JP2007167774A - Apparatus for treating activated sludge - Google Patents

Apparatus for treating activated sludge Download PDF

Info

Publication number
JP2007167774A
JP2007167774A JP2005369433A JP2005369433A JP2007167774A JP 2007167774 A JP2007167774 A JP 2007167774A JP 2005369433 A JP2005369433 A JP 2005369433A JP 2005369433 A JP2005369433 A JP 2005369433A JP 2007167774 A JP2007167774 A JP 2007167774A
Authority
JP
Japan
Prior art keywords
tank
dissolved oxygen
denitrification
activated sludge
nitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005369433A
Other languages
Japanese (ja)
Inventor
Sadahito Nakahara
禎仁 中原
Wataru Fujii
渉 藤井
Yoichi Kubota
洋一 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Engineering Co Ltd
Original Assignee
Mitsubishi Rayon Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Engineering Co Ltd filed Critical Mitsubishi Rayon Engineering Co Ltd
Priority to JP2005369433A priority Critical patent/JP2007167774A/en
Publication of JP2007167774A publication Critical patent/JP2007167774A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane separation activated sludge treatment apparatus efficiently carrying out a denitrification reaction in a denitrification tank even if a dissolved oxygen amount in a nitrification tank is increased. <P>SOLUTION: This apparatus keeps the nitrification tank (4) immersing a membrane filtration unit (5) having a membrane module (9) and an air diffuser (15) in activated sludge arranged on the downstream side of the denitrification tank (3), and also a dissolved oxygen reducing tank (6) arranged adjacent to the upstream side of the denitrification tank (3). A part of the activated sludge is returned from the nitrification tank (4) to this dissolved oxygen reducing tank (6). By reducing the dissolved oxygen amount in raw water (drainage) containing a part of the activated sludge in the dissolved oxygen reducing tank (6), the dissolved oxygen amount in the raw water to be fed to the denitrification tank (3) can substantially be reduced to 0 mg/L, so that the denitrification reaction is activated. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、有機物やバクテリア類を含む大量の排水を生物学的に連続処理する膜分離活性汚泥処理装置に関し、特に脱窒槽における脱窒反応を活発化させることを可能にした活性汚泥処理装置に関する。   The present invention relates to a membrane separation activated sludge treatment apparatus for biologically continuously treating a large amount of wastewater containing organic matter and bacteria, and more particularly to an activated sludge treatment apparatus capable of activating a denitrification reaction in a denitrification tank. .

従来の膜分離活性汚泥システムによれば、微細目スクリーンにて比較的小さな夾雑物が除去された排水(原水)が原水調整槽に導入される。この原水調整槽では、液面を液面計により測定し、第1送液ポンプを間欠作動させて槽内の液面高さを所定の範囲となるように調整している。一般的に、第1液送ポンプにより送り出される原水は脱窒槽に導入されたのち、脱窒槽から溢流する脱窒後の原水を隣接する硝化槽に流入させる。この硝化槽には膜ろ過ユニットが浸漬配置されている。この硝化槽では汚泥の硝化とリン摂取がなされ、膜ろ過ユニットにて活性汚泥と処理水とに膜分離される。膜分離された処理水は吸引ポンプにより処理水槽へと送液される。一方、硝化槽にてばっ気処理されて増殖した汚泥の固形分(懸濁物質)は、汚泥貯蔵槽に送られて貯蔵される。また、硝化槽の内部の汚泥の一部は第2液送ポンプによって上記脱窒槽へと返送されて、脱窒槽と硝化槽との間を循環する。   According to the conventional membrane separation activated sludge system, the waste water (raw water) from which relatively small impurities are removed by the fine screen is introduced into the raw water adjustment tank. In this raw water adjustment tank, the liquid level is measured by a liquid level gauge, and the first liquid feed pump is intermittently operated to adjust the liquid level height in the tank to a predetermined range. Generally, the raw water delivered by the first liquid feed pump is introduced into the denitrification tank, and then the denitrified raw water overflowing from the denitrification tank is allowed to flow into the adjacent nitrification tank. A membrane filtration unit is immersed in this nitrification tank. In this nitrification tank, sludge is nitrified and phosphorus is ingested, and the membrane is separated into activated sludge and treated water by a membrane filtration unit. The treated water separated from the membrane is sent to the treated water tank by a suction pump. On the other hand, the solid content (suspended substance) of the sludge that has been aerated in the nitrification tank and propagated is sent to and stored in the sludge storage tank. Part of the sludge inside the nitrification tank is returned to the denitrification tank by the second liquid feed pump, and circulates between the denitrification tank and the nitrification tank.

好適な膜ろ過ユニットの例として、例えば特開2000−51672号公報(特許文献1)を挙げることができる。前記膜ろ過ユニットは、多数の中空糸膜を平行に並べたシート状の中空糸膜エレメントを複数枚組み込んだ中空糸膜モジュールと同中空糸膜モジュールの下方に配された散気装置とを備えている。前記中空糸膜モジュールは、相互の膜面を平行にして配列された複数枚からなり、全体の形状は略直方体形状を呈している。一方、前記散気装置は、例えば金属、樹脂などからなるパイプに孔を設けた複数本の散気管を平行に配設し、各散気管の一端をブロアに接続させている。散気装置から空気の気泡を発生させて、生活排水、工場排水などの汚水を処理する場合、硝化槽の汚泥中の有機物を、好気性微生物の存在下で散気装置から発生した空気と接触させることにより、前記有機物を前記好気性微生物に吸着・代謝分解させて、生物学的処理がなされる。   As an example of a suitable membrane filtration unit, for example, JP 2000-51672 A (Patent Document 1) can be cited. The membrane filtration unit includes a hollow fiber membrane module incorporating a plurality of sheet-like hollow fiber membrane elements in which a large number of hollow fiber membranes are arranged in parallel, and an air diffuser disposed below the hollow fiber membrane module. ing. The hollow fiber membrane module is composed of a plurality of sheets arranged with their membrane surfaces parallel to each other, and the overall shape thereof has a substantially rectangular parallelepiped shape. On the other hand, in the air diffuser, for example, a plurality of air diffuser pipes each having a hole formed in a pipe made of metal, resin or the like are arranged in parallel, and one end of each air diffuser pipe is connected to a blower. When treating air sewage such as domestic wastewater and factory effluent by generating air bubbles from the air diffuser, contact the organic matter in the sludge of the nitrification tank with the air generated from the air diffuser in the presence of aerobic microorganisms. As a result, the organic matter is adsorbed and metabolically decomposed by the aerobic microorganism, and biological treatment is performed.

前記中空糸膜モジュールと散気装置とは側部の四方を遮閉板により囲まれている。この遮閉板は、散気装置から発生する気泡の上昇により気液混合流を生成し、その流れを上昇流から下方流へと導くための壁部となる。散気装置から発生した気液混合流は、斜め方向に飛散せず、まっすぐに上昇して中空糸膜モジュールに効率よく接触する。このとき、中空糸膜モジュールの膜面に対する気液混合流の一様な分散により、中空糸膜モジュールを均一に洗浄する。またこの基液混合流により上記生物学的処理が効率的になされるとともに、中空糸膜のろ過機能により固液分離がなされる。前記膜分離ユニットには取出管路の一端が接続され、その他端には吸引ポンプが接続されており、前記取出管路を通して、膜ろ過ユニットによってろ過された処理水(ろ過水)が取り出されて処理水槽へと移送される。   The hollow fiber membrane module and the air diffuser are surrounded by a shielding plate on all four sides. The shielding plate serves as a wall portion for generating a gas-liquid mixed flow by the rising of the bubbles generated from the diffuser and guiding the flow from the upward flow to the downward flow. The gas-liquid mixed flow generated from the diffuser does not scatter in an oblique direction, but rises straight and efficiently contacts the hollow fiber membrane module. At this time, the hollow fiber membrane module is uniformly washed by uniform dispersion of the gas-liquid mixed flow with respect to the membrane surface of the hollow fiber membrane module. In addition, the biological treatment is efficiently performed by this mixed liquid mixture, and solid-liquid separation is performed by the filtration function of the hollow fiber membrane. One end of an extraction pipe line is connected to the membrane separation unit, and a suction pump is connected to the other end, and treated water (filtered water) filtered by the membrane filtration unit is taken out through the extraction pipe line. It is transferred to the treated water tank.

一般に上記シート状の膜モジュールは、中空糸膜に限るものではなく、複数の微細な孔を有するろ過膜を備えたものであれば、例えば平膜タイプ、管状膜タイプ、袋状膜タイプなどの種々の公知の分離膜を適用することができる。また、その材質としては、セルロース、ポリオレフィン、ポリスルホン、PVDF(ポリビニリデンフロライド)、PTFE(ポリ四フッ化エチレン)、セラミックスなどが挙げられる。   In general, the sheet-like membrane module is not limited to a hollow fiber membrane, and may be, for example, a flat membrane type, a tubular membrane type, a bag-like membrane type, or the like as long as it has a filtration membrane having a plurality of fine holes. Various known separation membranes can be applied. Examples of the material include cellulose, polyolefin, polysulfone, PVDF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene), and ceramics.

このシート状の膜モジュールに形成された微細孔の平均孔径は、一般に限外ろ過膜と呼ばれる膜では平均孔径0.001〜0.1μm、一般に精密ろ過膜と呼ばれる膜では平均孔径0.1〜1μmである。例えば、活性汚泥の固液分離に用いるときは、0.5μm以下の孔径であることが好ましく、浄水のろ過のように除菌が必要な場合は0.1μm以下の孔径であることが好ましい。   The average pore size of the micropores formed in this sheet-like membrane module is 0.001 to 0.1 μm in the average pore size in a membrane generally called an ultrafiltration membrane, 0.1 to 0.1 μm in the membrane generally called a microfiltration membrane. 1 μm. For example, when used for solid-liquid separation of activated sludge, the pore diameter is preferably 0.5 μm or less, and when sterilization is required as in the case of filtration of purified water, the pore diameter is preferably 0.1 μm or less.

膜分離活性汚泥処理システムは、原水を脱窒槽及び硝化槽(好気槽)において活性汚泥により生物学的に浄化する。窒素の除去は、脱窒槽と硝化槽との間で汚泥を循環させることにより、いわゆる硝化脱窒反応によってなされる。BODに換算される有機物は、主として硝化槽内に配置されたばっ気装置である膜ろ過ユニットの空気排出部から排出される空気により好気的に酸化され分解される。またリンの除去は、汚泥中の微生物(リン蓄積細菌)の作用によりポリリン酸として微生物体内に取り込まれることにより行われる。この微生物は好気状態においてリンを取り込み、嫌気状態において体内に蓄えたリンを放出する。リン蓄積細菌は、嫌気状態と好気状態とに繰り返して曝されると、嫌気状態で放出したリンの量よりも多くのリンを好気状態で吸収する。   The membrane separation activated sludge treatment system biologically purifies raw water with activated sludge in a denitrification tank and a nitrification tank (aerobic tank). Nitrogen is removed by a so-called nitrification denitrification reaction by circulating sludge between the denitrification tank and the nitrification tank. The organic matter converted into BOD is aerobically oxidized and decomposed by the air discharged from the air discharge part of the membrane filtration unit, which is mainly an aeration apparatus disposed in the nitrification tank. The removal of phosphorus is performed by being taken into the microorganism as polyphosphoric acid by the action of microorganisms (phosphorus accumulating bacteria) in the sludge. This microorganism takes up phosphorus in an aerobic state and releases phosphorus stored in the body in an anaerobic state. When repeatedly exposed to anaerobic and aerobic conditions, phosphorus-accumulating bacteria absorb more phosphorus in an aerobic state than the amount of phosphorus released in the anaerobic state.

生物由来の排泄物や死骸などの窒素化合物の一部は、肥料として植物やバクテリアに同化される。また、こうした窒素化合物の一部は、酸素の多い好気条件下で独立栄養アンモニア酸化細菌や独立亜硝酸酸化細菌により、亜硝酸、硝酸へと酸化される。他方、酸素がない嫌気条件下では、脱窒菌と呼ばれる微生物が酸素に代わって硝酸から亜硝酸を生成し、更には一酸化二窒素、窒素ガスへと還元して窒素を放出する。この還元反応が上記硝化脱窒反応と称される。   Some of the nitrogen compounds such as biological excrement and carcasses are assimilated into plants and bacteria as fertilizers. Some of these nitrogen compounds are oxidized to nitrous acid and nitric acid by autotrophic ammonia oxidizing bacteria and independent nitrite oxidizing bacteria under aerobic conditions with a lot of oxygen. On the other hand, under anaerobic conditions without oxygen, microorganisms called denitrifying bacteria produce nitrous acid from nitric acid instead of oxygen, and further reduce to dinitrogen monoxide and nitrogen gas to release nitrogen. This reduction reaction is referred to as the nitrification denitrification reaction.

このような硝化脱窒反応に基づく膜分離活性汚泥処理装置が、例えば国際公開第03/101896号パンフレット(特許文献2)に開示されている。同特許文献2によれば、硝化槽から脱窒槽へ循環液である汚泥を送液する際、硝化槽中に配された最も低い位置にある散気装置の下方の槽底部近傍から汚泥を取り出すように構成し、硝化槽と硝化槽との2つの処理槽のみで、凝集剤などを使用せずに窒素及びリンを除去している。   A membrane separation activated sludge treatment apparatus based on such a nitrification denitrification reaction is disclosed, for example, in International Publication No. 03/101896 (Patent Document 2). According to Patent Document 2, when sending sludge as a circulating liquid from a nitrification tank to a denitrification tank, the sludge is taken out from the vicinity of the bottom of the bottom of the diffuser at the lowest position arranged in the nitrification tank. Thus, nitrogen and phosphorus are removed using only two treatment tanks, a nitrification tank and a nitrification tank, without using a flocculant or the like.

上記膜分離活性汚泥処理装置にあっては、循環液である汚泥を取り出す位置を最も低い位置に配されている散気装置から更に20cm以上下方に離している。こうすることにより、硝化槽から送液される汚泥が脱窒槽に導入される位置で溶存酸素濃度を0.2mg/L以下とし、硝化槽より汚泥を取り出す位置では溶存酸素濃度を0.5mg/L以下とすることができるというものである。
特開2000−51672号公報 国際公開第03/101896号パンフレット
In the membrane separation activated sludge treatment apparatus, the position for taking out the sludge as the circulating liquid is further separated by 20 cm or more downward from the air diffuser disposed at the lowest position. By doing so, the dissolved oxygen concentration is 0.2 mg / L or less at the position where the sludge fed from the nitrification tank is introduced into the denitrification tank, and the dissolved oxygen concentration is 0.5 mg / L at the position where the sludge is taken out from the nitrification tank. L or less.
JP 2000-51672 A WO03 / 101896 pamphlet

ところで、上記特許文献2の記載によると、無酸素槽(脱窒槽)内に溶存酸素、硝酸イオン、亜硝酸イオンが実質的に存在しないと有機物が脱窒菌により嫌気的に分解され、このとき脱窒菌に蓄積されたポリリン酸がリン酸として菌体外に放出される。特許文献1に記載された発明によれば、ばっ気槽からの循環液(汚泥)が無酸素槽に入る部位における溶存酸素濃度は0.2mg/L以下とする必要があり、0.1mg/L以下とすると、リンの除去性がより安定するため好ましく、さらに0.05mg/L以下とするとより好ましいとしている。しかるに、この特許文献1による方法で循環液の溶存酸素濃度を低減させようとしても限度がある。また、近年では高度な窒素除去が求められており、前述した循環式硝化脱窒法において除去率を上げるために、硝化槽から脱窒槽へ送液する循環倍率を高くしなければならないことが多くなってきた。循環倍率を上げると、脱窒槽への溶存酸素の持込みが増加し、脱窒槽が嫌気となりにくく、脱窒槽内において硝酸イオンを完全に脱窒することができなくなる場合がある。   By the way, according to the description in Patent Document 2, organic substances are decomposed anaerobically by denitrifying bacteria when dissolved oxygen, nitrate ions, and nitrite ions are not substantially present in the anoxic tank (denitrification tank). The polyphosphoric acid accumulated in the nitrifying bacteria is released out of the cells as phosphoric acid. According to the invention described in Patent Document 1, the dissolved oxygen concentration at the site where the circulating fluid (sludge) from the aeration tank enters the anoxic tank needs to be 0.2 mg / L or less, and 0.1 mg / L If it is L or less, it is preferable because phosphorus removability is more stable, and if it is 0.05 mg / L or less, it is more preferable. However, there is a limit even if it is attempted to reduce the dissolved oxygen concentration of the circulating fluid by the method according to Patent Document 1. Further, in recent years, advanced nitrogen removal has been demanded, and in order to increase the removal rate in the above-described circulation type nitrification denitrification method, it is often necessary to increase the circulation ratio for feeding liquid from the nitrification tank to the denitrification tank. I came. When the circulation rate is increased, the amount of dissolved oxygen brought into the denitrification tank increases, the denitrification tank is less likely to become anaerobic, and nitrate ions may not be completely denitrified in the denitrification tank.

本発明の目的は、循環式硝化脱窒法を用いた膜分離活性汚泥処理法にあって、脱窒槽に戻される汚泥中の溶存酸素濃度を更に低減させて、リンの除去性を向上させる活性汚泥処理装置を提供するにある。   An object of the present invention is a membrane separation activated sludge treatment method using a circulatory nitrification denitrification method, which further reduces the dissolved oxygen concentration in the sludge returned to the denitrification tank and improves the phosphorus removal performance. To provide a processing device.

かかる目的は、本発明の基本構成である、脱窒槽及び硝化槽が順次配され、脱窒槽と硝化槽との間で汚泥を循環させて排水を生物学的に処理するとともに、前記硝化槽には1基以上の膜ろ過ユニットが浸漬され、排水を活性汚泥と処理水とに膜分離する活性汚泥処理装置にあって、前記脱窒槽の上流側に処理排水中の溶存酸素量を低減させる溶存酸素低減槽が配され、前記硝化槽の活性汚泥を前記溶存酸素低減槽又はその上流部に循環させる汚泥循環路を有してなることを特徴とする活性汚泥処理装置により効果的に達成される。   The purpose is to sequentially arrange a denitrification tank and a nitrification tank, which are the basic configuration of the present invention, to circulate sludge between the denitrification tank and the nitrification tank to biologically treat the wastewater, and to the nitrification tank. Is an activated sludge treatment apparatus in which one or more membrane filtration units are immersed, and the wastewater is separated into activated sludge and treated water, and dissolved to reduce the amount of dissolved oxygen in the treated wastewater upstream of the denitrification tank. An oxygen reduction tank is arranged, and is effectively achieved by an activated sludge treatment apparatus characterized by having a sludge circulation path for circulating the activated sludge of the nitrification tank to the dissolved oxygen reduction tank or its upstream part. .

好適な態様によれば、前記溶存酸素低減槽の上流側には、送液手段により送液管路を介して前記溶存酸素低減槽に間欠的に原水を送り込むとともに、前記脱窒槽又は硝化槽の液面高さを調整する。そして、原水調整槽からの送液を溶存酸素低減槽と脱窒槽に分配してもよく、その送液のための送液分配手段を更に設けることもできる。   According to a preferred embodiment, upstream of the dissolved oxygen reduction tank, raw water is intermittently sent to the dissolved oxygen reduction tank via a liquid supply pipe by a liquid supply means, and the denitrification tank or the nitrification tank Adjust the liquid level. And the liquid feeding from a raw | natural water adjustment tank may be distributed to a dissolved oxygen reduction tank and a denitrification tank, and the liquid feeding distribution means for the liquid feeding can also be provided further.

作用効果Effect

上記溶存酸素低減槽に原水を所要の時間収容している。この収容された溶存酸素低減槽の原水には元々溶存酸素が含まれている。また、この種の膜分離活性汚泥処理法によれば、硝化槽からばっ気処理されて溶存酸素濃度の高い汚泥を脱窒槽に戻して循環させている。上記特許文献2では、その硝化槽の溶存酸素濃度が低い領域を選んで溶存酸素濃度が比較的低い汚泥を脱窒槽に戻しているが、0に近い濃度まで溶存酸素量を減少させることはできない。   Raw water is stored in the dissolved oxygen reduction tank for a required time. The raw water of the stored dissolved oxygen reduction tank originally contains dissolved oxygen. In addition, according to this type of membrane separation activated sludge treatment method, sludge having been aerated from a nitrification tank and having a high dissolved oxygen concentration is returned to the denitrification tank for circulation. In the above-mentioned Patent Document 2, a region having a low dissolved oxygen concentration in the nitrification tank is selected and sludge having a relatively low dissolved oxygen concentration is returned to the denitrification tank, but the amount of dissolved oxygen cannot be reduced to a concentration close to 0. .

その点、本発明によれば、前述のように脱窒槽の上流側に溶存酸素低減槽を配して、そこに原水を送り込むことによって、原水中のBOD成分が消費されることにより、硝化槽から持込まれた溶存酸素が急激に消費される。溶存酸素低減槽より溢流する汚泥中には、溶存酸素がほとんどないため、脱窒槽は、無酸素状態が安定して維持され、高速で脱窒することができる。脱窒反応には、BOD成分が必要なため、場合によっては、原水を溶存酸素低減槽だけでなく、脱窒槽に分配する。このことは脱窒槽の嫌気状態を高くすることにつながるため十分なリンの放出も行うことも可能にする。   In that respect, according to the present invention, as described above, the dissolved oxygen reduction tank is arranged on the upstream side of the denitrification tank, and the raw water is fed to the BOD component in the raw water so that the nitrification tank is consumed. The dissolved oxygen brought in from is consumed rapidly. Since there is almost no dissolved oxygen in the sludge overflowing from the dissolved oxygen reduction tank, the denitrification tank is stably maintained in an oxygen-free state and can be denitrified at high speed. Since a BOD component is required for the denitrification reaction, in some cases, raw water is distributed not only to the dissolved oxygen reduction tank but also to the denitrification tank. Since this leads to an increase in the anaerobic state of the denitrification tank, it is possible to release sufficient phosphorus.

この原水調整槽からの原水を溶存酸素低減槽と脱窒槽に分配する場合、その分配比率を調整できるようにする必要がある。開閉バルブ付分岐送液管路から分配させる場合には、前記分配比率を調整することが難しいため、通常は、それぞれの送液路に可変容量ポンプを配し、それぞれのポンプによって好適な分配比率のもと送液するか、或いは分配槽を介して分配することが望ましい。   When the raw water from the raw water adjustment tank is distributed to the dissolved oxygen reduction tank and the denitrification tank, it is necessary to be able to adjust the distribution ratio. When distributing from a branch liquid supply line with an open / close valve, it is difficult to adjust the distribution ratio. Usually, a variable capacity pump is provided in each liquid supply path, and a suitable distribution ratio is determined by each pump. It is desirable that the liquid is fed under the condition of the above or distributed via a distribution tank.

以下、本発明の好適な実施形態につき詳細に説明するが、本発明は特許請求の範囲内において多様な変更が可能であり、以下の実施形態に限定解釈されるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail, but the present invention can be modified in various ways within the scope of the claims and should not be construed as being limited to the following embodiments.

図1は、本発明の実施形態の一例を示す活性汚泥処理装置の概略構成図である。同図において、符号1は微細目スクリーン、符号2は原水調整槽、符号3は脱窒槽、符号4は硝化槽、符号5は膜ろ過ユニット、符号7は汚泥貯蔵槽、符号8は処理水槽を示している。符号6は本発明の最も特徴とする構成である溶存酸素低減槽を示している。   FIG. 1 is a schematic configuration diagram of an activated sludge treatment apparatus showing an example of an embodiment of the present invention. In the figure, reference numeral 1 is a fine screen, reference numeral 2 is a raw water adjustment tank, reference numeral 3 is a denitrification tank, reference numeral 4 is a nitrification tank, reference numeral 5 is a membrane filtration unit, reference numeral 7 is a sludge storage tank, reference numeral 8 is a treated water tank. Show. Reference numeral 6 denotes a dissolved oxygen reduction tank which is the most characteristic configuration of the present invention.

本実施形態にあっては、前記溶存酸素低減槽6は、前記原水調整槽2と脱窒槽3との間に配設されている。この溶存酸素低減槽6には、原水が連続あるいは、間欠的に投入されるとともに、硝化槽からの循環汚泥が返送される。溶存酸素低減槽6の平均滞留時間は、循環倍率や、汚泥濃度、原水のBODなどによって最適値は異なるが、30分〜3時間程度が適当である。あまり短いと十分に溶存酸素が低減されず、あまり長いと水槽の容量が大きくなり無駄である。溶存酸素低減槽では、硝化槽から持ち込まれた溶存酸素が微生物の原水BOD成分を利用等によって消費される。   In the present embodiment, the dissolved oxygen reduction tank 6 is disposed between the raw water adjustment tank 2 and the denitrification tank 3. The dissolved oxygen reduction tank 6 is fed with raw water continuously or intermittently and returns the circulating sludge from the nitrification tank. The average residence time of the dissolved oxygen reduction tank 6 varies depending on the circulation ratio, sludge concentration, BOD of raw water, etc., but about 30 minutes to 3 hours is appropriate. If it is too short, the dissolved oxygen will not be reduced sufficiently. In the dissolved oxygen reduction tank, the dissolved oxygen brought in from the nitrification tank is consumed by using the raw water BOD component of the microorganism.

また本実施形態では、図1に実線で示すように、第1送液ポンプP1により原水調整槽2の原水を送液路L1を通して間欠的に溶存酸素低減槽6へと送り込んでいるが、同図に仮想線で示すように、前記第1送液路L1を分岐させて、その分岐路L1’を脱窒槽3へと延ばしてもよい。その場合には、分岐路L1’に開閉バルブ25を介装させることが好ましく、開閉バルブ25を閉じた状態では、原水調整槽2の原水は専ら溶存酸素低減槽6へと送られ、開閉バルブ25を開いて、原水調整槽2の原水を溶存酸素低減槽6及び脱窒槽3へと振り分けて送り込むようにする。このときの原水の分配比は、前記開閉バルブ25の開度を調整することにより任意に決めることができる。しかし、開閉バルブ25の開度を調整するだけで原水の分配比を調整することは難しい。そこで、通常は、それぞれの送液路に図示せぬ可変容量ポンプを配し、それぞれのポンプによって好適な分配比のもとで送液したり、或いは図示せぬ分配槽を介して分配するようにする。   In the present embodiment, as shown by the solid line in FIG. 1, the raw water in the raw water adjustment tank 2 is intermittently sent to the dissolved oxygen reduction tank 6 through the liquid supply path L1 by the first liquid feed pump P1. As indicated by a virtual line in the figure, the first liquid feeding path L1 may be branched and the branch path L1 ′ may be extended to the denitrification tank 3. In that case, it is preferable to install an opening / closing valve 25 in the branch path L1 ′. When the opening / closing valve 25 is closed, the raw water in the raw water adjustment tank 2 is sent exclusively to the dissolved oxygen reduction tank 6, 25 is opened, and the raw water in the raw water adjustment tank 2 is distributed and sent to the dissolved oxygen reduction tank 6 and the denitrification tank 3. The distribution ratio of the raw water at this time can be arbitrarily determined by adjusting the opening degree of the opening / closing valve 25. However, it is difficult to adjust the distribution ratio of raw water only by adjusting the opening degree of the opening / closing valve 25. Therefore, normally, variable capacity pumps (not shown) are arranged in the respective liquid supply passages, and the liquids are supplied under a suitable distribution ratio by the respective pumps, or are distributed through distribution tanks (not shown). To.

このように原水の一部を脱窒槽3に送り込む理由は、脱窒槽3において、脱窒するためのBOD成分を確保するためである。溶存酸素低減槽6でBODが処理されすぎてしまうと、脱窒のためのBOD成分が不足し、脱窒速度の低下を招く場合があることによる。溶存酸素低減槽6では、溶存酸素が消費されるために必要なBOD成分があればよい。分配比は、溶存酸素低減槽の溶存酸素濃度や処理水水質などをもとに適宜決定される。   The reason why a part of the raw water is sent to the denitrification tank 3 is to secure a BOD component for denitrification in the denitrification tank 3. If the BOD is excessively processed in the dissolved oxygen reduction tank 6, the BOD component for denitrification is insufficient, and the denitrification rate may be reduced. In the dissolved oxygen reduction tank 6, there may be a BOD component necessary for the dissolved oxygen to be consumed. The distribution ratio is appropriately determined based on the dissolved oxygen concentration in the dissolved oxygen reduction tank, the quality of the treated water, and the like.

更に本実施形態では、図1に示すように、脱窒槽3から脱窒済の汚泥を第2送液ポンプP2により第2送液路L2を通して積極的に硝化槽4へと送り込む。硝化槽4の活性汚泥の一部は第3送液ポンプP3により第3送液路L3を通して連続的に溶存酸素低減槽6へと戻される。従って、硝化槽4の活性汚泥の一部は溶存酸素低減槽6及び脱窒槽3の間を循環して、硝化脱窒処理がなされる。   Furthermore, in this embodiment, as shown in FIG. 1, the denitrified sludge from the denitrification tank 3 is actively sent to the nitrification tank 4 through the second liquid feed path L2 by the second liquid feed pump P2. Part of the activated sludge in the nitrification tank 4 is continuously returned to the dissolved oxygen reduction tank 6 through the third liquid feed path L3 by the third liquid feed pump P3. Therefore, a part of the activated sludge in the nitrification tank 4 circulates between the dissolved oxygen reduction tank 6 and the denitrification tank 3 to be subjected to nitrification denitrification treatment.

このように溶存酸素低減槽6を脱窒槽3の上流側に隣接して配設することにより、排水(原水)は、微細目スクリーン1を通して微細な夾雑物が分離されて原水調整槽2に送り込まれる。原水調整槽2では、第1送液ポンプP1を駆動して、原水を溶存酸素低減槽6に送り込み、ここで原水と硝化槽4から戻された活性汚泥の一部に溶解している酸素を溶存酸素量が殆ど0に近い値にまで低減させる。溶存酸素濃度が0に近い排水は、溶存酸素低減槽6からの溢流により脱窒槽3へと流入して効率的に脱窒とリンの放出とがなされる。この脱窒、リンの放出がなされた排水は、脱窒槽3から第2送液路L2を介して第1送液ポンプP1により積極的に硝化槽4へと送り込まれる。この脱窒、リンの放出がなされた排水は、硝化槽4にて有機物の酸化分解と、好気性菌による硝化及びリンの摂取がなされて活性汚泥を増殖させる。硝化槽4では膜ろ過ユニット5により活性汚泥の固形分と処理水とに膜分離され、処理水は吸引ポンプPvにより吸引されて、処理水槽8へと送られる。このとき発生する余剰汚泥の一部は、上述のように第3送液ポンプP3を介して脱窒槽3に戻され、余剰汚泥の残部は汚泥貯蔵槽7へと排出される。   Thus, by disposing the dissolved oxygen reduction tank 6 adjacent to the upstream side of the denitrification tank 3, the waste water (raw water) is separated into fine impurities through the fine screen 1 and sent to the raw water adjustment tank 2. It is. In the raw water adjustment tank 2, the first liquid feed pump P <b> 1 is driven to feed the raw water into the dissolved oxygen reduction tank 6 where oxygen dissolved in the raw water and a part of the activated sludge returned from the nitrification tank 4 is supplied. The amount of dissolved oxygen is reduced to almost zero. The wastewater whose dissolved oxygen concentration is close to 0 flows into the denitrification tank 3 due to overflow from the dissolved oxygen reduction tank 6, and is efficiently denitrified and released of phosphorus. The drainage from which the denitrification and the release of phosphorus have been performed is actively sent from the denitrification tank 3 to the nitrification tank 4 by the first liquid feed pump P1 through the second liquid feed path L2. The wastewater from which the denitrification and phosphorus are released is subjected to oxidative decomposition of organic matter in the nitrification tank 4, nitrification by aerobic bacteria, and intake of phosphorus to grow activated sludge. In the nitrification tank 4, membrane separation is performed by the membrane filtration unit 5 into activated sludge solids and treated water, and the treated water is sucked by the suction pump Pv and sent to the treated water tank 8. A part of the excess sludge generated at this time is returned to the denitrification tank 3 via the third liquid feeding pump P3 as described above, and the remainder of the excess sludge is discharged to the sludge storage tank 7.

本実施形態では、硝化槽4内に1以上の膜ろ過ユニット5を並列して浸漬させている。図示例によれば、理解を容易にするため2基の膜ろ過ユニット5を示しているが、単基でもよく、或いは2基以上の複数基が配される。大量の排水処理を行う場合には、4基以上、50基以下の膜ろ過ユニット5を並設することが好ましい。膜ろ過ユニット5は、図1に示すように、中空糸膜モジュール9と散気装置15とを備えている。   In the present embodiment, one or more membrane filtration units 5 are immersed in parallel in the nitrification tank 4. According to the illustrated example, two membrane filtration units 5 are shown for easy understanding. However, a single unit may be used, or a plurality of two or more groups may be arranged. When a large amount of wastewater treatment is performed, it is preferable to arrange 4 or more and 50 or less membrane filtration units 5 in parallel. The membrane filtration unit 5 includes a hollow fiber membrane module 9 and an air diffuser 15 as shown in FIG.

前記中空糸膜モジュール9は、図2に示すように、多数枚のシート状の中空糸膜エレメント10が所要の間隔をおいて平行に配された略立方体形状を呈している。本実施形態にあって、前記中空糸膜エレメント10は、図3に示すように多数の多孔性中空糸10aを平行に配列してシート状となし、各多孔性中空糸10aの一端側を固定用樹脂11をもって閉塞固定するとともに、他端側は各多孔性中空糸10aの中空部を開口させて、同じく固定用樹脂11をもって固定している。この多孔性中空糸10aの材質としては、セルロース、ポリオレフィン、ポリスルホン、PVDF(ポリビニリデンフロライド)、PTFE(ポリ四フッ化エチレン)、セラミックスなどが挙げられる。また、前記シート状の膜エレメントは、中空糸膜に限るものではなく、複数の微細な孔を有するろ過膜を備えたものであれば、例えば平膜タイプ、管状膜タイプ、袋状膜タイプなどの種々の公知の分離膜を適用することができる。   As shown in FIG. 2, the hollow fiber membrane module 9 has a substantially cubic shape in which a large number of sheet-like hollow fiber membrane elements 10 are arranged in parallel at a predetermined interval. In this embodiment, the hollow fiber membrane element 10 is formed into a sheet by arranging a number of porous hollow fibers 10a in parallel as shown in FIG. 3, and one end side of each porous hollow fiber 10a is fixed. The resin 11 is closed and fixed, and the other end is fixed with the fixing resin 11 by opening the hollow portion of each porous hollow fiber 10a. Examples of the material of the porous hollow fiber 10a include cellulose, polyolefin, polysulfone, PVDF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene), and ceramics. Further, the sheet-like membrane element is not limited to a hollow fiber membrane, and may be, for example, a flat membrane type, a tubular membrane type, a bag-like membrane type, or the like as long as it has a filtration membrane having a plurality of fine holes. Various known separation membranes can be applied.

このシート状の中空糸膜エレメント10に形成された微細孔の平均孔径は、一般に限外ろ過膜と呼ばれる膜では平均孔径0.001〜0.1μm、一般に精密ろ過膜と呼ばれる膜では平均孔径0.1〜1μmである。例えば、活性汚泥の固液分離に用いるときは、0.5μm以下の孔径であることが好ましく、浄水のろ過のように除菌が必要な場合は0.1μm以下の孔径であることが好ましい。   The average pore size of the micropores formed in the sheet-like hollow fiber membrane element 10 is 0.001 to 0.1 μm in the average pore size in a membrane generally called an ultrafiltration membrane, and 0 in the membrane generally called a microfiltration membrane. .1 to 1 μm. For example, when used for solid-liquid separation of activated sludge, the pore diameter is preferably 0.5 μm or less, and when sterilization is required as in the case of filtration of purified water, the pore diameter is preferably 0.1 μm or less.

本実施形態による前記中空糸膜エレメント10の膜面積は1枚あたり25m2 であり、前記中空糸膜モジュール9の膜面積は500m2 であって、1枚の中空糸膜エレメント10によって、1日あたり400tの排水を処理できる。因みに、1基の膜ろ過ユニット5に、20枚、40枚、60枚の中空糸膜エレメント10を組み込むことができ、その膜ろ過ユニット5の1基あたりの全膜面積は500m2 、1000m2 、1500m2 であって、ユニット1基あたりの処理量は、1日あたり400t、800t、1200tとなる。 The membrane area of the hollow fiber membrane element 10 according to the present embodiment is 25 m 2 per sheet, the membrane area of the hollow fiber membrane module 9 is 500 m 2 , and one hollow fiber membrane element 10 is used for one day. 400t of waste water can be treated. In this connection, 20 pieces, 40 pieces, and 60 pieces of hollow fiber membrane elements 10 can be incorporated in one membrane filtration unit 5, and the total membrane area per unit of the membrane filtration unit 5 is 500 m 2 or 1000 m 2. The processing amount per unit is 1500 m 2 and 400 t, 800 t, and 1200 t per day.

従って、1日あたり10000t以上の処理を行うには、最も大きな膜ろ過ユニットを使ったとしても、単一の処理槽(硝化槽)に10基以上の膜ろ過ユニットを並べて浸漬する必要がある。通常、これらの単一槽内に浸漬される複数の膜ろ過ユニット5は、それぞれが分岐管を介して同一の吸引ヘッダーを通して単一の吸引ポンプPvにより吸引され、処理水として一括処理される。この単一ポンプによる処理を一系列としたとき、更に処理量を増やすには、当然にポンプ容量を増やし、処理槽を大きくしなければならないが、膜ろ過ユニット数を更に増やし、場合によっては系列数をも増やさなければならない。   Therefore, in order to carry out a treatment of 10,000 t or more per day, it is necessary to immerse 10 or more membrane filtration units side by side in a single treatment tank (nitrification tank) even if the largest membrane filtration unit is used. Usually, the plurality of membrane filtration units 5 immersed in these single tanks are each sucked by a single suction pump Pv through the same suction header via a branch pipe and are collectively processed as treated water. When processing by this single pump is made into one series, in order to further increase the processing amount, naturally the pump capacity must be increased and the processing tank must be enlarged, but the number of membrane filtration units is further increased, and in some cases the series is increased. You must also increase the number.

上記中空糸膜モジュール9は、図2に示すように、多数本の多孔性中空糸10aを平行に並列させたシート状の中空糸膜エレメント10の上部開口端部を固定用樹脂11を介してろ過水取出管12に連通支持させるとともに、下端を閉塞して同じく固定用樹脂11を介して下枠13により固定支持させ、前記ろ過水取出管12及び下枠13の各両端を一対の縦杆14により支持して構成される。多数枚の中空糸膜エレメント10が、多孔性中空糸10aを垂直にして上下端面を開口させた矩形筒状の上部ケーシング20のほぼ全容積内に収容されてシート状に並列支持される。   As shown in FIG. 2, the hollow fiber membrane module 9 has an upper opening end of a sheet-like hollow fiber membrane element 10 in which a large number of porous hollow fibers 10 a are arranged in parallel via a fixing resin 11. The lower end 13 is closed and fixedly supported by the lower frame 13 through the fixing resin 11, and both ends of the filtered water outlet 12 and the lower frame 13 are connected to a pair of vertical rods. 14 is configured to be supported. A large number of hollow fiber membrane elements 10 are accommodated in substantially the entire volume of a rectangular cylindrical upper casing 20 in which the upper and lower end surfaces are opened with the porous hollow fiber 10a being vertical, and are supported in parallel in a sheet form.

本実施形態による前記多孔性中空糸10aは、中心部に沿って長さ方向に中空とされたPVDF(ポリフッ化ビニデン)からなる中空糸が使われており、そのろ過孔の孔径は0.4μmである。また、1枚あたりの有効膜面積は25m2 である。上記シート状の中空糸膜エレメント10は膜ろ過ユニット5あたり20枚が使われ、その大きさは奥行きが30mm、幅が1250mm、高さが2000mmである。散気装置8をも含めた1膜ろ過ユニット5の大きさは、奥行きが1552.5mm、幅が1447mm、高さが3043.5mmである。上記ろ過水取出管12の材質はABS樹脂であり、縦杆14の材質はSUS304が使われている。ただし、多孔性中空糸10a、ろ過水取出管12及び縦杆14などの材質、中空糸膜エレメント10の大きさ、膜ろ過ユニット1基の大きさや同ユニット1基あたりの中空糸膜エレメント10の枚数などは、用途に応じて多様に変更が可能である。例えば、中空糸膜エレメント10の枚数で言えば処理量に合わせて20枚、40枚、60枚、…と任意に設定できる。 The porous hollow fiber 10a according to the present embodiment uses a hollow fiber made of PVDF (polyvinylidene fluoride) that is hollow in the longitudinal direction along the center, and the pore diameter of the filtration hole is 0.4 μm. It is. The effective membrane area per sheet is 25 m 2 . Twenty sheets of the sheet-like hollow fiber membrane element 10 are used per membrane filtration unit 5, and the size is 30 mm in depth, 1250 mm in width, and 2000 mm in height. The size of the single membrane filtration unit 5 including the air diffuser 8 is 1552.5 mm in depth, 1447 mm in width, and 3043.5 mm in height. The filtered water outlet 12 is made of ABS resin, and the vertical rod 14 is made of SUS304. However, the material such as the porous hollow fiber 10a, the filtered water take-out pipe 12 and the vertical rod 14, the size of the hollow fiber membrane element 10, the size of one membrane filtration unit, and the number of hollow fiber membrane elements 10 per unit The number of sheets can be variously changed according to the application. For example, the number of hollow fiber membrane elements 10 can be arbitrarily set to 20, 40, 60,... According to the processing amount.

各中空糸膜エレメント10の上記ろ過水取出管12の一端には、図3に示すように、各多孔性中空糸10aによってろ過された良質処理水の取出口12aが形成されている。本実施形態にあって、図2及び図3に示すように、各取出口12aには、それぞれL型継手12bがシール材を介して液密に取り付けられる。また、上記上部ケーシング20の上端の前記取出口12aが形成されている上側端縁に沿って集水ヘッダー管21が水平に設けられている。この集水ヘッダー管21の、前記ろ過水取出管12に設けられた複数の前記取出口12aと対応する位置には、それぞれに集水口21aが形成されており、各集水口21aに上記取出口12aと同様のL型継手21bがシール材を介して液密に取り付けられている。前記ろ過水取出管12の処理水取出口12aと前記集水ヘッダー管21の集水口21aとが、それぞれに取り付けられたL型継手12b,21b同士を接続することにより通水可能に連結される。集水ヘッダー管21の一端部には吸引ポンプPvと吸引管路22とを介して接続される吸水口21cが形成されている。各集水ヘッダー管21ごとに形成された吸水口21cと前記吸引管路22とは、図1に示すように、同吸引管路22からそれぞれ分岐した分岐管路22aに介装された開閉バルブ23を介して連結されている。   As shown in FIG. 3, an outlet 12a for high quality treated water filtered by each porous hollow fiber 10a is formed at one end of the filtrate outlet pipe 12 of each hollow fiber membrane element 10. In this embodiment, as shown in FIG. 2 and FIG. 3, L-shaped joints 12 b are attached to the respective outlets 12 a in a liquid-tight manner via sealing materials. Further, a water collection header pipe 21 is provided horizontally along the upper end edge where the outlet 12a at the upper end of the upper casing 20 is formed. A water collection port 21a is formed in each of the water collection header pipes 21 at a position corresponding to the plurality of outlets 12a provided in the filtrate water extraction pipe 12, and each of the water collection ports 21a has the above-described outlets. An L-shaped joint 21b similar to 12a is liquid-tightly attached via a sealing material. The treated water outlet 12a of the filtered water outlet 12 and the water outlet 21a of the water header 21 are connected to each other by connecting the L-shaped joints 12b and 21b attached to each other. . At one end of the water collection header pipe 21, a water suction port 21 c connected through the suction pump Pv and the suction pipe line 22 is formed. As shown in FIG. 1, the water inlet 21 c formed for each water collecting header pipe 21 and the suction pipe line 22 are open / close valves interposed in branch pipe lines 22 a branched from the suction pipe line 22. 23 are connected.

一方の散気装置15は、図4に示すように、前記上部ケーシング20の下端に結合された上下が開口する矩形筒体からなり、その4隅の下端から下方に延びる4本の支柱24aを備えた下部ケーシング24の底部に収容固設されている。前記散気装置15は、矩形状の枠体に両端部が固着支持された細長い金属又は合成樹脂からなる複数のパイプ状の散気管17を備えている。この散気管17には、通常、下面側に長さ方向に延びるエア噴出スリットか、或いは複数のエア噴出孔が形成されている。また、この散気管17の一端は閉塞されており、他端はばっ気ブロアBから延びるエア主管18から分岐するエア導入管16と開閉バルブ19を介して連通している。   As shown in FIG. 4, one air diffuser 15 is formed of a rectangular cylindrical body that is open at the top and bottom coupled to the lower end of the upper casing 20, and includes four support columns 24 a that extend downward from the lower ends of the four corners. It is accommodated and fixed at the bottom of the lower casing 24 provided. The air diffuser 15 includes a plurality of pipe-shaped air diffusers 17 made of an elongated metal or a synthetic resin whose both ends are fixedly supported by a rectangular frame. The air diffuser 17 is usually formed with an air ejection slit or a plurality of air ejection holes extending in the length direction on the lower surface side. One end of the air diffuser 17 is closed, and the other end communicates with an air introduction pipe 16 branched from an air main pipe 18 extending from the aeration blower B via an open / close valve 19.

図示例によれば、前記散気管17の本体はスリット付きゴム管から構成されており、水平に配されたゴム管の下面には、長さ方向に沿って内外に連通する図示せぬスリットが形成されている。前記散気装置15は上記中空糸膜モジュール9の下面から下方に45cmの間隔をおいて配されることが好ましく、前記支柱24aを下部ケーシング24から下方に突出させて、外部に開放させることは汚泥の流動を円滑にするため望ましい。   According to the illustrated example, the main body of the diffuser tube 17 is composed of a rubber tube with a slit, and a slit (not shown) communicating inward and outward along the length direction is formed on the lower surface of the horizontally disposed rubber tube. Is formed. The air diffuser 15 is preferably disposed at a distance of 45 cm downward from the lower surface of the hollow fiber membrane module 9, and the column 24 a protrudes downward from the lower casing 24 to be opened to the outside. Desirable for smooth sludge flow.

また、本実施形態による散気装置15は複数基の各膜ろ過ユニット5ごとに配されており、単一のばっ気ブロアBから送られるエアを、それぞれの散気装置15に分流させるために、前記ばっ気ブロアBに直接接続されたエア主管18を有しており、同エア主管18から各散気装置15のエア導入管16に接続させている。このエア導入管16のエア主管側の端部は槽外に配され、実際には、槽外のエア導入管16の端部に上記開閉バルブ19が設けられ、同開閉バルブ19の開閉操作を槽外にて行えるようにすることが望ましい。   In addition, the air diffuser 15 according to the present embodiment is arranged for each of the plurality of membrane filtration units 5, in order to divert the air sent from a single aeration blower B to each air diffuser 15. The air main pipe 18 is directly connected to the aeration blower B, and the air main pipe 18 is connected to the air introduction pipe 16 of each air diffuser 15. The end of the air introduction pipe 16 on the side of the air main pipe is disposed outside the tank. Actually, the opening / closing valve 19 is provided at the end of the air introduction pipe 16 outside the tank. It is desirable to be able to do it outside the tank.

本発明は、例示した上述のような構成を備えた複数基の膜ろ過ユニット5を同一硝化槽4に浸漬して並置し、脱窒槽3と硝化槽(好気槽)4との間で汚泥を循環させながら、上述のような生物化学的な活性汚泥処理を行う。   In the present invention, a plurality of membrane filtration units 5 having the above-described configuration illustrated are immersed in the same nitrification tank 4 and juxtaposed between the denitrification tank 3 and the nitrification tank (aerobic tank) 4. As described above, the biochemical activated sludge treatment as described above is performed.

ところで、このような活性汚泥処理を行う場合、脱窒槽3において溶存酸素量が多いと脱窒菌がそれを優先的に利用して増殖するため、脱窒反応が阻害される。そのため脱窒槽3では溶存酸素量はなるべく少なく、好ましくは0.05mg/L以下とする。しかしながら、従来の一般的な活性汚泥処理は勿論のこと、上記特許文献2に開示されているように硝化槽4における活性汚泥中に溶解している溶存酸素量が最も少ない領域の汚泥を脱窒槽へと戻すようにしても、脱窒槽3の汚泥導入領域の溶存酸素量は0.2mg/Lがせいぜいであり、それ以上は溶存酸素量を低減することは難しい。逆に、上記硝化槽4では硝化細菌が要求する好気的環境条件は溶存酸素量が1〜2mg程度必要となる。そのため、上述のごとき膜ろ過ユニット5に散気装置15を付設して、汚泥中に空気を放出して旋回流を発生させて汚泥の攪拌と同時に、汚泥中に酸素を溶解させるようにしている。   By the way, when performing such activated sludge treatment, if the amount of dissolved oxygen is large in the denitrification tank 3, the denitrification bacteria will preferentially proliferate and proliferate, thereby inhibiting the denitrification reaction. Therefore, in the denitrification tank 3, the amount of dissolved oxygen is as small as possible, preferably 0.05 mg / L or less. However, as well as the conventional general activated sludge treatment, the sludge in the region where the dissolved oxygen amount dissolved in the activated sludge in the nitrification tank 4 is the least is denitrified as disclosed in Patent Document 2 above. Even if it is made to return, the amount of dissolved oxygen in the sludge introduction region of the denitrification tank 3 is 0.2 mg / L at most, and it is difficult to reduce the amount of dissolved oxygen beyond that. On the contrary, in the nitrification tank 4, the aerobic environmental condition required by nitrifying bacteria requires about 1 to 2 mg of dissolved oxygen. Therefore, an air diffuser 15 is attached to the membrane filtration unit 5 as described above, and air is released into the sludge to generate a swirling flow so that oxygen is dissolved in the sludge simultaneously with the stirring of the sludge. .

この汚泥中への空気の放出は単に汚泥の攪拌と酸素を溶解を促進させるだけではなく、膜ろ過ユニット5の膜面の洗浄にも使われている。そのため、通常の散気装置15における散気管17に形成されるエア放出孔の孔径は比較的大きく形成されている。その結果、汚泥中へのエアの溶解が少なくなる場合が多く、前記散気装置15に加えて、微細なエア放出孔を有し、酸素の溶解が効率的に行える微細気泡を放出する図示せぬ補助散気装置を硝化槽4内の溶存酸素量の少ない領域に配置することも行われている。   The release of air into the sludge not only promotes the agitation of the sludge and the dissolution of oxygen, but is also used for cleaning the membrane surface of the membrane filtration unit 5. Therefore, the hole diameter of the air discharge hole formed in the air diffuser 17 in the normal air diffuser 15 is formed to be relatively large. As a result, the dissolution of air into the sludge often decreases, and in addition to the air diffuser 15, the fine air discharge holes are provided and fine bubbles that can efficiently dissolve oxygen are released. An auxiliary diffuser is also arranged in the nitrification tank 4 in a region where the dissolved oxygen amount is small.

このように、従来の活性汚泥処理では硝化槽4に高い溶存酸素濃度が求められるため、同硝化槽4から脱窒槽へと戻される活性汚泥もまた、そこに溶解された溶存酸素量が必然的に多くなってしまい、ある値以下には溶存酸素量を低減できないのが現状である。   Thus, since the conventional activated sludge treatment requires a high dissolved oxygen concentration in the nitrification tank 4, the activated sludge returned from the nitrification tank 4 to the denitrification tank must also have a dissolved oxygen amount dissolved therein. The amount of dissolved oxygen cannot be reduced below a certain value.

これに対して、本実施形態のように脱窒槽3の上流側に隣接させて溶存酸素低減槽6を配することにより、循環汚泥を含む原水を脱窒槽3に送り込む以前に溶存酸素低減槽6に収容するため、硝化槽4の活性汚泥に要求される溶存酸素量を満足させたとしても、前記溶存酸素低減槽6にて溶存酸素量をほぼ0mg/Lにまで低減させることができるため、脱窒槽3の脱窒反応が効率的になされるようになる。   On the other hand, by disposing the dissolved oxygen reduction tank 6 adjacent to the upstream side of the denitrification tank 3 as in the present embodiment, the dissolved oxygen reduction tank 6 is supplied before the raw water containing the circulating sludge is sent to the denitrification tank 3. Even if the dissolved oxygen amount required for the activated sludge in the nitrification tank 4 is satisfied, the dissolved oxygen amount can be reduced to almost 0 mg / L in the dissolved oxygen reduction tank 6, The denitrification reaction in the denitrification tank 3 is efficiently performed.

本発明の代表的な実施形態を示す膜分離活性汚泥処理装置の概略構成図である。It is a schematic block diagram of the membrane separation activated sludge processing apparatus which shows typical embodiment of this invention. 同膜分離活性汚泥処理装置に適用される膜ろ過ユニットの一例を一部切開して示す全体立体図である。It is the whole solid figure which cuts off an example of a part of membrane filtration unit applied to the same membrane separation activated sludge processing apparatus. 前記膜ろ過ユニットに適用される分離膜エレメントと集水ヘッダー管との接続関係を示す立体図である。It is a three-dimensional view showing the connection relationship between the separation membrane element applied to the membrane filtration unit and the water collection header pipe. 前記膜ろ過ユニットに適用される散気装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the diffuser applied to the said membrane filtration unit.

符号の説明Explanation of symbols

1 微細目スクリーン
2 原水調整槽
3 脱窒槽
4 硝化槽
5 膜ろ過ユニット
6 溶存酸素低減槽
7 汚泥貯蔵槽
8 処理水槽
9 中空糸膜モジュール
10 (シート状の)中空糸膜エレメント
10a 多孔性中空糸
11 固定用樹脂
12 ろ過水取出管
12a ろ過水取出口
12b L型継手
13 下枠
14 縦杆
15 散気装置
16 エア導入管(分岐管)
17 散気管
18 エア主管
19 開閉バルブ
20 上部ケーシング
21 集水ヘッダー管
21a 集水口
21b L型継手
21c 吸水口
22 吸引管路
22a 分岐管路
23 開閉バルブ
24 下部ケーシング
24a 支柱
25 開閉バルブ
P1 第1送液ポンプ
P2 第2送液ポンプ
P3 第3送液ポンプ
L1 第1送液路
L1’ 分岐路
L2 第2送液路
L3 第3送液路
Pv 吸引ポンプ
B ばっ気ブロア
DESCRIPTION OF SYMBOLS 1 Fine screen 2 Raw water adjustment tank 3 Denitrification tank 4 Nitrification tank 5 Membrane filtration unit 6 Dissolved oxygen reduction tank 7 Sludge storage tank 8 Treated water tank 9 Hollow fiber membrane module 10 (sheet-like) hollow fiber membrane element 10a Porous hollow fiber DESCRIPTION OF SYMBOLS 11 Resin for fixing 12 Filtrated water extraction pipe 12a Filtrated water outlet 12b L-type joint 13 Lower frame 14 Vertical gutter 15 Air diffuser
16 Air introduction pipe (branch pipe)
17 Aeration pipe 18 Air main pipe 19 Open / close valve 20 Upper casing 21 Water collecting header pipe 21a Water collecting port 21b L-shaped joint 21c Water inlet 22 Suction pipe 22a Branch pipe 23 Opening / closing valve 24 Lower casing 24a Post 25 Opening / closing valve P1 First feed Liquid pump P2 Second liquid pump P3 Third liquid pump L1 First liquid path L1 'Branch path L2 Second liquid path L3 Third liquid path Pv Suction pump B Aeration blower

Claims (3)

脱窒槽及び硝化槽が順次配され、脱窒槽と硝化槽との間で汚泥を循環させて排水を生物学的に処理するとともに、前記硝化槽には1基以上の膜ろ過ユニットが浸漬され、排水を活性汚泥と処理水とに膜分離する活性汚泥処理装置にあって、
前記脱窒槽の上流側に処理排水中の溶存酸素量を低減させる溶存酸素低減槽が配され、前記硝化槽の活性汚泥を前記溶存酸素低減槽又はその上流部に循環させる汚泥循環路を有してなることを特徴とする活性汚泥処理装置。
A denitrification tank and a nitrification tank are sequentially arranged, and sludge is circulated between the denitrification tank and the nitrification tank to biologically treat the waste water, and at least one membrane filtration unit is immersed in the nitrification tank, In an activated sludge treatment device that separates wastewater into activated sludge and treated water,
A dissolved oxygen reduction tank that reduces the amount of dissolved oxygen in the treated waste water is disposed upstream of the denitrification tank, and has a sludge circulation path that circulates the activated sludge of the nitrification tank to the dissolved oxygen reduction tank or its upstream part. An activated sludge treatment apparatus characterized by comprising
前記溶存酸素低減槽の上流側には、送液手段により送液管路を介して前記溶存酸素低減槽に間欠的に原水を送り込むとともに、前記脱窒槽又は硝化槽の液面高さを調整する原水調整槽が配されてなる請求項1記載の活性汚泥処理装置。   On the upstream side of the dissolved oxygen reduction tank, raw water is intermittently sent to the dissolved oxygen reduction tank via a liquid supply line by liquid supply means, and the liquid level of the denitrification tank or nitrification tank is adjusted. The activated sludge treatment apparatus according to claim 1, wherein a raw water adjustment tank is arranged. 原水調整槽からの送液を溶存酸素低減槽と脱窒槽に分配して送液する送液分配手段を更に有してなる請求項2記載の活性汚泥処理装置。   The activated sludge treatment apparatus according to claim 2, further comprising a liquid feed distribution means for distributing the liquid feed from the raw water adjustment tank to the dissolved oxygen reduction tank and the denitrification tank.
JP2005369433A 2005-12-22 2005-12-22 Apparatus for treating activated sludge Pending JP2007167774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005369433A JP2007167774A (en) 2005-12-22 2005-12-22 Apparatus for treating activated sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005369433A JP2007167774A (en) 2005-12-22 2005-12-22 Apparatus for treating activated sludge

Publications (1)

Publication Number Publication Date
JP2007167774A true JP2007167774A (en) 2007-07-05

Family

ID=38295041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005369433A Pending JP2007167774A (en) 2005-12-22 2005-12-22 Apparatus for treating activated sludge

Country Status (1)

Country Link
JP (1) JP2007167774A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004725A1 (en) * 2007-07-04 2009-01-08 Mitsubishi Rayon Engineering Co., Ltd. Method of cleaning air diffuser apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004725A1 (en) * 2007-07-04 2009-01-08 Mitsubishi Rayon Engineering Co., Ltd. Method of cleaning air diffuser apparatus
US8852352B2 (en) 2007-07-04 2014-10-07 Mitsubishi Rayon Co., Ltd. Method of cleaning air diffuser apparatus

Similar Documents

Publication Publication Date Title
JP4508694B2 (en) Water treatment method and apparatus
JP5456253B2 (en) Activated sludge treatment equipment
JP5366402B2 (en) Water treatment method
JP6027474B2 (en) Operation method of organic waste water treatment device and organic waste water treatment device
JP4059790B2 (en) Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
WO2018168022A1 (en) Aerobic biological treatment device
JP2008183517A (en) Waste water treatment system
US7166220B2 (en) Systems and methods for organic wastewater treatment
KR100913728B1 (en) Waste water treatment method maintaining do level by use of pure oxygen gas and system suitable for the same
JP5448287B2 (en) Membrane separation activated sludge treatment equipment
JP4392111B2 (en) Organic wastewater biological treatment equipment
WO2018100841A1 (en) Biologically activated carbon processing device
JP2006289153A (en) Method of cleaning sewage and apparatus thereof
JP2006239627A (en) System for treatment of organic waste water containing nitrogen
JP5448285B2 (en) Membrane separation activated sludge treatment method
CN110950489A (en) Intelligent integrated treatment equipment and process for domestic sewage in expressway service area
JP5059438B2 (en) Membrane separator
JP3607088B2 (en) Method and system for continuous simultaneous removal of nitrogen and suspended solids from wastewater
JP5080739B2 (en) Activated sludge treatment equipment
JP2007167774A (en) Apparatus for treating activated sludge
KR19990083645A (en) Organic material and nitrogen, phosphate removal method using intermitted aeration process and plate type microfiltration membrane
JP5016827B2 (en) Membrane separation activated sludge treatment method
JPS58128195A (en) Septic tank of hardly disposable sewage of night soil
KR20030097075A (en) Hybrid Submerged Plate Type Membrane Bioreactor Using microfilter Combined With Biofilm-Activated Carbon for Advanced Treatment of Sewage and Wastewater
RU2644904C1 (en) Method of biological purification of wastewater from nitrogen phosphoric and organic compounds