JPH03115387A - Soil activator - Google Patents
Soil activatorInfo
- Publication number
- JPH03115387A JPH03115387A JP2133862A JP13386290A JPH03115387A JP H03115387 A JPH03115387 A JP H03115387A JP 2133862 A JP2133862 A JP 2133862A JP 13386290 A JP13386290 A JP 13386290A JP H03115387 A JPH03115387 A JP H03115387A
- Authority
- JP
- Japan
- Prior art keywords
- contact material
- porous
- porous contact
- soil
- porosity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002689 soil Substances 0.000 title claims abstract description 29
- 239000012190 activator Substances 0.000 title abstract description 3
- 239000000463 material Substances 0.000 claims abstract description 90
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 24
- 239000011574 phosphorus Substances 0.000 claims abstract description 24
- 239000002994 raw material Substances 0.000 claims abstract description 19
- 239000000378 calcium silicate Substances 0.000 claims abstract description 15
- 229910052918 calcium silicate Inorganic materials 0.000 claims abstract description 15
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000002002 slurry Substances 0.000 claims abstract description 12
- 239000004088 foaming agent Substances 0.000 claims abstract description 11
- MKTRXTLKNXLULX-UHFFFAOYSA-P pentacalcium;dioxido(oxo)silane;hydron;tetrahydrate Chemical compound [H+].[H+].O.O.O.O.[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O MKTRXTLKNXLULX-UHFFFAOYSA-P 0.000 claims abstract description 7
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 6
- UGGQKDBXXFIWJD-UHFFFAOYSA-N calcium;dihydroxy(oxo)silane;hydrate Chemical compound O.[Ca].O[Si](O)=O UGGQKDBXXFIWJD-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000005187 foaming Methods 0.000 claims abstract description 4
- -1 phosphorus compound Chemical class 0.000 claims abstract description 4
- 239000010865 sewage Substances 0.000 claims description 17
- 238000011282 treatment Methods 0.000 claims description 16
- 230000003213 activating effect Effects 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 30
- 239000003337 fertilizer Substances 0.000 abstract description 10
- 239000006260 foam Substances 0.000 abstract description 5
- 239000003516 soil conditioner Substances 0.000 abstract description 2
- 239000010815 organic waste Substances 0.000 abstract 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 17
- 238000000034 method Methods 0.000 description 16
- 239000002351 wastewater Substances 0.000 description 15
- 238000012360 testing method Methods 0.000 description 14
- 239000000843 powder Substances 0.000 description 13
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 12
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 244000005700 microbiome Species 0.000 description 9
- 239000000292 calcium oxide Substances 0.000 description 6
- 235000012255 calcium oxide Nutrition 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000005416 organic matter Substances 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 4
- 235000011941 Tilia x europaea Nutrition 0.000 description 4
- 239000004571 lime Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- 230000003139 buffering effect Effects 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 238000004065 wastewater treatment Methods 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- 239000011398 Portland cement Substances 0.000 description 2
- 238000005273 aeration Methods 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 235000011116 calcium hydroxide Nutrition 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 240000001548 Camellia japonica Species 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 229910000519 Ferrosilicon Inorganic materials 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- 244000191761 Sida cordifolia Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 235000018597 common camellia Nutrition 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000035784 germination Effects 0.000 description 1
- 239000000852 hydrogen donor Substances 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011221 initial treatment Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 125000001477 organic nitrogen group Chemical group 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000008262 pumice Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 235000017709 saponins Nutrition 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/20—Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
Landscapes
- Fertilizers (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、保水力等を改良する土壌改良材、あるいはリ
ンを含む珪酸石灰質肥料として利用できる土壌活性材に
関する。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a soil activating material that can be used as a soil improving material that improves water retention, etc., or as a silicate lime fertilizer containing phosphorus.
〈従来の技術及び発明が解決しようとする課題〉一般に
、土壌の構造や保水力を改善し、また、養分を補給する
ために、土壌改良材や各種肥料が使用される。<Prior Art and Problems to be Solved by the Invention> Generally, soil conditioners and various fertilizers are used to improve the structure and water retention capacity of soil, and to replenish nutrients.
例えば、土壌の保水力や通気性を改善するためにはパー
ライトやバーミキュライトなどが用いられるが、これら
は一般に高価である。For example, perlite and vermiculite are used to improve the water retention capacity and air permeability of soil, but these are generally expensive.
また、施肥には、一般に化成肥料が用いられる。しかし
、三大養分のひとつで作物の生育に欠かすことができな
いリン肥料の原料は全て輸入にたよっているという問題
があり、また、リン資源は世界的にみても枯渇状態にあ
る。Furthermore, chemical fertilizers are generally used for fertilizing. However, there is a problem in that all the raw materials for phosphorus fertilizer, which is one of the three major nutrients and essential for crop growth, are imported, and phosphorus resources are depleted worldwide.
本発明はこのような事情に鑑み、保水力等e改良できる
土壌改良材、あるいはリンを含む肥料として利用でき、
安価な土壌活性材を提供することを目的とする。In view of these circumstances, the present invention can be used as a soil conditioner that can improve water retention capacity, etc., or as a fertilizer containing phosphorus.
The purpose is to provide inexpensive soil activating materials.
く課題を解決するための手段〉
前記目的を達成する本発明に係る土壌活性材は、珪酸質
原料と石灰質原料とからなる水スラリーを気泡剤の存在
下で発泡させると共に硬化させて得た発泡硬化物を水熱
反応処理して得られ且つ50〜90%の空隙率を有する
多孔質珪酸カルシウム水和物を主成分とする多孔質接触
材からなり、少なくともリン化合物を含む有機性汚水の
処理に利用したものであることを特徴とする。Means for Solving the Problems> The soil activating material according to the present invention that achieves the above object is a foamed material obtained by foaming and curing an aqueous slurry consisting of a siliceous raw material and a calcareous raw material in the presence of a foaming agent. Treatment of organic wastewater consisting of a porous contact material mainly composed of porous calcium silicate hydrate obtained by hydrothermal reaction treatment of a cured product and having a porosity of 50 to 90%, and containing at least a phosphorus compound. It is characterized by being used for.
ここで、本発明に係る土壌活性材の作用について説明す
る。Here, the action of the soil activating material according to the present invention will be explained.
土壌活性材の母体となる多孔質接触材は、多孔質で50
〜90%の空隙率を有しているので、土壌に混入した場
合、その保水力、通気性等を改善する。The porous contact material that is the base of the soil active material is porous and has a
Since it has a porosity of ~90%, when mixed into soil, it improves its water retention capacity, air permeability, etc.
また、かかる多孔質接触材は、有機性汚水の生物膜法に
よる処理において微生物の生息に良好な環境を作り出す
とともにリン酸イオンを晶析除去し、且つ硝化に好適な
pHを維持するので、有機性汚水の処理に有用である。In addition, such a porous contact material creates a favorable environment for microorganisms to live in when treating organic wastewater using the biofilm method, crystallizes out phosphate ions, and maintains a pH suitable for nitrification. It is useful for treating wastewater.
すなわち、汚水の処理をした後の多孔質接触材には、微
生物が多量に付着していると共に、リンや窒素が付着し
ている。また、多孔質接触材自体が珪酸や石灰分の供給
源となる。That is, a large amount of microorganisms, as well as phosphorus and nitrogen, are attached to the porous contact material after wastewater treatment. Furthermore, the porous contact material itself becomes a source of silicic acid and lime.
したがって、汚水処理に使用した後の多孔質接触材を土
壌に混入することにより種々の養分の補給源となる。ま
た、ここで、多孔質接触材に付着しているリン分は、汚
水中のリン酸イオンがカルシウムヒドロキシアパタイト
の形となって晶析されたものである。つまり、リン分は
そのままでは水に溶けにくい形となっているが、植物の
根から生じる弱酸により分解されるようになっている。Therefore, by mixing the porous contact material into the soil after it has been used for sewage treatment, it becomes a source of replenishment of various nutrients. In addition, the phosphorus content adhering to the porous contact material here is obtained by crystallizing phosphate ions in the wastewater in the form of calcium hydroxyapatite. In other words, phosphorus is in a form that is difficult to dissolve in water, but it can be broken down by weak acids produced from plant roots.
よって、本発明の土壌活性材は緩効性リン肥料として有
用である。Therefore, the soil activating material of the present invention is useful as a slow-release phosphorus fertilizer.
次に、本発明に係る土壌活性材の母体となる多孔質接触
材について具体的に説明する。Next, the porous contact material that is the base material of the soil activating material according to the present invention will be specifically explained.
この多孔質接触材は、例えば、珪酸質原料と石灰質原料
とを主原料とする水スラリーにアルミニウム粉末などの
起泡剤を添加して高温高圧下で水熱反応処理して得られ
る珪酸カルシウム水和物からなる成形物、あるいはこの
成形物を破砕して得られる破砕物で空隙率が50〜90
%のもの、又は珪酸質原料と石灰質原料とを主原料とす
る水スラリーを高温高圧下で水熱反応処理後粉砕して得
られる粉状物に気泡を入れて造粒あるいは成形した珪酸
カルシウム水和物からなる造粒物あるいは成形物で空隙
率が50〜90%のものである。This porous contact material is, for example, a calcium silicate water obtained by adding a foaming agent such as aluminum powder to a water slurry whose main raw materials are silicic raw materials and calcareous raw materials, and performing a hydrothermal reaction treatment under high temperature and high pressure. A molded product made of a polyester resin, or a crushed product obtained by crushing this molded product, with a porosity of 50 to 90.
%, or calcium silicate water that is granulated or molded by adding air bubbles to the powder obtained by crushing a water slurry whose main raw materials are silicic raw materials and calcareous raw materials after hydrothermal reaction treatment under high temperature and high pressure. It is a granulated or molded product made of a compound with a porosity of 50 to 90%.
ここで、珪酸カルシウム水和物は珪酸質原料と石灰質原
料とを所定のCab/SiO2モル比(0,5〜2.0
種度)で常法に従ってオートクレーブにて所要の圧力・
温度下で高温高圧養生することによって得られるもので
あり、珪酸質原料としては珪石、珪砂、クリストバライ
ト、無定形シリカ、珪藻土、フェロシリコンダスト、白
土などの粉末、石灰質原料としては生石灰、消石灰、セ
メントなどの粉末が挙げられる。このようにして得られ
る珪酸カルシウム水和物は、トバモライト、ゾノトライ
ト、CSHゲル、フォシャジャイト、ジャイロライト、
ヒレプランダイト等よりなる群より選ばれる1種または
2種以上のものとなる。またこの中でもトバモライト、
ゾノトライト、CSHゲルはpH緩衝能が高く、比表面
積が20〜400m/gと大きいので特に好ましい。Here, calcium silicate hydrate is prepared by combining a silicate raw material and a calcareous raw material at a predetermined Cab/SiO2 molar ratio (0.5 to 2.0
The required pressure and
It is obtained by curing under high temperature and high pressure, and silicic raw materials include powders such as silica stone, silica sand, cristobalite, amorphous silica, diatomaceous earth, ferrosilicon dust, and white clay, and calcareous raw materials include quicklime, slaked lime, and cement. Examples include powders such as. Calcium silicate hydrate obtained in this way is tobermorite, xonotlite, CSH gel, foshagite, gyrolite,
It is one or more types selected from the group consisting of hireplandites and the like. Among these, tobermorite,
Zonotlite and CSH gel are particularly preferred because they have a high pH buffering ability and a large specific surface area of 20 to 400 m/g.
本発明にかかる土壌活性材の母体となる多孔質接触材は
50〜90%の空隙率を有するが、この空隙を珪酸カル
シウム水和物の生成時に得る場合には珪酸質物質と石灰
質物質とをスラリー状にしたものに泡剤としてアルミニ
ウム粉末などの金属発泡剤やAE剤などの起泡剤を添加
した後高温高圧下で水熱反応処理すればよい。ここで金
属発泡剤は化学反応によってガスを発生するもので、そ
の使用割合はスラリー中の巻き込み気泡や水の量にょっ
て変化するが化学反応式から導くことができる。また起
泡剤としては具体的には樹脂せっけん類、サポニン、合
成界面活性剤類、加水分解たんばく質、高分子界面活性
剤などがあり、主として界面活性作用により物理的に気
泡を導入するもので、単に原料と混合して撹拌する乙と
により泡を生じさせろ場合と、特殊な撹拌槽又は起泡装
置を使用して安定した泡をつくり、この泡を体積計量し
て原料に混合する場合とがある。このような起泡剤を用
いる場合には泡の安定性を試験した上、その添加量を決
定する必要がある。また、空隙率の小さい珪酸カルシウ
ム水和物を得た場合にはそれが成形物であれば粉末化し
?二接、造粒又は成形する過程で気泡を入れてその空隙
率を調整すればよい。つまり粉末状の珪酸カルシウム水
和物にアクリル樹脂エマルジョン等の高分子樹脂の糊剤
の水溶液を添加し、必要に応じて起泡剤を加えた後混練
りしたものをパンペレタイザーにより造粒したり型枠成
形したりすればよい。ここでの乾燥方法としては、自然
乾燥、加熱乾燥のどちらを採用してもよい。また、ここ
で、粉末状の珪酸カルシウム水和物としては、上記のよ
うに空隙を入れて成形したものを破砕したときに得られ
る粉末を用いてもよい。なお、空隙率の高い多孔質接触
材とする場合には、型枠成形を採用するのがよい。The porous contact material that is the base of the soil activating material according to the present invention has a porosity of 50 to 90%, but when this porosity is obtained during the production of calcium silicate hydrate, silicic substances and calcareous substances are used. A foaming agent such as a metal foaming agent such as aluminum powder or a foaming agent such as an AE agent may be added to the slurry, followed by hydrothermal reaction treatment at high temperature and high pressure. Here, the metal foaming agent generates gas through a chemical reaction, and its usage ratio varies depending on the amount of air bubbles and water involved in the slurry, but can be derived from the chemical reaction equation. Specific examples of foaming agents include resin soaps, saponins, synthetic surfactants, hydrolyzed proteins, and polymeric surfactants, which mainly introduce air bubbles physically through surfactant action. In some cases, the foam is simply mixed with the raw material and stirred, and in other cases, stable foam is created using a special stirring tank or foaming device, and this foam is measured by volume and mixed with the raw material. There is. When using such a foaming agent, it is necessary to test the stability of the foam and then determine the amount to be added. Also, if a calcium silicate hydrate with a small porosity is obtained, if it is a molded product, can it be powdered? The porosity may be adjusted by introducing air bubbles during the process of bicontact, granulation, or molding. In other words, an aqueous solution of a polymer resin sizing agent such as an acrylic resin emulsion is added to powdered calcium silicate hydrate, a foaming agent is added if necessary, the mixture is kneaded, and the resulting mixture is granulated using a pan pelletizer. It can be molded using a mold. As the drying method here, either natural drying or heat drying may be employed. Further, here, as the powdered calcium silicate hydrate, a powder obtained by crushing a molded product with voids as described above may be used. In addition, when forming a porous contact material with a high porosity, it is preferable to employ mold molding.
本発明の土壌活性材は、かかる多孔質接触材を有機性汚
水の処理に使用した後のものである。The soil activating material of the present invention is obtained after using such a porous contact material for treating organic wastewater.
ここで、多孔質接触材の汚水処理への好適な用い方につ
いて説明する。Here, a preferred method of using the porous contact material for wastewater treatment will be explained.
例えば、リン化合物、窒素化合物及び有機物を含む有機
性汚水を処理する場合に、多孔質接触材を好気性炉床槽
へ充填しておき、この好気性領域へ上記有機性汚水及び
/又は嫌気性処理水を通して空気存在下で当該多孔質接
触材に接触させて好気性処理水とし、次いでこの好気性
処理水を実質的に空気存在下で水素供与体と接触させて
嫌気性処理水とするようにする。For example, when treating organic wastewater containing phosphorus compounds, nitrogen compounds, and organic substances, a porous contact material is filled in an aerobic hearth tank, and the organic wastewater and/or anaerobic wastewater is transferred to this aerobic area. Treated water is passed through and brought into contact with the porous contact material in the presence of air to produce aerobic treated water, and then this aerobic treated water is brought into contact with a hydrogen donor substantially in the presence of air to produce anaerobic treated water. Make it.
さらに評言すると、まず、上記多孔質接触材を充填した
好気性炉床槽に一次処理して浮遊物や沈澱物を除去した
有機性汚水を曝気しながら希釈せずに通水することによ
り、生物膜法による有機物の除去を行うものである。To make a further comment, first, organic wastewater that has undergone primary treatment to remove floating matter and sediment is passed through the aerobic hearth tank filled with the above-mentioned porous contact material without dilution while being aerated. This method uses a membrane method to remove organic substances.
すなわち、これにより多孔質接触材の表面に微生物が生
息して水浄化材となり、この水浄化材が生物膜法による
有機物の除去を行う。That is, as a result, microorganisms live on the surface of the porous contact material and it becomes a water purification material, and this water purification material removes organic matter by the biofilm method.
またこれと同じに、リンの除去と、NHニーNの硝化と
をも同時に行い、さらに、N H: −Nが硝化された
No”、−N、 NoニーNを含む処理水を好気性炉床
槽に導入し、メタノールなどの水素供与体を加えて通気
性嫌気性状態で脱窒菌によりNo”、−N、No″3−
NをN2ガスに還元することにより、生物学的脱窒素を
行うことができる。In the same way, the removal of phosphorus and the nitrification of NH-N are performed simultaneously, and the treated water containing NH: -N is nitrified, -N, and No-N is fed into an aerobic furnace. No", -N, No"3-
Biological denitrification can be performed by reducing N to N2 gas.
ここで、好気性炉床槽に充填されている多孔質接触材は
、その表面に珪酸カルシウム水和物の結晶もしくはゲル
表面の微細な凹凸を有しているので微生物が固定されや
すく、生物膜の形成が容易であるとともに有機物の分解
生成物(1!に生物代謝産物)である乳酸、酪酸、酢酸
などの低級脂肪酸類によるpH低下を緩和して微生物の
至適pHである弱アルカリ性のpH8〜9の状態を安定
に作り出すことができる。よって、この好気性炉床槽に
おいては、有機物の分解に寄与する細菌・原生動物及び
硝化を行う亜硝酸菌・硝酸菌の活動が活発となるので、
高負荷での処理が可能となり、導入する有機性汚水が一
般的豚舎の尿汚水程度の高濃度であっても希釈が不要と
なる。Here, the porous contact material filled in the aerobic hearth tank has fine irregularities on the surface of calcium silicate hydrate crystals or gel, so microorganisms are easily immobilized and biofilm It has a slightly alkaline pH of 8, which is the optimum pH for microorganisms, and is easy to form, and also alleviates the pH drop caused by lower fatty acids such as lactic acid, butyric acid, and acetic acid, which are decomposition products of organic matter (biological metabolites). The states of ~9 can be stably created. Therefore, in this aerobic hearth tank, the activities of bacteria and protozoa that contribute to the decomposition of organic matter, as well as nitrite bacteria and nitrate bacteria that perform nitrification, become active.
It is possible to process at high loads, and there is no need to dilute the organic sewage even if the concentration of organic sewage introduced is as high as urine sewage from a typical pig farm.
また、かかる好気性炉床槽で同時に行われる脱リンは次
の作用による。Moreover, the dephosphorization that is simultaneously carried out in such an aerobic hearth tank is due to the following action.
好気性炉床槽中多孔質接触材は、これを形成している珪
酸カルシウム水和物の結晶もしくはゲル表面からカルシ
ウムヒドロキシアパタイトの晶析に必要なCa を供
給するとともに該接触材のpH緩衝能により、汚水のp
Hが低くまたその値が変動しても常にほぼpH8〜9の
安定した状態をつくり出しているので、汚水中のリン酸
イオンはCa と反応してカルシウムヒドロキシアパ
タイトの形で該接触材表面に晶析される。このとき、多
孔質接触材の空隙は、汚水の一方向の流れを乱す作用を
するとともに該接触材表面の流速を緩和するように働く
ので、リン酸イオンとCa とによるカルシウムヒド
ロキシアパタイトの析出あるいは成長が促進される。ま
た、この多孔質接触材は、リン酸カルシウムあるいはカ
ルシウムヒドロキシアパタイトに類する「結晶覆」を含
んでいないが、吸着能を有しているため、通水初期にお
いては生成したカルシウムヒドロキシアパタイトを吸着
し、またその後はその表面がカルシウムヒドロキシアパ
タイトの核形成に都合のよい構造によってその微細空隙
、細孔部分にカルシウムヒト鴛キシアパタイトの核を形
成するものである。The porous contact material in the aerobic hearth tank supplies Ca necessary for crystallization of calcium hydroxyapatite from the crystal or gel surface of calcium silicate hydrate forming the porous contact material, and also increases the pH buffering capacity of the contact material. Due to the p of sewage
Since the H content is low and a stable state of approximately pH 8 to 9 is always created even if the value fluctuates, phosphate ions in the wastewater react with Ca and crystallize on the surface of the contact material in the form of calcium hydroxyapatite. will be analyzed. At this time, the voids in the porous contact material act to disturb the unidirectional flow of wastewater and to moderate the flow velocity on the surface of the contact material, resulting in precipitation of calcium hydroxyapatite due to phosphate ions and Ca. Growth is encouraged. In addition, although this porous contact material does not contain a "crystalline coating" similar to calcium phosphate or calcium hydroxyapatite, it does have adsorption ability, so it adsorbs the calcium hydroxyapatite that is generated during the initial period of water flow. Thereafter, the surface has a structure suitable for nucleation of calcium hydroxyapatite, so that nuclei of calcium hydroxyapatite are formed in the fine voids and pores.
汚水を処理した後の多孔質接触材、すなわち本発明に係
る土壌活性材を走査電子顕微鏡で観察するとその空隙内
部及び結晶表面に微生物が多量に着床・生息しているの
が見られ、また不定形結晶も観察され、EPMA (X
線マイクロアナライザー)によりカルシウムヒドロキシ
アパタイトと同定された。When the porous contact material after sewage treatment, that is, the soil activating material according to the present invention, is observed with a scanning electron microscope, a large number of microorganisms can be seen settling and living inside the pores and on the crystal surface. Amorphous crystals were also observed, and EPMA (X
It was identified as calcium hydroxyapatite using a line microanalyzer).
このことからも明らかなように、上記多孔質接触材の細
孔・空隙は微生物の着床及び脱リンに大きな効果を与え
ており、本発明の土壌活性材の母体となる多孔質接触材
は、空隙率が50〜90%、好ましくは60〜80%の
ものが微生物の着床及び脱リンに望ましい。As is clear from this, the pores and voids of the porous contact material have a great effect on microbial settlement and dephosphorization, and the porous contact material that is the base of the soil active material of the present invention A porosity of 50 to 90%, preferably 60 to 80% is desirable for microbial implantation and dephosphorization.
この多孔質接触材の空隙率が50%未満では比表面積が
小さく微生物の着床が悪く且つリン除去率が小さく、一
方、空隙率が90%を超えると好気性炉床槽内への汚水
導入及び曝気により浮上りが生じるとともに強度低下が
著しく、またpH緩衝能力及びリン除去効果の持続性も
悪くなり、好ましくない。If the porosity of this porous contact material is less than 50%, the specific surface area will be small, making it difficult for microorganisms to settle and the phosphorus removal rate will be low.On the other hand, if the porosity exceeds 90%, sewage will not be introduced into the aerobic hearth tank. Also, aeration causes floating and a significant decrease in strength, and the durability of the pH buffering ability and phosphorus removal effect also deteriorates, which is not preferable.
また、多孔質接触材の大きさもリン除去性能に大きく関
与している。接触材の径が0.5閣より小さいとSSな
らびに晶析結晶により目づまりしやすいので長期使用す
ることができず、一方、径が大きすぎても接触面積の減
少によりリンの除去率が低下するのでともに好ましくな
い。よって、多孔質接触材は0.5〜10+msの大き
さのものが望ましい。Furthermore, the size of the porous contact material also has a large effect on the phosphorus removal performance. If the diameter of the contact material is smaller than 0.5 mm, it will be easily clogged by SS and crystallization, so it cannot be used for a long time.On the other hand, if the diameter is too large, the phosphorus removal rate will decrease due to the reduction of the contact area. Therefore, both are undesirable. Therefore, the porous contact material preferably has a size of 0.5 to 10+ms.
ここで、本発明に係る土壌活性材を得るための有機性汚
水の処理方法の例を第1図及び第2図に示す。Here, an example of a method for treating organic wastewater to obtain the soil activating material according to the present invention is shown in FIGS. 1 and 2.
第1図に示す例は好気性炉床槽の次の嫌気性炉床槽を配
置した例である。同図に示すようにスクリーン沈砂池1
及び振動篩2により一次処理された有機性汚水は、上記
多孔質接触材が充填されている好気槽(好気性炉床槽)
3に導入されて有機物除去、脱リン及び硝化が行われる
。次いで、撹拌槽4に導入されてメタノール又は有椿性
汚水が添加された後嫌気槽(嫌気性炉床槽)5で脱窒素
され、再好気槽6及び消毒槽7を経て排水される。The example shown in FIG. 1 is an example in which an anaerobic hearth tank is placed next to an aerobic hearth tank. As shown in the figure, screen settling basin 1
The organic sewage that has been primarily treated with the vibrating sieve 2 is then sent to an aerobic tank (aerobic hearth tank) filled with the above-mentioned porous contact material.
3, where organic matter removal, dephosphorization, and nitrification are performed. Next, it is introduced into a stirring tank 4 and methanol or camellia-containing sewage is added thereto, denitrified in an anaerobic tank (anaerobic hearth tank) 5, and drained through a re-aerobic tank 6 and a disinfection tank 7.
第2図は循環式の処理工程の例である。同図に示すよう
にスクリーン沈砂池1及び振動篩2で一次処理された有
機性汚水は撹拌槽13及び嫌気槽14を経た後、多孔質
接触材が充填されている好気槽15へ導入され、さらに
撹拌槽13へ循環される。これにより有機物処理、脱リ
ン及び脱窒素が行われる。この処理水は再嫌気槽16及
び消毒槽7を経て排水される。FIG. 2 is an example of a circulating treatment process. As shown in the figure, organic sewage that has been primarily treated in a screen settling tank 1 and a vibrating sieve 2 passes through an agitation tank 13 and an anaerobic tank 14, and then is introduced into an aerobic tank 15 filled with a porous contact material. , and further circulated to the stirring tank 13. This performs organic matter treatment, dephosphorization, and denitrification. This treated water is drained through a re-anaerobic tank 16 and a disinfection tank 7.
これらからも明らかなように、本発明の土壌活性材の母
体となる多孔質接触材を用いた有機性汚水の処理方法に
よれば従来に比べて工程数が大幅に削減されるとともに
運転管理も容易となる。As is clear from the above, the method of treating organic wastewater using the porous contact material that is the base material of the soil activating material of the present invention can significantly reduce the number of steps and operation management compared to the conventional method. It becomes easier.
そして、このような汚水処理によって使用済となった土
壌活性材は、珪酸石灰質肥料ならびに土壌改良材として
再利用できるので大変経済的である。The soil activator used after such sewage treatment can be reused as a silicate lime fertilizer and a soil improvement material, which is very economical.
以下に、本発明の土壌活性材の母体となる多孔質接触材
の製造例、及び本発明の効果を示す試験例を示す。Below, an example of manufacturing a porous contact material that is the base material of the soil active material of the present invention and a test example showing the effects of the present invention are shown.
(多孔質接触材の製造例)
(1)CSHゲル接触材
珪石粉末4重量部、生石灰粉末2重量部、消石灰粉末1
重量部及び普通ポルトランドセメント3重量部(CaO
/SiO。モル比=1.5)に金属ア・ルミニウム粉末
o、oos重量部を加えてなる混合物に水7重量部を加
えて水スラリーにした。次いで、この水スラリ゛−を型
枠に注入して4時間静置後説型したものを回転ブラシで
粉砕し、パンペレタイザーで5〜10mの粒径に造粒後
オートクレーブにて150℃5気圧下で10時間水熱処
理して多孔質接触材とした。この接触材の空隙率は70
%であった。(Production example of porous contact material) (1) CSH gel contact material 4 parts by weight of silica powder, 2 parts by weight of quicklime powder, 1 part by weight of slaked lime powder
parts by weight and 3 parts by weight of ordinary Portland cement (CaO
/SiO. A water slurry was prepared by adding 7 parts by weight of water to a mixture obtained by adding parts by weight of metal aluminum powders o and oos (molar ratio = 1.5). Next, this water slurry was poured into a mold and left to stand for 4 hours.The molded product was crushed with a rotating brush, granulated with a pan pelletizer to a particle size of 5 to 10 m, and then heated in an autoclave at 150°C and 5 atm. A porous contact material was obtained by hydrothermal treatment for 10 hours. The porosity of this contact material is 70
%Met.
(2)トバモライト接触材
珪石粉末5重量部、生石灰粉末2重量部及び普通ポルト
ランドセメント3重量部(CaO/S i 02% ル
比=0.8)に金属アルミニウム粉末o、oos重量部
を加えてなる混合物に水7重量部を加えて水スラリーに
した。(2) Tobermorite contact material 5 parts by weight of silica powder, 2 parts by weight of quicklime powder, and 3 parts by weight of ordinary Portland cement (CaO/Si02% ratio = 0.8), by adding o and oos parts by weight of metal aluminum powder. 7 parts by weight of water was added to the mixture to form a water slurry.
この水スラリーを型枠に注入して4時間静置後説型した
ものをオートクレーブにて180℃10気圧下で10時
間水熱処理した。得られた成形物をクラッシャーで粗砕
して5〜10−の粒径にふるいわけて多孔質接触材とし
た。このものの空隙率は75%であった。This water slurry was poured into a mold, left to stand for 4 hours, and then molded, which was then hydrothermally treated in an autoclave at 180° C. and under 10 atmospheres for 10 hours. The obtained molded product was crushed using a crusher and sieved to a particle size of 5 to 10 to obtain a porous contact material. The porosity of this material was 75%.
(3) ゾノトライト接触材
珪石粉末と生石灰粉末とをCab/5i02モル比1.
0となるように混合し、固体成分に対して10倍重量の
水に分散させて水スラリーを形成し、その後オートクレ
ーブ中にて210℃、20気圧下で撹拌しながら10時
間水熱処理した。このようにして得られたゾノトライト
粉末の絶乾物に対してアクリル樹脂エマルジ璽ン(固形
分10%)を4重量倍加え、混練後造粒成形して110
℃で乾燥固化させ、5〜10間の粒径にふるいわけて多
孔質接触材とした。このものの空隙率は73%であった
。(3) Zonotlite contact material silica powder and quicklime powder at a Cab/5i02 molar ratio of 1.
0 and dispersed in water 10 times the weight of the solid component to form an aqueous slurry, which was then hydrothermally treated in an autoclave at 210° C. under 20 atm with stirring for 10 hours. Acrylic resin emulsion (solid content 10%) was added 4 times by weight to the bone dry product of the xonotlite powder obtained in this way, and after kneading, granulation molding was carried out to obtain 110%
It was dried and solidified at <RTIgt;C,</RTI> and sieved to a particle size between 5 and 10 to obtain a porous contact material. The porosity of this material was 73%.
(4)M々の空隙率を有するトバモライト接触材上記(
2)に示した製造方法において、金属アルミニウム粉末
及び水の添加割合を第1表に示すように変化させろこと
により各種トバモライト接触材を得た。(4) Tobermorite contact material with a porosity of M (
In the manufacturing method shown in 2), various tobermorite contact materials were obtained by changing the addition ratios of metal aluminum powder and water as shown in Table 1.
第 1 表
(試験例1)
第3図に示すように、多孔質接触材を充填し#200X
150X310mの第1の槽101及び200X150
X290mの第2の槽102に、固液分離を行った後0
.3園φの鋼の振動節を通過させた膠原汚水の一次処理
水を上向き流で通水するとともに、各種101.102
の下方より500 mj 7分で曝気を行うことにより
、各種多孔質接触材を母材とした水浄化材の性能を調べ
た。ここで、上記製造例(1)、 (2)、 (3)で
製造した各多孔質接触材を上記第1及び第2の槽101
,102に充填して一次処理水を101/日の流速で通
水したものをそれぞれ試験例A−1,A−2゜A−3と
した。Table 1 (Test Example 1) As shown in Figure 3, #200X was filled with porous contact material.
First tank 101 of 150X310m and 200X150
After performing solid-liquid separation in the second tank 102 of 290 m
.. The primary treated water of collagen sewage that has passed through the steel vibration nodes of 3 gardens φ is passed in an upward flow, and various 101.102
The performance of water purification materials using various porous contact materials as base materials was investigated by performing aeration from below at 500 mj for 7 minutes. Here, each of the porous contact materials manufactured in the above manufacturing examples (1), (2), and (3) was placed in the first and second tanks 101.
, 102 and passed the primary treated water at a flow rate of 101/day as Test Examples A-1, A-2 and A-3, respectively.
比較のため、多孔質接触材の代りに市販のバラス、軽石
2石灰石及びボリプ四ピレンで粒度5〜10mのものを
接触材として用いたものをそれぞれ比較例B−1,B−
2,B−3゜B−4とした。For comparison, comparative examples B-1 and B- were prepared using commercially available balas, pumice 2 limestone, and borip tetrapyrene with particle sizes of 5 to 10 m as the contact material instead of the porous contact material, respectively.
2, B-3°B-4.
これら試験例A−1〜A−3及び比較例B−1〜B−4
の2〜3ケ月経過時において、その処理水の透明度、p
H,BOD及びT−P(全リン)、NHニーN、 No
ニーN、 No;−Nの各濃度を各4回測定し、その平
均を第2表に示す。These Test Examples A-1 to A-3 and Comparative Examples B-1 to B-4
After 2 to 3 months, the clarity of the treated water, p
H, BOD and T-P (total phosphorus), NHney N, No
The concentrations of Knee N and No;-N were measured four times each, and the averages are shown in Table 2.
第
2
表
この結果に示すようにBOD容積負荷1.0kg/日・
ゴの高負荷の処理においてBOD除去率は比較例が77
〜87%であるのに対して本発明法では95%以上の高
い除去率を示した。またリンの除去率は比較例において
は25%以下でほとんど除去できていないが、本発明方
法では90%以上の高い除去率であった。さらに次工程
で脱窒素を行なうためには、有機体窒素及びNHニーN
をNo’;−NあろいばN08−Nに硝化させる必要が
あるが、本発明法によれば、NHニーN容積負荷カo、
4kg/日・−の高負荷処理でも完全に硝化が進行して
おり、次工程で脱窒素が完全に行える状態となっている
。これに対し比較例では10〜30%のNHニーNが残
っているので、たとえその後生物学的脱窒素工程を付加
してもこの残存のNHニーNはそのまま流出されること
になる。Table 2 As shown in this result, BOD volume load 1.0 kg/day・
The comparative example has a BOD removal rate of 77 in high load processing.
While the removal rate was ~87%, the method of the present invention showed a high removal rate of over 95%. Further, the removal rate of phosphorus was 25% or less in the comparative example, which was hardly removed, but the method of the present invention had a high removal rate of 90% or more. Furthermore, in order to perform denitrification in the next step, organic nitrogen and NH-N
It is necessary to nitrify No';-N to N08-N, but according to the method of the present invention, NH-N volume load Kao,
Even with high load treatment of 4 kg/day, nitrification has progressed completely, and denitrification can be completed in the next step. On the other hand, in the comparative example, 10 to 30% of NHney-N remains, so even if a biological denitrification step is subsequently added, this remaining NHney-N will be flowed out as is.
(試験例2)
試験例1と同様な実験装置を用い、製造例(4)に示す
各種多孔質接触材を使用して膠原−次処理水を処理して
多孔質接触材の空隙率の大小による浄化の違いを試験し
た。なお他の条件は試験例1と同様とした。この結果は
試験例1と同様2〜3ケ月の間の4回の測定結果の平均
を第3表に示す。(Test Example 2) Using the same experimental equipment as in Test Example 1, collagen-subprocessed water was treated using various porous contact materials shown in Production Example (4), and the porosity of the porous contact materials was determined. The difference in purification was tested. Note that other conditions were the same as in Test Example 1. Similar to Test Example 1, the results are shown in Table 3, which is the average of four measurements over a period of 2 to 3 months.
第
表
第3表に示すように、多孔質接触材の空隙率が50%以
上の時にBOD除去、リン除去の効果が大きくかつ硝化
が充分に進む。なお、空隙率が90%を超えると通水時
の浮き上り現象により槽より流出してしまうと同時に強
度低下が著しい。As shown in Table 3, when the porosity of the porous contact material is 50% or more, the effects of BOD removal and phosphorus removal are large and nitrification progresses sufficiently. Note that if the porosity exceeds 90%, the material will flow out of the tank due to the floating phenomenon when water is passed through, and at the same time, the strength will decrease significantly.
この結果より多孔質接触材の空隙構造は、有機性汚水と
の接触機会を高めるとともに細孔、空隙内に微生物を着
床のために極めて重要である。また、同時に晶析してく
るカルシウムヒドロキシアパタイトの結晶成長のために
も極めて重要でリン除去効果に大きく寄与している。These results show that the pore structure of the porous contact material is extremely important for increasing the chance of contact with organic wastewater and for allowing microorganisms to settle within the pores and voids. It is also extremely important for the crystal growth of calcium hydroxyapatite that crystallizes at the same time, and greatly contributes to the phosphorus removal effect.
したがって、使用済の多孔質接触材は微生物が多量に付
着していると共に、リンがカルシウムヒドロキシアパタ
イトの形で付着してお吟、且つ母体自体は多孔質である
ので、リン等の肥料として有用であると共に土壌の保水
力や通気性をも改良しうるものである。また、有用な汚
水処理に使用した後の廃棄物であるので、経済的価値も
大きい。Therefore, the used porous contact material has a large amount of microorganisms attached to it, as well as phosphorus in the form of calcium hydroxyapatite, and since the matrix itself is porous, it is useful as a fertilizer with phosphorus, etc. At the same time, it can also improve the water retention capacity and air permeability of soil. Moreover, since it is waste after being used for useful sewage treatment, it has great economic value.
(試験例3)
試験例1のA−2で使用済となった接触材を粗砕したも
のをリン肥料として用いて、こまつなの栽培試験(ワグ
ネルボット)を行った。(Test Example 3) A Komatsuna cultivation test (Wagnerbot) was conducted using the coarsely crushed contact material used in A-2 of Test Example 1 as phosphorus fertilizer.
なお、各ポットについて硫安及び塩加を同時に施用し、
また、比較対照品としては汚水処理に使用前の多孔質接
触材を用いた。In addition, ammonium sulfate and salt were applied to each pot at the same time.
In addition, as a comparative product, a porous contact material before use for wastewater treatment was used.
試験の結果、発芽後、生育が進むに従って、4
汚水処理使用後の接触材を用いたものの方が生育が次第
に勝ってきて、明らかな施用効果が認められた。As a result of the test, as the growth progressed after germination, the growth of the contact material using the contact material after 4. sewage treatment gradually became superior, and a clear application effect was observed.
〈発明の効果〉
以上説明したように、本発明に係る土壌活性材は、土壌
の保水力や通気性を改良する作用を有すると共に、特に
リン、窒素、珪酸。<Effects of the Invention> As explained above, the soil activating material according to the present invention has the effect of improving the water retention capacity and air permeability of soil, and in particular, phosphorus, nitrogen, and silicic acid.
石灰などの供給源となるものであり、また、有用な汚水
処理方法に供した後の廃棄物であるので非常に経済的な
ものである。It is a source of lime, etc., and is very economical as it is waste after being subjected to a useful sewage treatment method.
【図面の簡単な説明】
第1図〜第4図は本発明にかかり、第1図及び第2図は
有機性汚水の処理方法の例を示す工程図、第3図は試験
例に用いた装置を示す説明図、第4図は第1実施例に用
いた汚水処理装置を示す説明図である。
図 面 中、
3.15は好気性炉床槽、
5.14は嫌気性炉床槽である。[Brief explanation of the drawings] Figures 1 to 4 are related to the present invention, Figures 1 and 2 are process diagrams showing an example of a method for treating organic wastewater, and Figure 3 is a diagram used for a test example. FIG. 4 is an explanatory diagram showing the sewage treatment apparatus used in the first embodiment. In the drawing, 3.15 is an aerobic hearth tank, and 5.14 is an anaerobic hearth tank.
Claims (2)
気泡剤の存在下で発泡させると共に硬化させて得た発泡
硬化物を水熱反応処理して得られ且つ50〜90%の空
隙率を有する多孔質珪酸カルシウム水和物を主成分とす
る多孔質接触材からなり、少なくともリン化合物を含む
有機性汚水の処理に利用したものであることを特徴とす
る土壌活性材。(1) Hydrothermal reaction treatment of a foamed cured product obtained by foaming and curing an aqueous slurry consisting of a siliceous raw material and a calcareous raw material in the presence of a foaming agent, and with a porosity of 50 to 90%. 1. A soil activating material comprising a porous contact material containing porous calcium silicate hydrate as a main component, which is used for treating organic sewage containing at least a phosphorus compound.
ゾノトライト、CSHゲル、フォシャジャイト、ジャイ
ロライト、ヒレプランダイトの群から選ばれる1種ある
いは2種以上のものである請求項1記載の土壌活性材。(2) Porous calcium silicate hydrate is tobermorite,
2. The soil activating material according to claim 1, which is one or more selected from the group of xonotlite, CSH gel, fociagite, gyrolite, and hireplandite.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2133862A JPH03115387A (en) | 1990-05-25 | 1990-05-25 | Soil activator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2133862A JPH03115387A (en) | 1990-05-25 | 1990-05-25 | Soil activator |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61168031A Division JPS6328496A (en) | 1986-02-10 | 1986-07-18 | Treatment of organic sanitary sewage |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03115387A true JPH03115387A (en) | 1991-05-16 |
JPH0478675B2 JPH0478675B2 (en) | 1992-12-11 |
Family
ID=15114793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2133862A Granted JPH03115387A (en) | 1990-05-25 | 1990-05-25 | Soil activator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03115387A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06340464A (en) * | 1991-12-02 | 1994-12-13 | Isolite Kogyo Kk | Improving material water permeability and water retaining property of soil and its production |
CN103449911A (en) * | 2013-08-25 | 2013-12-18 | 清远绿由环保科技有限公司 | Medium soil produced from active sludge building waste residue and production method of medium soil |
JP2019173397A (en) * | 2018-03-28 | 2019-10-10 | 株式会社熊谷組 | Soil solidification method |
-
1990
- 1990-05-25 JP JP2133862A patent/JPH03115387A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06340464A (en) * | 1991-12-02 | 1994-12-13 | Isolite Kogyo Kk | Improving material water permeability and water retaining property of soil and its production |
CN103449911A (en) * | 2013-08-25 | 2013-12-18 | 清远绿由环保科技有限公司 | Medium soil produced from active sludge building waste residue and production method of medium soil |
JP2019173397A (en) * | 2018-03-28 | 2019-10-10 | 株式会社熊谷組 | Soil solidification method |
Also Published As
Publication number | Publication date |
---|---|
JPH0478675B2 (en) | 1992-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4917802A (en) | Method for treating waste water | |
CN101935195B (en) | Porous phosphorus removing ceramic granules with function of slowly releasing alkali and preparation method thereof | |
KR100836661B1 (en) | Porous media for autotrophic denitrification using sulfur | |
EP1129996A1 (en) | Denitrifying composition for removing nitrate nitrogen and process for producing the same | |
JPH0220315B2 (en) | ||
KR100332368B1 (en) | Method of the preparation of multi-functional and porous ceramics | |
JPH03115387A (en) | Soil activator | |
JP2007054732A (en) | Sewage treatment material and its production method | |
JP3379924B2 (en) | Adsorbent | |
JP2002241183A (en) | Porous ceramic particle and its production process | |
JPH0378157B2 (en) | ||
JPH03114592A (en) | Microorganism carrier | |
JPS6342788A (en) | Cleaning method for water tank | |
JP5185754B2 (en) | Humidity conditioning material and method for producing the same | |
JPS6144712A (en) | Production of porous lightweight calcium silicate | |
JPH01168397A (en) | Manufacture of purifying material | |
JP2008100159A (en) | Method for manufacturing dephosphorizing material | |
KR0182403B1 (en) | Method for preparing calcium silicate porous material capable of being self-degraded for disposing a livestock raising waste | |
JPH115977A (en) | Agricultural soil conditioner utilizing used dephosphorization material and silica fertilizer utilizing used dephosphorization material | |
JPH10192822A (en) | Improved compound for garbage disposal | |
JPH02207787A (en) | Inclusive immobilized micro-organism | |
CN112591883B (en) | Composite filler for deep denitrification and dephosphorization of tail water and preparation method thereof | |
JPH0773717B2 (en) | Sludge treatment method | |
JP2023125979A (en) | Carrier for carrying microorganism | |
JPH01171696A (en) | Production of purifying filter medium |