JP6281652B1 - Aerobic biological treatment equipment - Google Patents

Aerobic biological treatment equipment Download PDF

Info

Publication number
JP6281652B1
JP6281652B1 JP2017051090A JP2017051090A JP6281652B1 JP 6281652 B1 JP6281652 B1 JP 6281652B1 JP 2017051090 A JP2017051090 A JP 2017051090A JP 2017051090 A JP2017051090 A JP 2017051090A JP 6281652 B1 JP6281652 B1 JP 6281652B1
Authority
JP
Japan
Prior art keywords
reaction tank
oxygen
biological treatment
permeable membrane
aerobic biological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017051090A
Other languages
Japanese (ja)
Other versions
JP2018153731A (en
Inventor
東 ひろみ
ひろみ 東
小林 秀樹
秀樹 小林
哲朗 深瀬
哲朗 深瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=61231476&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6281652(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2017051090A priority Critical patent/JP6281652B1/en
Priority to PCT/JP2017/033545 priority patent/WO2018168022A1/en
Application granted granted Critical
Publication of JP6281652B1 publication Critical patent/JP6281652B1/en
Publication of JP2018153731A publication Critical patent/JP2018153731A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/06Aerobic processes using submerged filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/26Activated sludge processes using pure oxygen or oxygen-rich gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

【課題】揮発性物質や臭気の発生する物質を含む有機性廃水であっても、臭気の発生や有害物質の揮発なく、好気性生物処理することができる好気性生物処理装置を提供する。【解決手段】直列に接続された第1反応槽3及び第2反応槽12を備え、各反応槽3,12内で好気性生物処理を行う好気性生物処理装置において、第1反応槽3は、反応槽3内に配置された酸素溶解膜モジュール2によって酸素を被処理水に溶解させるMABR反応槽であり、第2反応槽12はMABR以外の反応槽である。【選択図】図1Provided is an aerobic biological treatment apparatus capable of performing an aerobic biological treatment without generating odor and volatilization of harmful substances even with organic waste water containing volatile substances and substances that generate odors. In an aerobic biological treatment apparatus that includes a first reaction tank 3 and a second reaction tank 12 connected in series, and performs aerobic biological treatment in each reaction tank 3, 12, the first reaction tank 3 comprises: The MABR reaction tank in which oxygen is dissolved in the water to be treated by the oxygen dissolving membrane module 2 disposed in the reaction tank 3, and the second reaction tank 12 is a reaction tank other than MABR. [Selection] Figure 1

Description

本発明は、揮発性物質や臭気の発生する物質を含む有機性廃水を好気性生物処理するのに好適な好気性生物処理装置に係り、特に酸素透過膜を用いて反応槽内の被処理水に酸素を溶解させるようにしたMABR(メンブレンエアレーションバイオリアクター)方式を採用した好気性生物処理装置に関する。 The present invention relates to an aerobic biological treatment apparatus suitable for treating an organic wastewater containing a volatile substance or an odorous substance, and in particular, to-be-treated water in a reaction tank using an oxygen permeable membrane. The present invention relates to an aerobic biological treatment apparatus that employs a MABR (membrane aeration bioreactor) system in which oxygen is dissolved in the water.

発生揮発性物質や臭気の発生する物質を含む有機性廃水を生物処理する場合、通常は臭気を防止するため、完全混合の反応槽を使用する。しかし、完全混合の反応槽では反応速度が極端に小さくなるために、滞留時間が長い大きな反応槽が必要である。また、完全混合の反応槽でも水の片流れや部分的な曝気強度の差などから、臭気物質の揮発を完全に防止するのは難しい。   When organic wastewater containing generated volatile substances or odorous substances is biologically treated, a fully mixed reaction tank is usually used to prevent odors. However, since the reaction rate becomes extremely small in a completely mixed reaction tank, a large reaction tank with a long residence time is required. In addition, it is difficult to completely prevent odorous substances from volatilizing even in a completely mixed reaction tank due to a single flow of water or a difference in partial aeration intensity.

反応速度を上げ槽容積を小さくするため、複数の反応槽を直列接続した多段反応槽等が用いられる。しかし、この場合、第1槽目の反応槽では臭気物質の分解が終了していないため、残存している臭気物質の一部が曝気によって揮発し、臭気が発生したり、有毒物質が揮散する。プラグフロー型の反応槽の場合も同様である。   In order to increase the reaction rate and reduce the tank volume, a multistage reaction tank in which a plurality of reaction tanks are connected in series is used. However, in this case, since the decomposition of the odorous substance is not completed in the first reaction tank, a part of the remaining odorous substance is volatilized by aeration, and the odor is generated or the toxic substance is volatilized. . The same applies to a plug flow type reaction vessel.

MABR方式による好気性生物処理装置においては、酸素透過膜によって被処理水中に酸素を溶解させて好気性生物処理を行う。酸素透過膜としては特許文献1のように中空糸膜が用いられることが多い。 In the aerobic biological treatment apparatus using the MABR method, oxygen is dissolved in the water to be treated by the oxygen permeable membrane to perform the aerobic biological treatment. As an oxygen permeable membrane , a hollow fiber membrane is often used as in Patent Document 1.

特許第4907992号公報Japanese Patent No. 4907922

本発明は、揮発性物質や臭気の発生する物質を含む有機性廃水であっても、臭気の発生や有害物質の揮発なく、好気性生物処理することができる好気性生物処理装置を提供することを目的とする。   The present invention provides an aerobic biological treatment apparatus capable of performing an aerobic biological treatment without generation of odor or volatilization of harmful substances even with organic wastewater containing volatile substances or substances that generate odors. With the goal.

本発明は次を要旨とする。   The gist of the present invention is as follows.

[1] 直列に接続された第1ないし第n(nは2以上)の反応槽を備え、各反応槽内で好気性生物処理を行う好気性生物処理装置において、少なくとも第1反応槽は、反応槽内に配置された、非多孔質の酸素透過膜によって酸素を被処理水に溶解させるMABR反応槽であり、該被処理水は、揮発性物質又は臭気の発生する物質を含む有機性廃水であり、少なくとも最終反応槽はMABR以外の反応槽であることを特徴とする好気性生物処理装置。 [1] In an aerobic biological treatment apparatus that includes first to n-th (n is 2 or more) reaction tanks connected in series and performs aerobic biological treatment in each reaction tank, at least the first reaction tank includes: A MABR reaction tank which is disposed in the reaction tank and dissolves oxygen in the water to be treated by a non-porous oxygen permeable membrane , and the water to be treated is an organic waste water containing a volatile substance or a substance generating odor. And at least the final reaction tank is a reaction tank other than MABR.

[2] [1]において、前記MABR以外の反応槽は、汚泥浮遊反応槽又は担体流動反応槽であることを特徴とする好気性生物処理装置。 [2] The aerobic biological treatment apparatus according to [1], wherein the reaction tank other than the MABR is a sludge floating reaction tank or a carrier flow reaction tank.

[3] 反応槽内で好気性生物処理を行う好気性生物処理装置において該反応槽はプラグフロー反応槽であり、該反応槽内の被処理水流入側は、非多孔質の酸素透過膜によって酸素を該反応槽内の被処理水に溶解させるMABR方式となっており、、該被処理水は、揮発性物質又は臭気の発生する物質を含む有機性廃水であり、該反応槽の処理水出口側は、MABR以外の処理方式となっていることを特徴とする好気性生物処理装置。
[4] [3]において、前記反応槽の処理水出口側は、汚泥浮遊反応方式又は担体流動反応方式となっていることを特徴とする好気性生物処理装置。
[5] [1]ないし[4]のいずれかにおいて、前記酸素透過膜は、酸素含有ガスが送風される中空糸膜であり、該酸素含有ガスの送風圧力が、該中空糸膜の圧力損失より5〜20%高い圧力であることを特徴とする好気性生物処理装置。
[3] In the aerobic biological treatment apparatus that performs aerobic biological treatment in the reaction tank, the reaction tank is a plug flow reaction tank, and the treated water inflow side in the reaction tank is formed by a non-porous oxygen permeable membrane . It is a MABR system in which oxygen is dissolved in the water to be treated in the reaction tank, and the water to be treated is an organic waste water containing a volatile substance or a substance generating odor, and the treated water in the reaction tank An aerobic biological treatment apparatus characterized in that the outlet side has a treatment method other than MABR.
[4] The aerobic biological treatment apparatus according to [3], wherein the treated water outlet side of the reaction tank is a sludge floating reaction method or a carrier flow reaction method.
[5] In any one of [1] to [4], the oxygen permeable membrane is a hollow fiber membrane through which an oxygen-containing gas is blown, and the blowing pressure of the oxygen-containing gas is a pressure loss of the hollow fiber membrane. An aerobic biological treatment apparatus characterized in that the pressure is 5 to 20% higher.

MABRは気泡の発生なく酸素を溶解できるため、反応槽から揮発性物質が排気中に気散することが無い。しかし、MABRは、極低濃度のBOD除去には不向きであるため、多段反応槽の最終槽にMABRを設置すると大きな反応槽が必要となり場所、コストの点で不利になる。これらの点を考慮して、揮発性物質、臭気原因物質の分解が終了する多段反応槽の前半、もしくは最終段を除く反応槽をMABRとし、最終槽の仕上げのBOD除去槽をMABR以外の生物処理とすることにより、効率的な、臭気発生及び揮発性物質の揮発のない生物処理が可能となる。プラグフローの反応槽の前半部分をMABR、後半をMABR以外の生物処理とする場合も同様である。   Since MABR can dissolve oxygen without generating bubbles, volatile substances from the reaction tank are not diffused into the exhaust gas. However, since MABR is not suitable for removing very low concentration BOD, installing MABR in the final tank of a multistage reaction tank requires a large reaction tank, which is disadvantageous in terms of space and cost. Considering these points, the first half of the multistage reaction tank where the decomposition of volatile substances and odor-causing substances is completed, or the reaction tank excluding the final stage is designated as MABR, and the BOD removal tank at the final tank finish is a biological organism other than MABR. By performing the treatment, an efficient biological treatment without generation of odor and volatilization of volatile substances becomes possible. The same applies to the case where the first half of the plug flow reaction tank is a MABR and the second half is a biological treatment other than MABR.

本発明の好気性生物処理装置の模式的な縦断面図である。It is a typical longitudinal cross-sectional view of the aerobic biological treatment apparatus of this invention. 実施の形態で用いられる生物活性炭処理装置の構成図である。It is a block diagram of the biological activated carbon processing apparatus used by embodiment. 実施の形態で用いられる生物活性炭処理装置の縦断面図である。It is a longitudinal cross-sectional view of the biological activated carbon processing apparatus used by embodiment. 実施の形態で用いられる生物活性炭処理装置の縦断面図である。It is a longitudinal cross-sectional view of the biological activated carbon processing apparatus used by embodiment. 実施の形態で用いられる生物活性炭処理装置の縦断面図である。It is a longitudinal cross-sectional view of the biological activated carbon processing apparatus used by embodiment. 実施の形態で用いられる生物活性炭処理装置の縦断面図である。It is a longitudinal cross-sectional view of the biological activated carbon processing apparatus used by embodiment. (a)は酸素供給透過膜モジュールの側面図、(b)は酸素供給透過膜モジュールの斜視図である。(A) is a side view of an oxygen supply permeable membrane module, (b) is a perspective view of an oxygen supply permeable membrane module. 中空糸膜モジュールの正面図である。It is a front view of a hollow fiber membrane module. 中空糸膜の配列を説明する斜視図である。It is a perspective view explaining the arrangement | sequence of a hollow fiber membrane. (a)は中空糸膜モジュールにおける中空糸膜の配列を示す正面図、(b)はその側面図である。(A) is a front view which shows the arrangement | sequence of the hollow fiber membrane in a hollow fiber membrane module, (b) is the side view. 中空糸膜モジュールの斜視図である。It is a perspective view of a hollow fiber membrane module.

本発明装置は、臭気の発生する物質、例えばゴミ処理場、下水処理場、パルプ製造工場から排出される、揮発性悪臭物質(アンモニアや硫化水素等の悪臭防止法に指定される22物質:「四訂版ハンドブック悪臭防止法(平成13年8月、悪臭法令研究会編著、ぎょうせい発行)」)や、塩化ビニル樹脂製造工場から排出される、揮発性毒物(ビニルクロライド、トリクロロエチレン等)、半導体工場から排出されるDMSO分解工程で発生する硫化メチル、メチルメルカプタンの悪臭物質を含む有機性廃水を処理するのに好適である。   The apparatus of the present invention is a substance that generates odors, for example, volatile malodorous substances (22 substances designated by the malodorous prevention method such as ammonia and hydrogen sulfide, etc. discharged from waste disposal plants, sewage treatment plants, and pulp manufacturing plants: “ 4th edition Handbook Odor Prevention Law (August 2001, edited by Odor Law Study Group, published by Gyosei) ”, volatile poisons (vinyl chloride, trichlorethylene, etc.) discharged from vinyl chloride resin manufacturing factories, semiconductor factories It is suitable for treating organic wastewater containing malodorous substances such as methyl sulfide and methyl mercaptan generated in the DMSO decomposition process discharged from the waste water.

本発明の一態様では、多段反応槽の少なくとも第1槽目をMABR槽とし、少なくとも最終反応槽をMABR以外の反応槽とする。反応槽が3段以上の場合は、少なくとも第1槽、第2槽をMABRとし、最終槽をMABR以外の処理、たとえば浮遊法、担体流動床等とするのが好ましい。担体流動床の反応槽の具体例としては、スポンジ等の担体を30〜50%容量となるよう投入し、反応槽流出部にスポンジ等の担体流出防止用のスクリーンを設けたものが挙げられる。   In one embodiment of the present invention, at least the first tank of the multistage reaction tank is a MABR tank, and at least the final reaction tank is a reaction tank other than MABR. When the reaction tank has three or more stages, it is preferable that at least the first tank and the second tank be MABR, and the final tank be a treatment other than MABR, for example, a floating method, a carrier fluidized bed, or the like. As a specific example of the reaction tank of the carrier fluidized bed, there may be mentioned one in which a carrier such as sponge is introduced so as to have a volume of 30 to 50%, and a screen for preventing the carrier such as sponge is provided in the outflow part of the reaction tank.

有機物のすべて、もしくは大部分が揮発性物質の場合、最終反応槽以外の反応槽はすべてMABR反応槽とすることが望ましい。 When all or most of the organic substances are volatile substances, it is desirable that all reaction vessels other than the final reaction vessel be MABR reaction vessels.

有機物の内に占める揮発性成分の割合が小さい場合は、前半側の約1/2をMABR、後半側の約1/2をMABR以外とするのが望ましい。例えば、全体で4槽の場合であれば、前半側2槽をMABRとし、後半側2槽をMABR以外とすることが望ましい。   When the proportion of the volatile component in the organic substance is small, it is desirable that about 1/2 of the first half side should be other than MABR and about 1/2 of the second half side should be other than MABR. For example, in the case of 4 tanks as a whole, it is desirable that the 2 tanks on the first half side be MABR and the 2 tanks on the second half side be other than MABR.

前段側の反応槽が高負荷の場合には、MABR処理が効果的である。処理が進んで低負荷となっている後段側の反応槽では、バイオフィルムの形成が進まないので、曝気を伴う接触効率の高い浮遊法や流動床等の担体法を用いた方が効果的である。   The MABR treatment is effective when the pre-stage reaction tank is heavily loaded. Biofilm formation does not progress in the reaction tank on the downstream side where the processing is progressing and the load is low, so it is more effective to use a carrier method such as a floating method with high contact efficiency with aeration or a fluidized bed. is there.

プラグフロー方式の反応槽の場合、通常、反応槽の幅と長さの比が1:20以上であれば、プラグフローになる。また、通常、プラグフロー方式の反応槽は長さ方向に一直線になっているわけではなく、3往復か5往復するように折り返している場合が多い。廃水は一端側から流入し、他端側から処理水が流出する。これを上記多段反応槽と同じように排水流入部側をMABR、流出部側を他の処理方式とする。他の処理方式としては、上記と同様に、スポンジを30〜50%容量となるよう投入し、該処理水流出部にスポンジ流出防止用のスクリーンを設けた担体流動床が挙げられる。   In the case of a plug flow type reaction vessel, if the ratio of the width and the length of the reaction vessel is usually 1:20 or more, plug flow is obtained. In general, the plug flow type reaction tank is not straight in the length direction, and is often folded back so as to reciprocate 3 or 5 times. Waste water flows in from one end and treated water flows out from the other end. In the same manner as in the multistage reaction tank, MABR is used for the drainage inflow side and another treatment system is used for the outflow part. As another treatment method, a carrier fluidized bed in which a sponge is introduced so as to have a volume of 30 to 50% and a screen for preventing sponge outflow is provided in the treated water outflow portion as described above.

以下、図面を参照して本発明についてさらに詳細に説明する。図1は本発明の一例に係る好気性生物処理装置1の模式的な縦断面図である。第1反応槽3内に酸素透過膜モジュール2が設置されている。酸素透過膜モジュール2は1個又は複数個設置される。酸素透過膜モジュール2は上下多段に設置されてもよい。 Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 is a schematic longitudinal sectional view of an aerobic biological treatment apparatus 1 according to an example of the present invention. An oxygen permeable membrane module 2 is installed in the first reaction tank 3. One or a plurality of oxygen permeable membrane modules 2 are installed. The oxygen permeable membrane module 2 may be installed in upper and lower stages.

原水は、配管4によって反応槽3に供給され、処理水は、トラフ6を越流し、流出口7から流出する。   The raw water is supplied to the reaction tank 3 through the pipe 4, and the treated water flows over the trough 6 and flows out from the outlet 7.

酸素透過膜モジュール2は、非多孔質の酸素透過膜を備えており、膜を透過した酸素が反応槽3内の被処理水に溶解するので、反応槽3内において気泡が生じない。 The oxygen permeable membrane module 2 includes a non-porous oxygen permeable membrane, and oxygen that has permeated through the membrane is dissolved in the water to be treated in the reaction tank 3, so that no bubbles are generated in the reaction tank 3.

ブロアBからの空気は、配管8によって酸素透過膜モジュール2に供給され、酸素透過膜モジュール2から流出した排気は、配管9を介して排出される。なお、空気は酸素透過膜モジュール2に上から下へ流れてもよく、下から上へ流れてもよく、横方向に流れてもよい。複数の酸素透過膜に通気する場合、直列に通気してもよく、並列に通気してもよい。 The air from the blower B is supplied to the oxygen permeable membrane module 2 through the pipe 8, and the exhaust gas flowing out from the oxygen permeable membrane module 2 is discharged through the pipe 9. The air may flow from the top to the bottom of the oxygen permeable membrane module 2, may flow from the bottom to the top, or may flow in the lateral direction. When ventilating a plurality of oxygen permeable membranes , they may be ventilated in series or in parallel.

酸素透過膜モジュール2の下側に散気管5が設置され、空気が配管10を介して間欠的に供給され、反応槽3内が曝気される。 A diffuser pipe 5 is installed below the oxygen permeable membrane module 2, air is intermittently supplied via the pipe 10, and the inside of the reaction tank 3 is aerated.

流出口7からの第1処理水は、MABR以外の好気性生物処理を行う第2反応槽12に導入され、さらに好気性処理され、第2処理水となる。この第2処理水は、固液分離装置13に導入され、固液分離された後、最終的な処理水として取り出される。分離された汚泥の一部は返送管13aを介して反応槽3(または、反応槽3,12)に返送される。   The 1st treated water from the outflow port 7 is introduce | transduced into the 2nd reaction tank 12 which performs aerobic biological treatment other than MABR, is further aerobically treated, and turns into 2nd treated water. This second treated water is introduced into the solid-liquid separator 13 and separated into solid and liquid, and then taken out as final treated water. Part of the separated sludge is returned to the reaction tank 3 (or the reaction tanks 3 and 12) via the return pipe 13a.

本発明では、反応槽は生物活性炭反応槽であってもよい。図2(a)は生物活性炭処理反応槽の一例を示す縦断面図,図2(b)はそのノズルの斜視図である。反応槽3内に上下多段に複数個の酸素透過膜モジュール2が設置されている。この実施の形態では、酸素透過膜モジュール2は3段に設置されているが、酸素透過膜モジュール2は2〜8段、特に2〜4段に設置されることが好ましい。   In the present invention, the reaction tank may be a biological activated carbon reaction tank. FIG. 2A is a longitudinal sectional view showing an example of a biological activated carbon treatment reaction tank, and FIG. 2B is a perspective view of the nozzle. A plurality of oxygen permeable membrane modules 2 are installed in the reaction tank 3 in multiple upper and lower stages. In this embodiment, the oxygen permeable membrane module 2 is installed in three stages, but the oxygen permeable membrane module 2 is preferably installed in two to eight stages, particularly 2 to 4 stages.

原水は、配管14及び複数のノズル14aによって反応槽3の底部に供給され、活性炭の流動床Fを形成する。流動床Fを通り抜けた処理水は、トラフ6を越流し、流出口7から流出する。   The raw water is supplied to the bottom of the reaction tank 3 by the piping 14 and the plurality of nozzles 14a to form a fluidized bed F of activated carbon. The treated water that has passed through the fluidized bed F overflows the trough 6 and flows out from the outlet 7.

酸素透過膜モジュール2は、非多孔質の酸素透過膜を備えており、膜を透過した酸素が反応槽3内の被処理水に溶解するので、反応槽3内において気泡が生じない。   The oxygen permeable membrane module 2 includes a non-porous oxygen permeable membrane, and oxygen that has permeated through the membrane is dissolved in the water to be treated in the reaction tank 3, so that no bubbles are generated in the reaction tank 3.

図2では、ブロアBからの空気等の酸素含有ガスは、配管8によって最下段の酸素透過膜モジュール2cの上部に供給され、酸素透過膜モジュール2cの下部から流出し、配管19を介して上から2段目の酸素透過膜モジュール2bの上部に供給され、酸素透過膜モジュール2bの下部から流出し、配管20を介して最上段の酸素透過膜モジュール2aの上部に供給される。酸素透過膜モジュール2bの下部から流出したガスは、配管21を介して排出される。   In FIG. 2, oxygen-containing gas such as air from the blower B is supplied to the upper part of the lowermost oxygen permeable membrane module 2 c through the pipe 8, flows out from the lower part of the oxygen permeable membrane module 2 c, and passes through the pipe 19. To the upper part of the oxygen permeable membrane module 2b in the second stage, flows out from the lower part of the oxygen permeable membrane module 2b, and is supplied to the upper part of the uppermost oxygen permeable membrane module 2a through the pipe 20. The gas flowing out from the lower part of the oxygen permeable membrane module 2b is discharged through the pipe 21.

酸素透過膜モジュール2は、活性炭流動床Fの上下方向の略全域にわたって存在することが好ましい。また、酸素透過膜モジュール2は、反応槽3の平面視において、反応槽3内の全域に、偏なく配置されていることが好ましい。   It is preferable that the oxygen permeable membrane module 2 exists over substantially the entire area of the activated carbon fluidized bed F in the vertical direction. Moreover, it is preferable that the oxygen permeable membrane module 2 is arranged evenly in the whole area in the reaction tank 3 in the plan view of the reaction tank 3.

図2では、複数のノズル14aから原水を反応槽3内の底部に流出させているが、図3のように、反応槽3内の底部にパンチングメタル等の透水板22を配置し、該透水板22の上側に粗い砂利等の大径粒子層23と、その上側の細かい砂利等の小径粒子層24とを形成してもよい。原水は、配管14からノズル26によって透水板22の下側の受入室25に流出し、透水板22、大径粒子層23及び小径粒子層24を通過し、反応槽3内に活性炭の流動床Fを形成する。なお、パンチングメタルなどの透水板はなくても良い。   In FIG. 2, raw water is discharged from the plurality of nozzles 14 a to the bottom of the reaction tank 3. As shown in FIG. 3, a water permeable plate 22 such as a punching metal is disposed at the bottom of the reaction tank 3. You may form the large diameter particle layer 23, such as coarse gravel, on the upper side of the board 22, and the small diameter particle layer 24, such as fine gravel on the upper side. The raw water flows out from the pipe 14 into the receiving chamber 25 below the water permeable plate 22 through the nozzle 26, passes through the water permeable plate 22, the large particle layer 23, and the small particle layer 24, and into the reaction tank 3 is a fluidized bed of activated carbon. F is formed. Note that a water-permeable plate such as punching metal is not necessary.

酸素透過膜モジュール2への酸素含有ガスの流通形態の別例について図4〜6を参照して次に説明する。   Next, another example of the flow mode of the oxygen-containing gas to the oxygen permeable membrane module 2 will be described with reference to FIGS.

図4の生物処理装置にあっては、ブロアBからの酸素含有ガスは、配管8によって最下段の酸素透過膜モジュール2cの上部に供給され、その下部から流出し、下から2段目の酸素透過膜モジュール2bの下部に供給され、その上部から流出し、次いで最上段の酸素透過膜モジュール2aの下部に供給され、その上部から配管21を介して排出される。   In the biological treatment apparatus of FIG. 4, the oxygen-containing gas from the blower B is supplied to the upper part of the lowermost oxygen permeable membrane module 2c through the pipe 8, flows out from the lower part, and the second stage oxygen from the lower part. It is supplied to the lower part of the permeable membrane module 2b, flows out from the upper part thereof, then supplied to the lower part of the uppermost oxygen permeable membrane module 2a, and is discharged from the upper part through the pipe 21.

図5の生物処理装置にあっては、ブロアBからの酸素含有ガスは、配管8によって最下段の酸素透過膜モジュール2cの下部に供給され、その上部から流出し、下から2段目の酸素透過膜モジュール2bの下部に供給され、その上部から流出し、次いで最上段の酸素透過膜モジュール2aの下部に供給され、その上部から配管21を介して排出される。   In the biological treatment apparatus of FIG. 5, the oxygen-containing gas from the blower B is supplied to the lower part of the lowermost oxygen permeable membrane module 2c through the pipe 8, flows out from the upper part, and the second stage oxygen from the lower part. It is supplied to the lower part of the permeable membrane module 2b, flows out from the upper part thereof, then supplied to the lower part of the uppermost oxygen permeable membrane module 2a, and is discharged from the upper part through the pipe 21.

図6の生物処理装置にあっては、酸素含有ガスは、各酸素透過膜モジュール2a〜2cに並列に流れる。即ち、ブロアBからの酸素含有ガスは、配管8によって各酸素透過膜モジュール2a,2b,2cの上部に供給され、各々の下部から流出し、配管21を介して排出される。   In the biological treatment apparatus of FIG. 6, the oxygen-containing gas flows in parallel to the oxygen permeable membrane modules 2a to 2c. That is, the oxygen-containing gas from the blower B is supplied to the upper part of each oxygen permeable membrane module 2 a, 2 b, 2 c through the pipe 8, flows out from the lower part of each, and is discharged through the pipe 21.

なお、図2〜4のように、酸素含有ガスが最下段の酸素透過膜モジュール2cの上部に供給され、該酸素透過膜モジュール2cの下部から流出し、その後、上側の酸素透過膜モジュール2b,2aに順次流れるように構成した生物処理装置にあっては、酸素透過膜モジュール2c内の凝縮水が抜け易い。   2-4, the oxygen-containing gas is supplied to the upper part of the lowermost oxygen permeable membrane module 2c, flows out from the lower part of the oxygen permeable membrane module 2c, and then the upper oxygen permeable membrane module 2b, In the biological treatment apparatus configured to flow sequentially to 2a, the condensed water in the oxygen permeable membrane module 2c is likely to escape.

図5のように、酸素含有ガスが酸素透過膜モジュール2a〜2c内を上向きに流れるように構成した場合、酸素透過膜モジュール内の凝縮水が蒸発し易いものとなる。特に、酸素含有ガスとして乾燥度の高いガスを流すことにより、凝縮水が蒸発し易くなる。   As shown in FIG. 5, when the oxygen-containing gas is configured to flow upward in the oxygen permeable membrane modules 2a to 2c, the condensed water in the oxygen permeable membrane module easily evaporates. In particular, by flowing a gas with high dryness as the oxygen-containing gas, the condensed water is easily evaporated.

図2〜5のように、酸素含有ガスを最下段の酸素透過膜モジュール2cから順次に上段側の酸素透過膜モジュール2b,2aに流通させるようにした生物処理装置では、反応槽3内の被処理水の流れが上向流であるので、BOD濃度の高い原水側の被処理水ほど多くの酸素が供給されるため、負荷に応じた酸素供給量とすることができる。   As shown in FIGS. 2 to 5, in the biological treatment apparatus in which the oxygen-containing gas is circulated sequentially from the lowermost oxygen permeable membrane module 2 c to the upper oxygen permeable membrane modules 2 b and 2 a, Since the flow of the treated water is an upward flow, more oxygen is supplied to the water to be treated on the raw water side having a higher BOD concentration, so that the oxygen supply amount according to the load can be obtained.

図6のように、各酸素透過膜モジュール2a〜2cに並列に酸素含有ガスを流通させる場合、酸素含有ガスの圧力損失が少なく、省エネルギーとなる。なお、図6において、下段側の酸素透過膜モジュールほど酸素含有ガス流通量を多くするようにすることにより、負荷に応じた酸素供給量とすることができる。   As shown in FIG. 6, when the oxygen-containing gas is circulated in parallel to each of the oxygen permeable membrane modules 2a to 2c, the pressure loss of the oxygen-containing gas is small and energy is saved. In FIG. 6, the oxygen supply amount according to the load can be obtained by increasing the oxygen-containing gas flow rate in the lower oxygen permeable membrane module.

図2〜6のいずれにおいても、上段側の酸素透過膜モジュールほど、膜面積を小さくするか、又は膜の充填密度を低くするようにしてもよい。   In any of FIGS. 2 to 6, the oxygen permeable membrane module on the upper side may have a smaller membrane area or a lower membrane packing density.

なお、図4〜6においても、図3のように透水板22、大径粒子層23及び小径粒子層24を有した底部構造としてもよい。   4-6, it is good also as a bottom part structure which has the water-permeable board 22, the large diameter particle layer 23, and the small diameter particle layer 24 like FIG.

酸素透過膜モジュール2の酸素透過膜は、中空糸膜、平膜、スパイラル膜のいずれでもよいが、中空糸膜が好ましい。膜の材質は通常MABRに使用される、シリコン、ポリエチレン、ポリイミド、ポリウレタン等が使用できるが、シリコンが好適である。強度が高い、ノンポーラスポリマーでポーラス中空糸をコーティングしたコンポジット膜を用いてもよい。   The oxygen permeable membrane of the oxygen permeable membrane module 2 may be any of a hollow fiber membrane, a flat membrane, and a spiral membrane, but a hollow fiber membrane is preferable. As the material of the film, silicon, polyethylene, polyimide, polyurethane and the like which are usually used for MABR can be used, but silicon is preferable. A composite film having a high strength and a porous hollow fiber coated with a nonporous polymer may be used.

中空糸膜は、好ましくは内径0.05〜4mm特に0.2〜1mm、厚み0.01〜0.2mm特に0.02〜0.1mmである。内径がこれより小さいと通気圧力損失が大きく、大きいと表面積が小さくなって酸素の溶解速度が低下する。厚みが上記範囲より小さいと物理的な強度が小さくなり、破断しやすくなる。逆に、厚みが上記範囲よりも大きいと、酸素透過抵抗が大きくなって酸素溶解効率が低下する。   The hollow fiber membrane preferably has an inner diameter of 0.05 to 4 mm, particularly 0.2 to 1 mm, and a thickness of 0.01 to 0.2 mm, particularly 0.02 to 0.1 mm. If the inner diameter is smaller than this, the aeration pressure loss is large, and if it is larger, the surface area becomes smaller and the oxygen dissolution rate decreases. When the thickness is smaller than the above range, the physical strength is reduced and the film is easily broken. On the other hand, when the thickness is larger than the above range, the oxygen permeation resistance increases and the oxygen dissolution efficiency decreases.

中空糸膜の長さは0.5〜3m程度、特に1〜2m程度が好ましい。中空糸膜が長すぎると、生物膜が多量に付着した場合、破断したり、団子状に固まって表面積が小さくなり、酸素溶解効率が低下する、圧力損失が大きくなる等の問題が起こる。中空糸膜が過度に短いと、コストが高くなる。平膜、スパイラル膜の長さも同様の理由で0.5〜1.5mが好ましい。   The length of the hollow fiber membrane is preferably about 0.5 to 3 m, particularly preferably about 1 to 2 m. If the hollow fiber membrane is too long, when a large amount of biofilm adheres, problems such as breakage, solidification into a dumpling, a decrease in surface area, a decrease in oxygen dissolution efficiency, and an increase in pressure loss occur. If the hollow fiber membrane is too short, the cost increases. For the same reason, the length of the flat membrane and the spiral membrane is preferably 0.5 to 1.5 m.

膜の必要面積は、処理に必要な酸素量を供給できる十分量である。たとえば、原水がCODcr50mg/L、滞留時間30分の場合、シリコン製の100μm厚の中空糸膜であれば流動している活性炭部分の容積1mあたり240m以上が必要である。 The required area of the membrane is sufficient to supply the amount of oxygen necessary for processing. For example, when the raw water is CODcr 50 mg / L and the residence time is 30 minutes, a hollow fiber membrane made of silicon having a thickness of 100 μm requires 240 m 2 or more per 1 m 3 of the volume of the activated carbon part flowing.

膜の面積は、槽容積当たり300m以上、1000m/m以下が好ましい。膜面積が大きいと、酸素供給量多くなり、高負荷が可能となるが、膜コストがアップする。単位容積当たりの膜面積が大きすぎると、膜が団子状態になり、効率が低下する。膜は流れ方向に設置することが好ましい。例えば、水深10mの槽では、長さ2mの膜を上下に4段に設置することが好ましい。 The area of the membrane is preferably 300 m 2 or more and 1000 m 2 / m 3 or less per tank volume. If the membrane area is large, the amount of oxygen supply increases and a high load is possible, but the membrane cost increases. If the membrane area per unit volume is too large, the membrane will be in a dumpling state and efficiency will be reduced. The membrane is preferably installed in the flow direction. For example, in a tank with a water depth of 10 m, it is preferable to install a 2 m long membrane in four stages up and down.

酸素透過膜モジュールの構造の一例について図7〜12を参照して次に説明する。   Next, an example of the structure of the oxygen permeable membrane module will be described with reference to FIGS.

図7の酸素透過膜モジュール30は酸素透過膜として中空糸膜27を用いたものである。この実施の形態では、中空糸膜27は上下方向に配列されており、各中空糸膜27の上端は上部ヘッダー28に連なり、下端は下部ヘッダー29に連なっている。中空糸膜27の内部は、それぞれ上部ヘッダー28及び下部ヘッダー29内に連通している。各ヘッダー28,29は中空管状であり、略水平方向に平行に複数本配列されている。なお、平膜やスパイラル膜を用いる場合にも、上下方向に配列される。   The oxygen permeable membrane module 30 in FIG. 7 uses a hollow fiber membrane 27 as an oxygen permeable membrane. In this embodiment, the hollow fiber membranes 27 are arranged in the vertical direction, and the upper end of each hollow fiber membrane 27 is connected to the upper header 28 and the lower end is connected to the lower header 29. The inside of the hollow fiber membrane 27 communicates with the upper header 28 and the lower header 29, respectively. Each header 28, 29 is a hollow tube, and a plurality of headers 28, 29 are arranged in parallel in a substantially horizontal direction. Even when a flat film or a spiral film is used, they are arranged in the vertical direction.

各ヘッダー28の一端又は両端がマニホルド28Aに連結され、各ヘッダー29の一端又は両端がマニホルド29Aに連結されていることが好ましい。酸素透過膜モジュール30の上部に酸素含有ガスを供給し、酸素透過膜モジュール30の下部から排出する場合は、酸素含有ガスは上部ヘッダー28から中空糸膜27を通って下部ヘッダー29へ流れ、この間に酸素が中空糸膜27を透過して反応槽3内の水に溶解する。逆に、酸素透過膜モジュール30の下部に酸素含有ガスを供給し、上部から排出する場合は、下部ヘッダー29に酸素含有ガスが供給され、中空糸膜27を通って上部ヘッダー28から排出される。   One end or both ends of each header 28 are preferably connected to the manifold 28A, and one end or both ends of each header 29 are preferably connected to the manifold 29A. When oxygen-containing gas is supplied to the upper part of the oxygen permeable membrane module 30 and discharged from the lower part of the oxygen permeable membrane module 30, the oxygen-containing gas flows from the upper header 28 through the hollow fiber membrane 27 to the lower header 29, Oxygen permeates through the hollow fiber membrane 27 and dissolves in the water in the reaction vessel 3. Conversely, when oxygen-containing gas is supplied to the lower part of the oxygen permeable membrane module 30 and discharged from the upper part, the oxygen-containing gas is supplied to the lower header 29 and is discharged from the upper header 28 through the hollow fiber membrane 27. .

図8は、フレーム32内に配置された酸素透過膜モジュール30の一例を示す正面図である。このフレーム32は、4隅にそれぞれ立設された4本の柱32aと、各柱32aの上端同士の間に架設された上梁32bと、各柱32aの下部同士の間に架設された下梁32cと、各柱32aの下端面に取り付けられた底座プレート32dとを有する。酸素透過膜モジュール30のマニホルド28A,29Aをフレーム32に保持させることにより、酸素透過膜モジュール30がフレーム32内に設置される。   FIG. 8 is a front view showing an example of the oxygen permeable membrane module 30 disposed in the frame 32. The frame 32 has four pillars 32a erected at the four corners, an upper beam 32b erected between the upper ends of the pillars 32a, and a lower erection between lower parts of the pillars 32a. It has the beam 32c and the base plate 32d attached to the lower end surface of each pillar 32a. By holding the manifolds 28 </ b> A and 29 </ b> A of the oxygen permeable membrane module 30 in the frame 32, the oxygen permeable membrane module 30 is installed in the frame 32.

このフレーム32を備えた酸素透過膜モジュール30は、反応槽3内に上下多段に設置することが容易である。即ち、下側の酸素透過膜モジュール30のフレーム32の上に、上側の酸素透過膜モジュール30の底座プレート32dを載せるようにして上側の酸素透過膜モジュール30を配置することができる。   The oxygen permeable membrane module 30 provided with the frame 32 can be easily installed in the reaction tank 3 in multiple upper and lower stages. That is, the upper oxygen permeable membrane module 30 can be disposed on the frame 32 of the lower oxygen permeable membrane module 30 so that the bottom seat plate 32d of the upper oxygen permeable membrane module 30 is placed thereon.

本発明の一態様では、中空糸膜が上下方向に配列された中空糸膜モジュールを高さ1〜2m程度の高さの低い膜モジュールとし、これを2段以上、好ましくは4段以上に積層する。   In one aspect of the present invention, a hollow fiber membrane module in which hollow fiber membranes are arranged in the vertical direction is a membrane module having a low height of about 1 to 2 m, and is laminated in two or more stages, preferably four or more stages. To do.

このように中空糸膜の長さを短くし、高さを低くした中空糸膜モジュールを多段に積層することにより、低い圧力で酸素を溶解させることができる。   In this way, oxygen can be dissolved at a low pressure by stacking hollow fiber membrane modules in which the length of the hollow fiber membrane is shortened and the height is lowered in multiple stages.

中空糸膜に送風する酸素含有ガスの圧力は、中空糸膜の圧力損失よりわずかに高い程度、例えば5〜20%程度高い圧力がコスト面から好適である。   The pressure of the oxygen-containing gas blown to the hollow fiber membrane is preferably a pressure slightly higher than the pressure loss of the hollow fiber membrane, for example, about 5 to 20% higher from the viewpoint of cost.

中空糸膜に供給する圧力は水深と無関係に決めてよい。通常の散気装置は水深以上の圧力が必要であることから、本発明は反応槽の水深が深いほど有利である。   The pressure supplied to the hollow fiber membrane may be determined regardless of the water depth. Since a normal air diffuser requires a pressure higher than the water depth, the present invention is more advantageous as the water depth of the reaction vessel is deeper.

なお、上下方向のモジュールの配管接続によって、膜内の凝縮水や生物槽から膜内に溶解してくる炭酸ガスの影響が異なる。そのため、圧損、凝縮水、炭酸ガスを考慮した配管接続構造とすることが好ましい。   In addition, the influence of the carbon dioxide gas melt | dissolved in a film | membrane from the condensed water in a film | membrane or a biological tank changes with piping connection of the module of an up-down direction. Therefore, it is preferable to adopt a pipe connection structure that takes pressure loss, condensed water, and carbon dioxide into consideration.

上記実施の形態では、図7,8のように、中空糸膜27を上下方向とし、原水(被処理水)が中空糸膜27に沿って上下方向に流れるものとしているが、少なくとも一部の酸素透過膜モジュールとして、図9のように水平なX方向の中空糸膜27bと、上下方向(Z方向)の中空糸膜27aとを有する酸素透過膜モジュールを用いてもよい。なお、図10のように、中空糸膜27a、27bを平織状に編組してもよい。   In the above embodiment, as shown in FIGS. 7 and 8, the hollow fiber membrane 27 is in the vertical direction, and the raw water (treated water) flows in the vertical direction along the hollow fiber membrane 27. As the oxygen permeable membrane module, an oxygen permeable membrane module having a horizontal X-direction hollow fiber membrane 27b and a vertical (Z-direction) hollow fiber membrane 27a as shown in FIG. 9 may be used. As shown in FIG. 10, the hollow fiber membranes 27a and 27b may be braided into a plain weave.

図11は、かかるX,Z方向の中空糸膜27(27a,27b)を備えた酸素透過膜モジュールの一例を示す斜視図である。この酸素透過膜モジュール40は、Z方向に延在する平行な1対のヘッダー41,41と、これと直交するX方向に延在する1対のヘッダー42,42と、中空糸膜27とを有する。X方向の中空糸膜27はヘッダー41,41間に架設され、Z方向の中空糸膜27はヘッダー42,42間に架設されている。   FIG. 11 is a perspective view showing an example of an oxygen permeable membrane module provided with such hollow fiber membranes 27 (27a, 27b) in the X and Z directions. The oxygen permeable membrane module 40 includes a pair of parallel headers 41, 41 extending in the Z direction, a pair of headers 42, 42 extending in the X direction orthogonal to the header 41, 41, and the hollow fiber membrane 27. Have. The hollow fiber membrane 27 in the X direction is constructed between the headers 41 and 41, and the hollow fiber membrane 27 in the Z direction is constructed between the headers 42 and 42.

ヘッダー41,42の端部同士が連結されることにより、ヘッダー41,42は方形枠状となっている。この酸素透過膜モジュール40の一態様では、ヘッダー41,42の両端内部にエンドプラグ等の閉塞部材(図示略)が設けられており、ヘッダー41,42内は遮断されている。酸素含有ガスは一方のヘッダー41に供給され、中空糸膜27を通り、他方のヘッダー41に流入する。また、酸素含有ガスは一方のヘッダー42に供給され、中空糸膜27を通り、他方のヘッダー42に流入する。   By connecting the end portions of the headers 41 and 42 to each other, the headers 41 and 42 have a rectangular frame shape. In one embodiment of the oxygen permeable membrane module 40, closing members (not shown) such as end plugs are provided inside both ends of the headers 41 and 42, and the headers 41 and 42 are blocked. The oxygen-containing gas is supplied to one header 41, passes through the hollow fiber membrane 27, and flows into the other header 41. The oxygen-containing gas is supplied to one header 42, passes through the hollow fiber membrane 27, and flows into the other header 42.

この酸素透過膜モジュール40の別の一態様では、一方の一本のヘッダー41と一方の一本のヘッダー42とが連通している。また、他方の一本のヘッダー41と他方の一本のヘッダー42とが連通している。該一方のヘッダー41,42と、該他方のヘッダー41,42の連結部分の内部にはエンドプラグ等の閉塞部材(図示略)が設けられており、該一方のヘッダー41,42と、該他方のヘッダー41,42内は遮断されている。酸素含有ガスは該一方のヘッダー41,42に供給され、中空糸膜27を通り、該他方のヘッダー41,42に流入する。   In another aspect of the oxygen permeable membrane module 40, one one header 41 and one one header 42 communicate with each other. The other one header 41 and the other one header 42 communicate with each other. A closing member (not shown) such as an end plug is provided inside the connecting portion of the one header 41, 42 and the other header 41, 42, and the one header 41, 42 and the other header 41, 42 are connected to each other. The headers 41 and 42 are blocked. The oxygen-containing gas is supplied to the one header 41, 42, passes through the hollow fiber membrane 27, and flows into the other header 41, 42.

なお、これらの中空糸膜は、図7〜図11では1本ずつとなっているが、数本〜100本程度の束にしても良い。   In addition, although these hollow fiber membranes are one by one in FIGS. 7 to 11, a bundle of several to 100 may be used.

なお、反応槽内の下部に曝気装置を設置してもよい。   In addition, you may install an aeration apparatus in the lower part in a reaction tank.

次に、生物担体、酸素含有ガス、その他処理条件の好適例について説明する。   Next, preferred examples of biological carrier, oxygen-containing gas, and other processing conditions will be described.

<生物担体>
生物担体としては、活性炭が好適である。
<Biological carrier>
Activated carbon is suitable as the biological carrier.

活性炭の充填量は反応槽の容積の40〜60%程度、特に50%程度が好ましい。この充填量は、多いほうが生物量多く活性高いが、多すぎると流出するおそれがある。従って、充填量50%程度で20〜50%程度活性炭相が膨張するLVで通水するのが良い。通水LVは0.5mm活性炭で7〜15m/hr程度である。なお、活性炭以外のゲル状、多孔質材、非多孔質材等も同様の条件で使用できる。例えば、ポリビニルアルコールゲル、ポリアクリルアミドゲル、ポリウレタンフォーム、アルギン酸カルシウムゲル、ゼオライト、プラスチック等も用いることができる。ただし、担体として活性炭を用いると、活性炭の吸着作用と生物分解作用による相互作用により、広範囲な汚濁物質の除去を行うことが可能である。   The filling amount of the activated carbon is preferably about 40 to 60%, particularly about 50% of the volume of the reaction vessel. The larger the filling amount, the greater the amount of biomass and the higher the activity. Therefore, it is preferable to pass water through an LV in which the activated carbon phase expands by about 20 to 50% when the filling amount is about 50%. The water flow LV is 0.5 mm activated carbon and is about 7 to 15 m / hr. Gels other than activated carbon, porous materials, non-porous materials, and the like can be used under similar conditions. For example, polyvinyl alcohol gel, polyacrylamide gel, polyurethane foam, calcium alginate gel, zeolite, plastic and the like can also be used. However, when activated carbon is used as the carrier, it is possible to remove a wide range of pollutants by the interaction between the activated carbon adsorption and biodegradation.

活性炭の平均粒径は0.2〜3mm程度が好ましい。平均粒径が大きいと高LVとすることが可能であり、循環量を増やせるため高負荷が可能となる。しかし、表面積が小さくなるため、生物量が少なくなる。平均粒径が小さいと、低LVで流動できるため、ポンプ動力が安価となる。かつ、表面積が大きいため、付着生物量が増える。   The average particle size of the activated carbon is preferably about 0.2 to 3 mm. When the average particle size is large, it is possible to achieve a high LV, and the amount of circulation can be increased, so that a high load is possible. However, because the surface area is small, the biomass is reduced. If the average particle size is small, the pump power can be reduced because it can flow at a low LV. And since the surface area is large, the amount of attached organisms increases.

最適粒径は廃水の濃度によって決定され、TOC:50mg/Lであれば0.2〜0.4mm程度、TOC:10mg/Lであれば0.6〜1.2mm程度が好ましい。   The optimum particle size is determined by the concentration of wastewater, and is preferably about 0.2 to 0.4 mm when TOC is 50 mg / L, and about 0.6 to 1.2 mm when TOC is 10 mg / L.

活性炭の展開率は、20〜50%程度が好ましい。展開率が20%よりも低いと、目詰まり、短絡のおそれがある。展開率が50%よりも高いと、流出のおそれがあると共に、ポンプ動力コストが高くなる。   The expansion ratio of the activated carbon is preferably about 20 to 50%. If the expansion rate is lower than 20%, there is a possibility of clogging and short circuit. If the expansion rate is higher than 50%, there is a risk of outflow and the pump power cost becomes high.

通常の生物活性炭では、活性炭流動床の膨張率は10〜20%程度であるがこの場合、活性炭の流動状態が不均一で上下左右に流動する。結果として同時に設置した膜が活性炭によってこすられ、すり減って消耗することになる。これを防止するため、本発明では、活性炭は十分に流動させることが必要で、膨張率は20%以上とするのが望ましい。このため、活性炭の粒径は通常の生物活性炭よりも小さいほうが好ましい。なお、活性炭は、やしがら炭、石炭、木炭等なんでも良い。形状は球状炭が好ましいが、通常の粒状炭や破砕炭でも良い。   In the normal biological activated carbon, the expansion rate of the activated carbon fluidized bed is about 10 to 20%. As a result, the membrane installed at the same time is rubbed by activated carbon and worn out. In order to prevent this, in the present invention, the activated carbon needs to flow sufficiently, and the expansion rate is desirably 20% or more. For this reason, the particle size of the activated carbon is preferably smaller than that of normal biological activated carbon. The activated carbon may be anything from coconut charcoal, coal, charcoal and the like. The shape is preferably spherical charcoal, but may be ordinary granular charcoal or crushed charcoal.

<酸素含有ガス>
酸素含有ガスは空気、酸素富化空気、純酸素等、酸素を含む気体であればよい。通気する気体はフィルターを通過させて微細粒子を除去することが望ましい。
<Oxygen-containing gas>
The oxygen-containing gas may be a gas containing oxygen, such as air, oxygen-enriched air, or pure oxygen. It is desirable that the gas to be vented pass through a filter to remove fine particles.

通気量は生物反応に必要な酸素量の等量から2倍程度が望ましい。これよりも少ないと酸素不足で処理水中にBODやアンモニアが残存し、多いと通気量が不必要に多くなることに加えて圧力損失が高くなるため、経済性が損なわれる。   The amount of aeration is preferably about twice the amount of oxygen required for biological reactions. If it is less than this, BOD and ammonia will remain in the treated water due to insufficient oxygen, and if it is greater, the air flow will be unnecessarily increased and the pressure loss will be increased, so the economy will be impaired.

通気圧力は所定の通気量で生ずる中空糸の圧力損失よりもわずかに高い程度が望ましい。   The aeration pressure is desirably slightly higher than the pressure loss of the hollow fiber generated at a predetermined aeration amount.

<被処理水の流速>
被処理水の流速はLV10m/hr以上とし、処理水を循環せず、ワンパスで処理するのが好ましい。
<Flow rate of treated water>
It is preferable that the flow rate of the water to be treated is LV10 m / hr or more, and the treatment water is not circulated and treated in one pass.

LVを高くすると、それに比例して酸素溶解速度が向上する。LV50m/hrでは10m/hrの2倍ほど酸素が溶解する。LVが高い場合は、粒径が大きい活性炭を使い、展開率をあまり大きくしないようにするのが好ましい。生物量、酸素溶解速度から、最適LV範囲は10〜30m/hr程度である。
When the LV is increased, the oxygen dissolution rate is proportionally increased. At LV 50 m / hr, oxygen dissolves about twice as much as 10 m / hr. When LV is high, it is preferable to use activated carbon having a large particle size so that the expansion rate is not so large. The optimal LV range is about 10 to 30 m / hr from the biomass and oxygen dissolution rate.

<滞留時間>
槽負荷1〜2kg−TOC/m/dayとなるように滞留時間を設定するのが好ましい。
<Residence time>
It is preferable to set the residence time such that the tank load is 1 to 2 kg-TOC / m 3 / day.

<ブロア>
ブロアは、吐出風圧が水深からくる水圧以下のもので十分である。但し、配管等の圧損以上であることは必要である。通常、配管抵抗は1〜2kPa程度である。
<Blower>
As the blower, it is sufficient that the discharge wind pressure is equal to or lower than the water pressure coming from the water depth. However, it is necessary to be more than the pressure loss of piping. Usually, the pipe resistance is about 1 to 2 kPa.

5mの水深の場合、通常は0.55MPa程度までの出力の汎用ブロアが用いられ、それ以上の水深では高圧ブロアが用いられてきている。   In the case of a water depth of 5 m, a general-purpose blower with an output of up to about 0.55 MPa is usually used, and a high-pressure blower has been used at a water depth higher than that.

本発明では、5m以上の水深であっても0.5MPa以下の圧力の汎用ブロアを用いることができ、0.1MPa以下の低圧ブロアを用いることが好ましい。   In the present invention, a general purpose blower having a pressure of 0.5 MPa or less can be used even at a water depth of 5 m or more, and a low pressure blower of 0.1 MPa or less is preferably used.

酸素含有ガスの供給圧は、中空糸膜の圧力損失より高く、水深圧力よりも低いこと、さらに膜が水圧でつぶれないこと、が条件となる。平膜、スパイラル膜は膜の圧損が水圧と比較すると無視できるため、極めて低い圧力、5kPa程度以上、水圧以下、望ましくは20kPa以下である。   The supply pressure of the oxygen-containing gas is required to be higher than the pressure loss of the hollow fiber membrane, lower than the water depth pressure, and further, the membrane should not be crushed by water pressure. Since the pressure loss of the flat membrane and the spiral membrane is negligible compared to the water pressure, the pressure is very low, about 5 kPa or more, water pressure or less, preferably 20 kPa or less.

中空糸膜の場合、内径と長さによって圧力損失は変化する。通気する空気量は膜1mあたり20mL〜100mL/dayであるから、膜長さが2倍になると空気量は2倍になり、膜径が2倍になっても空気量は2倍にしかならない。したがって、膜の圧力損失は膜長さに正比例し、直径に反比例する。 In the case of a hollow fiber membrane, the pressure loss varies depending on the inner diameter and length. Since the amount of air to be aerated is 20 mL to 100 mL / day per m 2 of membrane, the amount of air doubles when the membrane length is doubled, and the amount of air is only doubled even when the membrane diameter is doubled. Don't be. Therefore, the pressure loss of the membrane is directly proportional to the membrane length and inversely proportional to the diameter.

圧力損失の値は、内径50μm、長さ2mの中空糸で3〜20kPa程度である。   The value of pressure loss is about 3 to 20 kPa for hollow fibers having an inner diameter of 50 μm and a length of 2 m.

本発明者の実験によると、通気圧力を11〜140kPa、通気量を240〜460mL/min変化させた結果、酸素溶解速度はほとんど変化しないことが認められた。   According to the experiment of the present inventor, it was confirmed that the oxygen dissolution rate hardly changed as a result of changing the aeration pressure to 11 to 140 kPa and the aeration amount to 240 to 460 mL / min.

本発明では、酸素溶解効率が30〜100%特に40〜60%となるようにすることが好ましい。   In the present invention, the oxygen dissolution efficiency is preferably 30 to 100%, particularly 40 to 60%.

図2〜6では担体の流動床Fを形成しているが、担体を懸濁させてもよい。反応槽内の液の曝気、液の流れ、及び機械的操作の1又は2以上によって担体を懸濁又は流動させるのが好ましい。   Although the fluidized bed F of the carrier is formed in FIGS. 2 to 6, the carrier may be suspended. The carrier is preferably suspended or fluidized by one or more of aeration of the liquid in the reaction vessel, flow of the liquid, and mechanical operation.

このように担体を懸濁又は流動させることにより、酸素透過膜への生物の付着を防止することができ、酸素透過膜からの酸素供給速度を高く保つことができる。 By thus suspended or fluidized carrier, it is possible to prevent biofouling of the oxygen-permeable membrane, it is possible to maintain a high oxygen supply speed from the oxygen-permeable membrane.

反応槽のMLSS濃度を高濃度に維持することによっても酸素透過膜への生物の付着を防止できる。MLSS濃度は、好ましくは10,000〜50,000mg/L、特に好ましくは20,000〜30,000mg/Lに維持する。 By maintaining the MLSS concentration in the reaction tank at a high concentration, it is possible to prevent the organism from attaching to the oxygen permeable membrane . The MLSS concentration is preferably maintained at 10,000 to 50,000 mg / L, particularly preferably 20,000 to 30,000 mg / L.

MLSSを高濃度に保持するには、反応槽内の処理液中に濾過膜を設置し、この濾過膜の透過水を処理水として取り出すことが好ましい。   In order to maintain MLSS at a high concentration, it is preferable to install a filtration membrane in the treatment liquid in the reaction tank and take out the permeated water of this filtration membrane as the treatment water.

[実施例1]
DMSO 3.2%を含む半導体洗浄廃水を、TOC-槽負荷1.2kg/m/D、水槽容量10L、滞留時間24時間で通水した。
[Example 1]
Semiconductor cleaning wastewater containing DMSO 3.2% was passed through with a TOC tank load of 1.2 kg / m 3 / D, a water tank capacity of 10 L, and a residence time of 24 hours.

通水10日後、20日後、21日後、に臭気(DMS)測定を実施。いずれの測定でも検知管のDMS下限値(0.25mg/L)以下であった。また、その後段で生物処理(標準活性汚泥処理方式)を行うことで、低負荷の有機物をさらに低減することができた。なお、臭気測定は、ガステック社のパイロチューブ検知管を使用した。   Odor (DMS) measurement was carried out 10 days, 20 days and 21 days after water flow. In any measurement, it was below the DMS lower limit (0.25 mg / L) of the detection tube. In addition, by performing biological treatment (standard activated sludge treatment method) at the subsequent stage, it was possible to further reduce low-load organic matter. The odor measurement was performed using a gas tube pyrotube detector tube.

[比較例1、2]
半導体製造工場の直列三段生物処理槽において、TOC槽負荷平均0.17kg/m/D(DMSO含有比率約2%)の運転で装置周辺の空気中にDMSが平均2.73ppm(MIN:0ppm〜MAX25.5ppm)で検知された(比較例1)。また、TOC槽負荷平均0.24kg/m/D(DMSO含有比率約2%)の運転で装置周辺の空気中にDMSが平均9.84ppm(MIN:0ppm〜MAX59ppm)検知された(比較例2)。
[Comparative Examples 1 and 2]
In series three-stage biological treatment tank of a semiconductor manufacturing factory, TOC tank load average 0.17kg / m 3 / D DMS in the air around device operation (DMSO content ratio of about 2%) average 2.73ppm (MIN: 0 ppm to MAX 25.5 ppm) (Comparative Example 1). In addition, an average of 9.84 ppm (MIN: 0 ppm to MAX 59 ppm) of DMS was detected in the air around the apparatus during operation with an average TOC tank load of 0.24 kg / m 3 / D (DMSO content ratio of about 2%) (Comparative Example) 2).

1 好気性生物処理装置
酸素透過膜モジュール
3 第1反応槽
12 第2反応槽
DESCRIPTION OF SYMBOLS 1 Aerobic biological treatment apparatus 2 Oxygen permeable membrane module 3 1st reaction tank 12 2nd reaction tank

Claims (5)

直列に接続された第1ないし第n(nは2以上)の反応槽を備え、各反応槽内で好気性生物処理を行う好気性生物処理装置において、
少なくとも第1反応槽は、反応槽内に配置された、非多孔質の酸素透過膜によって酸素を被処理水に溶解させるMABR反応槽であり、
該被処理水は、揮発性物質又は臭気の発生する物質を含む有機性廃水であり、
少なくとも最終反応槽はMABR以外の反応槽であることを特徴とする好気性生物処理装置。
In an aerobic biological treatment apparatus comprising first to n-th (n is 2 or more) reaction tanks connected in series and performing an aerobic biological treatment in each reaction tank,
At least the first reaction tank is a MABR reaction tank that is disposed in the reaction tank and dissolves oxygen in the water to be treated by a non-porous oxygen permeable membrane .
The treated water is an organic wastewater containing a volatile substance or a substance generating odor,
An aerobic biological treatment apparatus characterized in that at least the final reaction tank is a reaction tank other than MABR.
請求項1において、前記MABR以外の反応槽は、汚泥浮遊反応槽又は担体流動反応槽であることを特徴とする好気性生物処理装置。   2. The aerobic biological treatment apparatus according to claim 1, wherein the reaction tank other than the MABR is a sludge floating reaction tank or a carrier flow reaction tank. 反応槽内で好気性生物処理を行う好気性生物処理装置において、
該反応槽はプラグフロー反応槽であり、該反応槽内の被処理水流入側は、非多孔質の酸素透過膜によって酸素を該反応槽内の被処理水に溶解させるMABR方式となっており、
該被処理水は、揮発性物質又は臭気の発生する物質を含む有機性廃水であり、
該反応槽の処理水出口側は、MABR以外の処理方式となっていることを特徴とする好気性生物処理装置。
In an aerobic biological treatment apparatus that performs aerobic biological treatment in a reaction tank,
The reaction tank is a plug flow reaction tank, and the treated water inflow side in the reaction tank is a MABR system in which oxygen is dissolved in the treated water in the reaction tank by a non-porous oxygen permeable membrane . ,
The treated water is an organic wastewater containing a volatile substance or a substance generating odor,
An aerobic biological treatment apparatus characterized in that the treatment water outlet side of the reaction tank has a treatment method other than MABR.
請求項3において、前記反応槽の処理水出口側は、汚泥浮遊反応方式又は担体流動反応方式となっていることを特徴とする好気性生物処理装置。   4. The aerobic biological treatment apparatus according to claim 3, wherein the treated water outlet side of the reaction tank is a sludge floating reaction method or a carrier flow reaction method. 請求項1ないし4のいずれか1項において、前記酸素透過膜は、酸素含有ガスが送風される中空糸膜であり、該酸素含有ガスの送風圧力が、該中空糸膜の圧力損失より5〜20%高い圧力であることを特徴とする好気性生物処理装置。5. The oxygen permeable membrane according to claim 1, wherein the oxygen permeable membrane is a hollow fiber membrane through which an oxygen-containing gas is blown, and a blowing pressure of the oxygen-containing gas is 5 to 5 from a pressure loss of the hollow fiber membrane. An aerobic biological treatment apparatus characterized by a 20% higher pressure.
JP2017051090A 2017-03-16 2017-03-16 Aerobic biological treatment equipment Active JP6281652B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017051090A JP6281652B1 (en) 2017-03-16 2017-03-16 Aerobic biological treatment equipment
PCT/JP2017/033545 WO2018168022A1 (en) 2017-03-16 2017-09-15 Aerobic biological treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017051090A JP6281652B1 (en) 2017-03-16 2017-03-16 Aerobic biological treatment equipment

Publications (2)

Publication Number Publication Date
JP6281652B1 true JP6281652B1 (en) 2018-02-21
JP2018153731A JP2018153731A (en) 2018-10-04

Family

ID=61231476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017051090A Active JP6281652B1 (en) 2017-03-16 2017-03-16 Aerobic biological treatment equipment

Country Status (2)

Country Link
JP (1) JP6281652B1 (en)
WO (1) WO2018168022A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6610688B2 (en) * 2018-02-20 2019-11-27 栗田工業株式会社 Aerobic biological treatment equipment
JP7283253B2 (en) * 2019-06-21 2023-05-30 栗田工業株式会社 Operation method of biological treatment equipment
JP7437139B2 (en) * 2019-11-19 2024-02-22 住友重機械エンバイロメント株式会社 Water treatment equipment and water treatment method
CN112142192B (en) * 2020-09-08 2021-12-21 同济大学 Membrane-carried biological deodorization reactor and deodorization method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264127A (en) * 1987-04-22 1988-11-01 Dainippon Ink & Chem Inc Porous membrane type gas-liquid contact device
JPH0568996A (en) * 1991-05-17 1993-03-23 Nippon Plant:Kk Generation of dissolved gas and sewage treatment apparatus using dissolved gas
JP2004505752A (en) * 2000-08-04 2004-02-26 シアロックス インコーポレイテッド Wastewater oxygenator and method
JP2006087310A (en) * 2004-09-21 2006-04-06 Japan Organo Co Ltd Membrane-type bioreactor and liquid treatment method using the same
JP2006094748A (en) * 2004-09-29 2006-04-13 Japan Organo Co Ltd Membrane type bioreactor and method for treating liquid by using the same
JP2006101805A (en) * 2004-10-07 2006-04-20 Japan Organo Co Ltd Hollow fiber membrane type bioreactor and liquid treatment method using the same
JP2006289343A (en) * 2005-03-17 2006-10-26 Sharp Corp Method and apparatus for treating waste water
JP2008168201A (en) * 2007-01-11 2008-07-24 Seiko Epson Corp Wastewater treatment method
JP2009034649A (en) * 2007-08-03 2009-02-19 Japan Organo Co Ltd Method and apparatus for treating water containing organic sulfur compound

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264127A (en) * 1987-04-22 1988-11-01 Dainippon Ink & Chem Inc Porous membrane type gas-liquid contact device
JPH0568996A (en) * 1991-05-17 1993-03-23 Nippon Plant:Kk Generation of dissolved gas and sewage treatment apparatus using dissolved gas
JP2004505752A (en) * 2000-08-04 2004-02-26 シアロックス インコーポレイテッド Wastewater oxygenator and method
JP2006087310A (en) * 2004-09-21 2006-04-06 Japan Organo Co Ltd Membrane-type bioreactor and liquid treatment method using the same
JP2006094748A (en) * 2004-09-29 2006-04-13 Japan Organo Co Ltd Membrane type bioreactor and method for treating liquid by using the same
JP2006101805A (en) * 2004-10-07 2006-04-20 Japan Organo Co Ltd Hollow fiber membrane type bioreactor and liquid treatment method using the same
JP2006289343A (en) * 2005-03-17 2006-10-26 Sharp Corp Method and apparatus for treating waste water
JP2008168201A (en) * 2007-01-11 2008-07-24 Seiko Epson Corp Wastewater treatment method
JP2009034649A (en) * 2007-08-03 2009-02-19 Japan Organo Co Ltd Method and apparatus for treating water containing organic sulfur compound

Also Published As

Publication number Publication date
WO2018168022A1 (en) 2018-09-20
JP2018153731A (en) 2018-10-04

Similar Documents

Publication Publication Date Title
JP6281652B1 (en) Aerobic biological treatment equipment
JP6702344B2 (en) Aerobic biological treatment equipment
JPWO2008139618A1 (en) Water treatment method
JP6451724B2 (en) Biological activated carbon treatment equipment
JP6601517B2 (en) Operating method of aerobic biological treatment equipment
JP2019005755A (en) Biological activated carbon treatment device
JP6938876B2 (en) Biological processing equipment
JP6938875B2 (en) Biological processing equipment
JP6614253B2 (en) Aerobic biological treatment apparatus and operation method thereof
WO2019163428A1 (en) Aerobic organism treatment device and method for operating same
JP2019025483A (en) Biological activated carbon treatment device
JP2019005756A (en) Biological activated carbon treatment device
JP2019005757A (en) Biological activated carbon treatment device
JP6610688B2 (en) Aerobic biological treatment equipment
JP6558455B1 (en) Aerobic biological treatment equipment
TWI856004B (en) Aerobic biological treatment device
JP6866918B2 (en) Aerobic biological treatment equipment
JP2018047405A (en) Biological treatment device
JP6652147B2 (en) Aerobic biological treatment equipment
JP2007167774A (en) Apparatus for treating activated sludge

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180108

R150 Certificate of patent or registration of utility model

Ref document number: 6281652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250