JPS6328496A - Treatment of organic sanitary sewage - Google Patents

Treatment of organic sanitary sewage

Info

Publication number
JPS6328496A
JPS6328496A JP61168031A JP16803186A JPS6328496A JP S6328496 A JPS6328496 A JP S6328496A JP 61168031 A JP61168031 A JP 61168031A JP 16803186 A JP16803186 A JP 16803186A JP S6328496 A JPS6328496 A JP S6328496A
Authority
JP
Japan
Prior art keywords
contact material
sewage
raw materials
wastewater
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61168031A
Other languages
Japanese (ja)
Other versions
JPH0378157B2 (en
Inventor
Yukio Fukaya
深谷 幸夫
Kazuyuki Hatano
羽田野 一幸
Kazuhiro Sainohira
斉野平 一弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ONODA EE L C KK
Original Assignee
ONODA EE L C KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ONODA EE L C KK filed Critical ONODA EE L C KK
Priority to JP61168031A priority Critical patent/JPS6328496A/en
Priority to US07/130,875 priority patent/US4917802A/en
Priority to DE19873790061 priority patent/DE3790061T1/de
Priority to PCT/JP1987/000080 priority patent/WO1987004695A1/en
Priority to NL8720037A priority patent/NL8720037A/en
Priority to AU70206/87A priority patent/AU595013B2/en
Priority to GB8722169A priority patent/GB2196955B/en
Priority to CH3929/87A priority patent/CH670627A5/de
Priority to SE8703919A priority patent/SE466445B/en
Priority to DK530287A priority patent/DK530287D0/en
Publication of JPS6328496A publication Critical patent/JPS6328496A/en
Priority to SE9102979A priority patent/SE9102979D0/en
Publication of JPH0378157B2 publication Critical patent/JPH0378157B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To permit easy and efficient removal of org. matter, denitrification and dephosphorization with simple stages by providing an aerobic filter bed tank in which a porous contact material consisting of hydrated calcium silicate is packed and an anaerobic filter bed tank. CONSTITUTION:Org. sanitary sewage such as cattle dung, living waste water or sewage is introduced into the aerobic filter bed tank 3 in which the porous contact material contg. calcium silicate having 50-90% voids as the main constituting material is packed. The sewage is then treated by a biological membrane method and is thereby subjected to the removal of the org. matter, dephosphorization and nitrification. The treated water subjected to the nitrification is introduced into the anaerobic filter bed tank 5 and is subjected to the biological denitrification. The above-mentioned porous contact material is the molding obtd. by adding a foaming agent such as Al powder to a slurry contg. the siliceous raw material and calcareous raw material as essential raw materials and subjecting the slurry to a hydrothermal reaction treatment at and under a high temp. and high pressure or the crushed matter obtd. by crushing said molding. The removal of the org. matter, the denitrification and the dephosphorization are easily and efficiently executed by such simple stages.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、家畜尿汚水、生活雑廃水、下水等の有機性汚
水の処理方法に関し、さらに詳言するとSS(浮遊物質
)及びBOD (生物化学的酸素要求)の除去はもちろ
ん脱リン及び脱窒素をも単純な工程て容易に且つ効率よ
く行うように工夫したものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for treating organic wastewater such as livestock urine wastewater, household wastewater, and sewage. This method has been devised to easily and efficiently perform dephosphorization and denitrification as well as removal of chemical oxygen demand (chemical oxygen demand) through simple steps.

〈従来の技術及びその問題点〉 家畜尿II′;水、生活雑廃水、下水等の有機性汚水は
、湖沼、内海での「あおこ」、r赤潮」を誘引する富化
異化の原因となる。従来、このような有機性汚水の処理
には活性汚泥法、散水r床法、回転円板接触法等種々あ
るが、設置面積、処理効率、維持管理など多くの点から
浸iA 1p床法が採用されることが多々ある。この浸
漬が床法は好気性炉床槽に接触材を充填し、そこに汚水
を流入して曝気することで接触材表面に生物膜を生じさ
せ、この生物11aの微生物の働きにより汚水を浄化す
るというものである。また、この浸漬炉床法に用いる接
触材としては砂利、プラスチック片、ハニカムチューブ
などが用いられている。
<Conventional techniques and their problems> Livestock urine II': Organic sewage such as water, miscellaneous wastewater, and sewage is the cause of enrichment and catabolism that induces "blue water" and "red tide" in lakes and inland seas. Become. Conventionally, there are various ways to treat such organic wastewater, such as the activated sludge method, the water sprinkler bed method, and the rotating disk contact method, but the immersion iA 1p bed method is superior from many points of view, such as installation area, treatment efficiency, and maintenance management. It is often adopted. In this immersion bed method, an aerobic hearth tank is filled with contact material, and sewage is poured into it and aerated to form a biofilm on the surface of the contact material, and the sewage is purified by the action of the microorganisms of this organism 11a. The idea is to do so. In addition, gravel, plastic pieces, honeycomb tubes, etc. are used as contact materials for this immersion hearth method.

しかしながら、上述の浸渭枦床法では、有機物は除去で
きるが、窒素化合物及びリン酸及びリン酸塩(以下、リ
ンという)が十分には除去できないので、その処理水を
閉鎖系水域に放流した場合には富栄養化をもたらし、水
j卒漁業などに大きな被害を与えている。よって有機性
汚水を浸漬炉床法で処理する場合には別途、脱窒素及び
脱リンを行う必要がある。
However, although the above-mentioned soaking method can remove organic matter, it cannot sufficiently remove nitrogen compounds, phosphoric acid, and phosphates (hereinafter referred to as phosphorus), so the treated water is discharged into a closed water system. In some cases, this can lead to eutrophication, causing great damage to fisheries and other industries. Therefore, when organic wastewater is treated by the immersion hearth method, it is necessary to separately perform denitrification and dephosphorization.

そこで、一般には浸漬か床法とともに生物学的脱窒素性
が行われている。この生物学的脱窒素性は、浸漬炉床法
における好気性枦床糟の後に嫌気性濾床槽を設け、好気
性が床糟にて亜硝酸菌、硝酸菌によって酸化されてN)
I4.”−Nから変化したN02−N、 No3−Nを
、嫌気性枦床糟にて脱窒菌により無酸素条件下で還元し
てN2ガスとするというものである。
Therefore, biological denitrification is generally used along with soaking or bed methods. This biological denitrification property is achieved by installing an anaerobic filter bed tank after the aerobic filtrate in the immersion hearth method, and the aerobic water is oxidized by nitrite bacteria and nitrate bacteria in the immersion hearth method.
I4. N02-N and No3-N, which have changed from ``-N, are reduced to N2 gas by denitrifying bacteria in an anaerobic mulch under anoxic conditions.

しかし、この脱窒素を十分行うには、浸漬炉床法におけ
る好気性炉床槽にてN)14ゝ−NのN02−−N、 
803−−Nへの酸化、すなわち硝化を十分行わなけれ
ばならないが、硝化の進行とともに211が低下してし
まうので好気性炉床槽にてのアルカリ剤による中和処理
が必要となり、管理及び設備が複雑になるという問題か
あるとともに薬品使用による経済的負担も大きい。
However, in order to sufficiently perform this denitrification, in the aerobic hearth tank in the immersed hearth method, N02--N of N) 14ゝ-N,
Oxidation to 803--N, that is, nitrification, must be carried out sufficiently, but as nitrification progresses, 211 decreases, so neutralization treatment with an alkaline agent in an aerobic hearth tank is required, and management and equipment In addition to the problem of complicating the process, the use of chemicals also imposes a large economic burden.

そして、従来においては、このような脱窒素の後説リン
が行われている。脱ワンの方法としてはカルシウム塩、
アルミ、鉄などの金属塩との反応によりリン酸塩として
沈澱除去する方法と、カルシウムの存在下のアルカリ領
域でヒドロキシアパタイトとして晶析脱リンする方法と
かあるが、何れの方法においても脱リン装置あるいは脱
リン槽という設備か別途必要になる。また、前者の沈澱
除去法においては、汚泥発生が多く、しかも難脱水付で
あるので処理が大変であり、且つ薬品使用による経済的
負担か大きいという問題かあり、後者の晶析脱リン法に
おいては汚泥の発生量及び薬品の使用量は小さいが、カ
ルシウム濃度調整、pH調整、脱炭酸など晶析を進行さ
せる条件を作り出す11η処理工程の1制御が難しく、
管理及び設備か複雑になるという問題かある。
Conventionally, such denitrification is followed by phosphorus. Calcium salts,
There are two methods: one is to precipitate and remove phosphate as a phosphate by reaction with metal salts such as aluminum and iron, and the other is to crystallize and dephosphorize as hydroxyapatite in an alkaline region in the presence of calcium, but both methods require a dephosphorization device. Alternatively, separate equipment called a dephosphorization tank is required. In addition, the former sedimentation removal method generates a lot of sludge and is difficult to dewater, making treatment difficult, and the use of chemicals poses a large economic burden, while the latter crystallization dephosphorization method Although the amount of sludge generated and the amount of chemicals used are small, it is difficult to control the 11η treatment process, which creates conditions that promote crystallization, such as calcium concentration adjustment, pH adjustment, and decarboxylation.
There are problems with management and equipment complexity.

何わにしても有機性汚水を処理する場合には、現状では
有機物除去(浸漬が床法)、脱窒素及び脱リンという3
工程が必須となる。
At present, when treating organic wastewater, there are three methods: organic matter removal (soaking is the bed method), denitrification, and dephosphorization.
The process is essential.

ここで、このような有機性汚水の処理工程の一例を第8
図を参照しながら説明する。同図に示すように、有機性
汚水をスクリーン沈砂池1及び振動17i+2により一
次処理して浮遊物及び沈澱物を除去した後、希釈槽3に
て水で希釈し、次いで浸漬炉床法により好気槽4にてイ
]機物除去を行うとともにアルカリ剤によるpt+を調
整しながら硝化を十分行う。次に、撹拌槽5にてメタノ
ールを添加して撹拌した後嫌気糟6にて脱窒素を行い、
再び再好気槽7に有機物除去を行い、脱リン工程へ送る
Here, an example of such organic wastewater treatment process is shown in the eighth section.
This will be explained with reference to the figures. As shown in the figure, organic sewage is subjected to primary treatment in the screen settling tank 1 and vibration 17i+2 to remove floating matter and sediment, and then diluted with water in the dilution tank 3, and then processed by the immersion hearth method. In the air tank 4, nitrification is carried out sufficiently while removing organic matter and adjusting pt+ using an alkaline agent. Next, methanol is added and stirred in a stirring tank 5, and then denitrification is performed in an anaerobic tank 6.
Organic matter is removed again in the aerobic tank 7 and sent to the dephosphorization process.

脱リン工程は脱炭酸槽8にて硫酸を添加しての脱炭酸、
pH調整槽9にて石膏及び消石灰を添加してのpH調整
、及びCuCO3などを沈澱糟lOにて沈澱する工程か
らなる前処理工程と脱リンJtg11にてヒドロキシア
パタイトとしてリンを除去する晶析脱リンとからなり、
この脱リン工程を経た処理水は消毒槽12にて消毒され
た後排水される。
The dephosphorization process includes decarboxylation by adding sulfuric acid in decarboxylation tank 8,
A pretreatment process consisting of pH adjustment by adding gypsum and slaked lime in the pH adjustment tank 9, and a step of precipitating CuCO3 etc. with precipitate 1O, and a crystallization dephosphorization process in which phosphorus is removed as hydroxyapatite in the dephosphorization Jtg11. Consisting of phosphorus,
The treated water that has undergone this dephosphorization process is disinfected in a disinfection tank 12 and then drained.

このように、従来において有機性汚水を処理する場合に
は、多くの設備と高度な運転管理が必要であった。
As described above, conventional treatment of organic wastewater required a large number of facilities and sophisticated operational management.

本発明はこのような事情に鑑み、有機物除去、脱窒素及
び脱リンを単純な工程で容易に且つ効率よく行うことが
できる有機性汚水の処理方法を提供することを目的とす
る。
In view of the above circumstances, an object of the present invention is to provide a method for treating organic wastewater that can easily and efficiently perform organic matter removal, denitrification, and dephosphorization in simple steps.

く問題点を解決するための手段〉 本発明者らは、前記目的を達成するために種々検討を重
ねた結果、珪酸カルシウム永和物からなるある種の構成
物か、有機性汚水の生物膜法による処理において微生物
の生息に良好な環境を作り出すとともリン酸イオンを晶
析除去し、且つ硝化に好適なpHを維持することを知見
し、本発明を完成させた。
Means for Solving the Problems> As a result of various studies to achieve the above object, the present inventors have found that a certain type of composition consisting of calcium silicate eternity or a biofilm method for organic wastewater has been developed. The present invention was completed based on the findings that a treatment with nitrification creates a favorable environment for microorganisms to live in, crystallizes and removes phosphate ions, and maintains a pH suitable for nitrification.

かかる本発明の構成は、に50〜90%の空隙率を有す
る珪酸カルシウムを主たる構成物とする多孔質接触材を
充填した好気性枦床糟に家畜尿汚水、生活雑廃水、下水
などの有機性汚水を導入し、生物膜法により処理をして
有機物除去、脱リン及び硝化を行う工程と、硝化された
処理水を嫌気性枦床糟に導入して生物学的脱窒素を行う
工程とを有することを特徴とする。
The structure of the present invention is such that organic matter such as livestock urine sewage, domestic wastewater, sewage, etc. A process in which nitrified wastewater is introduced and treated using the biofilm method to remove organic matter, dephosphorization, and nitrification, and a process in which nitrified treated water is introduced into an anaerobic ash bedpan to perform biological denitrification. It is characterized by having the following.

以下に本発明の構成を詳述する。The configuration of the present invention will be explained in detail below.

本発明に用いる多孔質接触材は、更に具体的に説明する
と、例えば、珪酸質原料と石灰質原料とを主原料とする
スラリーにアルミニウム粉末などの起泡剤を添加して高
温高圧下で水熱反応処理して得られる成形物、あるいは
この成形物を破砕して得られる破砕物で空隙率が50〜
90%のもの、又は珪酸質原料と石灰質原料とを主原料
とするスラリーを高温高圧下で水熱反応処理して必要な
らば粉砕して得られる粉状物を気泡を入れて造粒あるい
は成形した造粒物あるいは成形物で空隙率が50〜90
%のものである。
To explain more specifically, the porous contact material used in the present invention is produced by adding a foaming agent such as aluminum powder to a slurry whose main raw materials are silicic raw materials and calcareous raw materials, and then hydrothermalizing the slurry with a foaming agent such as aluminum powder under high temperature and high pressure. A molded product obtained by reaction treatment or a crushed product obtained by crushing this molded product with a porosity of 50 to
90% slurry, or a slurry whose main raw materials are silicic raw materials and calcareous raw materials, is subjected to a hydrothermal reaction treatment under high temperature and high pressure, and if necessary, pulverized, and the resulting powder is granulated or molded by adding air bubbles. The porosity of the granulated or molded product is 50 to 90.
%belongs to.

ここで、珪酸カルシウム水和物は珪酸質原料と石灰質原
料とを所定のCaO/SiO2モル比(0,5〜2.0
種度)で常法に従ってオートクレーブにて所要の圧力・
温度下で高温高圧養生ずることによって得られるもので
あり、珪酸質原料としては珪石、珪砂、クリストバライ
ト、無定形シリカ、珪藻土、フェロシリコンダスト、白
土などの粉末、石灰質原料としては生石灰、消石灰、セ
メントなどの粉末が挙げられる。このようにして得られ
る珪酸カルシウム水和物は、ト・バモライト、ゾノトラ
イト、CSHゲル、フオシャジャイト、ジャイロライト
、ヒレブランダイト等よりなる群より選ばれる1種また
は2種以上のものとなる。またこの中でもトバモライト
、ゾノライト、CSHゲルはpH緩衝能が高く、比表面
積が20〜400 rn”/gと大きいので特に好まし
い。
Here, calcium silicate hydrate is prepared by combining a silicate raw material and a calcareous raw material at a predetermined CaO/SiO2 molar ratio (0.5 to 2.0
The required pressure and
It is obtained by curing under high temperature and high pressure, and silicic raw materials include powders such as silica stone, silica sand, cristobalite, amorphous silica, diatomaceous earth, ferrosilicon dust, and white clay, and calcareous raw materials include quicklime, slaked lime, and cement. Examples include powders such as. The calcium silicate hydrate thus obtained is one or more selected from the group consisting of tobermorite, xonotlite, CSH gel, phoshagite, gyrolite, hillebrandite, and the like. Among these, tobermorite, zonolite, and CSH gel are particularly preferred because they have a high pH buffering ability and a large specific surface area of 20 to 400 rn''/g.

本発明に用いる多孔質接触材は50〜90%の空隙率を
有するが、この空隙を珪酸カルシウム永和物の生成時に
得る場合には珪酸質物質と石灰質物質とをスラリー状に
したものに泡剤としてアルミニウム粉末などの金属発泡
剤やAE剤などの起泡剤を添加した後高温高圧下で水熱
反応処理すればよい。ここで金属発泡剤は化学反応によ
ってガスを発生するもので、その使用割合はスラリー中
の巻き込み気泡や水の量によって変化するが化学反応式
から導くことができる。また起泡剤としては具体的には
樹脂せっけん類、サポニン、合成界面活性剤類、加水分
解たんばく質、高分子界面活性剤などがあり、主として
界面活性作用により物理的に気泡を導入するもので、単
に原料と混合して撹拌することにより泡を生じさせる場
合と、特殊な撹拌槽又は起泡装置を使用して安定した泡
をつくり、この泡を体積計量して原料に混合する場合と
がある。
The porous contact material used in the present invention has a porosity of 50 to 90%, but when this porosity is obtained during the production of calcium silicate eternity, a foaming agent is added to a slurry of silicic material and calcareous material. After adding a metal foaming agent such as aluminum powder or a foaming agent such as an AE agent, a hydrothermal reaction treatment may be performed at high temperature and high pressure. Here, the metal foaming agent generates gas through a chemical reaction, and its usage ratio varies depending on the amount of bubbles and water entrained in the slurry, but can be derived from the chemical reaction equation. Specific examples of foaming agents include resin soaps, saponins, synthetic surfactants, hydrolyzed proteins, and polymeric surfactants, which mainly introduce air bubbles physically through surfactant action. There are cases in which foam is generated simply by mixing with raw materials and stirring, and cases in which stable foam is created using a special stirring tank or foaming device, and this foam is measured by volume and mixed with raw materials. There is.

このような起泡剤を用いる場合には泡の安定性を試験し
た上、その添加量を決定する必要がある。また、空隙率
の小さい珪酸カルシウム水和物を得た場合にはそれが成
形物であれば粉末化した後、造粒又は成形する過程で気
泡を人わでその空隙率を調整すればよい。
When using such a foaming agent, it is necessary to test the stability of the foam and then determine the amount to be added. Further, when a calcium silicate hydrate with a small porosity is obtained, if it is a molded product, the porosity can be adjusted by pulverizing it and then manually removing air bubbles during the granulation or molding process.

つまり粉末状の珪酸カルシウム水和物にアクリル樹脂エ
マルジョン等の高分子樹脂の糊剤の水溶液を添加し、必
要に応して起泡剤を加えたfeL 7Fa綽りしたもの
をパンペレタイザーにより造粒したり型枠成形したりす
ればよい。
In other words, an aqueous solution of a polymer resin sizing agent such as an acrylic resin emulsion is added to powdered calcium silicate hydrate, and if necessary, a foaming agent is added to form a feL 7Fa suspension, which is then granulated using a pan pelletizer. It can be done by molding or molding.

ここての乾に方法としては、自然乾燥、加熱乾燥のどち
らを採用してもよい。また、ここて、粉末状の珪酸カル
シウム水和物としては、上記のように空隙を人わて成形
したものを破砕したときに得られる粉末を用いてもよい
。なお、空隙率の高い多孔質接触材とする場合には、型
枠成形を採用するのかよい。
As for the method of drying here, either natural drying or heat drying may be employed. Further, here, as the powdered calcium silicate hydrate, a powder obtained by crushing a material formed by manually forming voids as described above may be used. In addition, when forming a porous contact material with a high porosity, molding may be used.

本発明にかかる有機性汚水の処理方法は、ト記多孔性接
触材を充填した好気性炉床糟に一次処理して浮遊物や沈
殿物を除去した有機性汚水を曝気しなから希釈せずに通
水することにより、生物膜法による有機物の除去と、リ
ンの除去と、NIl、”−Nの硝化とを同時に行い、さ
らに、NIl4”−hが硝化されたN02−N 。
The method for treating organic sewage according to the present invention is that organic sewage that has been subjected to primary treatment in an aerobic hearth chamber filled with a porous contact material to remove floating matter and sediment is not aerated or diluted. By passing water through the reactor, the removal of organic matter by the biofilm method, the removal of phosphorus, and the nitrification of NIl and ``-N'' are performed simultaneously.

N113−−Nを含む処理水を嫌気性イ戸床槽に導入し
、メタノールなどの水素供与体を加えて通気性嫌気性状
態で脱窒菌によりNO□−N。
Treated water containing N113--N is introduced into an anaerobic itotoba tank, and a hydrogen donor such as methanol is added to remove NO□-N by denitrifying bacteria in an aerated anaerobic state.

Na5−NをN2ガスにぷ元することにより、生物学的
脱窒素を行うものである。
Biological denitrification is performed by pumping Na5-N into N2 gas.

ここで、好気性炉床槽に充填された多孔質接触材は、そ
の表面に珪酸カルシウム水和物の結晶もしくはケル表面
の微細な凹凸を有しているので微生物が固定されやすく
、生物膜の形成が容易であるとともに有機物の分解生成
物(微生物代謝産物)である乳酸、酪酸。
Here, the porous contact material filled in the aerobic hearth tank has crystals of calcium silicate hydrate or minute irregularities on the surface of the kel, so microorganisms are easily immobilized and biofilms are formed. Lactic acid and butyric acid are easy to form and are decomposition products of organic matter (microbial metabolites).

酢酸なとの低級脂肪酸類によるpH低下を緩和して微生
物の至21!!pHである弱アルカリ性のpH8〜9の
状態を安定に作り出すことができる。よって、本発明方
法の好気性炉床糟においては、有機物の分解に寄与する
細菌・原生動物及び硝化を行う卯硝酸菌・硝酸菌の活動
が活発となるので、高負荷での処理が可能となり、導入
するfi′機性活性汚水般的豚舎の尿汚水程度の高濃度
であっても希釈か不要となる。
Mitigates the pH drop caused by lower fatty acids such as acetic acid, and helps microorganisms reach 21! ! A slightly alkaline pH state of 8 to 9 can be stably created. Therefore, in the aerobic hearth of the method of the present invention, the activities of bacteria and protozoa that contribute to the decomposition of organic matter, and of rabbit nitrate bacteria and nitrate bacteria that perform nitrification become active, making it possible to process at high loads. Even if the introduced fi' organic activated sewage has a high concentration such as urine sewage from general pigsty, dilution is not necessary.

また、好気性炉床糟での脱リンは次の作用による。In addition, dephosphorization in an aerobic hearth furnace is due to the following effects.

好気性炉床槽中の多孔質接触材は、これを形成している
珪酸カルシウム永和物の結晶もしくはゲル表面からカル
シウムヒドロキシアパタイトの晶析に必要なCa2°を
供給するとともに該接触材のpl+緩衝能により、汚水
のpl+が低くまたその値が変動しても常にほぼpH8
〜9の安定した状態をつくり出しているので、汚水中の
リン酸イオンはCa2ゝと反応してカルシウムヒドロキ
シアパタイトの形で該接触材表面に晶析される。このと
き、多孔質接触材の空隙は、汚水の一方向の流れを乱す
作用をするとともに該接触材表面の流速を緩和するよう
に働くので、リン酸イオンとCa”とによるカルシウム
ヒドロキシアパタイトの析出あるいは成長か促進される
。また、この多孔71接触材は、リン酸カルシウムある
いはカルシウムヒドロキシアパタイトに類する「結晶種
」を含んでいないが、吸着能を有しているため、通水初
期においては生成したカルシウムヒドロキシアパタイト
を吸着し、またその後はその表面がカルシウムヒドロキ
シアパタイトの核形成に都合のよい構造になってその微
細空隙、細孔部分にカルシウムヒドロキシアパタイトの
核を形成するものである。
The porous contact material in the aerobic hearth tank supplies Ca2° necessary for crystallization of calcium hydroxyapatite from the crystal or gel surface of the calcium silicate ethos forming the porous contact material, and also increases the pl+buffer of the contact material. Even if the PL+ of wastewater is low and its value fluctuates, the pH will always be around 8.
Since a stable state of ~9 is created, phosphate ions in the wastewater react with Ca2 and crystallize on the surface of the contact material in the form of calcium hydroxyapatite. At this time, the voids in the porous contact material act to disturb the unidirectional flow of wastewater and to moderate the flow velocity on the surface of the contact material, so that calcium hydroxyapatite is precipitated by phosphate ions and Ca''. In addition, although this porous 71 contact material does not contain "crystal seeds" similar to calcium phosphate or calcium hydroxyapatite, it has an adsorption ability, so in the early stage of water flow, the produced calcium It adsorbs hydroxyapatite, and after that, its surface has a structure suitable for nucleation of calcium hydroxyapatite, and the nucleus of calcium hydroxyapatite is formed in the microscopic voids and pores.

汚水を処理した後の多孔質接触材を走査電子顕微鏡で観
察するとその空隙内部及び結晶表面に微生物が多量に着
床・生息しているのが見られ、また不定形結晶も観察さ
九、EPMA (X線マイクロアナライザー)によりカ
ルシウムヒドロキシアパタイトと同定された。
When the porous contact material after sewage treatment is observed with a scanning electron microscope, a large number of microorganisms are seen to be settled and living inside the pores and on the surface of the crystals, and amorphous crystals are also observed. It was identified as calcium hydroxyapatite using an X-ray microanalyzer.

このことからも明らかなように、多孔質接触材の細孔・
空隙は微生物の着床及び脱リンに大きな効果を与えてお
り、本発明に用いる多孔質接触材は、空隙率が50〜9
0%、好ましくは60〜80%のものか微生物の着床及
び脱リンに望ましい。この多孔質接触材の空隙率が50
%未満では比表面積が小さく微生物の着床か悪く且つリ
ン除去率が小ざく、一方、空隙率が90%を超えると好
気性炉床 ゛槽内への79水導入及び曝気により浮上り
が生しるとともに強度低下が著しく、またpl+緩衝能
力及びリン除去効果の持続性も悪くなり、好ましくない
As is clear from this, the pores of the porous contact material
Voids have a great effect on microbial implantation and dephosphorization, and the porous contact material used in the present invention has a porosity of 50 to 9.
0%, preferably 60 to 80%, is desirable for microbial implantation and dephosphorization. The porosity of this porous contact material is 50
If the porosity is less than 90%, the specific surface area will be small, making it difficult for microorganisms to settle and the phosphorus removal rate will be low.On the other hand, if the porosity exceeds 90%, floating will occur due to the introduction of water into the tank and aeration. As the temperature increases, the strength decreases significantly, and the durability of the pl+ buffering capacity and the phosphorus removal effect also deteriorates, which is not preferable.

また、本発明に用いる多孔質接触材の大きさもリン除去
性能に大きく関与している。接触材の径が0.5■より
小さいとSSならびに晶析結晶により目づまりしやすい
ので長期使用することができず、一方、径が大きずぎて
も接触面積の減少によりリンの除去率が低下するのでと
もに好ましくない。よって、多孔質接触材は0.5〜l
 Ommの大きさのものが望ましい。
Further, the size of the porous contact material used in the present invention also has a large effect on the phosphorus removal performance. If the diameter of the contact material is smaller than 0.5cm, it will be easily clogged with SS and crystallized crystals, so it cannot be used for a long period of time. Both are unfavorable as they result in a decrease in Therefore, the porous contact material is 0.5 to 1
A size of 0 mm is desirable.

ここで、本発明にかかる有機性汚水の処理方法の例を第
1図及び7g2図に示す。
Here, an example of the method for treating organic wastewater according to the present invention is shown in FIG. 1 and FIG. 7g2.

′f、1図に示す例は好気性炉床槽の次に嫌気性炉床糟
を配置した例である。同図に示すようにスクリーン沈砂
池1及び振動篩2により一次処理された有機性汚水は、
上記多孔質接触材が充填されている好気槽(好気性炉床
槽)3に導入されて有機物除去、脱リン及び硝化が行わ
れる。次いで、撹拌!f!4に導入されてメタノール又
は有機性汚水が添加された後嫌気槽(嫌気性炉床槽)5
で脱窒素され、再好気糟6及び消毒jfI7を経て排水
される。
'f, The example shown in Figure 1 is an example in which an anaerobic hearth tank is placed next to an aerobic hearth tank. As shown in the figure, the organic sewage that has been primarily treated by the screen settling basin 1 and the vibrating sieve 2 is
The porous contact material is introduced into an aerobic tank (aerobic hearth tank) 3 filled with the porous contact material, where organic matter removal, dephosphorization, and nitrification are performed. Next, stir! f! 4 and methanol or organic sewage is added to the anaerobic tank (anaerobic hearth tank) 5
The water is denitrified and then drained through a re-aerobic tank 6 and disinfection jfI7.

第2図は循環式の処理工程の例である。同図に示すよう
にスクリーン沈砂池1及び振動篩2で一次処理された有
機性汚水は撹拌槽13及び嫌気槽14を経て多孔質接触
材が充填されている好気槽15へ導入され、さらに撹拌
M113へ循環される。これにより有機物処理、脱リン
及び脱窒素が行われる。この処理水は再嫌気槽I6及び
消毒槽7を経て排水される。
FIG. 2 is an example of a circulating treatment process. As shown in the figure, organic sewage that has been primarily treated in the screen settling tank 1 and the vibrating sieve 2 passes through the stirring tank 13 and the anaerobic tank 14, and then is introduced into the aerobic tank 15 filled with porous contact material. Circulated to stirring M113. This performs organic matter treatment, dephosphorization, and denitrification. This treated water is drained through a re-anaerobic tank I6 and a disinfection tank 7.

これらからも明らかなように、本発明にかかる有機性汚
水の処理方法によれば従来に比べて工程数が大幅に削減
されるとともに運転管、理も容易となる。
As is clear from the above, according to the method for treating organic wastewater according to the present invention, the number of steps is significantly reduced compared to the conventional method, and operation and management are also facilitated.

さらに本発明に用いる多孔質接触材は重金属を吸着する
作用も有しているので、有機性汚水中に重金属が含まれ
ていれば、有機物及びリンとともに除去される。
Furthermore, the porous contact material used in the present invention also has the function of adsorbing heavy metals, so if heavy metals are contained in organic wastewater, they will be removed together with organic matter and phosphorus.

なお、本発明方法で使用済となった多孔質接触材は、珪
酸石灰質肥料ならびに土壌改良材として再利用できるの
で大変経済的である。
Note that the porous contact material used in the method of the present invention can be reused as a silicate lime fertilizer and a soil improvement material, which is very economical.

以下に、多孔質接触材の製造例、及び本発明の効果を示
す試験例を示す。
Examples of manufacturing porous contact materials and test examples showing the effects of the present invention are shown below.

(多孔質接触材の製造例) (IIcsHゲル接触材 珪石粉末4.fflffl部、生石灰粉末2重量部、消
石灰粉末1重量部及び給進ポルトランドセメント3重量
部(CaO/SiO2モル比=1.5)に金属アルミニ
クム粉末0.008重量部を加えてなる混合物に水7重
晴部を加えてスラリーにした。次いで、このスラリーを
型枠に注入して4時間静置後脱型したものを回転ブラシ
で粉砕し、パンペレタイザーで5〜10o++nの粒径
に造粒後オートクレーブにて150℃5気圧下で10時
間水熱処理して多孔質接触材とした。この接触材の空隙
率は70%であった。
(Production example of porous contact material) (IIcsH gel contact material 4.ffffl parts of silica powder, 2 parts by weight of quicklime powder, 1 part by weight of slaked lime powder, and 3 parts by weight of feeding portland cement (CaO/SiO2 molar ratio = 1.5 ) and 0.008 parts by weight of metal aluminum powder was added to 7 parts of water to make a slurry.Then, this slurry was poured into a mold, left to stand for 4 hours, and then removed from the mold using a rotating brush. After pulverizing with a pan pelletizer to a particle size of 5 to 10 o++n, the material was hydrothermally treated in an autoclave at 150°C and 5 atm for 10 hours to obtain a porous contact material.The porosity of this contact material was 70%. Ta.

(2)トバモライト接触材 珪石粉末5重量部、生石灰粉末2重量部及び普通ポルト
ランドセメント3咀量部(Can/Sin□モル比=0
.8)に金属アルミニウム粉末0.008重量部を加え
てなる混合物に水7重量部を加えてスラリーにした。こ
のスラリーを型枠に注入して4時間静置後脱型したもの
をオートクレーブにて180℃10気圧下で10時間水
熱処理した。得られた成形物をクラッシャーで粗砕して
5〜10mmの粒径にふるいわけて多孔質接触材とした
。このものの空隙率は75%であった。
(2) Tobermorite contact material 5 parts by weight of silica powder, 2 parts by weight of quicklime powder, and 3 parts by weight of ordinary Portland cement (Can/Sin molar ratio = 0
.. A slurry was prepared by adding 7 parts by weight of water to a mixture obtained by adding 0.008 parts by weight of metallic aluminum powder to 8). This slurry was poured into a mold, left to stand for 4 hours, and then removed from the mold, which was then hydrothermally treated in an autoclave at 180° C. and under 10 atmospheric pressure for 10 hours. The obtained molded product was crushed using a crusher and sieved to a particle size of 5 to 10 mm to obtain a porous contact material. The porosity of this material was 75%.

(3)  ゾノトライト接触材 珪石粉末と生石灰粉末とをGap/5i02モル比1.
0となるように混合し、固体成分に対して10倍tft
fMの水に分散させて水性スラリーを形成し、その接オ
ートクレーブ中にて210℃、20気圧下で撹拌しなが
ら10時間水勢処理した。このようにして得られたゾノ
トライト粉末の絶乾物に対してアクリル樹脂エマルジョ
ン(固形分10%)を4!Ilc量倍加え、混練後造粒
成形して110℃で乾燥固化させ、5〜10m1Ilの
粒径にふるいわけて多孔質接触材とした。
(3) Zonotlite contact material silica powder and quicklime powder at a Gap/5i02 molar ratio of 1.
10 times the solid component.
fM water to form an aqueous slurry, which was subjected to water treatment in an autoclave at 210° C. and under 20 atm with stirring for 10 hours. The acrylic resin emulsion (solid content 10%) was added to 4! Double the amount of Ilc was added, kneaded, and then granulated, dried and solidified at 110°C, and sieved to a particle size of 5 to 10 ml to obtain a porous contact material.

このものの空隙率は73%であった。The porosity of this material was 73%.

(4)種々の空隙率を有するトバモライト接触材 上記(2)に示した製造方法において、合圧アルミニウ
ム粉末及び水の添加割合を第1表に示すように変化させ
ることにより各種トバモライト接触材を得た。
(4) Tobermorite contact materials with various porosity In the manufacturing method shown in (2) above, various tobermorite contact materials are obtained by changing the addition ratio of combined aluminum powder and water as shown in Table 1. Ta.

第  1  表 (試験例1) 第3図に示すように、多孔質接触材を充填した200X
 150X310mmの第1の糟101及び200X1
50X290mmの第2の槽102に、固液分離を行っ
たq4< 0.3+nmφの鋼の振動篩を通過させた膠
原汚水の=−次処理水を上向き流で通水するとともに、
各糟101゜102の下方より 500i/分で曝気を
行うことにより、各種多孔質接触材の性能を調べた。
Table 1 (Test Example 1) As shown in Figure 3, 200X filled with porous contact material
1st mill 101 and 200X1 of 150X310mm
In a second tank 102 of 50 x 290 mm, treated water of collagen sewage passed through a steel vibrating sieve with q4<0.3+nmφ, which had been subjected to solid-liquid separation, was passed in an upward flow.
The performance of various porous contact materials was investigated by performing aeration at 500 i/min from below each of the 101° and 102 pores.

ここで、上記製造例fil 、 +21 、 (:ll
で製造した各多孔質接触材を上記第1及び第2の糟10
1゜+02に充填して一次処理水を10文/口の流速で
通水したものをそれぞれ試験例へ−1゜^−2,A−3
とした。
Here, the above manufacturing example fil, +21, (:ll
Each of the porous contact materials manufactured in
1゜+02 and passed primary treated water at a flow rate of 10 liters/mouth to test examples -1゜^-2, A-3, respectively.
And so.

比較のため、多孔質接触材の代りに市販のハラス、軽石
1石灰石及びポリプロピレンで粒度5〜10mmのもの
を接触材として用いたものをそれぞれ比較例B−1,B
−2,B−3,B−4とした。
For comparison, comparative examples B-1 and B were prepared using commercially available Halas, pumice 1 limestone, and polypropylene with a particle size of 5 to 10 mm as contact materials instead of the porous contact material, respectively.
-2, B-3, and B-4.

こわら試験例A−1〜A−4及び比較例B−1〜ト4の
2〜3ケ月1!過時において、その処理水の連明度、p
H,BOD及びT−P (全リン) 、 N114”−
N、 N02−N、 NO,J−Nの各濃度を各4回測
定し、その平均を第2表に示す。
2 to 3 months 1 for stiff test examples A-1 to A-4 and comparative examples B-1 to G-4! At the same time, the continuous lightness of the treated water, p
H, BOD and T-P (total phosphorus), N114”-
The concentrations of N, N02-N, NO, and J-N were each measured four times, and the averages are shown in Table 2.

7jIJ2表 一 描 この結果に示すようにBOD容積負荷1.0kg/日・
mlの高負荷の処理においてBOD除去率は比較例か7
7〜87%であるのに対して本発明法では95%以上の
高い除去率を示した。またリンの除去率は比較例におい
ては25%以下でほとんど除去てきていないが、本発明
法では90%以上の高い除去率であった。さらに次工程
て脱窒素を行なうためには、有機態窒素及びN1−14
”−NをNO,−NあるいはNi12−Nに硝化させる
必要があるか、本発明法によiば、NH4”−N容積負
荷が0.4kg/トドMの高負荷処理でも完全に硝化が
進行しており、次工程で説、窒素か完全に行える状態と
なっている。これに対し比較例ては10〜30%のNl
+4”−Nが残っているので、たとえその後生物学的脱
窒素玉程を付加してもこの残存のN114″″−Nはそ
のまま流出されることになる。
7jIJ2 Table 1 As shown in this result, BOD volume load 1.0kg/day・
BOD removal rate in high load processing of ml is comparative example 7
Whereas the removal rate was 7 to 87%, the method of the present invention showed a high removal rate of 95% or more. Further, the removal rate of phosphorus was 25% or less in the comparative example, which was hardly removed, but the method of the present invention had a high removal rate of 90% or more. Furthermore, in order to perform denitrification in the next step, organic nitrogen and N1-14
Is it necessary to nitrify "-N to NO, -N or Ni12-N? According to the method of the present invention, nitrification is completely achieved even with a high-load treatment with a volumetric load of NH4"-N of 0.4 kg/TodoM. The process is progressing, and it is now possible to completely use nitrogen in the next process. On the other hand, in the comparative example, 10 to 30% Nl
Since +4''-N remains, even if biological denitrification is added afterwards, this remaining N114''-N will be flushed out as is.

試験例 2) 試験例1と同様な実験装置を用い、製造例(4)に示す
各種処理材により膠原−次処理水を処理して接触材の空
隙率の大小による浄化の違いを試験した。なお他の条件
は試験例1と同様とした。この結果は試験例1と同様2
〜3ケ月の間の4回の測定結果の平均を第3表に示す。
Test Example 2) Using the same experimental apparatus as in Test Example 1, collagen-subprocessed water was treated with various treatment materials shown in Production Example (4) to test the difference in purification depending on the porosity of the contact material. Note that other conditions were the same as in Test Example 1. This result is similar to test example 12
Table 3 shows the average of the results of four measurements over a period of ~3 months.

第3表 第3表に示すように、接触材の空隙率が50%以上の時
にBOD除去、リン除去の効果が大きくかつ硝化が充分
に進む。なお、空隙率が90%を超えると通水時の浮き
上り現象により糟より流出してしまうと同時に強度低下
が著しい。
Table 3 As shown in Table 3, when the porosity of the contact material is 50% or more, the effects of BOD removal and phosphorus removal are large and nitrification progresses sufficiently. Note that if the porosity exceeds 90%, the material will flow out of the casserole due to the floating phenomenon when water is passed through it, and at the same time, the strength will decrease significantly.

この結果より接触材の空隙構造は、接触材と有機性7り
水との接触機会を高めるとともに細孔、空隙内に微生物
を着床のために極めて重要である。また、同時に晶析し
てくるカルシウムヒドロキシアパタイトの結晶成長のた
めにも極めて重要でリン除去効果に大きく寄与している
From this result, the pore structure of the contact material is extremely important for increasing the contact opportunity between the contact material and organic water and for allowing microorganisms to settle in the pores and voids. It is also extremely important for the crystal growth of calcium hydroxyapatite that crystallizes at the same time, and greatly contributes to the phosphorus removal effect.

く実 施 例〉 実施例 1 本実施例には第4図(a) 、 (b)に示すようなA
−Fの6つの処理室からなるコンクリート製の汚水処理
装置を用いた。ここで、A、B及びFは好気性炉床梢で
あり、八及びBには上記製造例(2)と同様にして製造
した粒径5〜15mmのトバモライトを主たる構成物と
する多孔質接触材がまた、Fには粒径5〜8fflIT
lの同様なトバモライト接触材が充填されており、それ
ぞれの下方に曝気を行うための散気筒110aN110
cが配設されている。これら散気筒110a N110
cはエアー配管III及びエアー調整バルブ112を介
してエアーポンプl13と接続されている。処理[Cは
撹拌槽でメタノールタンク114からメタノールが供給
されるようになっている。また、D及びEは嫌気性炉床
槽でこの内部には市販のアンスラサイトで粒径5〜10
mmのものが充填されている。
Example 1 Example 1 In this example, A as shown in FIGS.
A concrete sewage treatment system consisting of six treatment chambers (-F) was used. Here, A, B, and F are aerobic hearth tops, and 8 and B are porous contacts mainly composed of tobermorite with a grain size of 5 to 15 mm produced in the same manner as in Production Example (2) above. The material also has a particle size of 5 to 8fflIT for F.
1 of similar tobermorite contacting materials, each with an aeration tube 110aN110 below for aeration.
c is provided. These diffuser cylinders 110a N110
c is connected to an air pump l13 via an air pipe III and an air adjustment valve 112. Processing [C] is a stirring tank to which methanol is supplied from a methanol tank 114. In addition, D and E are anaerobic hearth tanks, and inside these are commercially available anthracite with particle sizes of 5 to 10.
Filled with mm.

このような汚水処理装置において、豚舎汚水の一次処理
水を汚水導入管115より6002/日のtfLmで通
水処理して排出管116より処理液を排出した。なお、
処理室Cにおけるメタノールの添カロ流量は 1.H!
7日である。
In such a sewage treatment apparatus, the primary treated water of pigsty sewage was passed through the sewage inlet pipe 115 at a rate of tfLm of 6002/day, and the treated liquid was discharged from the discharge pipe 116. In addition,
The flow rate of methanol added in processing chamber C is as follows: 1. H!
It is the 7th.

このような条件で約6ケ月間処理し、このときの−次処
理水及び排出処理液のρ)1.透視度、BOD、SS、
T−P及びT−N (全窒素)をそれぞれ測定した。こ
の結果は第5図に示す。同図より明らかなように、本実
施例によれば、豚舎汚水中の有機物、リン及び窒素が長
期に亘って確実に除去されている。
The treatment was carried out under these conditions for about 6 months, and the results were as follows: ρ)1. Transparency, BOD, SS,
TP and TN (total nitrogen) were measured respectively. The results are shown in FIG. As is clear from the figure, according to this example, organic matter, phosphorus, and nitrogen in the pigsty wastewater are reliably removed over a long period of time.

実施例 2 本実施例には第6図に示すようなG−Lの6つの処理室
からなるコンクリート製の汚水処理装置を用いた。ここ
で■及びJは好気性炉床糟であり、これらの糟には上記
製造例(2)と同様にして製造した粒径5〜10mmの
トバモライトを主たる構造とする接触材が充填されてい
るとともにその下方には曝気を行うための散気筒120
a、 120bが配設されている。これら散気筒120
a、 120bはエアー配管+21及びエアー調整バル
ブ122を介してエアーポンプ123と接続されている
。一方、処理MG及びHは嫌気性炉床糟で市販のアンス
ラサイトで粒径5〜15n++nのものが充填されてお
り、汚水導入管+25より汚水が導入さ九るとともにメ
タノールタンク+24よりメタノールか供給さ4るよう
になフている。これらG、Hを通った汚水はI、Jの好
気槽で処理された後にの処理槽より循環水導入管+27
及び流量ポンプ128を介してGの処理槽へwI環され
るようになっている。ざらにKの後には再嫌気MLか設
けており、ここにはG及びHと同様のアンスラサイトが
充j打されている。
Example 2 In this example, a concrete sewage treatment apparatus consisting of six treatment chambers GL as shown in FIG. 6 was used. Here, ■ and J are aerobic hearth cassettes, and these cassettes are filled with a contact material whose main structure is tobermorite with a grain size of 5 to 10 mm, which was produced in the same manner as in Production Example (2) above. At the same time, there is an aeration cylinder 120 below it for aeration.
a, 120b are arranged. These diffuser cylinders 120
a and 120b are connected to an air pump 123 via an air pipe +21 and an air adjustment valve 122. On the other hand, treated MG and H are anaerobic hearths filled with commercially available anthracite with a particle size of 5 to 15n++n, and sewage is introduced from the sewage inlet pipe +25, and methanol is supplied from the methanol tank +24. It looks like it's going to be 4 years old. The wastewater that has passed through these G and H is treated in the aerobic tanks I and J, and then from the treatment tank to the circulating water inlet pipe +27
and is connected to the G processing tank via a flow rate pump 128. After K, there is a re-anaerobic ML, which is filled with anthracite similar to G and H.

このような汚水処理装置において、汚水導入管125よ
り6002/E]の流量で、豚舎汚水の一次処理水を通
水するとともににからGへの循環を54001/日とし
、さらに汚水中の窒素濃度が高いため汚水中のBOD源
だけでは脱窒素効果が小寸−分であるため、嫌気槽Gへ
水素供与体としてのメタノールを0.217臼供給した
。このようにして、約6ケ月間に亘って汚水を処理し、
このときの−次処理水及び処理排出管126からの排出
処理液のpll、透視度、BOD、SS、T−P及びT
−Nをそれぞれ測定した。この結果は第7図に示す。同
図より明らかなように、本実施例によれば、豚舎汚水中
の有機物。
In such a sewage treatment equipment, the primary treated water from the sewage inlet pipe 125 is passed through at a flow rate of 6002/E] and the circulation from sewage to G is set at 54001/day, and the nitrogen concentration in the sewage is Since the denitrification effect was small due to the high BOD source in the wastewater, 0.217 molar of methanol as a hydrogen donor was supplied to the anaerobic tank G. In this way, the wastewater was treated for about 6 months,
At this time, the pll, transparency, BOD, SS, T-P and T of the next treated water and the discharged treated liquid from the treated discharge pipe 126
-N was measured respectively. The results are shown in FIG. As is clear from the figure, according to this example, organic matter in the pigsty wastewater.

リン及び窒素が長期に亘って確実に除去されている。Phosphorus and nitrogen are removed reliably over a long period of time.

ここで実75に例1.2の結果をさらに詳しく検討して
おく。
Here, let us examine the results of Example 1.2 in more detail.

第5図及び第7図に示すように、実施例1.2では、γ
ら水を流入してから約4週日から浄化が進み、8週目か
らの処理水は安定した水質となっている。ここで実施例
1,2の8遠目以降の処理水の水質の測定結果を平均し
てみると第4表のようになる。
As shown in FIGS. 5 and 7, in Example 1.2, γ
Purification has progressed from about 4 weeks after the water was introduced, and the quality of the treated water has been stable since the 8th week. Here, when the measurement results of the water quality of the treated water after the 8th distance in Examples 1 and 2 are averaged, the results are as shown in Table 4.

i4表 第4表に示すように、実施例1.2共に、BOD、SS
はもちろん、T−P、T−Nについても高い除去率を示
しており、非常に高度の処理結果となっている。
As shown in Table i4, in both Examples 1 and 2, BOD, SS
Of course, high removal rates were also shown for T-P and T-N, resulting in extremely high-quality processing results.

また、重金属については、実施例1における200週目
流入汚水と排出処理水とを測定し、その結果を第5表に
示す。
Regarding heavy metals, the inflow sewage and discharged treated water at the 200th week in Example 1 were measured, and the results are shown in Table 5.

第  5  表 同表に示す通り、豚舎汚水に含まれていた銅、亜鉛の重
金属は、本実施例の処理により90%以上除去されてい
た。
As shown in Table 5, more than 90% of the heavy metals copper and zinc contained in the pigsty wastewater were removed by the treatment of this example.

〈発明の効果〉 以上、試験例及び実施例とともに具体的に説明したよう
に、本発明′ji法によりば煩雑な工程を必要とせずに
、単純かつ容易な処理で効率よく有機物、窒素及びリン
を効率よく除去でき、維持管理も容易であり、さらに家
蚕尿汚水処理や工場排水なとの高濃度な汚水に対しても
高負荷で処理することができるので、処理設備が小型化
できるとともに簡略化できる。また、本発明方法により
ば、銅。
<Effects of the Invention> As specifically explained above in conjunction with test examples and examples, the method of the present invention efficiently removes organic matter, nitrogen, and phosphorus through simple and easy treatment without requiring complicated steps. It is easy to maintain and manage, and it is also possible to treat highly concentrated sewage such as domestic silkworm urine sewage and factory wastewater with a high load, making it possible to downsize and simplify the treatment equipment. can be converted into Moreover, according to the method of the present invention, copper.

亜鉛、鉛などの重金属も同時に除去できる。Heavy metals such as zinc and lead can also be removed at the same time.

さらに、長期に亘って使用して処理能力の低下した多孔
質接触材は、珪酸石灰質肥料ならびに土壌改質材として
再利用できるので経済的である。
Furthermore, the porous contact material whose treatment capacity has decreased due to long-term use can be reused as a silicate lime fertilizer and a soil improvement material, which is economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第7図は本発明にかかり、第1図及び第2図は
有機性汚水の処理方法の例を示す工程図、第3図は試験
例に用いた装置を示す説明図、第41ネ1は第1実施例
に用いた汚水処理装置を示す説明図、第5図は第1実施
例の結果を示−r説明図、第6図は第2実施例に用いた
汚水処理装置を示す説明図、第7図は第2実施例の結果
を示す説明図、第8図は従来技術にかかる有機性汚水の
処理工程を示す工程図である。 図面中、 3.I5は好気性炉床糟、 5、l=Iは嫌気性炉床槽である。
Figures 1 to 7 are related to the present invention, Figures 1 and 2 are process diagrams showing an example of a method for treating organic wastewater, Figure 3 is an explanatory diagram showing the apparatus used in the test example, 41 Ne1 is an explanatory diagram showing the sewage treatment equipment used in the first example, Figure 5 is an explanatory diagram showing the results of the first example, and Figure 6 is an explanatory diagram showing the sewage treatment equipment used in the second example. FIG. 7 is an explanatory diagram showing the results of the second example, and FIG. 8 is a process diagram showing the organic wastewater treatment process according to the prior art. In the drawing, 3. I5 is an aerobic hearth tank, and 5, l=I is an anaerobic hearth tank.

Claims (1)

【特許請求の範囲】 1)50〜90%の空隙率を有する珪酸カルシウムを主
たる構成物とする多孔質接触材を充填した好気性炉床槽
に家畜尿汚水、生活雑廃水、下水などの有機性汚水を導
入し、生物膜法により処理をして有機物除去、脱リン及
び硝化を行う工程と、硝化された処理水を嫌気性濾床槽
に導入して生物学的脱窒素を行う工程とを有することを
特徴とする有機性汚水の処理方法。 2)多孔質接触材は珪酸質原料と石灰質原料とを主原料
とするスラリーにアルミニウム粉末などの気泡剤を添加
して高温高圧下で水熱反応処理して得られる成形物、あ
るいはこの成形物を破砕して得られる破砕物である特許
請求の範囲の第1項記載の有機性汚水の処理方法。 3)多孔質接触材は珪酸質原料と石灰質原料とを主原料
とするスラリーを高温高圧下で水熱反応処理して必要な
らば粉砕して得られる粉状物に気泡を入れて造粒あるい
は成形した造粒物あるいは成形物である特許請求の範囲
第1項記載の有機性汚水の処理方法。 4)珪酸カルシウム水和物は、トバモライト、ゾノトラ
イト、CSHゲル、フォシャジャイト、ジャイロライト
、ヒレブランダイトの群から選ばれる1種あるいは2種
以上のものである特許請求範囲の第1項、第2項あるい
は第3項記載の有機性汚水の処理方法。
[Scope of Claims] 1) An aerobic hearth tank filled with a porous contact material mainly composed of calcium silicate with a porosity of 50 to 90% is filled with organic matter such as livestock urine wastewater, miscellaneous wastewater, and sewage. A process in which nitrified wastewater is introduced and treated using the biofilm method to remove organic matter, dephosphorization, and nitrification, and a process in which nitrified treated water is introduced into an anaerobic filter bed tank to perform biological denitrification. A method for treating organic wastewater, characterized by comprising: 2) The porous contact material is a molded product obtained by adding a foaming agent such as aluminum powder to a slurry whose main raw materials are silicate raw materials and calcareous raw materials, and subjecting the mixture to hydrothermal reaction treatment at high temperature and high pressure, or this molded product. The method for treating organic wastewater according to claim 1, which is a crushed product obtained by crushing organic wastewater. 3) The porous contact material is made by granulating or granulating a slurry whose main raw materials are silicic raw materials and calcareous raw materials by subjecting it to hydrothermal reaction treatment at high temperature and high pressure, and pulverizing the resulting powder if necessary. The method for treating organic wastewater according to claim 1, which is a molded granule or molded product. 4) Calcium silicate hydrate is one or more selected from the group of tobermorite, xonotlite, CSH gel, fosagite, gyrolite, and hillebrandite. The method for treating organic wastewater according to item 2 or 3.
JP61168031A 1986-02-10 1986-07-18 Treatment of organic sanitary sewage Granted JPS6328496A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP61168031A JPS6328496A (en) 1986-07-18 1986-07-18 Treatment of organic sanitary sewage
AU70206/87A AU595013B2 (en) 1986-02-10 1987-02-09 Method for treating waste water
DE19873790061 DE3790061T1 (en) 1986-02-10 1987-02-09
PCT/JP1987/000080 WO1987004695A1 (en) 1986-02-10 1987-02-09 Process for treating waste water
NL8720037A NL8720037A (en) 1986-02-10 1987-02-09 METHOD FOR TREATING WASTE WATER.
US07/130,875 US4917802A (en) 1986-02-10 1987-02-09 Method for treating waste water
GB8722169A GB2196955B (en) 1986-02-10 1987-02-09 Method for treating waste water.
CH3929/87A CH670627A5 (en) 1986-02-10 1987-02-09
SE8703919A SE466445B (en) 1986-02-10 1987-10-09 SETTLE TO TREAT WASTE WATER
DK530287A DK530287D0 (en) 1986-02-10 1987-10-09 PROCEDURE FOR WASTE TREATMENT
SE9102979A SE9102979D0 (en) 1986-02-10 1991-10-14 SETTLE TO TREAT WASTE WATER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61168031A JPS6328496A (en) 1986-07-18 1986-07-18 Treatment of organic sanitary sewage

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2133861A Division JPH0683832B2 (en) 1990-05-25 1990-05-25 Microorganism carrier
JP2133862A Division JPH03115387A (en) 1990-05-25 1990-05-25 Soil activator

Publications (2)

Publication Number Publication Date
JPS6328496A true JPS6328496A (en) 1988-02-06
JPH0378157B2 JPH0378157B2 (en) 1991-12-12

Family

ID=15860535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61168031A Granted JPS6328496A (en) 1986-02-10 1986-07-18 Treatment of organic sanitary sewage

Country Status (1)

Country Link
JP (1) JPS6328496A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01218691A (en) * 1988-02-29 1989-08-31 Onoda Autoclaved Light Weight Concrete Co Ltd Method for purifying treatment of organic waste water
JPH01236993A (en) * 1988-03-16 1989-09-21 Susumu Hashimoto Method for producing immobilized microorganisms or groups of thereof
JPH02126995A (en) * 1988-11-07 1990-05-15 Onoda Autoclaved Light Weight Concrete Co Ltd Soil trench
JP2012187534A (en) * 2011-03-11 2012-10-04 National Institute Of Advanced Industrial Science & Technology Method for treating organic matter waste liquid
CN110282783A (en) * 2019-07-23 2019-09-27 格丰科技材料有限公司 A kind of processing system and processing method of phosphorus ammonium wastewater from chemical industry

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01218691A (en) * 1988-02-29 1989-08-31 Onoda Autoclaved Light Weight Concrete Co Ltd Method for purifying treatment of organic waste water
JPH01236993A (en) * 1988-03-16 1989-09-21 Susumu Hashimoto Method for producing immobilized microorganisms or groups of thereof
JPH02126995A (en) * 1988-11-07 1990-05-15 Onoda Autoclaved Light Weight Concrete Co Ltd Soil trench
JP2012187534A (en) * 2011-03-11 2012-10-04 National Institute Of Advanced Industrial Science & Technology Method for treating organic matter waste liquid
CN110282783A (en) * 2019-07-23 2019-09-27 格丰科技材料有限公司 A kind of processing system and processing method of phosphorus ammonium wastewater from chemical industry
CN110282783B (en) * 2019-07-23 2021-10-22 格丰科技材料有限公司 Ammonium phosphate chemical wastewater treatment system and method

Also Published As

Publication number Publication date
JPH0378157B2 (en) 1991-12-12

Similar Documents

Publication Publication Date Title
JP2812640B2 (en) Wastewater treatment device and wastewater treatment method
WO1987004695A1 (en) Process for treating waste water
US5932099A (en) Installation for biological water treatment for the production of drinkable water
CA1090316A (en) Support materials for biological fermentation
KR101299953B1 (en) A Method and Apparatus for treatment of livestock waste water using Bacteria Mineral Water process
JP4032199B2 (en) Nitrate nitrogen denitrification substrate
CA2199517C (en) Installation for biological water treatment for the production of drinkable water
JP2012086107A (en) Disinfectant for dephosphorizing/decoloring wastewater, and treatment method and device
KR100271942B1 (en) Method for treating high density waste water and apparatus therefore using soil microbe with do controlling aeration tank
CN101544421B (en) Method for treating coking wastewater
JPH0220315B2 (en)
JP2001276851A (en) Drain treatment equipment
JPS6384696A (en) Dephosphorization device
JPS6328496A (en) Treatment of organic sanitary sewage
JP3933230B2 (en) Nitrogen-containing organic wastewater treatment method
JPH03114592A (en) Microorganism carrier
JP2007054732A (en) Sewage treatment material and its production method
JPS6317513B2 (en)
JP3614251B2 (en) Method for suppressing hydrogen sulfide in sewage treatment
KR19980043133A (en) Oxidation spherical natural purification treatment method
JPS59206092A (en) Treating process of waste water
JPH03115387A (en) Soil activator
JPH02126997A (en) Method for purifying sewage
JPS62225294A (en) Biological denitrification device
JPH08141591A (en) Treatment of organic waste water

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term