JP2008100159A - Method for manufacturing dephosphorizing material - Google Patents
Method for manufacturing dephosphorizing material Download PDFInfo
- Publication number
- JP2008100159A JP2008100159A JP2006284461A JP2006284461A JP2008100159A JP 2008100159 A JP2008100159 A JP 2008100159A JP 2006284461 A JP2006284461 A JP 2006284461A JP 2006284461 A JP2006284461 A JP 2006284461A JP 2008100159 A JP2008100159 A JP 2008100159A
- Authority
- JP
- Japan
- Prior art keywords
- calcium silicate
- silicate hydrate
- raw material
- dephosphorizing
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Water Treatment By Sorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
本発明は、浄化槽、下水処理等のリン酸イオン含有排水中からリン酸イオンを除去する脱リン材の製造方法に関する。 The present invention relates to a method for producing a dephosphorization material for removing phosphate ions from wastewater containing phosphate ions such as septic tanks and sewage treatment.
水質の富栄養化をもたらす原因物質として、浄化槽、下水処理の排水中からリンを除去することが強く要請されている。排水からのリン除去法としては、生物学的除去法、凝集沈殿法、吸着脱リン法、晶析脱リン法などがある。 As a causative substance that brings about eutrophication of water quality, it is strongly required to remove phosphorus from septic tanks and wastewater from sewage treatment. Examples of methods for removing phosphorus from wastewater include biological removal methods, coagulation precipitation methods, adsorptive dephosphorization methods, and crystallization dephosphorization methods.
しかしながら、生物学的除去法は、リンを過剰に含んだ汚泥を頻繁に抜き出す必要があり、また、凝集沈殿法は、汚泥の発生量が多いため、頻繁に汚泥を抜き出す必要があり、いずれの方法も数ヶ月にわたって汚泥の引き抜きを行わない浄化槽には適用しがたい。また、吸着脱リン法は、吸着剤の交換操作や再生操作を頻繁に行わなければならないため、頻繁なメンテナンスができない浄化槽には適用しがたい。 However, the biological removal method requires frequent extraction of sludge containing excessive phosphorus, and the coagulation sedimentation method requires frequent extraction of sludge because of the large amount of sludge generated. The method is also difficult to apply to septic tanks that do not extract sludge for several months. Also, the adsorption dephosphorization method must be frequently applied to the septic tank that cannot be frequently maintained because the adsorbent must be replaced and regenerated frequently.
一方、特許文献1に開示されている晶析脱リン法は、リン酸イオンを含む排水中に種晶を存在させてヒドロキシアパタイトの結晶を成長させてリン酸イオンを排水中から除去する方法であるため、汚泥がほとんど発生しない。しかしながら、ヒドロキシアパタイトを成長させるためには、排水のpHやカルシウムイオン濃度を所定の範囲に調整する必要があり、頻繁なメンテナンスができない浄化槽には適用できない。 On the other hand, the crystallization dephosphorization method disclosed in Patent Document 1 is a method in which seed crystals are present in wastewater containing phosphate ions to grow hydroxyapatite crystals and remove phosphate ions from the wastewater. There is almost no sludge. However, in order to grow hydroxyapatite, it is necessary to adjust the pH of the waste water and the calcium ion concentration within a predetermined range, and it cannot be applied to a septic tank that cannot be frequently maintained.
また、特許文献2,3には、ケイ酸カルシウム水和物を含有する軽量気泡コンクリート(ALC)端材を脱リン材として用いる方法が開示されているが、該端材は水に浮きやすく、排水との接触効率が悪いという問題があった。 Patent Documents 2 and 3 disclose a method of using a lightweight cellular concrete (ALC) mill containing calcium silicate hydrate as a dephosphorizing material, but the mill is liable to float on water, There was a problem that the contact efficiency with the waste water was poor.
さらにまた、特許文献4には、ケイ酸カルシウム化合物をセメントで養生して硬化させた複合体が脱リン材として開示されているが、養生が不十分な場合には強度が劣り、もろくなるため、養生に長時間を要し、製造効率が悪いという問題があった。 Furthermore, Patent Document 4 discloses a composite obtained by curing and hardening a calcium silicate compound with cement as a dephosphorization material. However, if the curing is insufficient, the strength is inferior and brittle. There was a problem that curing took a long time and production efficiency was poor.
本発明の課題は、上記問題点に鑑み、カルシウムイオンの添加やpH調整、汚泥の引き抜きといった頻繁なメンテナンスが不要で、長期間にわたって優れた脱リン効果を安定的に発現し、且つ、強度に富んだ脱リン材の製造方法を提供することにある。 In view of the above problems, the problem of the present invention is that frequent maintenance such as addition of calcium ions, pH adjustment, and extraction of sludge is unnecessary, and an excellent dephosphorization effect is stably expressed over a long period of time. The object is to provide a method for producing a rich phosphorus removal material.
本発明の脱リン材の製造方法は、体積平均粒径が5μm〜0.3mmのケイ酸カルシウム水和物含有粉体と、石灰質原料と、水との混和物を造粒し、オートクレーブ養生することにより硬化させることを特徴とする。 The method for producing a dephosphorizing material of the present invention granulates an admixture of calcium silicate hydrate-containing powder having a volume average particle size of 5 μm to 0.3 mm, a calcareous raw material, and water, and autoclave is cured. It is made to harden by.
本発明においては、上記混和物におけるケイ酸カルシウム水和物含有粉体と石灰質原料の重量比がケイ酸カルシウム水和物含有粉体/石灰質原料=40/60〜70/30であることが好ましい。 In the present invention, the weight ratio of the calcium silicate hydrate-containing powder and the calcareous raw material in the blend is preferably calcium silicate hydrate-containing powder / calcic raw material = 40/60 to 70/30. .
本発明によれば、カルシウムイオンの添加やpH調整等を行わなくても長期間にわたって安定してリン酸イオン含有排水よりリン酸イオンを除去する脱リン効果を発現する脱リン材が得られ、浄化槽からの排水を始めとして、各種、家庭排水や工業排水の脱リン処理に好適に用いられる。また、本発明によれば、オートクレーブ養生によって強度に富んだ脱リン材を短時間で製造できるため、生産効率が高い。さらに、本発明による脱リン材は自重で排水中に浸没し、浮遊しないため、脱リン材を排水中に浸没させるための部材等を必要とせず、簡易に用いることができる。 According to the present invention, it is possible to obtain a dephosphorization material that exhibits a dephosphorization effect that removes phosphate ions from phosphate ion-containing wastewater stably over a long period of time without adding calcium ions or adjusting pH, etc. It is suitably used for dephosphorization of various types of household wastewater and industrial wastewater, including wastewater from septic tanks. In addition, according to the present invention, a dephosphorizing material rich in strength can be produced in a short time by autoclave curing, and thus production efficiency is high. Furthermore, since the dephosphorizing material according to the present invention is immersed in the wastewater by its own weight and does not float, a member for immersing the dephosphorizing material in the drainage is not required and can be used easily.
本発明について以下に具体的に説明する。 The present invention will be specifically described below.
本発明においては、特定の粒径のケイ酸カルシウム水和物含有粉体を石灰質原料及び水と混和して水硬性の組成物を調製し、これを造粒して、オートクレーブ養生することにより、脱リン材として適度な空隙を有する造粒体が得られる。 In the present invention, a calcium silicate hydrate-containing powder having a specific particle size is mixed with a calcareous raw material and water to prepare a hydraulic composition, granulated, and then autoclaved. A granulated body having appropriate voids as a dephosphorizing material is obtained.
本発明において用いられるケイ酸カルシウム水和物含有粉体とは、好ましくはケイ酸カルシウム水和物を60〜90重量%含有する粉体であり、具体的には、軽量気泡コンクリート(ALC)の粉砕物や、ALC製造工場、ALCを用いた建設現場、ALCを用いて構築された建築物の解体現場などで発生するALCの残材、端材、粉末等のALC廃材から補強材などの不要な部材を取り除いて粉砕したものを好ましく用いることができる。ALCは、ケイ石のようなケイ酸質材料と、セメントや生石灰のような石灰質原料とを混合したスラリー状組成物に発泡剤、気泡剤等の気泡生成剤を添加混合した後、発泡、硬化させ、オートクレーブ養生して得られる。このようにして製造されるALCには、未反応のケイ石成分が残っており、そのため、石灰質原料を加えてオートクレーブ養生することにより、未反応のケイ石成分から新たにトバモライト結晶が生成し、得られる脱リン材の強度が向上する。 The calcium silicate hydrate-containing powder used in the present invention is preferably a powder containing 60 to 90% by weight of calcium silicate hydrate, specifically, lightweight lightweight concrete (ALC). Unnecessary from ALC waste materials such as pulverized materials, ALC manufacturing factories, construction sites using ALC, demolition sites of buildings built using ALC, scraps, powder, etc. What removed and pulverized the member was preferably used. ALC foams and hardens after adding a foaming agent such as a foaming agent or foaming agent to a slurry composition in which a siliceous material such as silica is mixed with a calcareous raw material such as cement or quicklime. And obtained by curing in an autoclave. The unreacted silica component remains in the ALC produced in this way, and therefore, tobermorite crystals are newly generated from the unreacted silica component by adding the calcareous raw material and curing the autoclave. The strength of the dephosphorization material obtained is improved.
本発明において用いられるケイ酸カルシウム水和物含有粉体は、体積平均粒径が5μm〜0.3mmである。体積平均粒径が0.3mmよりも大きい場合には、脱リン材の強度が低下する上に水に浮遊しやすくなり、浄化槽に充填する際に所定量の脱リン材を充填しにくくなるため好ましくない。特に、ケイ酸カルシウム水和物含有粉体の原料としてALCを用いた場合には、ALCの粉体中に粗大な細孔が残存するため、より水に浮遊しやすくなる。また、5μm未満である場合には、脱リン材内部の空隙が小さくなり、排水が該空隙に浸透しにくくなる上、粉砕に要するエネルギー及び時間が大であり、生産性が低下するため好ましくない。 The calcium silicate hydrate-containing powder used in the present invention has a volume average particle size of 5 μm to 0.3 mm. When the volume average particle diameter is larger than 0.3 mm, the strength of the dephosphorizing material is reduced and the water is liable to float in water, and it is difficult to fill a predetermined amount of the dephosphorizing material when filling the septic tank. It is not preferable. In particular, when ALC is used as the raw material of the calcium silicate hydrate-containing powder, coarse pores remain in the ALC powder, so that it becomes easier to float in water. In addition, if it is less than 5 μm, the void inside the dephosphorization material becomes small, it becomes difficult for the drainage to penetrate into the void, and the energy and time required for pulverization are large, and the productivity is lowered, which is not preferable. .
本発明において用いられる石灰質原料としては、普通ポルトランドセメント、高炉セメント、早強セメント、中庸熱セメント、ジェットセメント、アルミナセメントや、或いは、高炉セメント、シリカセメント、フライアッシュセメントなどの混合セメントが使用できる。これらは単独で用いても、混合して用いても良い。 As the calcareous raw material used in the present invention, ordinary portland cement, blast furnace cement, early-strength cement, medium heat cement, jet cement, alumina cement, or mixed cement such as blast furnace cement, silica cement, fly ash cement can be used. . These may be used alone or in combination.
本発明においては、上記ケイ酸カルシウム水和物含有粉体と石灰質原料にさらに水を加えて混和する。混和物におけるケイ酸カルシウム水和物含有粉体と石灰質原料の重量比はケイ酸カルシウム水和物含有粉体/石灰質原料=30/70〜80/20が好ましいが、さらに好ましくは40/60〜70/30である。ケイ酸カルシウム水和物含有粉体と石灰質原料との総量中、ケイ酸カルシウム水和物含有粉体が30重量%未満の場合には、脱リン材の脱リン効果が低下する場合があり、また、80重量%を超えると脱リン材の強度が低下するため好ましくない。 In the present invention, water is further added to and mixed with the calcium silicate hydrate-containing powder and the calcareous material. The weight ratio between the calcium silicate hydrate-containing powder and the calcareous raw material in the blend is preferably calcium silicate hydrate-containing powder / calcic raw material = 30 / 70-80 / 20, more preferably 40 / 60- 70/30. In the total amount of the calcium silicate hydrate-containing powder and the calcareous raw material, if the calcium silicate hydrate-containing powder is less than 30% by weight, the dephosphorization effect of the dephosphorization material may be reduced. Moreover, since it will reduce the intensity | strength of a phosphorus removal material when it exceeds 80 weight%, it is unpreferable.
また、上記混和物における水の量は、特に限定されないが、石灰質原料100重量部に対して水を30〜100重量部、固形物(ケイ酸カルシウム水和物含有粉体+石灰質原料)100重量部に対して20〜90重量部が好ましい。水の量がそれぞれの下限値未満の場合には、石灰質原料の水和反応及び効果反応が十分に進行しないことがあり、逆に水の量がそれぞれの上限値を超えると、混和物がスラリー状になり、造粒が困難になって良好な造粒体が得られなくなることがあり、いずれの場合も好ましくない。 The amount of water in the admixture is not particularly limited, but is 30 to 100 parts by weight of water with respect to 100 parts by weight of the calcareous raw material, and 100 weights of solids (calcium silicate hydrate-containing powder + calcareous raw material). 20-90 weight part is preferable with respect to a part. When the amount of water is less than the respective lower limit value, the hydration reaction and effect reaction of the calcareous raw material may not sufficiently proceed. Conversely, when the amount of water exceeds the respective upper limit value, the admixture becomes a slurry. In some cases, granulation becomes difficult and a good granulated product cannot be obtained.
ケイ酸カルシウム水和物含有粉体と石灰質原料と水との混和には、一般的な混練機が用いられ、例えば、モルタルミキサー、オムニミキサー、アイリッヒミキサー、二軸強制撹拌ミキサーなどを用いることができる。 For mixing the calcium silicate hydrate-containing powder, calcareous raw material and water, a general kneader is used, for example, a mortar mixer, omni mixer, Eirich mixer, biaxial forced stirring mixer, etc. Can do.
水硬性の混和物は所定の粒度に造粒する。本発明において好ましい造粒体は平均粒径が0.3〜10mmである。 The hydraulic admixture is granulated to a predetermined particle size. In the present invention, a preferable granulated material has an average particle size of 0.3 to 10 mm.
次いで、得られた造粒体をオートクレーブ養生することにより目的とする脱リン材が得られる。オートクレーブ養生の条件としては、高温高圧水の温度が150〜270℃、好ましくは170〜240℃であり、高温高圧水の圧力が0.3〜3.3MPa、好ましくは0.8〜2.5MPaである。また、養生時間は1〜10時間が好ましい。高温高圧水の温度が150℃未満であると養生時間が長くなり、また、270℃を超える温度にするには特殊な装置が必要になり経済的でない。 Subsequently, the target dephosphorization material is obtained by carrying out the autoclave curing of the obtained granulated body. As conditions for autoclave curing, the temperature of the high-temperature and high-pressure water is 150 to 270 ° C., preferably 170 to 240 ° C., and the pressure of the high-temperature and high-pressure water is 0.3 to 3.3 MPa, preferably 0.8 to 2.5 MPa. It is. The curing time is preferably 1 to 10 hours. When the temperature of the high-temperature high-pressure water is less than 150 ° C., the curing time becomes longer, and a special device is required to make the temperature higher than 270 ° C., which is not economical.
前記したように、本発明においては、上記オートクレーブ養生の際に、ケイ酸カルシウム水和物含有粉体に含まれる未反応のケイ石成分より新たにトバモライト結晶が生成することから、得られる脱リン材の強度が向上する。 As described above, in the present invention, during the autoclave curing, tobermorite crystals are newly generated from unreacted quartzite components contained in the calcium silicate hydrate-containing powder. The strength of the material is improved.
本発明をさらに詳しく説明するため以下に実施例を挙げるが、本発明は該実施例に限定されるものではない。 In order to describe the present invention in more detail, examples are given below, but the present invention is not limited to these examples.
(実施例1)
ケイ酸カルシウム水和物含有粉体として、ケイ酸カルシウム水和物を76重量%含有するALC端材をジョークラッシャーで粗粉砕し、さらにハンマーミルで微粉砕することにより体積平均粒径が32μmの粉体を得た。尚、体積平均粒径はマイクロトラック社製レーザー式粒度分布計で測定した。
(Example 1)
As a calcium silicate hydrate-containing powder, an ALC milling material containing 76% by weight of calcium silicate hydrate is coarsely pulverized with a jaw crusher and further pulverized with a hammer mill to have a volume average particle size of 32 μm. A powder was obtained. The volume average particle size was measured with a laser particle size distribution meter manufactured by Microtrac.
上記ケイ酸カルシウム水和物含有粉体75重量部、普通ポルトランドセメント25重量部、及び水50重量部をオムニミキサーで混練した後、平均粒径が2.8mmになるように造粒した。 75 parts by weight of the calcium silicate hydrate-containing powder, 25 parts by weight of ordinary Portland cement, and 50 parts by weight of water were kneaded with an omni mixer and then granulated so as to have an average particle size of 2.8 mm.
次いで、得られた造粒体を室温で2時間、予備養生した後、180℃、1MPaで4時間オートクレーブ養生を行い、脱リン材を得た。 Next, the obtained granulated material was pre-cured for 2 hours at room temperature, and then autoclaved at 180 ° C. and 1 MPa for 4 hours to obtain a dephosphorization material.
得られた脱リン材を24時間、リン酸イオン濃度0.5mg−PO4/lである排水中に浸漬した後、リン酸イオン吸着量をJIS K 0102に準拠して測定した。その結果、本例の脱リン材のリン酸イオン吸着量は、脱リン材1g当たりリン酸イオン換算で100mg−PO4/gであった。 The obtained dephosphorizing material was immersed in waste water having a phosphate ion concentration of 0.5 mg-PO 4 / l for 24 hours, and then the phosphate ion adsorption amount was measured according to JIS K 0102. As a result, the phosphate ion adsorption amount of the dephosphorization material of this example was 100 mg-PO 4 / g in terms of phosphate ion per gram of the dephosphorization material.
(比較例1)
脱リン材として実施例1でケイ酸カルシウム水和物含有粉体の材料として用いたALC端材(平均粒径2.9mm)を用いた以外は実施例1と同様にして24時間、リン酸イオン含有排水に浸漬した後、リン酸イオン吸着量を測定したところ、69mg−PO4/gであった。
(Comparative Example 1)
Phosphoric acid for 24 hours in the same manner as in Example 1 except that the ALC milling material (average particle size 2.9 mm) used as the material of the calcium silicate hydrate-containing powder in Example 1 was used as the dephosphorizing material. After immersing in ion-containing wastewater, the phosphate ion adsorption amount was measured and found to be 69 mg-PO 4 / g.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006284461A JP2008100159A (en) | 2006-10-19 | 2006-10-19 | Method for manufacturing dephosphorizing material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006284461A JP2008100159A (en) | 2006-10-19 | 2006-10-19 | Method for manufacturing dephosphorizing material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008100159A true JP2008100159A (en) | 2008-05-01 |
Family
ID=39434891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006284461A Pending JP2008100159A (en) | 2006-10-19 | 2006-10-19 | Method for manufacturing dephosphorizing material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008100159A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010042365A (en) * | 2008-08-13 | 2010-02-25 | Yukio Yanagisawa | Dephosphorizing material, dephosphorizing apparatus and dephosphorization by-product |
JP2010260015A (en) * | 2009-05-08 | 2010-11-18 | Yukio Yanagisawa | Dephosphorizing material, dephosphorizing apparatus, and dephosphorizing by-product |
FR2985200A1 (en) * | 2012-01-03 | 2013-07-05 | Cie Financiere Et De Participations Roullier | PHOSPHATE - BASED GRANULAR MATERIAL, METHOD FOR MANUFACTURING THE SAME AND USE THEREOF IN A DEVICE FOR DEPHOSPHATION OF WASTEWATER. |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000070960A (en) * | 1998-09-04 | 2000-03-07 | Mitsubishi Materials Corp | Dephosphorization material produced by utilizing building waste |
-
2006
- 2006-10-19 JP JP2006284461A patent/JP2008100159A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000070960A (en) * | 1998-09-04 | 2000-03-07 | Mitsubishi Materials Corp | Dephosphorization material produced by utilizing building waste |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010042365A (en) * | 2008-08-13 | 2010-02-25 | Yukio Yanagisawa | Dephosphorizing material, dephosphorizing apparatus and dephosphorization by-product |
JP2010260015A (en) * | 2009-05-08 | 2010-11-18 | Yukio Yanagisawa | Dephosphorizing material, dephosphorizing apparatus, and dephosphorizing by-product |
FR2985200A1 (en) * | 2012-01-03 | 2013-07-05 | Cie Financiere Et De Participations Roullier | PHOSPHATE - BASED GRANULAR MATERIAL, METHOD FOR MANUFACTURING THE SAME AND USE THEREOF IN A DEVICE FOR DEPHOSPHATION OF WASTEWATER. |
WO2013102729A1 (en) * | 2012-01-03 | 2013-07-11 | Compagnie Financiere Et De Participations Roullier | Phosphate-based granular material, process for manufacturing same and use thereof in a device for removing phosphates from wastewaters |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1987004695A1 (en) | Process for treating waste water | |
CN106865927A (en) | A kind of living polymer curing agent for processing riverway sludge or sludge | |
KR100796722B1 (en) | Method for solidifying sewage sludge | |
JPH01127091A (en) | Method for solidifying waste liquid to chemically fixing the same | |
CN103910503A (en) | Curing sintering-free granulation method for sludge | |
CN105126740B (en) | A kind of BIOLOGICAL CALCIUM type Phosphateadsorption porous material and preparation method thereof | |
KR101762551B1 (en) | Process for producing granular water treatment agent | |
JP4827045B2 (en) | Water purification material and method for producing water purification material | |
JPH0220315B2 (en) | ||
JP2008100159A (en) | Method for manufacturing dephosphorizing material | |
JP2020152611A (en) | Novel geopolymer and method of producing the same | |
Jeong et al. | Evaluation of compressive strength and phosphate fixation characteristics of wastewater filter media using coal bottom ash and oyster shells | |
JP2007054732A (en) | Sewage treatment material and its production method | |
JP2004305833A (en) | Method for stabilization treatment of waste | |
CN102503053A (en) | Early-strength sludge modifier for landfill treatment and application thereof | |
CN101781108A (en) | Brick making method by recycling residue precipitate after sulfur acid contained industrial sewage treatment | |
JP2002114562A (en) | Hydrothermal hardened body and method for manufacturing the same | |
JP2001205241A (en) | Method for solidifying incineration ash | |
JP2015091566A (en) | Slurry for recovering phosphorus, method for preparing the slurry, and method for recovering phosphorus from phosphorus-containing waste water | |
JP2000070960A (en) | Dephosphorization material produced by utilizing building waste | |
JP2004041890A (en) | Treatment method of fluorine-containing waste | |
KR20180110416A (en) | Manufacturing method of alkali actived hardened material using sedimentation sludge | |
JP2011020883A (en) | Autoclaved lightweight cellular concrete and method for producing the same | |
CN115093170B (en) | Plant type recycled aggregate concrete and preparation method thereof | |
JP2016203107A (en) | Phosphorous recovery material, production method thereof, and phosphorous recovery method from wastewater containing phosphorous |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Effective date: 20080627 Free format text: JAPANESE INTERMEDIATE CODE: A7424 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090727 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101117 |
|
A131 | Notification of reasons for refusal |
Effective date: 20101130 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110128 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20110128 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110301 |