a pump that sends the water in the tank to the reaction tank are provided.

本発明の一態様では、前記排水配管にバルブが設けられている。 In one aspect of the present invention, the drainage pipe is provided with a valve.

本発明の一態様では、酸素溶解膜モジュールは非多孔質の酸素溶解膜を備えている。 In one aspect of the invention, the oxygen dissolution membrane module comprises a non-porous oxygen dissolution membrane.

本発明の一態様では、酸素溶解膜が疎水性である。 In one aspect of the invention, the oxygen-dissolved membrane is hydrophobic.

本発明の一態様では、反応槽内に流動床担体が充填されている。 In one aspect of the present invention, the reaction vessel is filled with a fluidized bed carrier.

本発明の好気性生物処理装置では、酸素溶解膜モジュールに上下方向に通気するとともに、酸素溶解膜モジュールの凝縮水を排水配管を介して反応槽外部へ排出するので、酸素溶解膜から凝縮水が速やかに反応槽外へ排出される。そのため、酸素溶解膜の酸素溶解効率を常に高く維持することができる。 In the aerobic biological treatment apparatus of the present invention, the oxygen-dissolved membrane module is ventilated in the vertical direction, and the condensed water of the oxygen-dissolved membrane module is discharged to the outside of the reaction vessel via the drain pipe, so that the condensed water is discharged from the oxygen-dissolved membrane. It is quickly discharged to the outside of the reaction vessel. Therefore, the oxygen dissolution efficiency of the oxygen dissolution membrane can always be maintained high.

実施の形態に係る生物処理装置の縦断面図である。It is a vertical sectional view of the biological processing apparatus which concerns on embodiment. (a)は酸素溶解膜ユニットの側面図、(b)は酸素溶解膜ユニットの斜視図である。(A) is a side view of the oxygen dissolution membrane unit, and (b) is a perspective view of the oxygen dissolution membrane unit. 実験結果を示すグラフである。It is a graph which shows the experimental result. 別の実施の形態に係る生物処理装置の縦断面図である。It is a vertical sectional view of the biological processing apparatus which concerns on another embodiment. 図4の酸素溶解膜ユニットの構成図である。It is a block diagram of the oxygen dissolution membrane unit of FIG. さらに別の実施の形態に係る生物処理装置の縦断面図である。It is a vertical sectional view of the biological treatment apparatus which concerns on still another Embodiment. 図6の酸素溶解膜ユニットの構成図である。It is a block diagram of the oxygen dissolution membrane unit of FIG.

以下、図面を参照して本発明についてさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to the drawings.

図1は実施の形態に係る好気性生物処理装置1の縦断面図である。この好気性生物処理装置1は、反応槽(槽体)2と、該反応槽2の下部に水平に設置されたパンチングプレート等の多孔板よりなる透水板3と、該透水板3の上側に形成された大径粒子層4と、該大径粒子層4の上側に形成された小径粒子層5と、小径粒子層5の上側に粉粒状活性炭等の生物付着担体の充填により形成された流動床Fと、展開したときの流動床F内に少なくとも一部が配置された酸素溶解膜モジュール6と、前記透水板3の下側に形成された受入室7と、該受入室7内に原水を供給する原水散布管8と、充填層の洗浄時に逆洗のためのガス等が供給される洗浄配管9等を有する。反応槽2の上部には、処理水を流出させるためのトラフ10及び流出口11が設けられている。トラフ10は槽内壁に沿って環状流路を形成している。 FIG. 1 is a vertical cross-sectional view of the aerobic organism treatment apparatus 1 according to the embodiment. The aerobic biological treatment apparatus 1 is provided on a water permeable plate 3 made of a reaction tank (tank body) 2, a perforated plate such as a punching plate horizontally installed under the reaction tank 2, and an upper side of the water permeable plate 3. A flow formed by filling the formed large-diameter particle layer 4, the small-diameter particle layer 5 formed on the upper side of the large-diameter particle layer 4, and the biological attachment carrier such as powdered and granular activated charcoal on the upper side of the small-diameter particle layer 5. The floor F, the oxygen dissolving membrane module 6 in which at least a part is arranged in the fluidized floor F when unfolded, the receiving chamber 7 formed under the water permeable plate 3, and the raw water in the receiving chamber 7. It has a raw water spray pipe 8 for supplying the raw water, and a cleaning pipe 9 and the like for supplying gas or the like for backwashing when cleaning the packed bed. A trough 10 and an outlet 11 for allowing the treated water to flow out are provided in the upper part of the reaction tank 2. The trough 10 forms an annular flow path along the inner wall of the tank.

図1では、反応槽に流動床担体を充填して、酸素溶解膜の表面への生物膜の付着を担体の流動による剪断力によって抑制して生物膜の大部分が流動床担体に付着するようにしたものであり、このとき、酸素溶解膜は酸素供給の目的のみに用いられる。一方、図示しないが、反応槽に流動床担体を充填しないときは、酸素溶解膜はMABRとして作用する、つまり酸素溶解膜の表面に生物膜が付着して酸素溶解膜の一次側から溶解・供給された酸素が二次側の生物膜に消費されて好気性生物処理が行われる。 In FIG. 1, the reaction vessel is filled with a fluidized bed carrier so that the adhesion of the biofilm to the surface of the oxygen dissolution film is suppressed by the shearing force due to the flow of the carrier so that most of the biofilm adheres to the fluidized bed carrier. At this time, the oxygen-dissolving membrane is used only for the purpose of supplying oxygen. On the other hand, although not shown, when the reaction vessel is not filled with the fluidized bed carrier, the oxygen-dissolved membrane acts as a MABR, that is, the biological membrane adheres to the surface of the oxygen-dissolved membrane and dissolves and supplies from the primary side of the oxygen-dissolved membrane. The oxygen produced is consumed by the biological membrane on the secondary side, and aerobic biological treatment is performed.

図1では、酸素溶解膜として非多孔質(ノンポーラス)の酸素溶解膜を用い、酸素含有気体を槽外から配管を通じて酸素溶解膜の一次側に通気して、排気は配管を通じて槽外に排出するように構成している。そのため、酸素含有気体を、低圧で酸素溶解膜に通気し、酸素を酸素分子として酸素溶解膜の構成原子の間を通過し(膜に溶解し)、酸素分子として被処理水と接触させる(水に直接溶解させるので気泡を生じない)という、いわば濃度勾配による分子拡散のメカニズムを用いた処理を行っているため、従来のように散気管などによる散気が不要となる。 In FIG. 1, a non-porous (non-porous) oxygen-dissolving membrane is used as the oxygen-dissolving membrane, oxygen-containing gas is ventilated from the outside of the tank to the primary side of the oxygen-dissolving membrane through a pipe, and exhaust is discharged to the outside of the tank through the pipe. It is configured to do. Therefore, the oxygen-containing gas is aerated through the oxygen-dissolving membrane at a low pressure, passes between the constituent atoms of the oxygen-dissolving membrane as oxygen molecules (dissolves in the membrane), and is brought into contact with the water to be treated as oxygen molecules (water). (Since it dissolves directly in the gas, no bubbles are generated), so to speak, the treatment using the mechanism of molecular diffusion by the concentration gradient is performed, so that the air diffusion by the air diffuser or the like becomes unnecessary as in the conventional case.

また酸素溶解膜として疎水性の素材を用いると膜中に浸水しづらいので好ましいが、疎水性であっても微量の浸水は免れないので本発明の使用が好ましい。 Further, it is preferable to use a hydrophobic material as the oxygen dissolving membrane because it is difficult for water to infiltrate into the membrane, but even if it is hydrophobic, a small amount of water infiltration is unavoidable, so the use of the present invention is preferable.

図2は、図1の実施の形態における酸素溶解膜モジュール6の一例を示している。この酸素溶解膜モジュール6は酸素溶解膜として中空糸膜22を用いたものである。この実施の形態では、中空糸膜22は上下方向に配列されており、各中空糸膜22の上端は上部ヘッダー20に連なり、下端は下部ヘッダー21に連なっている。中空糸膜22の内部は、それぞれ上部ヘッダー20及び下部ヘッダー21内に連通している。各ヘッダー20,21は中空管状である。なお、平膜やスパイラル膜を用いる場合にも、通気方向が上下方向となるように配列される。 FIG. 2 shows an example of the oxygen dissolution membrane module 6 according to the embodiment of FIG. The oxygen-dissolving membrane module 6 uses a hollow fiber membrane 22 as the oxygen-dissolving membrane. In this embodiment, the hollow fiber membranes 22 are arranged in the vertical direction, the upper end of each hollow fiber membrane 22 is connected to the upper header 20, and the lower end is connected to the lower header 21. The inside of the hollow fiber membrane 22 communicates with the upper header 20 and the lower header 21, respectively. Each header 20 and 21 has a hollow tubular shape. Even when a flat membrane or a spiral membrane is used, they are arranged so that the ventilation direction is in the vertical direction.

図2(b)の通り、1対のヘッダー20,21と中空糸膜22とからなるユニットが複数個平行に配列されている。図2(a)の通り、各上部ヘッダー20の上部は配管を介して上部マニホルド23が連結され、各下部ヘッダー21の下部は配管を介して下部マニホルド24が連結されていることが好ましい。図1の実施の形態の場合は、酸素溶解膜モジュール6の上部に酸素含有ガスを供給し、酸素溶解膜モジュール6の下部から排出する。空気等の酸素含有ガスは上部ヘッダー20から中空糸膜22を通って下部ヘッダー21へ流れ、この間に酸素が中空糸膜22を透過して反応槽2内の水に溶解する。 As shown in FIG. 2B, a plurality of units composed of a pair of headers 20 and 21 and a hollow fiber membrane 22 are arranged in parallel. As shown in FIG. 2A, it is preferable that the upper manifold 23 is connected to the upper part of each upper header 20 via a pipe, and the lower manifold 24 is connected to the lower part of each lower header 21 via a pipe. In the case of the embodiment of FIG. 1, the oxygen-containing gas is supplied to the upper part of the oxygen-dissolving membrane module 6 and discharged from the lower part of the oxygen-dissolving membrane module 6. Oxygen-containing gas such as air flows from the upper header 20 through the hollow fiber membrane 22 to the lower header 21, and during this time, oxygen permeates the hollow fiber membrane 22 and dissolves in water in the reaction tank 2.

各ヘッダー20,21及び各マニホルド23,24は流水勾配を有するように設けられていてもよい。酸素溶解膜モジュール6は上下に多段に設置されてもよい。 The headers 20, 21 and the manifolds 23, 24 may be provided to have a running water gradient. The oxygen dissolution membrane module 6 may be installed in multiple stages in the upper and lower stages.

図1の実施の形態では、この酸素溶解膜モジュール6に空気を供給するために、ブロワ26と空気供給用の給気配管27とが設けられており(酸素含有ガス供給手段を構成)、該給気配管27が上部マニホルド23に接続されている。下部マニホルド24には排ガス用の中継配管28が接続されている。中継配管28は排出配管29が接続している。排出配管29は、下り勾配(鉛直下向きを含む)を有するように設けられ、反応槽2外にまで延設されている。図1では排出配管29は反応槽2の側方に引き出されているが、反応槽2の底部から下方に引き出されてもよい。 In the embodiment of FIG. 1, in order to supply air to the oxygen dissolution membrane module 6, a blower 26 and an air supply pipe 27 for air supply are provided (which constitutes an oxygen-containing gas supply means). The air supply pipe 27 is connected to the upper manifold 23. A relay pipe 28 for exhaust gas is connected to the lower manifold 24. The relay pipe 28 is connected to the discharge pipe 29. The discharge pipe 29 is provided so as to have a downward slope (including vertically downward), and extends to the outside of the reaction tank 2. Although the discharge pipe 29 is pulled out to the side of the reaction tank 2 in FIG. 1, it may be pulled out downward from the bottom of the reaction tank 2.

図1の通り、酸素溶解膜に溶解しなかった酸素含有気体の残部が排出配管29を通じて槽外に排気され、その末端が酸素溶解膜モジュールの下端(モジュールが複数のときは各モジュール下端の中で最も下位のもの)より低い位置となるよう配置しているため、排気に凝縮水が含まれる場合は排出配管29の下方に設置のタンク32に凝縮水が流出する。タンク32内の水は、ポンプ33及び配管34によって反応槽2に送水することもできる。 As shown in FIG. 1, the rest of the oxygen-containing gas that was not dissolved in the oxygen dissolution film is exhausted to the outside of the tank through the discharge pipe 29, and the end thereof is the lower end of the oxygen dissolution film module (in the lower end of each module when there are a plurality of modules). Since it is arranged so as to be lower than the lowermost one), if the exhaust contains condensed water, the condensed water flows out to the tank 32 installed below the discharge pipe 29. The water in the tank 32 can also be sent to the reaction tank 2 by the pump 33 and the pipe 34.

なお、上記構成の場合は、排出配管29が排気を槽外に排出する排ガス配管と凝縮水を槽外に排出する排水配管とを兼ねることになるが、排出配管29を槽内または槽外で分岐して排気を槽外に排出する排ガス配管30を別途設けてもよい。この場合、凝縮水は排出配管29を通じて排出されるため、分岐して別途設けた排ガス配管30はその末端の排気部が酸素溶解膜モジュールの下端より高い位置に配置することができるが、凝縮水の溜まりができないよう配管は下り勾配を有さず上り勾配または鉛直上向きのみで構成することが好ましい。またこのとき排出配管29の排ガス配管30との分岐点より下流側にバルブAを設け、バルブAを開くことにより凝縮水がタンク32に流出するように構成してもよい。また、排ガス配管30にもバルブBを設け、通常の通気の時はバルブAを閉、バルブBを開とし、凝縮水を排出する時は、バルブAを開、バルブBを閉としてもよい。 In the case of the above configuration, the discharge pipe 29 serves both as an exhaust gas pipe for discharging the exhaust gas to the outside of the tank and a drainage pipe for discharging the condensed water to the outside of the tank. An exhaust gas pipe 30 that branches and discharges the exhaust gas to the outside of the tank may be separately provided. In this case, since the condensed water is discharged through the discharge pipe 29, the exhaust gas pipe 30 separately provided by branching can be arranged at a position where the exhaust portion at the end thereof is higher than the lower end of the oxygen dissolution film module. It is preferable that the piping does not have a downward slope and is configured only with an upward slope or a vertical upward direction so as to prevent the accumulation of water. Further, at this time, a valve A may be provided on the downstream side of the branch point of the discharge pipe 29 with the exhaust gas pipe 30, and the condensed water may flow out to the tank 32 by opening the valve A. Further, a valve B may be provided in the exhaust gas pipe 30, and the valve A may be closed and the valve B may be opened during normal ventilation, and the valve A may be opened and the valve B may be closed when the condensed water is discharged.

バルブは自動弁、手動弁のいずれでもよい。凝縮水を排出するためのバルブの開放は、連続式でも間欠式でもよい。間欠式の場合は、温度変化、湿度変化によって変化するが、通常の運転では、1日に1回〜30日に1回(多くても日に1回数秒、少なければ月に1回数十秒)、好ましくは1日に1回〜15日に1回、バルブを開くことにより排水する。 The valve may be either an automatic valve or a manual valve. The valve for discharging the condensed water may be opened continuously or intermittently. In the case of the intermittent type, it changes due to temperature change and humidity change, but in normal operation, once a day to once every 30 days (at most once a day, at least once a month, ten times a month) Seconds), preferably once a day to once every 15 days, drain by opening the valve.

このように構成された好気性生物処理装置1において、原水は散布管8を通じて受入室7に導入され、透水板3及び大径・小径の粒子層4,5を上向流通水されてSSが濾過され、次いで生物膜付着の粉粒状活性炭の流動床Fにおいて、一過式で上向流通水され生物反応を行って上部清澄領域からトラフ10と流出口11を通じて処理水として取り出される。 In the aerobic biological treatment apparatus 1 configured in this way, the raw water is introduced into the receiving chamber 7 through the spray pipe 8 and is flowed upward through the water permeation plate 3 and the large-diameter and small-diameter particle layers 4 and 5, and the SS is generated. After being filtered, it is transiently upwardly distributed in the fluidized bed F of the powdered activated carbon adhering to the biofilm, undergoes a biological reaction, and is taken out as treated water from the upper clarification region through the trough 10 and the outlet 11.

給気配管27から供給された空気等の酸素含有気体は、酸素溶解膜モジュール6を下向流通気した後、酸素溶解モジュール6の下端位置より下部ヘッダー21、下部マニホルド24を経由して流出し、排空気は排出配管29から(又は排ガス配管30を設けたときは排ガス配管30から)大気中へ排出される。凝縮水は排出配管29を通じてタンク32へ流出する。 The oxygen-containing gas such as air supplied from the air supply pipe 27 flows downward through the oxygen dissolution film module 6 and then flows out from the lower end position of the oxygen dissolution module 6 via the lower header 21 and the lower manifold 24. , Exhaust air is discharged into the atmosphere from the exhaust pipe 29 (or from the exhaust gas pipe 30 when the exhaust gas pipe 30 is provided). The condensed water flows out to the tank 32 through the discharge pipe 29.

図4,5に別の実施の形態を示す。凝縮水は下部ヘッダー21と下部マニホルド24に滞留する可能性があるが、排出配管29を通じて凝縮水を定期的に排出するので、膜が凝縮水で通気阻害を受けることを予防できる。 FIGS. 4 and 5 show another embodiment. The condensed water may stay in the lower header 21 and the lower manifold 24, but since the condensed water is periodically discharged through the discharge pipe 29, it is possible to prevent the membrane from being hindered by the condensed water.

なお、排出配管29にバルブAを、排ガス配管30にバルブBを設け、通常の通気時はバルブAを閉、バルブBを開として排気を行い、凝縮水の排出時はバルブAを開、バルブBを閉とし、凝縮水を排ガスと共に排出する。 A valve A is provided in the discharge pipe 29, a valve B is provided in the exhaust gas pipe 30, the valve A is closed during normal ventilation, the valve B is opened for exhaust, and the valve A is opened when the condensed water is discharged. B is closed and the condensed water is discharged together with the exhaust gas.

図6,7にさらに別の実施の形態を示す。排ガス配管30を兼ねて排出配管29が設置されている。末端が酸素溶解膜の上端より高い位置、特に槽内水面上または水面付近(水面±1m程度)となるように配置する。 6 and 7 show still another embodiment. An exhaust pipe 29 is installed which also serves as an exhaust gas pipe 30. Arrange so that the end is higher than the upper end of the oxygen dissolution membrane, particularly on or near the water surface in the tank (about ± 1 m on the water surface).

酸素溶解膜の下部ヘッダーから下部マニホルドに存在する凝縮水は通気LV(10〜20m/s程度)により排出配管29(この場合は内径50mm以下)を通じて排ガスと共に槽外または水面付近に排出される。排出配管29の末端が水面付近であれば、水圧が低いためブロワの供給圧力への影響は小さい。 The condensed water existing from the lower header of the oxygen dissolution membrane to the lower manifold is discharged to the outside of the tank or near the water surface together with the exhaust gas through the discharge pipe 29 (in this case, the inner diameter is 50 mm or less) by the ventilation LV (about 10 to 20 m / s). If the end of the discharge pipe 29 is near the water surface, the influence on the supply pressure of the blower is small because the water pressure is low.

なお、酸素溶解膜として中空糸膜を用いるときは通気部の断面積が小さいため凝縮水の侵入が通気の阻害となりやすく影響が大きいので、酸素溶解膜が中空糸膜である好気性生物処理装置に本発明をより好適に用いることができる。 When a hollow fiber membrane is used as the oxygen dissolution membrane, the cross-sectional area of the ventilation part is small, so that the invasion of condensed water tends to hinder ventilation and has a large effect. Therefore, an aerobic biological treatment apparatus in which the oxygen dissolution membrane is a hollow fiber membrane. The present invention can be used more preferably.

本発明では、活性炭等の生物担体の流動床に非多孔性の酸素溶解膜を設置することで、供給酸素量が多くなるため、対象とする原水の有機性排水濃度に上限が無い。 In the present invention, by installing a non-porous oxygen dissolution film on the fluidized bed of a biological carrier such as activated carbon, the amount of oxygen supplied increases, so that there is no upper limit to the concentration of organic wastewater in the target raw water.

また、生物担体を流動床で運転するため、激しい撹乱にさらされることがない。したがって、多量の生物を安定して維持できるため、負荷を高くとることができる。 In addition, since the biological carrier is operated in a fluidized bed, it is not exposed to severe disturbance. Therefore, since a large amount of organisms can be stably maintained, the load can be increased.

また、本発明では酸素溶解膜を使用するため、プリエアレーション、直接曝気と比較すると、酸素の溶解動力が小さい。 Further, since the oxygen dissolving membrane is used in the present invention, the oxygen dissolving power is smaller than that of pre-aeration and direct aeration.

これらのことから、本発明によると、低濃度から高濃度までの有機性排水を高負荷で、かつ安価に処理することが可能となる。 From these facts, according to the present invention, it is possible to treat organic wastewater from low concentration to high concentration with a high load and at low cost.

<生物担体>
生物担体としては、活性炭が好適である。
<Biological carrier>
Activated carbon is suitable as the biological carrier.

流動床担体の充填量は反応槽の容積の40〜60%程度、特に50%程度が好ましい。この充填量は、多いほうが生物量多く活性高いが、多すぎると流出するおそれがある。従って、流動床が20〜50%程度膨張するLV(例えば7〜15m/hr程度)で通水するのが良い。なお、担体の素材として活性炭以外のゲル状物質、多孔質材、非多孔質材等も同様の条件で使用できる。例えば、ポリビニルアルコールゲル、ポリアクリルアミドゲル、ポリウレタンフォーム、アルギン酸カルシウムゲル、ゼオライト、プラスチック等も用いることができる。ただし、担体として活性炭を用いると、活性炭の吸着作用と生物分解作用による相互作用により、広範囲な汚濁物質の除去を行うことが可能である。 The filling amount of the fluidized bed carrier is preferably about 40 to 60%, particularly about 50% of the volume of the reaction vessel. The larger the filling amount, the larger the biological amount and the higher the activity, but if the filling amount is too large, there is a risk of outflow. Therefore, it is preferable to pass water at an LV (for example, about 7 to 15 m / hr) in which the fluidized bed expands by about 20 to 50%. As the material of the carrier, a gel-like substance other than activated carbon, a porous material, a non-porous material and the like can be used under the same conditions. For example, polyvinyl alcohol gel, polyacrylamide gel, polyurethane foam, calcium alginate gel, zeolite, plastic and the like can also be used. However, when activated carbon is used as the carrier, it is possible to remove a wide range of pollutants by the interaction between the adsorption action and the biodegradation action of the activated carbon.

担体の平均粒径は0.2〜3mm程度が好ましい。平均粒径が大きいと高LVとすることが可能であり、処理水の一部を反応槽に循環する場合、循環量を増やせるため高負荷が可能となる。しかし、比表面積が小さくなるため、生物量が少なくなる。平均粒径が小さいと、低LVで流動できるため、ポンプ動力が安価となる。かつ比表面積が大きいため、付着生物量が増える。 The average particle size of the carrier is preferably about 0.2 to 3 mm. If the average particle size is large, it is possible to obtain a high LV, and when a part of the treated water is circulated to the reaction tank, the circulation amount can be increased, so that a high load is possible. However, since the specific surface area is small, the amount of organisms is small. If the average particle size is small, the pump power can be reduced because the flow can be performed at a low LV. Moreover, since the specific surface area is large, the amount of attached organisms increases.

最適粒径は廃水の濃度によって決定され、TOC:50mg/Lであれば0.2〜0.4mm程度、TOC:10mg/Lであれば0.6〜1.2mm程度が好ましい。 The optimum particle size is determined by the concentration of wastewater, and is preferably about 0.2 to 0.4 mm for TOC: 50 mg / L and about 0.6 to 1.2 mm for TOC: 10 mg / L.

流動床の展開率は、20〜50%程度が好ましい。展開率が20%よりも低いと、目詰まり、短絡のおそれがある。展開率が50%よりも高いと、担体の流出のおそれがあると共に、ポンプ動力コストが高くなる。 The expansion rate of the fluidized bed is preferably about 20 to 50%. If the expansion rate is lower than 20%, there is a risk of clogging and short circuit. If the unfolding rate is higher than 50%, there is a risk of carrier outflow and the pump power cost becomes high.

通常の生物活性炭では、活性炭流動床の膨張率は10〜20%程度であるがこの場合、活性炭の流動状態が不均一で上下左右に流動する。結果として同時に設置した膜が活性炭によってこすられ、すり減って消耗することになる。これを防止するため、本発明では、活性炭等の流動床担体は十分に流動させることが必要で、膨張率は20%以上とするのが望ましい。このため、担体の粒径は通常の生物活性炭よりも小さいほうが好ましい。なお、活性炭の場合、やしがら炭、石炭、木炭等特に限定されない。形状は球状炭が好ましいが、通常の粒状炭や破砕炭でも良い。 In ordinary biological activated carbon, the expansion coefficient of the fluidized bed of activated carbon is about 10 to 20%, but in this case, the fluidized state of the activated carbon is non-uniform and flows up, down, left and right. As a result, the membranes installed at the same time are rubbed by the activated carbon, and are worn away and consumed. In order to prevent this, in the present invention, it is necessary to sufficiently flow the fluidized bed carrier such as activated carbon, and it is desirable that the expansion coefficient is 20% or more. Therefore, the particle size of the carrier is preferably smaller than that of ordinary bioactivated carbon. In the case of activated carbon, there is no particular limitation on palm charcoal, coal, charcoal and the like. The shape is preferably spherical charcoal, but ordinary granular charcoal or crushed charcoal may also be used.

<酸素含有ガス>
酸素含有ガスは空気、酸素富化空気、純酸素等、酸素を含む気体であればよい。通気する気体はフィルターを通過させて微細粒子を予め除去することが望ましい。
<Oxygen-containing gas>
The oxygen-containing gas may be a gas containing oxygen such as air, oxygen-enriched air, and pure oxygen. It is desirable that the aerated gas is passed through a filter to remove fine particles in advance.

通気量は生物反応に必要な酸素量の等量から2倍程度が望ましい。これよりも少ないと酸素不足で処理水中にBODやアンモニアが残存し、多いと通気量が不必要に多くなることに加えて圧力損失が高くなるため、経済性が損なわれる。 The amount of aeration is preferably about twice as much as the amount of oxygen required for the biological reaction. If it is less than this, BOD and ammonia remain in the treated water due to lack of oxygen, and if it is more than this, the air volume becomes unnecessarily large and the pressure loss becomes high, which impairs economic efficiency.

通気圧力は所定の通気量で生ずる中空糸の圧力損失よりもわずかに高い程度が望ましい。 It is desirable that the aeration pressure is slightly higher than the pressure loss of the hollow fiber generated at a predetermined aeration amount.

<被処理水の流速>
被処理水の反応槽内の流速はLV10m/hr以上とし、処理水を循環せず、ワンパスで処理することができる。
<Flow velocity of water to be treated>
The flow velocity in the reaction vessel of the water to be treated is LV10 m / hr or more, and the treated water can be treated in one pass without circulating.

LVを高くすると、それに比例して酸素溶解速度が向上する。LV50m/hrでは10m/hrの2倍ほど酸素が溶解する。LVが高い場合は、粒径が大きい活性炭を使い、展開率をあまり大きくしないようにするのが好ましい。生物量、酸素溶解速度から、最適LV範囲は7〜20m/hr程度である。
Increasing the LV increases the oxygen dissolution rate proportionally. At LV50 m / hr, oxygen dissolves twice as much as 10 m / hr. When the LV is high, it is preferable to use activated carbon having a large particle size and not to increase the development rate too much. From the biological quantity and oxygen dissolution rate, the optimum LV range is about 7 to 20 m / hr.

<滞留時間>
槽負荷1〜2kg−TOC/m/dayとなるように滞留時間を設定するのが好ましい。
<Stay time>
It is preferable to set the residence time so that the tank load is 1 to 2 kg-TOC / m 3 / day.

<ブロア>
ブロアは、吐出風圧が水深からくる水圧以下のもので十分である。但し、配管等の圧損以上であることは必要である。通常、配管抵抗は1〜2kPa程度である。
<Blower>
It is sufficient for the blower to have a discharge air pressure equal to or less than the water pressure coming from the water depth. However, it is necessary that the pressure loss is greater than or equal to the pressure loss of piping or the like. Usually, the piping resistance is about 1 to 2 kPa.

5mの水深の場合、通常は0.55MPa程度までの出力の汎用ブロアが用いられ、それ以上の水深では高圧ブロアが用いられてきている。 In the case of a water depth of 5 m, a general-purpose blower having an output of up to about 0.55 MPa is usually used, and in a water depth of more than that, a high-pressure blower has been used.

本発明では、5m以上の水深であっても0.5MPa以下の圧力の汎用ブロアを用いることができ、0.1MPa以下の低圧ブロアを用いることが好ましい。 In the present invention, a general-purpose blower having a pressure of 0.5 MPa or less can be used even at a water depth of 5 m or more, and it is preferable to use a low pressure blower of 0.1 MPa or less.

酸素含有ガスの供給圧は、中空糸膜の圧力損失より高く、水深圧力よりも低いこと、さらに膜が水圧でつぶれないこと、が条件となる。平膜、スパイラル膜は膜の圧損が水圧と比較すると無視できるため、極めて低い圧力、5kPa程度以上、水圧以下、望ましくは20kPa以下である。 The supply pressure of the oxygen-containing gas is higher than the pressure loss of the hollow fiber membrane and lower than the water depth pressure, and the membrane is not crushed by the water pressure. Since the pressure loss of the flat film and the spiral film is negligible as compared with the water pressure, the pressure is extremely low, about 5 kPa or more, water pressure or less, and preferably 20 kPa or less.

中空糸膜の場合、内径と長さによって圧力損失は変化する。通気する空気量は膜1mあたり20mL〜100mL/dayであるから、膜長さが2倍になると空気量は2倍になり、膜径が2倍になっても空気量は2倍にしかならない。したがって、膜の圧力損失は膜長さに正比例し、直径に反比例する。 In the case of a hollow fiber membrane, the pressure loss changes depending on the inner diameter and length. Since the amount of air to be aerated is 20 mL to 100 mL / day per 1 m 2 of the membrane, the amount of air doubles when the membrane length doubles, and even if the membrane diameter doubles, the amount of air only doubles. It doesn't become. Therefore, the pressure loss of the membrane is directly proportional to the membrane length and inversely proportional to the diameter.

圧力損失の値は、内径50μm、長さ2mの中空糸で3〜20kPa程度である。 The value of the pressure loss is about 3 to 20 kPa for a hollow fiber having an inner diameter of 50 μm and a length of 2 m.

中空糸膜からの凝縮水排出について以下の実験を行った。 The following experiments were conducted on the discharge of condensed water from the hollow fiber membrane.

[実施例1]
内径300μm、外径500μmの非多孔質のシリコン製中空糸膜30本の上下をそれぞれ束ね、直径25mm、長さ1mのカラム(透明塩ビ管)内に設置して上部から下部へ向けて空気を10mL/min通気した。シリコン製中空糸の束ねた下部はカラムの外側下部に突出している。
[Example 1]
30 non-porous silicon hollow fiber membranes with an inner diameter of 300 μm and an outer diameter of 500 μm are bundled together and installed in a column (transparent PVC pipe) with a diameter of 25 mm and a length of 1 m to blow air from the top to the bottom. It was aerated at 10 mL / min. The lower part of the bundle of silicon hollow fibers projects to the lower part of the outside of the column.

また、カラムには純水にイソプロピルアルコールを100mg/L添加して調製した合成排水を滞留時間20分となるよう上向流通水した。装置の運転により、カラム下部に突出している中空糸膜下端から、凝縮水が2週間で約2mL排出された。 In addition, synthetic wastewater prepared by adding 100 mg / L of isopropyl alcohol to pure water was circulated upward on the column so as to have a residence time of 20 minutes. By operating the device, about 2 mL of condensed water was discharged from the lower end of the hollow fiber membrane protruding to the lower part of the column in 2 weeks.

この酸素溶解膜の酸素溶解速度を図2に示す。酸素溶解膜の酸素溶解速度は140日間にわたって、1mあたりほぼ8g−O/m/day以上で安定していた。なお70日、120日のあたりで酸素溶解速度が8g−O/m/dayを下回っているが、これは一時的に原水のTOC濃度が下がって負荷が低くなり供給負荷自体が低くなったために酸素の膜への溶解拡散のドライビングフォースが下がり酸素溶解速度が低下したものと推定される。 The oxygen dissolution rate of this oxygen dissolution membrane is shown in FIG. The oxygen dissolution rate of the oxygen dissolution membrane was stable at about 8 g-O / m 2 / day or more per 1 m 2 for 140 days. The oxygen dissolution rate was below 8 g-O / m 2 / day around 70 and 120 days, because the TOC concentration of the raw water temporarily decreased, the load became low, and the supply load itself became low. It is presumed that the driving force of dissolution and diffusion of oxygen to the membrane decreased and the oxygen dissolution rate decreased.

[比較例1]
実施例1と同一の試験装置を用いて、空気の通気方向を下部から上部としたこと以外は同一条件で運転した。
[Comparative Example 1]
Using the same test equipment as in Example 1, the operation was performed under the same conditions except that the air ventilation direction was changed from the lower part to the upper part.

酸素溶解膜の酸素溶解速度を図2に示す。図2の通り、運転開始2週間後くらいから酸素溶解速度が低下しはじめ、100日を過ぎると2g−O/m/day程度まで減少した。 The oxygen dissolution rate of the oxygen dissolution membrane is shown in FIG. As shown in FIG. 2, the oxygen dissolution rate began to decrease about 2 weeks after the start of operation, and decreased to about 2 g-O / m 2 / day after 100 days.

[比較例2]
実施例1において、カラム底部の空気出口配管に細いチューブの一端をつなぐと共に、チューブの他端を反応槽上部に配置したこと以外は実施例1と同一の試験装置を用いて、同一条件で運転した。その結果、酸素溶解速度は3〜4g−O/m/dayの範囲であった。
[Comparative Example 2]
In Example 1, the same test equipment as in Example 1 was used and the operation was performed under the same conditions except that one end of a thin tube was connected to the air outlet pipe at the bottom of the column and the other end of the tube was arranged in the upper part of the reaction tank. did. As a result, the oxygen dissolution rate was in the range of 3 to 4 g-O / m 2 / day.

[実施例2]
比較例2において、前記チューブの前記他端にT字管をとりつけ、空気出口配管直下部にピンチコックをつけて2週に1度ピンチコックを開け、凝縮水を排出した。その結果、酸素溶解速度は9g−O/m/dayに回復した。
[Example 2]
In Comparative Example 2, a T-shaped tube was attached to the other end of the tube, a pinch cock was attached immediately below the air outlet pipe, the pinch cock was opened once every two weeks, and condensed water was discharged. As a result, the oxygen dissolution rate recovered to 9 g-O / m 2 / day.

1 好気性生物処理装置
2 反応槽
6 酸素溶解膜モジュール
20,21 ヘッダー
22 中空糸膜
27 給気配管
29 排出配管(排水配管)
30 排ガス配管
32 タンク
1 Aerobic biological treatment equipment 2 Reaction tank 6 Oxygen dissolution membrane module 20, 21 Header 22 Hollow fiber membrane 27 Air supply pipe 29 Discharge pipe (drainage pipe)
30 Exhaust gas piping 32 Tank

Claims (8)

有機性排水が通水される反応槽と、
該反応槽内に通気方向が上下方向となるように設置された酸素溶解膜を有する酸素溶解膜モジュールと、
該酸素溶解膜モジュールに酸素含有ガスを供給する酸素含有ガス供給手段と、
酸素溶解膜モジュールに供給された酸素含有ガスのうち前記酸素溶解膜に溶解しなかった残部よりなる排ガスを反応槽外に排出する排ガス配管と、
酸素溶解膜モジュールから凝縮水を反応槽外へ排出する排水配管と
を備えてなり、
凝縮水を酸素溶解膜モジュールの下端より低い(複数モジュールを使用の場合は各モジュールの下端の中でも最も下位のものより低い)位置へ排出し、酸素溶解膜モジュールから排出された凝縮水を反応槽外に排出するよう設けられている有機性排水の好気性生物処理装置
であって、
前記酸素溶解膜が中空糸膜であり、
前記排ガス配管と排水配管とを兼ねる排出配管29が設けられると共に、該排出配管29を反応槽内または反応槽外で分岐させて排ガス配管30が設けられていることを特徴とする好気性生物処理装置
A reaction tank through which organic wastewater is passed, and
An oxygen-dissolved membrane module having an oxygen-dissolved membrane installed in the reaction vessel so that the ventilation direction is in the vertical direction, and
An oxygen-containing gas supply means for supplying the oxygen-containing gas to the oxygen-containing membrane module, and
An exhaust gas pipe that discharges the exhaust gas consisting of the remainder of the oxygen-containing gas supplied to the oxygen-dissolving membrane module to the outside of the reaction vessel, and
It is equipped with a drainage pipe that discharges condensed water from the oxygen dissolution membrane module to the outside of the reaction tank.
Discharge the condensed water to a position lower than the lower end of the oxygen dissolution film module (when using multiple modules, it is lower than the lowest one among the lower ends of each module), and discharge the condensed water discharged from the oxygen dissolution film module to the reaction tank. Aerobic biological treatment equipment for organic wastewater that is provided to discharge to the outside
And
The oxygen-dissolving membrane is a hollow fiber membrane, and the oxygen-dissolving membrane is a hollow fiber membrane.
An aerobic biological treatment characterized in that an exhaust gas pipe 29 that also serves as the exhaust gas pipe and a drainage pipe is provided, and the exhaust gas pipe 30 is provided by branching the discharge pipe 29 inside or outside the reaction tank. Equipment .
前記排ガス配管30はその末端の排気部が前記酸素溶解膜モジュールの下端より高い位置に配置され、かつ下り勾配を有さないことを特徴とする請求項1に好気性生物処理装置 The aerobic biological treatment apparatus according to claim 1, wherein the exhaust gas pipe 30 at the end thereof is arranged at a position higher than the lower end of the oxygen dissolution film module and does not have a downward gradient . 前記排水配管は鉛直下向き又は下り勾配を有するように設けられている請求項1又は2の有機性排水の好気性生物処理装置。 The aerobic biological treatment apparatus for organic wastewater according to claim 1 or 2 , wherein the drainage pipe is provided so as to have a vertically downward direction or a downward slope. 前記排水配管から流出する凝縮水を受け入れるタンクと、該タンク内の水を前記反応槽へ送水するポンプとを備えたことを特徴とする請求項1ないし3のいずれかの有機性排水の好気性生物処理装置。 The aerobic nature of the organic wastewater according to any one of claims 1 to 3, further comprising a tank for receiving the condensed water flowing out from the drainage pipe and a pump for sending the water in the tank to the reaction tank. Biological processing equipment. 前記排水配管にバルブが設けられていることを特徴とする請求項1ないしのいずれかの有機性排水の好気性生物処理装置。 The aerobic biological treatment apparatus for organic wastewater according to any one of claims 1 to 4 , wherein a valve is provided in the drainage pipe. 酸素溶解膜モジュールは非多孔質の酸素溶解膜を備えている請求項1ないしのいずれかの有機性排水の好気性生物処理装置。 The aerobic biological treatment apparatus for organic wastewater according to any one of claims 1 to 5 , wherein the oxygen-dissolving membrane module includes a non-porous oxygen-dissolving membrane. 酸素溶解膜が疎水性である請求項に記載の有機性排水の好気性生物処理装置。 The aerobic biological treatment apparatus for organic wastewater according to claim 6 , wherein the oxygen dissolution membrane is hydrophobic. 反応槽内に流動床担体が充填されている請求項1ないしのいずれかの有機性排水の好気性生物処理装置。 The aerobic biological treatment apparatus for organic wastewater according to any one of claims 1 to 7 , wherein the reaction vessel is filled with a fluidized bed carrier.
JP2019223738A 2019-12-11 2019-12-11 Aerobic biological treatment equipment Active JP6866918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019223738A JP6866918B2 (en) 2019-12-11 2019-12-11 Aerobic biological treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019223738A JP6866918B2 (en) 2019-12-11 2019-12-11 Aerobic biological treatment equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018025233A Division JP6702344B2 (en) 2018-02-15 2018-02-15 Aerobic biological treatment equipment

Publications (2)

Publication Number Publication Date
JP2020037111A JP2020037111A (en) 2020-03-12
JP6866918B2 true JP6866918B2 (en) 2021-04-28

Family

ID=69738497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019223738A Active JP6866918B2 (en) 2019-12-11 2019-12-11 Aerobic biological treatment equipment

Country Status (1)

Country Link
JP (1) JP6866918B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6490093A (en) * 1987-10-01 1989-04-05 Komatsu Mfg Co Ltd Apparatus for treating waste water
JPH0568996A (en) * 1991-05-17 1993-03-23 Nippon Plant:Kk Generation of dissolved gas and sewage treatment apparatus using dissolved gas
JP2595049Y2 (en) * 1992-10-22 1999-05-24 オルガノ株式会社 Condensate removal equipment in membrane deaerator
JP3728959B2 (en) * 1998-12-28 2005-12-21 栗田工業株式会社 Method for producing gas dissolved water
ATE352524T1 (en) * 2000-03-08 2007-02-15 Zenon Technology Partnership REACTOR WITH MEMBRANE MODULE FOR GAS TRANSFER AND MEMBRANE-ASSISTED BIOFILM PROCESS

Also Published As

Publication number Publication date
JP2020037111A (en) 2020-03-12

Similar Documents

Publication Publication Date Title
JP6702344B2 (en) Aerobic biological treatment equipment
JP2008221070A (en) Gas-liquid contacting device and gas-liquid contacting method
JP6281652B1 (en) Aerobic biological treatment equipment
JP6601517B2 (en) Operating method of aerobic biological treatment equipment
WO2019163423A1 (en) Aerobic organism treatment device
KR20190085916A (en) Bio activated carbon treatment device
JP6866918B2 (en) Aerobic biological treatment equipment
JP6858146B2 (en) Aerobic biological treatment equipment and its operation method
JP6597815B2 (en) Operating method of aerobic biological treatment equipment
JP6614253B2 (en) Aerobic biological treatment apparatus and operation method thereof
JP2021010853A (en) Aerobic biological treatment device and its operation method
JP6558455B1 (en) Aerobic biological treatment equipment
JP6610688B2 (en) Aerobic biological treatment equipment
JP6652147B2 (en) Aerobic biological treatment equipment
JP2021003665A (en) Aerobic biological treatment apparatus and operational method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191211

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210322

R150 Certificate of patent or registration of utility model

Ref document number: 6866918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250