JPH0220315B2 - - Google Patents

Info

Publication number
JPH0220315B2
JPH0220315B2 JP2594886A JP2594886A JPH0220315B2 JP H0220315 B2 JPH0220315 B2 JP H0220315B2 JP 2594886 A JP2594886 A JP 2594886A JP 2594886 A JP2594886 A JP 2594886A JP H0220315 B2 JPH0220315 B2 JP H0220315B2
Authority
JP
Japan
Prior art keywords
wastewater
phosphorus
treated
calcium
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2594886A
Other languages
Japanese (ja)
Other versions
JPS62183898A (en
Inventor
Yukio Fukaya
Kazuyuki Hatano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ONODA EE ERU SHII KK
ONODA SEMENTO KK
Original Assignee
ONODA EE ERU SHII KK
ONODA SEMENTO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ONODA EE ERU SHII KK, ONODA SEMENTO KK filed Critical ONODA EE ERU SHII KK
Priority to JP2594886A priority Critical patent/JPS62183898A/en
Priority to NL8720037A priority patent/NL8720037A/en
Priority to US07/130,875 priority patent/US4917802A/en
Priority to AU70206/87A priority patent/AU595013B2/en
Priority to DE19873790061 priority patent/DE3790061T1/de
Priority to GB8722169A priority patent/GB2196955B/en
Priority to PCT/JP1987/000080 priority patent/WO1987004695A1/en
Priority to CH3929/87A priority patent/CH670627A5/de
Publication of JPS62183898A publication Critical patent/JPS62183898A/en
Priority to DK530287A priority patent/DK530287A/en
Priority to SE8703919A priority patent/SE466445B/en
Publication of JPH0220315B2 publication Critical patent/JPH0220315B2/ja
Priority to SE9102979A priority patent/SE9102979L/en
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Water Treatment By Sorption (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は、家畜尿汚水、生活雑廃水等の汚水に
含まれるリン酸あるいはリン酸塩(以下、単にリ
ンという)を容易にかつ効率よく除去し得る汚水
の脱リン材に関する。 <従来の技術> 家畜尿汚水、生活雑廃水等の汚水に含まれるリ
ンは、湖沼、内海での「あおこ」、赤潮を誘引す
る富栄養化の原因となる。そこで、従来よりこの
ような汚水中のリンを除去する方法として凝集沈
殿法や晶析法が行われている。 凝集沈殿法はその処理工程の一例を第8図(a)に
示すように、リンを含む汚水に消石灰、セメント
類、スラグ類又はコンクリート破砕物を添加して
撹拌することにより汚水のPHを上昇させて、リン
酸とカルシウムとが反応して生成するカルシウム
ヒドロキシアパタイトの形してリンを沈殿除去す
るものであるが、この第1次沈殿後の処理水はPH
が高くかつ石灰を多量に含有しているため中和及
びカルシウム除去が必要となり、通常、炭酸カル
シウムの溶解度が最も小さいPH9.3〜10.0までの
一次炭酸化及び炭酸カルシウム沈殿の除去、さら
に、中和までの2次炭酸化及び炭酸カルシウムの
ろ過という後処理工程が必要となる。 また、晶析法はその処理工程の一例を第8図(b)
に示すように、リンを含む汚水のCa2+濃度と
OH-濃度(PH)とを微妙にコントロールした後、
リン酸カルシウムあるいはカルシウムヒドロキシ
アパタイトに類する「結晶種」を含んだ接触材層
中に通水することによりリンをカルシウムヒドロ
キシアパタイトの形にして除去するものである
が、上述のCa2+濃度とOH-濃度とを微妙にコン
トロールする前処理工程としては、通常、汚水中
に炭酸物質が含まれている場合には硫酸にて脱炭
酸を行つた後、消石灰や石こうを用いてPHと
Ca2+の調整を行い、その処理液中のCaCO3や不
溶分を沈殿除去するという方法がとられている。 <発明が解決しようとする問題点> 上述した凝集沈殿法においては、多量の薬剤
(消石灰)を用いるため必然的にスラツジの発生
量が多くなるとともに、上述したような煩雑な後
処理が必要となる。一方、晶析法では上述したよ
うにCa2+濃度やPHを微妙にコントロールする煩
雑な前処理が必要であるとともにカルシウムヒド
ロキシアパタイトを晶析させる結晶種となるよう
な特殊な接触材が必要となる。 このように従来の脱リン方法は、いずれも工程
が煩雑であり、設備、運転管理、コスト等におい
て問題が多い。 本発明は、このような事情に鑑み、煩雑な処理
工程を必要とせず、単純、容易な処理で効率よく
リンを除去し得るリンを含む汚水の脱リン材を提
供することを目的とする。 <問題点を解決するための手段> 本発明者らは、前記目的を達成するために種々
研究を重ねた結果、特定の方法で得た珪酸カルシ
ウム水和物のある種の構成物が比較的結晶化度が
高く、かつ水においた場合PHが従来技術の脱リン
材より低く、その結果が液相中のリン酸イオンの
消長と深くかかわりのあることを知見し、本発明
を完成させた。 かかる本発明は、珪酸質原料と石灰質原料とを
主原料とする水スラリーに起泡剤を添加して得た
原料を高温高圧下で水熱反応させて得られた珪酸
カルシウム水和物からなる汚水の脱リン材なる構
成を採る。 以下に本発明の構成を詳述する。 本発明に用いる多孔質処理材は、更に具体的に
説明すると、珪酸質原料と石灰質原料とを主原料
とするスラリーにアルミニウム粉末などの起泡剤
を添加して高温高圧下で水熱反応処理して得られ
る成形物、あるいはこの成形物を破砕して得られ
る破砕物で空隙率が50〜90%のもの、又は珪酸質
原料と石灰質原料とを主原料とするスラリーを高
温高圧下で水熱反応処理して得られる粉状物を気
泡を入れて造粒あるいは成形した造粒物あるいは
成形物で空隙率が50〜90%のものである。 ここで、珪酸カルシウム水和物は珪酸質原料と
石灰質原料とを所定のCaO/SiO2モル比(0.5〜
2.0程度)で常法に従つてオートクレーブにて所
要の圧力・温度下で高温高圧養生することによつ
て得られるものであり、珪酸質原料としては珪
石、珪砂、クリストバライト、無定形シリカ、珪
藻土、フエロシリコンダスト、白土などの粉末、
石灰質原料としては生石灰、消石灰、セメントな
どの粉末が挙げられる。このようにして得られる
珪酸カルシウム水和物は、トバモライト、ゾノト
ライト、CSHゲル、フオシヤジヤイト、ジヤイ
ロライト、ヒレプランダイト等よりなる群より選
ばれる1種または2種以上のものとなる。またこ
の中でもトバモライト、ゾノライト、CSHゲル
はPH緩衝能が高く、比表面積が20〜400m2/gと
大きいので特に好ましい。 本発明に用いる多孔質処理材は50〜90%の空隙
率を有するが、この空隙を珪酸カルシウム水和物
の生成時に得る場合には珪酸質物質と石灰質物質
とをスラリー状にしたものに起泡剤としてアルミ
ニウム粉末などの金属発泡剤やAE剤などの起泡
剤を添加した後高温高圧下で水熱反応処理すれば
よい。ここで金属発泡剤は化学反応によつてガス
を発生するもので、その使用割合はスラリー中の
巻き込み気泡や水の量によつて変化するが化学反
応式から導くことができる。また起泡剤としては
具体的には樹脂せつけん類、サポニン、合成界面
活性剤類、加水分解たんぱく質、高分子界面活性
剤などがあり、主として界面活性作用により物理
的に気泡を導入するもので、単に原料と混合して
撹拌することにより泡を生じさせる場合と、特殊
な撹拌槽又は起泡装置を使用して安定した泡をつ
くり、この泡を体積計量して原料に混合する場合
とがある。このような起泡剤を用いる場合には泡
の安定性を調査の上、その添加量を決定する必要
がある。また、空隙を有しない珪酸カルシウム水
和物を得た場合にはそれぞれが成形物であれば粉
末化した後、造粒又は成形する過程で気泡を入れ
てその空隙率を調整すればよい。つまり粉末状の
珪酸カルシウム水和物にアクリル樹脂エマルジヨ
ン等の高分子樹脂の糊剤の水溶液を添加し、必要
に応じて起泡剤を加えた後混練りしたものをパン
ペレタイザーにより造粒したり型枠成形したりす
ればよい。ここでの乾燥方法としては、自然乾
燥、加熱乾燥のどちらを採用してもよい。また、
ここで、粉末状の珪酸カルシウム水和物として
は、上記のように空隙を入れて成形したものを破
砕したときに得られる粉末を用いてもよい。な
お、空隙率の高い多孔質処理材とする場合には、
型枠成形を採用するのがよい。 本発明にかかる脱リン材を使用しての脱リン方
法は、カラム又は充填層などに上記多孔質処理材
を充填して充填層を形成し、この充填層にリンを
含む汚水をそのまま通水することにより行われ
る。多孔質処理材は、これを形成している珪酸カ
ルシウム水和物の表面からカルシウムヒドロキシ
アパタイトの晶析に必要なCa2+を供給するとと
もに該処理材のPH緩衝能により、汚水のPHが低く
またその値が変動しても常にほぼPH8〜9の安定
した状態をつくり出しているので、汚水中のリン
酸イオンはCa2+と反応してカルシウムヒドロキ
シアパタイトの形で該処理材表面に晶析される。
このとき、多孔質処理材の空隙は、汚水の一方向
の流れを乱す作用をするとともに該処理材表面の
流速を緩和するように働くので、リン酸イオンと
Ca2+とによるカルシウムヒドロキシアパタイト
の析出あるいは成長が促進される。 本発明に用いる多孔質処理材は、リン酸カルシ
ウムあるいはカルシウムヒドロキシアパタイトに
類する「結晶種」を含んでいないが、吸着能を有
しているため、通水初期においては生成したカル
シウムヒドロキシアパタイトを吸着し、またその
後はその表面がカルシウムヒドロキシアパタイト
の核形成に都合のよい構造になつてその微細空
隙、細孔部分にカルシウムヒドロキシアパタイト
の該を形成するものである。 汚水を処理した後の多孔質処理材を走査電子顕
微鏡(SEM)で観察すると、その空隙内表面に
カルシウムヒドロキシアパタイトの結晶が多く存
在している。このことからも明らかなように多孔
質処理材の空隙率は、脱リン効果に大きな影響を
及ぼす。後に述べるように処理材の空隙率とリン
除去率との関係を試験したところ、空隙率が50〜
90%、好ましくは60〜80%のものがリンの除去率
が大きいことが判明した。多孔質処理材の空隙率
が50%未満では比表面積が小さいためリン除去率
が小さく、また90%を超えると通水時の浮き上り
によるリン除去率が低下するとともに強度低下が
著しく、さらにリン除去効果の持続性も悪くな
り、好ましくない。 また、本発明に用いる多孔質処理材の大きさも
リン除去性能に大きく関与している。処理材の径
が0.5mmより小さいとSSならびに晶析結晶により
目づまりしやすいので長期使用することができ
ず、一方、径が大きすぎても接触面積の減少によ
りリンの除去率が低下するのでともに好ましくな
い。よつて、処理材は0.5〜10mmの大きさのもの
が好ましい。 本発明にかかる脱リン方法は、第1図に示すよ
うに、リンを含む汚水を、従来の晶析法における
PH調整などの前処理を行うことなくそのまま多孔
質処理材の充填層に通水すればよい。また処理水
はPH8〜9と中性に近くスラツジなども含まれて
いないので後処理の必要もない。 また、本発明によれば、汚水中のリン酸塩濃度
が高くても脱リンできる。しかしリン酸塩の濃度
によつて汚水の通水速度を調節する必要があり、
例えばリン酸塩濃度が500mg/の場合には1t/
日・m3程度、50mg/の場合には6t/日・m3程度
までの処理が可能である。なお、このときのリン
の除去率は90%以上となる。 以下に、製造例及び試験例を示す。 (多孔質処理材の製造例) (1) CSHゲル処理剤 珪石粉末4重量部、生石灰粉末2重量部、消
石灰粉末1重量部及び普通ポルトランドセメン
ト3重量部(CaO/SiO2モル比=1.5)に金属
アルミニウム粉末0.008重量部を加えてなる混
合物に、水7重量部を加えてスラリーにした。
次いでこのスラリーを型枠に注入して4時間静
置後脱型したものをオートクレーブにて150℃、
5気圧下で10時間水熱処理した。この成形物を
クラツシヤーで粗砕し、2.5〜5mmの粒径にふ
るいわけて多孔質処理材とした。この処理材の
空隙率は72%であつた。 (2) トバモライト処理材 珪石粉末5重量部、生石灰粉末2重量部及び
普通ポルトランドセメント3重量部(CaO/
SiO2モル比=0.8)に金属アルミニウム粉末
0.008重量部を加えてなる混合物に水7重量部
を加えてスラリーにした。このスラリーを型枠
に注入して4時間静置後脱型したものを、オー
トクレーブにて180℃、10気圧下で10時間水熱
処理した。得られた成形物をクラツシヤーで粗
砕して2.5〜5mmの粒径にふるいわけて多孔質
処理材とした。このものの空隙率は75%であつ
た。 (3) ゾノトライト処理材 珪石粉末と消石灰粉末とをCaO/SiO2モル
比1.0ととなるように混合し、固体成分に対し
て10倍重量の水に分散させて水性スラリーを形
成し、その後オートクレーブ中にて210℃、20
気圧下で撹拌しながら10時間水熱処理した。こ
のようにして得られたゾノライト粉末の絶乾物
に対してアクリル樹脂エマルジヨン(固形分10
%)を4重量倍加え、混練後、造粒成形して
110℃で乾燥固化させ、2.5〜5mmの粒径にふる
いわけて多孔質処理材とした。このものの空隙
率は73%であつた。 (4) 種々の空隙率を有するトバモライト処理材 上記(2)に示した製造方法において、金属アル
ミニウム粉末及び水の添加割合を第1表に示す
ように変化させることにより、各種トバモライ
ト処理材を得た。
<Industrial Application Field> The present invention is a dephosphorization method for wastewater that can easily and efficiently remove phosphoric acid or phosphates (hereinafter simply referred to as phosphorus) contained in wastewater such as livestock urine wastewater and household wastewater. Regarding materials. <Prior art> Phosphorus contained in wastewater such as livestock urine wastewater and miscellaneous household wastewater causes eutrophication that induces "blue water" and red tide in lakes and inland seas. Therefore, coagulation-sedimentation methods and crystallization methods have been conventionally used to remove phosphorus from wastewater. As shown in Figure 8(a), an example of the treatment process of the coagulation-sedimentation method is to increase the pH of wastewater by adding slaked lime, cement, slag, or crushed concrete to wastewater containing phosphorus and stirring. In this method, phosphorus is precipitated and removed in the form of calcium hydroxyapatite produced by the reaction of phosphoric acid and calcium, but the treated water after this first precipitation has a pH
Neutralization and calcium removal are required due to the high pH and large amount of lime content.Usually, primary carbonation and removal of calcium carbonate precipitates at pH 9.3 to 10.0, where the solubility of calcium carbonate is the lowest, are required. Post-treatment steps of secondary carbonation and filtration of calcium carbonate are required. An example of the crystallization process is shown in Figure 8(b).
As shown in , the Ca 2+ concentration of phosphorus-containing wastewater and
After delicately controlling the OH - concentration (PH),
Phosphorus is removed in the form of calcium hydroxyapatite by passing water through a contact material layer containing "crystal seeds" similar to calcium phosphate or calcium hydroxyapatite, but the above-mentioned Ca 2+ concentration and OH - concentration As a pretreatment process to delicately control the pH, normally, if the wastewater contains carbonic substances, it is decarboxylated with sulfuric acid, and then the pH is adjusted using slaked lime or gypsum.
A method is used in which Ca 2+ is adjusted and CaCO 3 and insoluble matter in the treated solution are precipitated and removed. <Problems to be Solved by the Invention> In the above-mentioned coagulation-sedimentation method, a large amount of chemicals (slaked lime) are used, which inevitably increases the amount of sludge generated, and requires the complicated post-processing described above. Become. On the other hand, as mentioned above, the crystallization method requires complicated pretreatment to delicately control the Ca 2+ concentration and pH, and also requires a special contact material that serves as a crystal seed for crystallizing calcium hydroxyapatite. Become. As described above, all of the conventional dephosphorization methods have complicated processes and have many problems in terms of equipment, operation management, cost, etc. In view of these circumstances, an object of the present invention is to provide a dephosphorizing material for wastewater containing phosphorus that can efficiently remove phosphorus through simple and easy treatment without requiring complicated treatment steps. <Means for Solving the Problems> As a result of various studies to achieve the above object, the present inventors have found that certain constituents of calcium silicate hydrate obtained by a specific method are relatively It has a high degree of crystallinity, and when placed in water, the PH is lower than that of conventional dephosphorization materials, and it was discovered that this result is deeply related to the disappearance and disappearance of phosphate ions in the liquid phase, and the present invention was completed. . The present invention consists of a calcium silicate hydrate obtained by hydrothermally reacting a raw material obtained by adding a foaming agent to an aqueous slurry whose main raw materials are a silicic raw material and a calcareous raw material under high temperature and high pressure. Adopts a structure that is a dephosphorizing material for wastewater. The configuration of the present invention will be explained in detail below. To explain more specifically, the porous treated material used in the present invention is prepared by adding a foaming agent such as aluminum powder to a slurry whose main raw materials are silicate raw materials and calcareous raw materials, and then hydrothermal reaction treatment is performed under high temperature and high pressure. A molded product obtained by molding, or a crushed product obtained by crushing this molded product with a porosity of 50 to 90%, or a slurry whose main raw materials are silicic raw materials and calcareous raw materials are mixed with water at high temperature and high pressure. It is a granulated or molded product obtained by granulating or molding a powder obtained by heat reaction treatment with air bubbles in it, and has a porosity of 50 to 90%. Here, calcium silicate hydrate is prepared by combining a silicate raw material and a calcareous raw material at a predetermined CaO/SiO 2 molar ratio (0.5~
2.0) and is obtained by curing at high temperature and high pressure under the required pressure and temperature in an autoclave according to a conventional method. Silica raw materials include silica stone, silica sand, cristobalite, amorphous silica, diatomaceous earth, Powder such as ferrosilicon dust, white clay,
Examples of calcareous raw materials include powders such as quicklime, slaked lime, and cement. The calcium silicate hydrate thus obtained is one or more selected from the group consisting of tobermorite, xonotlite, CSH gel, phosiyaite, gyalolite, heleprandite, and the like. Among these, tobermorite, zonolite, and CSH gel are particularly preferred because they have a high PH buffering ability and a large specific surface area of 20 to 400 m 2 /g. The porous treated material used in the present invention has a porosity of 50 to 90%, but when this porosity is obtained during the production of calcium silicate hydrate, it is created by slurrying a silicic material and a calcareous material. After adding a foaming agent such as a metal foaming agent such as aluminum powder or a foaming agent such as an AE agent, a hydrothermal reaction treatment may be performed at high temperature and high pressure. Here, the metal foaming agent generates gas through a chemical reaction, and its usage ratio varies depending on the amount of air bubbles and water entrained in the slurry, but can be derived from the chemical reaction equation. Specific examples of foaming agents include resin soaps, saponins, synthetic surfactants, hydrolyzed proteins, and polymeric surfactants, which mainly introduce air bubbles physically through surfactant action. There are cases where foam is generated simply by mixing with the raw material and stirring, and cases where stable foam is created using a special stirring tank or foaming device, and this foam is measured by volume and mixed with the raw material. be. When using such a foaming agent, it is necessary to determine the amount to be added after investigating the stability of the foam. In addition, when calcium silicate hydrate without voids is obtained, if each is a molded product, it may be pulverized and then air bubbles may be introduced during the granulation or molding process to adjust the porosity. In other words, an aqueous solution of a polymer resin sizing agent such as an acrylic resin emulsion is added to powdered calcium silicate hydrate, a foaming agent is added if necessary, the mixture is kneaded, and the resulting mixture is granulated using a pan pelletizer. It can be molded into a mold. As the drying method here, either natural drying or heat drying may be employed. Also,
Here, as the powdered calcium silicate hydrate, a powder obtained by crushing a molded product with voids as described above may be used. In addition, when making a porous treated material with high porosity,
It is better to use formwork molding. In the dephosphorization method using the dephosphorization material according to the present invention, a column or a packed bed is filled with the above-mentioned porous treatment material to form a packed bed, and wastewater containing phosphorus is directly passed through the packed bed. It is done by doing. The porous treatment material supplies Ca 2+ necessary for crystallization of calcium hydroxyapatite from the surface of the calcium silicate hydrate that forms it, and also lowers the pH of wastewater due to the PH buffering ability of the treatment material. In addition, even if the value fluctuates, a stable state of pH 8 to 9 is always created, so phosphate ions in the wastewater react with Ca 2+ and crystallize on the surface of the treated material in the form of calcium hydroxyapatite. be done.
At this time, the voids in the porous treatment material act to disturb the flow of wastewater in one direction and to moderate the flow velocity on the surface of the treatment material, so that phosphate ions and
Precipitation or growth of calcium hydroxyapatite with Ca 2+ is promoted. Although the porous treatment material used in the present invention does not contain "crystal seeds" similar to calcium phosphate or calcium hydroxyapatite, it has an adsorption ability, so it adsorbs the generated calcium hydroxyapatite at the initial stage of water flow. After that, the surface takes on a structure suitable for nucleation of calcium hydroxyapatite, and nucleation of calcium hydroxyapatite is formed in the microscopic voids and pores. When porous treated material after wastewater treatment is observed using a scanning electron microscope (SEM), many calcium hydroxyapatite crystals are present on the inner surface of the pores. As is clear from this, the porosity of the porous treated material has a large effect on the dephosphorization effect. As described later, when we tested the relationship between the porosity of the treated material and the phosphorus removal rate, we found that the porosity was 50~50.
It has been found that a phosphorus removal rate of 90%, preferably 60 to 80%, is high. If the porosity of the porous treated material is less than 50%, the specific surface area is small, so the phosphorus removal rate is low, and if it exceeds 90%, the phosphorus removal rate decreases due to floating during water flow, and the strength decreases significantly. The durability of the removal effect also deteriorates, which is not preferable. Further, the size of the porous treatment material used in the present invention also has a large effect on the phosphorus removal performance. If the diameter of the treated material is smaller than 0.5 mm, it will be easily clogged by SS and crystallized crystals, so it cannot be used for a long time.On the other hand, if the diameter is too large, the phosphorus removal rate will decrease due to the reduction of the contact area. Both are undesirable. Therefore, the treated material preferably has a size of 0.5 to 10 mm. As shown in FIG. 1, the dephosphorization method according to the present invention allows wastewater containing phosphorus to be processed using conventional crystallization methods.
Water can be directly passed through the packed bed of porous treatment material without performing any pre-treatment such as pH adjustment. In addition, the treated water has a neutral pH of 8 to 9 and does not contain sludge, so there is no need for post-treatment. Further, according to the present invention, dephosphorization is possible even if the phosphate concentration in wastewater is high. However, it is necessary to adjust the flow rate of wastewater depending on the concentration of phosphate.
For example, if the phosphate concentration is 500mg/, then 1t/
In the case of 50mg / day, it is possible to process up to about 6t/day/ m3 . Note that the phosphorus removal rate at this time is 90% or more. Production examples and test examples are shown below. (Manufacturing example of porous treated material) (1) CSH gel treatment agent 4 parts by weight of silica powder, 2 parts by weight of quicklime powder, 1 part by weight of slaked lime powder, and 3 parts by weight of ordinary Portland cement (CaO/SiO 2 molar ratio = 1.5) 7 parts by weight of water was added to a mixture prepared by adding 0.008 parts by weight of metallic aluminum powder to form a slurry.
Next, this slurry was poured into a mold, left to stand for 4 hours, and then removed from the mold in an autoclave at 150°C.
Hydrothermal treatment was carried out under 5 atm for 10 hours. This molded product was crushed using a crusher and sieved to a particle size of 2.5 to 5 mm to obtain a porous treated material. The porosity of this treated material was 72%. (2) Tobermorite treated material: 5 parts by weight of silica powder, 2 parts by weight of quicklime powder, and 3 parts by weight of ordinary Portland cement (CaO/
SiO2 molar ratio = 0.8) to metallic aluminum powder
A slurry was prepared by adding 7 parts by weight of water to the mixture obtained by adding 0.008 parts by weight. This slurry was poured into a mold, left to stand for 4 hours, and then removed from the mold, which was then hydrothermally treated in an autoclave at 180°C under 10 atm for 10 hours. The obtained molded product was crushed using a crusher and sieved to a particle size of 2.5 to 5 mm to obtain a porous treated material. The porosity of this material was 75%. (3) Zonotlite treated material Silica stone powder and slaked lime powder are mixed at a CaO/SiO 2 molar ratio of 1.0, dispersed in water 10 times the weight of the solid component to form an aqueous slurry, and then autoclaved. 210℃ inside, 20
Hydrothermal treatment was carried out for 10 hours while stirring under atmospheric pressure. Acrylic resin emulsion (solid content 10
%) was added 4 times by weight, kneaded, and then granulated.
It was dried and solidified at 110°C and sieved to a particle size of 2.5 to 5 mm to obtain a porous treated material. The porosity of this material was 73%. (4) Tobermorite-treated materials with various porosity In the production method shown in (2) above, various tobermorite-treated materials can be obtained by changing the addition ratio of metal aluminum powder and water as shown in Table 1. Ta.

【表】 (5) 種々の空隙率を有するゾノトライト処理材 上記(3)の方法において、造粒成形前に、起泡
剤としてヴインソル(山宗化学製造)を用いて
泡発生機にて作つた気泡を混練物体積に対して
80%、160%それぞれ添加した他は同様にして
操作し、第2表に示す空隙率を有する処理材を
得た。なお、泡の添加量が160%のときは、混
練後3〜5mm径の窪みがある型枠に注入して型
枠ごと乾燥固化させた。
[Table] (5) Zonotlite-treated materials with various porosity Air bubbles relative to the volume of the kneaded material
The same procedure was performed except that 80% and 160% were added, respectively, to obtain treated materials having the porosity shown in Table 2. When the amount of foam added was 160%, after kneading, the mixture was poured into a mold having a depression of 3 to 5 mm in diameter and dried and solidified together with the mold.

【表】 泡の添加量が0のものは(3)において製造したも
のである。 試験例 1 第2図に示すように多孔質処理材を充填した内
径30mm、長さ400mmのアクリル製のカラムの下方
より処理すべき試験液を通水できる実験装置を用
いて各種多孔質処理材の性能を調べた。 製造例(1)〜(3)で製造した各処理材を上記カラム
に150ml充填したものをA−1、A−2、A−3
とし、これらのカラムに第3表に示す各種原水を
300ml/hrの流速で通水し、1週間目の処理水の
PH及びリン酸イオン濃度を測定した。この結果を
併せて第3表に示す。 なお、試験液としては、純水に第一リン酸カリ
ウム(KH2PO4)を添加してリン濃度を5mg/
に調製したもので、そのカルシウムイオン濃度を
塩化カルシウム(CaCl2・2H2O)の水溶液によ
り0〜100mg/の範囲、またPHを水酸化ナトリ
ウム(NaOH)の水溶液により5〜10の範囲に
それぞれ変化させたものを用いた。 また、比較のため南太平洋アンガウル島産の粒
度2.5〜5mmのリン鉱石を上記と同様なカラムに
150ml充填し、(カラムB−1とする)、同様な操
作を行つた。この結果も併せて第3表に示す。 さらに、このときのリン除去率に対する試験液
のPHの影響(Ca2+濃度60mg/一定)を第3図
に、リン除去率に対するカルシウムイオン濃度の
影響(試験液のPH9一定)を第4図に示す。
[Table] The product with no added amount of foam was manufactured in (3). Test Example 1 As shown in Figure 2, various porous treated materials were prepared using an experimental device that allows the test liquid to be treated to flow through an acrylic column with an inner diameter of 30 mm and a length of 400 mm filled with porous treated materials. We investigated the performance of A-1, A-2, and A-3 were filled with 150 ml of each treatment material produced in Production Examples (1) to (3) above.
and fill these columns with the various types of raw water shown in Table 3.
Water was passed through at a flow rate of 300ml/hr, and the treated water for the first week was
PH and phosphate ion concentration were measured. The results are also shown in Table 3. In addition, as a test solution, monopotassium phosphate (KH 2 PO 4 ) was added to pure water to give a phosphorus concentration of 5 mg/
The calcium ion concentration was adjusted to a range of 0 to 100 mg/by using an aqueous solution of calcium chloride (CaCl 2 2H 2 O), and the pH was adjusted to a range of 5 to 10 using an aqueous solution of sodium hydroxide (NaOH). A modified version was used. For comparison, phosphate rock with a particle size of 2.5 to 5 mm from Angaur Island in the South Pacific was placed in the same column as above.
The column was filled with 150 ml (referred to as column B-1), and the same operation was performed. The results are also shown in Table 3. Furthermore, Figure 3 shows the influence of the PH of the test solution on the phosphorus removal rate (Ca 2+ concentration 60 mg/constant), and Figure 4 shows the influence of the calcium ion concentration on the phosphorus removal rate (pH 9 of the test solution constant). Shown below.

【表】【table】

【表】 以上の結果に示すように、本発明によれば、誌
験液のPHが変化しても処理水のPHはほぼ9〜10に
保たれており、常に80%以上のリン除去率が得ら
れているが、比較例では試験液のPHが8.5以上で
ないとリン除去率が80%に達しない。また、本発
明では試験液中のCa2+濃度が0でも80%以上の
リン除去率が得られるが、比較例ではCa2+濃度
が60mg/程度ないとリンの除去効果が発生しな
い。なお、本発明においても試験液中にCa2+
存在するとさらにリン除去率が向上し、Ca2+
度が40mg/以上存在するとトバモライト処理材
を用いた場合(A−2)にはリン除去率がほぼ
100%となる。 試験例 2 試験例1と同様な実験装置を用い、製造例(4)及
び(5)に示す各種処理材によりリン濃度5mg/、
PH7、カルシウムイオン無添加の試験液を処理し
て、処理材の空隙率の大小によるリン除去率の違
いを試験した。なお、他の条件は試験例1と同様
とした。この結果は第4表及び第5図に示す。
[Table] As shown in the above results, according to the present invention, the PH of the treated water is maintained at approximately 9 to 10 even if the PH of the test solution changes, and the phosphorus removal rate is always over 80%. However, in the comparative example, the phosphorus removal rate did not reach 80% unless the pH of the test solution was 8.5 or higher. Further, in the present invention, a phosphorus removal rate of 80% or more can be obtained even when the Ca 2+ concentration in the test solution is 0, but in the comparative example, the phosphorus removal effect does not occur unless the Ca 2+ concentration is about 60 mg/. In addition, in the present invention, the phosphorus removal rate is further improved when Ca 2+ is present in the test solution, and when the Ca 2+ concentration is 40 mg/or more, phosphorus removal is improved when tobermorite-treated material is used (A-2). The rate is almost
It becomes 100%. Test Example 2 Using the same experimental equipment as Test Example 1, using the various treatment materials shown in Production Examples (4) and (5), a phosphorus concentration of 5 mg/,
A test solution with a pH of 7 and no addition of calcium ions was treated to test the difference in phosphorus removal rate depending on the porosity of the treated material. Note that other conditions were the same as in Test Example 1. The results are shown in Table 4 and Figure 5.

【表】 第4表及び第5図に示すように、処理材の空隙
率が50〜90%のときに高いリン除去率となる。な
お、空隙率が90%を超えると通水時の浮き上り現
象によるリン除去率の低下があると同時に強度低
下が著しい。この結果より処理材の空隙構造は、
処理材とリン酸イオンとの接触機会を高めるとと
もに細孔、空隙内に晶析してくるカルシウムヒド
ロキシアパタイトの結晶成長のために極めて重要
であり、リン除去効果に大きく寄与していること
が判明した。 試験例 3 試験例1と同様の実験装置を用い、製造例(2)の
トバモライト処理材の粒度を0.6〜1.2、1.2〜2.5、
2.5〜5、5〜10、10〜15mmに調整した5種の処
理材により、リン濃度5mg/、PH7、カルシウ
ムイオン無添加の試験液を処理し、処理材の粒度
の違いによるリン除去率の変化を試験した。な
お、他の条件は試験例1と同様とした。この結果
は第6図に示す。 第6図に示すように処理材の粒径が大きくなる
にしたがつてリン除去率が低下した。なお、粒径
が0.5mm未満のものではSSならびに晶析に伴う処
理材の肥大による目づまりが生じ、長期間供用す
ることができなかつた。 試験例 4 試験例1と同様の実験装置を用い、製造例(2)の
トバモライト処理材により第5表に示すリン濃度
の試験液を1800ml/日(12t/日・m3)、900ml/
日(6t/日・m3)、300ml/日(2t/日・m3)、150
ml/日(1t/日・m3)、75ml/日(0.5t/日・m3
の流速(カツコ内は流量)で処理し、試験液のリ
ン濃度及び流量のリン除去率への影響を試験し
た。なお、他の条件は試験例1と同様とする。こ
の結果は第5表に併せて示す。
[Table] As shown in Table 4 and FIG. 5, the phosphorus removal rate is high when the porosity of the treated material is 50 to 90%. Note that when the porosity exceeds 90%, the phosphorus removal rate decreases due to the floating phenomenon during water flow, and at the same time, the strength decreases significantly. From this result, the pore structure of the treated material is
It was found that it is extremely important for increasing the contact opportunities between the treated material and phosphate ions and for the crystal growth of calcium hydroxyapatite that crystallizes in the pores and voids, contributing greatly to the phosphorus removal effect. did. Test Example 3 Using the same experimental equipment as Test Example 1, the particle size of the tobermorite-treated material of Production Example (2) was adjusted to 0.6 to 1.2, 1.2 to 2.5,
A test solution with a phosphorus concentration of 5 mg/, pH 7, and no calcium ion added was treated with five types of treatment materials adjusted to 2.5-5, 5-10, and 10-15 mm, and the phosphorus removal rate was determined by the difference in particle size of the treatment materials. Tested for changes. Note that other conditions were the same as in Test Example 1. The results are shown in FIG. As shown in FIG. 6, as the particle size of the treated material increased, the phosphorus removal rate decreased. In addition, if the particle size was less than 0.5 mm, clogging occurred due to enlargement of the treated material due to SS and crystallization, and it could not be used for a long period of time. Test Example 4 Using the same experimental equipment as in Test Example 1, a test solution with the phosphorus concentration shown in Table 5 was applied to the tobermorite-treated material of Production Example (2) at 1800 ml/day (12 t/day m 3 ) and 900 ml/day.
day (6t/day・m 3 ), 300ml/day (2t/day・m 3 ), 150
ml/day (1t/day・m 3 ), 75ml/day (0.5t/day・m 3 )
The effect of the phosphorus concentration of the test solution and the flow rate on the phosphorus removal rate was tested. Note that other conditions are the same as in Test Example 1. The results are also shown in Table 5.

【表】 第5表に示すように、本発明によれば、リン濃
度が500mg/と高濃度のものでも流量を小さく
することにより、高効率でリンを除去することが
できる。 <実施例> 上記製造例(2)と同様にして製造した粒径5〜8
mmのトバモライトを主たる構成物とする処理材を
400×400×800mmの脱リン槽に100充填した。こ
の脱リン槽に豚舎汚水(豚ふん尿と豚舎洗浄水と
の混合液を固液分理したもの)を上向流で120
/日(1.2t/日・m3)の流速(流量)で通水処
理した。約7ケ月間に亘り、豚舎汚水と処理水と
のリン濃度を測定し、この結果を第7図に示す。 同図に示すように、処理水のリン濃度は豚舎汚
水のリン濃度に影響されることなく3ppm以下で
あつた。このように、本発明によれば長期に亘つ
て安定したリン除去効果が得られる。 比較例 2 炭酸カルシウム粉(CaO 54%)3重量部と珪
石粉(SiO2 95%)1重量部を混合し、電気炉で
1450℃で2時間焼成した。これを振動ミルで粉砕
した後、得られた粉末1重量部に水3重量部を加
え、1時間水和させて珪酸カルシウム水和物を得
た。これをろ過し乾燥機で110℃にて乾燥して絶
乾物を得た。このものにアクリル樹脂エマルジヨ
ン(固形分10%)を4重量倍加え、混練後造粒成
形して110℃で乾燥固化させ、2.5〜5mmの粒径に
ふるいわけて多孔質処理材とした。これを用い
て、実施例を同様に汚水の処理実験を試みたとこ
ろ、処理水のリン濃度は2〜5ppmであるが、PH
は11.2と高く、実施例の8.7より相当高い値であ
つた。 <発明の効果> 以上、試験例及び実施例とともに具体的に説明
したように、本発明によれば煩雑な工程を必要と
せずに、単純・容易な処理で効率よくリンを除去
でき、維持管理も容易である。よつて、工場排
水、下水はもちろん、家畜汚水、生活雑排水等、
今まで困難とされていた中小規模の脱リン処理を
容易にかつ経済的に行うことができる。 なお、本発明に係る脱リン材が長期に亘つて使
用されたときは、珪酸石灰質肥料ならびにリン酸
質肥料、あるいはリンの原料として再利用できる
ので、さらに経済的である。
[Table] As shown in Table 5, according to the present invention, phosphorus can be removed with high efficiency even when the phosphorus concentration is as high as 500 mg/by reducing the flow rate. <Example> Particle size 5 to 8 produced in the same manner as in Production Example (2) above
Treated material whose main constituent is tobermorite of mm.
100 samples were filled into a 400 x 400 x 800 mm dephosphorization tank. Pig house wastewater (solid-liquid mixture of pig manure and pig house washing water) is fed into this dephosphorization tank with an upward flow of 120
Water was passed at a flow rate (flow rate) of /day (1.2t/day・m 3 ). The phosphorus concentrations of the pigsty wastewater and treated water were measured over a period of about seven months, and the results are shown in Figure 7. As shown in the figure, the phosphorus concentration in the treated water was 3 ppm or less, unaffected by the phosphorus concentration in the pigsty wastewater. As described above, according to the present invention, a stable phosphorus removal effect can be obtained over a long period of time. Comparative Example 2 3 parts by weight of calcium carbonate powder (CaO 54%) and 1 part by weight of silica powder (SiO 2 95%) were mixed and heated in an electric furnace.
It was baked at 1450°C for 2 hours. After pulverizing this with a vibration mill, 3 parts by weight of water was added to 1 part by weight of the obtained powder, and hydration was carried out for 1 hour to obtain a calcium silicate hydrate. This was filtered and dried in a drier at 110°C to obtain an absolutely dry product. Four times by weight of acrylic resin emulsion (solid content 10%) was added to this mixture, and after kneading, the mixture was granulated, dried and solidified at 110°C, and sieved to a particle size of 2.5 to 5 mm to obtain a porous treated material. Using this, we tried a wastewater treatment experiment similar to the example, and found that the phosphorus concentration in the treated water was 2 to 5 ppm, but the PH
The value was as high as 11.2, which was considerably higher than 8.7 in Example. <Effects of the Invention> As specifically explained above along with test examples and examples, according to the present invention, phosphorus can be efficiently removed through simple and easy treatment without the need for complicated processes, and maintenance and management is possible. is also easy. Therefore, not only industrial wastewater and sewage, but also livestock sewage, domestic wastewater, etc.
Small and medium scale dephosphorization treatment, which has been considered difficult until now, can be easily and economically performed. In addition, when the dephosphorization material according to the present invention is used for a long period of time, it is more economical because it can be reused as a raw material for silicate calcareous fertilizer, phosphoric acid fertilizer, or phosphorus.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第7図は本発明にかかり、第1図は本
発明方法の工程図、第2図は試験例に用いた実験
装置の説明図、第3図は試験例1におけるリン除
去率と試験液のPHとの関係を示すグラフ、第4図
は試験例1におけるリン除去率と試験液のカルシ
ウムイオン濃度との関係を示すグラフ、第5図は
試験例2におけるリン除去率と処理材の空隙率と
の関係を示すグラフ、第6図は試験例3における
リン除去率と処理材の粒度との関係を示すグラ
フ、第7図は実施例の結果を示すグラフであり、
第8図aは従来技術にかかる凝集沈殿法の工程
図、第8図bは従来技術にかかる晶析法の工程図
である。
Figures 1 to 7 relate to the present invention, Figure 1 is a process diagram of the method of the present invention, Figure 2 is an explanatory diagram of the experimental equipment used in the test example, and Figure 3 is the phosphorus removal rate in Test Example 1. Figure 4 is a graph showing the relationship between the phosphorus removal rate and the calcium ion concentration of the test liquid in Test Example 1, and Figure 5 is the graph showing the relationship between the phosphorus removal rate and the test liquid pH in Test Example 2. A graph showing the relationship with the porosity of the material, FIG. 6 is a graph showing the relationship between the phosphorus removal rate and the particle size of the treated material in Test Example 3, and FIG. 7 is a graph showing the results of the example.
FIG. 8a is a process diagram of a coagulation precipitation method according to the prior art, and FIG. 8b is a process diagram of a crystallization method according to the prior art.

Claims (1)

【特許請求の範囲】 1 珪酸質原料と石灰質原料とを主原料とする水
スラリーに起泡剤を添加して得た原料を高温高圧
下で水熱反応させて得られた珪酸カルシウム水和
物からなる汚水の脱リン材。 2 珪酸カルシウム水和物が、トバモライト、ゾ
ノトライト、フオシヤジヤイト、ジヤイロライ
ト、ヒレブランダイトの群から選ばれる1種ある
いは2種以上のものである特許請求の範囲第1項
記載の汚水の脱リン材。 3 珪酸カルシウム水和物が、空〓率50〜90%の
造粒物又は成形物である特許請求の範囲第1項又
は第2項記載の汚水の脱リン材。
[Scope of Claims] 1. Calcium silicate hydrate obtained by hydrothermally reacting a raw material obtained by adding a foaming agent to an aqueous slurry whose main raw materials are silicic raw materials and calcareous raw materials under high temperature and high pressure. A wastewater dephosphorization material consisting of. 2. The wastewater dephosphorization material according to claim 1, wherein the calcium silicate hydrate is one or more selected from the group of tobermorite, xonotlite, phosiyaite, gyalolite, and hillebrandite. 3. The wastewater dephosphorization material according to claim 1 or 2, wherein the calcium silicate hydrate is a granulated or molded product with a porosity of 50 to 90%.
JP2594886A 1986-02-10 1986-02-10 Method for dephosphorization of sewage containing phosphorus Granted JPS62183898A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2594886A JPS62183898A (en) 1986-02-10 1986-02-10 Method for dephosphorization of sewage containing phosphorus
GB8722169A GB2196955B (en) 1986-02-10 1987-02-09 Method for treating waste water.
US07/130,875 US4917802A (en) 1986-02-10 1987-02-09 Method for treating waste water
AU70206/87A AU595013B2 (en) 1986-02-10 1987-02-09 Method for treating waste water
DE19873790061 DE3790061T1 (en) 1986-02-10 1987-02-09
NL8720037A NL8720037A (en) 1986-02-10 1987-02-09 METHOD FOR TREATING WASTE WATER.
PCT/JP1987/000080 WO1987004695A1 (en) 1986-02-10 1987-02-09 Process for treating waste water
CH3929/87A CH670627A5 (en) 1986-02-10 1987-02-09
DK530287A DK530287A (en) 1986-02-10 1987-10-09 PROCEDURE FOR WASTE TREATMENT
SE8703919A SE466445B (en) 1986-02-10 1987-10-09 SETTLE TO TREAT WASTE WATER
SE9102979A SE9102979L (en) 1986-02-10 1991-10-14 SETTLE TO TREAT WASTE WATER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2594886A JPS62183898A (en) 1986-02-10 1986-02-10 Method for dephosphorization of sewage containing phosphorus

Publications (2)

Publication Number Publication Date
JPS62183898A JPS62183898A (en) 1987-08-12
JPH0220315B2 true JPH0220315B2 (en) 1990-05-08

Family

ID=12179977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2594886A Granted JPS62183898A (en) 1986-02-10 1986-02-10 Method for dephosphorization of sewage containing phosphorus

Country Status (1)

Country Link
JP (1) JPS62183898A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176244A1 (en) 2012-05-25 2013-11-28 太平洋セメント株式会社 Phosphorus recovery material, method for producing phosphorus recovery material, and phosphorus recovery method
JPWO2015008397A1 (en) * 2013-07-16 2017-03-02 太平洋セメント株式会社 Water purification material and water quality purification method for seafood farm

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3308196B2 (en) * 1996-12-28 2002-07-29 三菱マテリアル株式会社 Manufacturing method of phosphorus removal material
JP3809087B2 (en) * 2001-01-29 2006-08-16 積水化学工業株式会社 Manufacturing method of dephosphorization material
WO2002079100A1 (en) * 2001-03-29 2002-10-10 Nippon Steel Chemical Co., Ltd. Acidic-wastewater treating material and method of treating acidic wastewater
JP3809088B2 (en) * 2001-10-17 2006-08-16 積水化学工業株式会社 Dephosphorization material
JP2003275774A (en) * 2002-03-25 2003-09-30 Mitsubishi Materials Corp Method for regenerating phosphorus recovering material and method for recovering phosphorus
JP4827045B2 (en) * 2004-07-22 2011-11-30 長崎県 Water purification material and method for producing water purification material
JP4649596B2 (en) * 2006-03-31 2011-03-09 長崎県 Phosphorus removal method and phosphorus removal apparatus
JP4753182B2 (en) * 2007-01-31 2011-08-24 小野田化学工業株式会社 Treatment method for fluorine-containing wastewater
JP5201454B2 (en) * 2008-05-30 2013-06-05 小野田化学工業株式会社 Phosphorus recovery material and phosphorus recovery method
JP5201455B2 (en) * 2008-05-30 2013-06-05 小野田化学工業株式会社 Phosphorus recovery material, its manufacturing method and phosphorus recovery method
JP5461802B2 (en) * 2008-08-13 2014-04-02 幸雄 柳沢 Dephosphorization material and dephosphorization apparatus
JP2015091566A (en) * 2013-11-08 2015-05-14 太平洋セメント株式会社 Slurry for recovering phosphorus, method for preparing the slurry, and method for recovering phosphorus from phosphorus-containing waste water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176244A1 (en) 2012-05-25 2013-11-28 太平洋セメント株式会社 Phosphorus recovery material, method for producing phosphorus recovery material, and phosphorus recovery method
JPWO2015008397A1 (en) * 2013-07-16 2017-03-02 太平洋セメント株式会社 Water purification material and water quality purification method for seafood farm

Also Published As

Publication number Publication date
JPS62183898A (en) 1987-08-12

Similar Documents

Publication Publication Date Title
CN101935195B (en) Porous phosphorus removing ceramic granules with function of slowly releasing alkali and preparation method thereof
US4917802A (en) Method for treating waste water
JP5201454B2 (en) Phosphorus recovery material and phosphorus recovery method
JPH0220315B2 (en)
JP2617528B2 (en) Method of solidifying waste liquid and fixing it chemically
EP2857361A1 (en) Phosphorus recovery material, method for producing phosphorus recovery material, and phosphorus recovery method
JP4827045B2 (en) Water purification material and method for producing water purification material
JP2007054732A (en) Sewage treatment material and its production method
JPH01288335A (en) Waste water treatment agent
WO1995025586A1 (en) Dephosphorizing material and dephosphorizing method
JP3627988B2 (en) Dephosphorization material and dephosphorization method using the same
JPS5964563A (en) Manufacture of lightweight formed body
JPH0378157B2 (en)
JP2008100159A (en) Method for manufacturing dephosphorizing material
JP3351467B2 (en) Dephosphorizing material
JP2003290783A (en) Phosphoric acid removing agent and method for manufacturing the same, and method for removing phosphoric acid
JPH0683832B2 (en) Microorganism carrier
JP2015091566A (en) Slurry for recovering phosphorus, method for preparing the slurry, and method for recovering phosphorus from phosphorus-containing waste water
JPH0478675B2 (en)
JP2004249263A (en) Phosphorus recovering material and its production method
JP3559905B2 (en) Environmental purification type inorganic material
JP3559904B2 (en) Environmental purification composition
US3232868A (en) Water-refining agents and process employing same
JP2016203107A (en) Phosphorous recovery material, production method thereof, and phosphorous recovery method from wastewater containing phosphorous
JP4464157B2 (en) Method for producing zeolitic modified soil from purified water generated soil

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term