JPS62183898A - Method for dephosphorization of sewage containing phosphorus - Google Patents

Method for dephosphorization of sewage containing phosphorus

Info

Publication number
JPS62183898A
JPS62183898A JP2594886A JP2594886A JPS62183898A JP S62183898 A JPS62183898 A JP S62183898A JP 2594886 A JP2594886 A JP 2594886A JP 2594886 A JP2594886 A JP 2594886A JP S62183898 A JPS62183898 A JP S62183898A
Authority
JP
Japan
Prior art keywords
phosphorus
porous
raw materials
containing phosphorus
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2594886A
Other languages
Japanese (ja)
Other versions
JPH0220315B2 (en
Inventor
Yukio Fukaya
深谷 幸夫
Kazuyuki Hatano
羽田野 一幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ONODA EE L C KK
Taiheiyo Cement Corp
Clion Co Ltd
Original Assignee
ONODA EE L C KK
Onoda ALC Co Ltd
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ONODA EE L C KK, Onoda ALC Co Ltd, Onoda Cement Co Ltd filed Critical ONODA EE L C KK
Priority to JP2594886A priority Critical patent/JPS62183898A/en
Priority to US07/130,875 priority patent/US4917802A/en
Priority to NL8720037A priority patent/NL8720037A/en
Priority to DE19873790061 priority patent/DE3790061T1/de
Priority to CH3929/87A priority patent/CH670627A5/de
Priority to AU70206/87A priority patent/AU595013B2/en
Priority to PCT/JP1987/000080 priority patent/WO1987004695A1/en
Priority to GB8722169A priority patent/GB2196955B/en
Publication of JPS62183898A publication Critical patent/JPS62183898A/en
Priority to SE8703919A priority patent/SE466445B/en
Priority to DK530287A priority patent/DK530287D0/en
Publication of JPH0220315B2 publication Critical patent/JPH0220315B2/ja
Priority to SE9102979A priority patent/SE9102979L/en
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PURPOSE:To efficiently remove phosphorus, by packing a column with a porous treatment material having a specific void ratio and containing calcium silicate as a main component and contacting phosphorus-containing sewage with said porous treatment material. CONSTITUTION:A foaming agent such as an aluminum powder is added to a slurry containing a silicious stock material and a carcareous stock material as main stock material and the resulting mixture is subjected to hydrothermal reaction treatment under a high temp. and high pressure condition to obtain a porous body with a void ratio of 50-90%. A column is packed with the porous treatment agent and phosphorus-containing sewage is passed through the packed column to perform contact reaction. By this method, the removal of phosphorus can be efficiently performed. The porous treatment material reduced in phosphorus removal effect can be utilized as phosphorus fertilizer.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、家畜尿汚水、生活雑廃水等の汚水に含まれる
リン酸あるいはリン酸塩(以下、単にリンという)を容
易にかつ効率よく除去し得る汚水の脱リン方法に関する
[Detailed Description of the Invention] <Industrial Application Field> The present invention easily and efficiently removes phosphoric acid or phosphates (hereinafter simply referred to as phosphorus) contained in wastewater such as livestock urine wastewater and miscellaneous wastewater. This invention relates to a method for dephosphorizing wastewater that can be removed.

〈従来の技術〉 家畜尿汚水、生活雑廃水等の汚水に含まれるリンは、湖
沼、内海での「あおこ」、赤潮を誘引する富栄養化の原
因となる。そこで、従来よりこのような汚水中のリンを
除去する方法として凝集沈殿法や晶析法が行われている
0 凝集沈殿法はその処理工程の一例を第8図(a)に示す
ように、リンを含む汚水に消石灰を添加して撹拌するこ
とによシ汚水のPHt−上昇させて、リン酸とカルシウ
ムとが反応して生成スるカルシウムヒドロキシアノ母タ
イトの形してリンを沈殿除去するものであるが、この第
1次沈殿後の処理水は−が高くかつ石灰を多量に含有し
ているため中和及びカルシウム除去が必鼓となり1通常
、炭酸カルシウムの醇解度が最も小さい−9,3〜10
.0までの一次炭酸化及び炭酸カルシウム沈殿の除去、
さらに、中和までの2次炭酸化及び炭酸カルシウムのろ
過という後処理工程が必要となる。
<Prior art> Phosphorus contained in sewage such as livestock urine sewage and household wastewater causes eutrophication that induces "blue water" and red tide in lakes and inland seas. Therefore, coagulation-sedimentation methods and crystallization methods have traditionally been used as methods to remove phosphorus from wastewater. An example of the processing steps of the coagulation-sedimentation method is shown in Figure 8 (a). By adding slaked lime to phosphorus-containing wastewater and stirring it, the PHt of the wastewater is raised, and phosphorus is precipitated and removed in the form of calcium hydroxyanomatite produced by the reaction of phosphoric acid and calcium. However, since the treated water after this first precipitation has a high - and contains a large amount of lime, it is necessary to neutralize and remove calcium.1 Usually, the solubility of calcium carbonate is the lowest. 9,3~10
.. primary carbonation to 0 and removal of calcium carbonate precipitates,
Furthermore, post-treatment steps of secondary carbonation until neutralization and filtration of calcium carbonate are required.

また、晶析法はその処理工程の一例を第8図(b)に示
すように、リンを含む汚水のCa濃度とOi1度(pl
−1)とを微妙にコントロールした後、リン酸力ルシク
ムあるいはカルシウムヒドロキシアノ1タイトに類する
「結晶種」を含んだ接触材層中に通水することによりリ
ンヲカルシウムヒドロキシアパタイトの形にして除去す
るものであるが、上述のca” m度とOH9度とを微
妙にコントロールする前処理工程としては、通常、汚水
中に炭散物質が含まれている場合には硫酸にて脱炭酸を
行った後、消石灰や石こうを用いて−とCa  の調整
を行い、その処理液中のCaCO3や不溶分を沈殿除去
するという方法がとられている。
In addition, in the crystallization method, as shown in Figure 8(b), an example of the treatment process, the Ca concentration and Oi 1 degree (pl
-1) After delicately controlling the amount of phosphate, calcium hydroxyapatite is removed by passing water through the contact material layer containing "crystalline seeds" similar to phosphoric acid or calcium hydroxyapatite. However, as a pre-treatment step to delicately control the above-mentioned ca"m degree and OH9 degree, if the wastewater contains carbonaceous substances, decarboxylation is usually performed with sulfuric acid. After that, - and Ca are adjusted using slaked lime or gypsum, and CaCO3 and insoluble matters in the treated solution are precipitated and removed.

〈発明が解決しようとする問題点〉 上述した凝集沈殿法においては、多量の薬剤(消石灰)
を用いるため必然的にスラッジの発生量が多くなるとと
もに、上述したような煩雑な後処理が必要となる一方、
晶析法では上述したように(:a  9度や−を微妙に
コントロールする煩雑な前処理が必要であるとともにカ
ルシウムヒドロキシアパタイトを晶析させる結晶種とな
るような特殊な接触材が必要となる。
<Problems to be solved by the invention> In the coagulation-sedimentation method described above, a large amount of chemical (slaked lime) is used.
The use of sludge inevitably increases the amount of sludge generated, and requires the complicated post-treatment described above.
As mentioned above, the crystallization method requires complicated pretreatment to delicately control the 9 degrees and -, and also requires a special contact material that serves as a crystal seed for crystallizing calcium hydroxyapatite. .

このように従来の脱リン方法は、いずれも工程が煩雑で
あり、設備、運転管理、コスト等において問題が多い。
As described above, all of the conventional dephosphorization methods have complicated processes and have many problems in terms of equipment, operation management, cost, etc.

本発明は、このような事情に鑑み、煩雑な処理工程を必
要とせず、単純、容易な処理で効率よくリンを除去し得
るリンを含む汚水の脱リン方法を提供することを目的と
する。
In view of these circumstances, an object of the present invention is to provide a method for dephosphorizing phosphorus-containing wastewater, which does not require complicated treatment steps and can efficiently remove phosphorus through simple and easy treatment.

く問題点を解決するための手段〉 本発明者らは、前記目的を達成するために種々研究を重
ねた結果、珪酸カルシウム水和物のある糧の構成物が液
相中のリン酸イオンの消長と深くかかわりのあることを
知見し、本発明を完成させた。
Means for Solving the Problems〉 As a result of various studies to achieve the above object, the present inventors have discovered that calcium silicate hydrate, a food constituent, is capable of absorbing phosphate ions in the liquid phase. The present invention was completed based on the discovery that there is a deep relationship between

かかる本発明の構成は、珪酸カルシウム水和物を主たる
構成物とするとともに50〜90%の空隙率を有する多
孔質処理材をカラム又は充填槽内に充填して充填層を形
成し、この充填層中にリンを含む汚水を通水して接触さ
せることを特徴とする。
The structure of the present invention is to form a packed bed by filling a column or a packed tank with a porous treatment material mainly composed of calcium silicate hydrate and having a porosity of 50 to 90%. It is characterized by passing wastewater containing phosphorus into the layer and bringing it into contact with the layer.

以下に本発明の構成を詳述する。The configuration of the present invention will be explained in detail below.

本発明に用いる多孔質処理材は、更に具体的に説明する
と、例えば、珪酸質原料と石灰質原料とを主原料とする
スラリーにアルミニウム粉末などの起泡剤を添加して高
温高圧下で水熱反応処理して得られる成形物、あるいは
この成形物を破砕して得られる破砕物で空aSが50〜
90チのもの、又は珪酸質原料と石灰質原料とを主原料
とするスラリーを高温高圧下で水熱反応処理して必要な
らば粉砕して得られる粉状物を気泡を入れて造粒あるい
は成形した造粒物あるいは成形物で空隙率が50〜90
チのものである。
To explain more specifically, the porous treated material used in the present invention is produced by adding a foaming agent such as aluminum powder to a slurry whose main raw materials are silicate raw materials and calcareous raw materials, and then hydrothermalizing the slurry with a foaming agent such as aluminum powder under high temperature and high pressure. A molded product obtained by reaction treatment or a crushed product obtained by crushing this molded product with an empty aS of 50 to
90mm or a slurry whose main raw materials are silicic raw materials and calcareous raw materials are subjected to a hydrothermal reaction treatment under high temperature and high pressure, and if necessary, the resulting powder is granulated or molded by adding air bubbles. The porosity of the granulated or molded product is 50 to 90.
It belongs to Chi.

ここで、珪酸カルシウム水和物は珪酸質原料と石灰質原
料とを所定のCab/5i02モル比(0,5〜2.0
程度)で常法に従ってオートクレーブにて所要の圧力・
温度下で高温高圧養生することによって得られるもので
あり、珪酸質原料としては珪石、珪砂、クリストバライ
ト、無定形シリカ、珪藻土、フェロシリコンダスト、白
土などの粉末、石灰質原料としては生石灰、消石灰、セ
メントなどの粉末が挙げられる。このようにして得られ
る珪酸カルシウム水和物は、トパモライト、ゾノトライ
ト、C3Hグル、フオシャソヤイト、ジャイロライト、
ヒレプランダイト醇よりなる群より選ばれる1種または
2種以上のものとなる。またこの中でもトパモライト、
ゾノライト、C8Hダルは一緩衝能が高く、比表面積が
20〜400n?/Pと大きいので特に好ましい。
Here, calcium silicate hydrate is prepared by combining a silicate raw material and a calcareous raw material at a predetermined Cab/5i02 molar ratio (0.5 to 2.0
degree) in an autoclave according to the usual method at the required pressure.
It is obtained by curing under high temperature and high pressure, and silicic raw materials include powders such as silica stone, silica sand, cristobalite, amorphous silica, diatomaceous earth, ferrosilicon dust, and white clay, and calcareous raw materials include quicklime, slaked lime, and cement. Examples include powders such as. Calcium silicate hydrate obtained in this way includes topamolite, xonotlite, C3H glu, huochasoyite, gyrolite,
It is one or more types selected from the group consisting of hireprundite sake. Among these, topamorite,
Zonolite and C8H Dal have a high buffering capacity and a specific surface area of 20 to 400n? /P is particularly preferable.

本発明に用いる多孔質処理材は50〜90チの空隙率を
有するが、この空隙を珪酸カルシウム水和物の生成時に
得る場合には珪酸質物質と石灰質物質とをスラリー状に
したものに泡剤としてアルミニウム粉末などの金属発泡
剤やAEμ]などの起泡剤を添加した後高温高圧下で水
熱反応処理すれはよい。ここで金属発泡剤は化学反応に
よってガスを発生するもので、その使用割合はスラリー
中の巻き込み気泡や水の量によって変化するが化学反応
式から導くことができる。また起泡剤としては具体的に
は樹脂せっけん類、サポニン、合成界面活性剤類、加水
分解たんばく質、高分子界面活性剤などがあり、主とし
て界面活性作用により物理的に気泡を導入するもので、
単に原料と混合して撹拌することにより泡金生じさせる
場合と、特殊な撹拌槽又は起泡装置を使用して安定した
泡をつく夛、この泡を体積計量して原料に混合する場合
とがある。
The porous treated material used in the present invention has a porosity of 50 to 90 cm, but when obtaining this porosity during the production of calcium silicate hydrate, a slurry of a silicic material and a calcareous material is used as a foam. It is preferable to add a metal foaming agent such as aluminum powder or a foaming agent such as AE μ as an agent and then perform a hydrothermal reaction treatment at high temperature and high pressure. Here, the metal foaming agent generates gas through a chemical reaction, and its usage ratio varies depending on the amount of bubbles and water entrained in the slurry, but can be derived from the chemical reaction equation. Specific examples of foaming agents include resin soaps, saponins, synthetic surfactants, hydrolyzed proteins, and polymeric surfactants, which mainly introduce air bubbles physically through surfactant action. in,
There are cases in which foam is created simply by mixing with raw materials and stirring, and cases in which stable foam is created using a special stirring tank or foaming device, and the volume of this foam is measured and mixed with raw materials. be.

このような起泡剤を用いる場合には泡の安定性を調査の
上、その添加量を決定する必要がある。また、空隙を有
しない珪酸カルシウム水和物を得た場合にはそれが成形
物であれば粉末化した後、造粒又は成形する過程で気泡
を入れてその空隙率を1整すればよい。つまシ粉末状の
珪酸カルシウム水和物にアクリル樹脂エマルソヨン等の
高分子樹脂の結尾の水溶液全添加し、必要に応じて起泡
剤を加えた後混練りしたものをノンペレタイザーによプ
造粒したり型枠成形したりすればよい。ここでの乾燥方
法としては、自然乾燥、7Fll熱乾燥のどちらを採用
してもよい。また、ここで。
When using such a foaming agent, it is necessary to determine the amount to be added after investigating the stability of the foam. Further, when a calcium silicate hydrate without voids is obtained, if it is a molded product, it may be powdered and then air bubbles may be added during the granulation or molding process to adjust the porosity. Add the entire aqueous solution of a polymer resin such as acrylic resin emulsion to powdered calcium silicate hydrate, add a foaming agent if necessary, and then knead and granulate using a non-pelletizer. It can be done by molding or molding. As the drying method here, either natural drying or 7Fll heat drying may be employed. Also here.

粉末状の珪酸カルシラ五水和物としては、上記のように
空隙を入れて成形したものを破砕したときに得られる粉
末を用いてもよい。なお、空隙率の高い多孔質処理材と
する場合には、型枠成形を採用するのがよい。
As the powdered calsila silicate pentahydrate, a powder obtained by crushing a molded product with voids as described above may be used. In addition, when preparing a porous treated material with a high porosity, it is preferable to employ molding.

本発明にがかる脱リン方法は、カラム又は充填層などに
上記多孔質処理材を充填して充填層を形成し、この充填
層にリンを含む汚水をそのiま通水することにより行わ
れる。多孔質処理材は、これを形成している珪酸カルシ
ウム水和物の結晶もしくはグル表面からカルシウムヒド
ロキシアノ臂タイトの晶析に必要なCa2+ を供給す
るとともに該処理材のPH緩衝能により、汚水の、Hが
低くまたその値が変fPIII イL Q& Iff 
1% lr’t P)l Q 〜Qの5−elf−fl
l冬つくり出しているので、汚水中のりン戯イオンはC
a   と反応してカルシウムヒドロキシアノ9タイト
の形で該処理材狭面に晶析される。
The dephosphorization method according to the present invention is carried out by filling a column or a packed bed with the above-mentioned porous treatment material to form a packed bed, and passing wastewater containing phosphorus through the packed bed. The porous treatment material supplies Ca2+ necessary for the crystallization of calcium hydroxyanotite from the surface of the calcium silicate hydrate crystals or glue that forms it, and the PH buffering ability of the treatment material allows it to absorb wastewater. , H is low and its value changes fPIII IL Q&Iff
1% lr't P)l Q ~Q's 5-elf-fl
l Since winter is produced, phosphorus ions in wastewater are C.
It reacts with a and crystallizes on the narrow surface of the treated material in the form of calcium hydroxyanotite.

このとき、多孔質処理材の空隙は、汚水の一方向の流れ
を乱す作用をするとともに該処理材表面の流速を緩和す
るように働くので、リン酸イオンとCa   とによる
カルシウムヒドロキシアノ譬タイトの析出あるいは成長
が促進される。
At this time, the pores in the porous treatment material act to disturb the flow of wastewater in one direction and to moderate the flow velocity on the surface of the treatment material, so that calcium hydroxyanomatite is generated by phosphate ions and Ca. Precipitation or growth is promoted.

本発明に用いる多孔質処理材は、リン酸カルシウムある
いはカルシウムヒドロキシアパタイトに類する「結晶種
」を含んでいないが、吸着能を有しているため、通水初
期においては生成したカルシウムヒドロキシアパタイト
を吸着し、またその後はその表面がカルシウムヒドロキ
シアノ9タイトの核形成に都合のよい構造になってその
微細空隙、細孔部分にカルシウムヒドロキシアノぐタイ
トの核を形成するものである。
Although the porous treatment material used in the present invention does not contain "crystal seeds" similar to calcium phosphate or calcium hydroxyapatite, it has an adsorption ability, so it adsorbs the generated calcium hydroxyapatite at the initial stage of water flow. After that, the surface has a structure suitable for nucleation of calcium hydroxyanoptite, and nuclei of calcium hydroxyanoptite are formed in the microscopic voids and pores.

汚水を処理した後の多孔質処理材を走査電子顕微鏡(S
EM)で観察すると、その空隙内表面にカルシウムヒド
ロキシアノ量タイトの結晶が多く存在している。このこ
とからも明らかなように多孔質処理材の空隙率は、脱リ
ン効果に大きな影響を及ぼす。後に述べるように処理材
の空隙率とリン除去率との関係を試験したところ、空隙
率が50〜90%、好ましくは60〜80チのものがリ
ンの除去率が大きいことが判明した。多孔質処理材の空
隙率が50チ未満では比表面積が小さいためリン除去率
が小さく、また90%を超えると通水時の浮き上シによ
るリン除去率が低下するとともに強度低下が著しく、さ
らにリン除去効果の持続性も悪くなり、好ましくない。
A scanning electron microscope (S
When observed by EM), many calcium hydroxyanotite crystals are present on the inner surface of the void. As is clear from this, the porosity of the porous treated material has a large effect on the dephosphorization effect. As will be described later, when the relationship between the porosity of the treated material and the phosphorus removal rate was tested, it was found that the phosphorus removal rate was high when the porosity was 50 to 90%, preferably 60 to 80%. If the porosity of the porous treated material is less than 50%, the specific surface area is small, so the phosphorus removal rate is low, and if it exceeds 90%, the phosphorus removal rate due to floating during water flow decreases, and the strength decreases significantly. The sustainability of the phosphorus removal effect also deteriorates, which is not preferable.

また、本発明に用いる多孔質処理材の大きさもリン除去
性能に大きく関与している。処理材の径が0.511I
よ)小さいとSSならびに晶析結晶により目づまシしや
すいので長期使用することができず、一方、径が大きす
ぎても接触1面積の減少により IJンの除去率が低下
するのでともに好ましくない。よって、処理材は0.5
〜l0IBの大きさのものがよい。
Further, the size of the porous treatment material used in the present invention also has a large effect on the phosphorus removal performance. The diameter of the treated material is 0.511I
If the diameter is too small, it will be easily clogged by SS and crystallized crystals, making it impossible to use it for a long period of time.On the other hand, if the diameter is too large, the removal rate of IJ will decrease due to the reduction in the contact area, so both are undesirable. . Therefore, the treated material is 0.5
A size of ~10IB is preferable.

本発明にかかる脱リン方法は、第1図に示すように、リ
ンを含む汚水を、従来の晶析法におけるpH調整などの
前処理を行うことなくそのまま多孔質処理材の充填層に
通水すればよい。また処理水はpH8〜9と中性に近く
スラッゾなども含まれていないので後処理の必要もない
As shown in Figure 1, the dephosphorization method according to the present invention allows wastewater containing phosphorus to be directly passed through a packed bed of porous treatment material without pretreatment such as pH adjustment in the conventional crystallization method. do it. In addition, the treated water has a neutral pH of 8 to 9 and does not contain slazo, so there is no need for post-treatment.

また、本発明方法によれば、汚水中のリン酸塩濃度が高
くても脱リンできる。しかしリン酸塩の濃度によって汚
水の通水速度を調節する必要があり、例えばリン酸塩濃
度が500q/lの場合にはit/日・d程度、50I
19/A!の場合には6t/日・PF/程度までの処理
が可能である。なお、このときのリンの除去率は90チ
以上となる。
Furthermore, according to the method of the present invention, dephosphorization is possible even if the phosphate concentration in wastewater is high. However, it is necessary to adjust the flow rate of wastewater depending on the concentration of phosphate. For example, if the concentration of phosphate is 500 q/l, it is approximately 50 I/d.
19/A! In this case, it is possible to process up to about 6 tons/day/PF/. Note that the phosphorus removal rate at this time is 90 or more.

さらに1本発明方法を長期に亘って実施し。Furthermore, the method of the present invention was implemented over a long period of time.

リンの除去効果の小さくなった多孔質処理材は、珪酸石
灰質肥料ならびにリン酸質肥料。
Porous treated materials with reduced phosphorus removal effects are silicate lime fertilizers and phosphoric acid fertilizers.

あるいはリンの原料として再利用できるので経済的であ
る。
Alternatively, it is economical because it can be reused as a raw material for phosphorus.

以下に、製造例及び試験例を示す。Production examples and test examples are shown below.

(多孔質処理材の製造例) (IIC8Hグル処理剤 珪石粉末4重量部、生石灰粉末2重量 部、消石灰粉末1重量部及び普通ポルトランドセメント
3重量部(CaO/5102モル比;1.5)に金属ア
ルミニウム粉末o、oos x置部を加えてなる混合物
に、水71駄部を加えてスラリーにした。次いでこのス
ラリーを型枠に注入して4時間静#を後脱型したものを
オートクレーブにて150’C15気圧下で10時間水
熱処理した。この成形物をクラッシャーで粗砕し、2.
5〜5鵡の粒径にふるいわけて多孔質処理材とした。こ
の処理材の空隙率は72チであった。
(Production example of porous treated material) (IIC8H glue treatment agent 4 parts by weight of silica powder, 2 parts by weight of quicklime powder, 1 part by weight of slaked lime powder and 3 parts by weight of ordinary Portland cement (CaO/5102 molar ratio; 1.5) 71 parts of water was added to a mixture of metal aluminum powder o, oos The molded product was subjected to hydrothermal treatment at 150'C and 15 atmospheres for 10 hours.The molded product was crushed using a crusher, and 2.
The particles were sieved to a particle size of 5 to 5 mm to obtain a porous treated material. The porosity of this treated material was 72 inches.

(2)トパモライト処理材 珪石粉末5重量部、生石灰粉末2重量部及び普通ポルト
ランドセメント3重量部(CaO/5LO2−e/I/
比−0,8)に金属アルミニウム粉末o、oosl置部
を加えてなる混合物に水7重量部を加えてスラリーにし
た。このスラリーを型枠に注入して4時間静置後脱型し
たものを、オートクレーブにて180℃、10気圧下で
10時間水熱処理した。
(2) Topamorite treated material 5 parts by weight of silica powder, 2 parts by weight of quicklime powder and 3 parts by weight of ordinary Portland cement (CaO/5LO2-e/I/
A slurry was prepared by adding 7 parts by weight of water to a mixture obtained by adding metal aluminum powder o and oosl to the ratio -0.8). This slurry was poured into a mold, left to stand for 4 hours, and then removed from the mold, which was then hydrothermally treated in an autoclave at 180° C. under 10 atm for 10 hours.

得られた成形物をクラッシャーで粗砕して2.5〜5m
sの粒径にふるいわけて多孔質処理材とした。このもの
の空隙率は75L%でめった。
The obtained molded product is crushed with a crusher to a size of 2.5 to 5 m.
A porous treated material was obtained by sieving the particles to a particle size of 500 s. The porosity of this material was 75L%.

(3)  ゾノトライト処理材 珪石粉末と消石灰粉末とをCaO/8102モル比1.
0となるように混合し、固体成分に対して10倍重蓋の
水に分散させて水性スラリーを形成し、その後オートク
レーブ中にて210℃、20気圧下で撹拌しながら10
時間水熱処理した。このようにして得られ九ゾノライト
粉末の絶乾物に対してアクリル樹脂エマルノヨン(固形
分lO%)を41:を倍加え、混線後、造粒成形して1
10℃で乾燥固化させ、2.5〜5謡の粒径にふるいわ
けて多孔質処理材とした。このものの空腹率は73チで
あった。
(3) Zonotlite-treated silica powder and slaked lime powder at a CaO/8102 molar ratio of 1.
0, and dispersed in water 10 times heavier than the solid components to form an aqueous slurry, and then placed in an autoclave at 210°C and 20 atm with stirring for 100 min.
Hydrothermally treated for hours. To the absolute dry matter of the nine zonolite powder obtained in this way, acrylic resin emulnoyon (solid content 10%) was added 41 times, and after mixing, granulation molding was carried out.
It was dried and solidified at 10° C. and sieved to a particle size of 2.5 to 5 yen to obtain a porous treated material. This person's hunger rate was 73chi.

(4)種々の空隙率を有するトパモライト処理材 上記(2)に示した製造方法において、金属アルミニウ
ム粉末及び水の添加割合を第1表に示すように変化させ
ることにより、各種トパモライト処理材を得た。
(4) Topamorite-treated materials with various porosity In the production method shown in (2) above, various topamorite-treated materials can be obtained by changing the addition ratio of metal aluminum powder and water as shown in Table 1. Ta.

第  1  表 材 上記(3)の方法において、造粒成形前に。Table 1 material In the method (3) above, before granulation molding.

起泡剤としてゲインツル(山水化学製造)を用いて泡発
生機にて作った気泡を混練物体積に対して80゛チ、1
60%それぞれ添加した他は同様にして操作し、第2表
に示す空隙率を有する処理材を得た。なお、泡の添加量
が160%のときは、混練後3〜5+s径の窪みがある
型枠に注入して型枠ごと乾燥固化させた。
Using Gainzl (Sansui Chemical Manufacturing) as a foaming agent, the air bubbles created with a foam generator were added to the volume of the kneaded material by 80° and 1.
The same procedure was carried out except that 60% of each was added to obtain treated materials having the porosity shown in Table 2. In addition, when the amount of foam added was 160%, after kneading, the foam was poured into a mold having a depression with a diameter of 3 to 5+ seconds, and the foam was dried and solidified together with the mold.

第  2  表 泡の添加量が0のものは(3)において製造したもので
ある。
2nd The one in which the amount of added surface foam was 0 was manufactured in (3).

(試験例1) 第2図に示すように多孔質処理材を充填しり内径30鶴
、長さ4001m)のアクリル製のカラムの下方より処
現すべき試験液を通水できる実験装置を用いて各種多孔
質処理材の性能を調べた。
(Test Example 1) As shown in Fig. 2, various types of experiments were carried out using an experimental device capable of passing the test solution to be treated from the bottom of an acrylic column with an inner diameter of 30 m and a length of 4001 m, filled with porous treatment material. The performance of porous treated materials was investigated.

製造例(11〜(3)で製造した各処理材を上記カラム
に150m充填したものをA −1、A−2。
A-1 and A-2 are the columns filled with 150 m of each treatment material produced in Production Examples (11 to (3)).

A−3とし、これらのカラムに第3表に示す各種原水を
3QQd/hrの流速で通水し、1週間目の処理水の−
及びリン酸イオン−反を測定した。この結果を併せて第
3表に示す。
A-3, various types of raw water shown in Table 3 were passed through these columns at a flow rate of 3QQd/hr, and the treated water for the first week was -
and phosphate ion-reaction were measured. The results are also shown in Table 3.

なお、試験液としては、純水に第一リン酸カリウム(K
H2PO4)を添加してリン濃度を5q/l  にy4
製したもので、そのカルシウムイオン@度ヲ塩化カルシ
ウム(CaCJl・2H20)の水溶液によりO〜10
0a?#の範囲、また−を水酸化ナトリウム(NaO)
l)の水溶液によプ5〜10の範囲にそれぞれ変化させ
たものを用いた。
In addition, as a test liquid, potassium monophosphate (K
H2PO4) was added to increase the phosphorus concentration to 5q/l.
The calcium ion @ 0 ~ 10
0a? # range, and - for sodium hydroxide (NaO)
The aqueous solution of l) was used, which was varied in the range of 5 to 10.

また、比較のため南太平洋アンガウル島産の粒度2.5
〜5+gsのリン鉱石を上記と同様なカラムに150−
充填しくカラムB−1とする)、同様な操作を行った。
Also, for comparison, grain size 2.5 from Angaur Island in the South Pacific
~5+ gs of phosphate rock was placed in a column similar to the above at 150-
The same operation was carried out using the column B-1.

この結果も併せて第3光に示す。This result is also shown in the third light.

さらに、このときのリン除去率に対する試験液の−の影
響CC&  濃度60m9/l一定)を第3図に、リン
除去率に苅するカルシウムイオン濃度の影響(試験液の
−9一定)を第4図に示す。
Furthermore, the influence of - of the test solution on the phosphorus removal rate (CC & concentration 60 m9/l constant) is shown in Figure 3, and the influence of the calcium ion concentration (-9 constant of the test solution) on the phosphorus removal rate is shown in Figure 4. As shown in the figure.

以上の結果に示すように1本発明方法によれば、試験液
の−が変化しても処理水の−はほぼ9〜10に保たれて
Pシ、常に80チ以上のリン除去率が得られているが、
比較例では試験液のp)(が8.5以上でないとリン除
去率が80%に達しない。また1本発明方法では試験液
中のCa  9度が0でも80%以上のリン除去率が得
られるが、比較例ではca’i+濃度が60af/A’
fi、度ないとリンの除去効果が発生しない。なお、本
発明方法においても試験液中にCa  が存在するとさ
らにリン除去率が向上し、Ca6Kが40111/1以
上存在するとトパモライト処理材を用いた場合(八−2
)にはリン除去率がt立は100チとなる。
As shown in the above results, according to the method of the present invention, even if the - of the test solution changes, the - of the treated water is maintained at approximately 9 to 10, and a phosphorus removal rate of 80 or higher is always achieved. Although it is
In the comparative example, the phosphorus removal rate does not reach 80% unless p)( of the test liquid is 8.5 or more.In addition, in the method of the present invention, the phosphorus removal rate is 80% or more even if the Ca 9 degree in the test liquid is 0. However, in the comparative example, the ca'i+ concentration was 60af/A'
fi, the phosphorus removal effect will not occur unless it is heated. In addition, in the method of the present invention, the phosphorus removal rate is further improved when Ca is present in the test solution, and when Ca6K is present at 40111/1 or more, when using a topamorite-treated material (8-2
), the phosphorus removal rate is 100.

(試験例2) 試験例1と同様な実数装置を用い、製造例(4)及び(
5)に示す各種処理材によりリン濃度5Q/11.pH
7,カルシウムイオン無添加の試験液を処理して、処理
材の空隙率の大小による11 〜ノルド 土中 77’
i n  I^ ズー 峨tん余 1 4に −弗 七
〉   Ah σ)1件は試験例1と同様とした。この
結果は第4茨及び第5図に示す。
(Test Example 2) Using a real device similar to Test Example 1, production examples (4) and (
Phosphorus concentration 5Q/11. pH
7. Treatment with a test solution without calcium ion additives, depending on the porosity of the treated material 11 ~ Nord Soil 77'
1 4 - 7〉 Ah σ) One case was the same as Test Example 1. The results are shown in Figure 4 and Figure 5.

第4表及び第5図に示すように、処理材の空隙率が50
〜90チのときに高いリン除去率となる。なお、空隙率
が90%を超えると通水時の浮き上9現象によるリン除
去率の低下があると同時に強度低下が著しい。この結果
より処理材の空隙構造は、処理材とリン酸イオンとの接
触機会を高めるとともに細孔、空隙内に晶析してくるカ
ルシウムヒドロキシアAタイトの結晶成長のために極め
て1快であり、リン除去効果に大きく寄与していること
が判明した。
As shown in Table 4 and Figure 5, the porosity of the treated material is 50
A high phosphorus removal rate is achieved when the temperature is ~90 cm. Note that when the porosity exceeds 90%, the phosphorus removal rate decreases due to the floating phenomenon 9 during water passage, and at the same time, the strength decreases significantly. These results show that the pore structure of the treated material is extremely stable due to the increased contact opportunities between the treated material and phosphate ions and the crystal growth of calcium hydroxyatite that crystallizes within the pores and voids. , was found to greatly contribute to the phosphorus removal effect.

(試験例3) 試験例1と同様の実験装置を用い、製造例(2)のトパ
モライト処理材の粒度を0.6〜1.2゜1.2〜2.
5 、2.5〜5,5〜10.10〜1511Bに調整
した5種の処理材により、リン濃度5岬/l。
(Test Example 3) Using the same experimental equipment as in Test Example 1, the particle size of the topamolite-treated material of Production Example (2) was adjusted to 0.6-1.2° and 1.2-2.0°.
5. Phosphorus concentration of 5 capes/l by five types of treated materials adjusted to 2.5-5,5-10.10-1511B.

p)17.カルシウムイオン無添加の試験液を処理し、
処理材の粒度の違いによるリン除去率の変化を試験した
。なお、他の条件は試験例1と同様とした。この結果は
第6図に示す。
p)17. Process the test solution without adding calcium ions,
Changes in phosphorus removal rate due to differences in particle size of treated materials were tested. Note that other conditions were the same as in Test Example 1. The results are shown in FIG.

第6図に示すように処理材の粒径が大きくなるにしたが
ってリン除去率が低下した。4お、粒径が0.5−未満
のものではSSならびに晶析に伴う処理材の肥大による
目づまり力生じ、長期間供用することができなかった。
As shown in FIG. 6, the phosphorus removal rate decreased as the particle size of the treated material increased. 4) If the particle size was less than 0.5, clogging force occurred due to enlargement of the treated material due to SS and crystallization, and it could not be used for a long period of time.

(試験例4) 試験例1と同様の実験装置を用い、製造t(2)のトパ
モライト処理材によシ第5表に示jリン濃度の試験液を
1800m/日(12t/日・イ900m1/日(6t
/日・tt/)、300m/日(2t/日・イ)。
(Test Example 4) Using the same experimental equipment as in Test Example 1, a test solution with a phosphorus concentration shown in Table 5 was applied to the topamolite-treated material manufactured in t(2) at 1800 m/day (12 t/day, i900 m1). /day (6t
/day・tt/), 300m/day (2t/day・a).

150m1/日(1t/日・i)、75*/日(0,5
ち7日・イ)C流速(カッコ内は流量)で処理し、試験
液Cリン濃度及び流量のリン除去率への影響を1験した
。なお、他の条件は試験例1と同様ノする。この結果は
第5表に併せて示す。
150m1/day (1t/day・i), 75*/day (0,5
7 days a) Treatment was performed at C flow rate (the flow rate is in parentheses), and the influence of the test solution C phosphorus concentration and flow rate on the phosphorus removal rate was tested. Note that other conditions were the same as in Test Example 1. The results are also shown in Table 5.

第5表に示すように、本発明方法によれば、リン濃度が
50081711と高濃度のものでも流量を小さくする
ととくよル、高効率でリンを除去することができる。
As shown in Table 5, according to the method of the present invention, even when the phosphorus concentration is as high as 5,008,1711, phosphorus can be removed with high efficiency when the flow rate is reduced.

く実 施 例〉 上記製造例(2)と同様にして製造した粒径5〜Bmの
トパモライトを主たる構成物とする処理材を400X4
00x800ssの脱りン檀に100J充填した。この
脱リン檀に豚舎汚水(豚ふん尿と豚舎洗浄水との混合液
を固液分理したもの)を上向流で12OA’/日(1,
zン日・rII)の流速(流量)で通水処理した。約7
ケ月間に亘9、豚舎汚水と処理水とのリン濃度を測定し
、この結果を第7図に示す。
Example: A treated material whose main constituent is topamorite with a particle size of 5 to Bm, which was produced in the same manner as in Production Example (2) above, was
00x800ss was filled with 100J. Pig house sewage (solid-liquid separation of a mixture of pig manure and pig house washing water) is applied to this dephosphorizing sand in an upward flow at 12OA'/day (1,
Water was passed through the tube at a flow rate (flow rate) of about 7
The phosphorus concentrations of the pigsty wastewater and treated water were measured over a period of 9 months, and the results are shown in Figure 7.

同図に示すように、処理水のリン濃度は豚舎汚水のリン
濃度に影響されることなく3ppm以下であった。この
ように、本発明方法によれば長期に亘って安定したリン
除去効果が得られる。
As shown in the figure, the phosphorus concentration in the treated water was 3 ppm or less without being affected by the phosphorus concentration in the pigsty wastewater. As described above, according to the method of the present invention, a stable phosphorus removal effect can be obtained over a long period of time.

〈発明の効果〉 以上、試験例及び実施例とともに具体的に説明したよう
に、本発明方法によれば煩雑な工程を必要とせずに、単
純・容易な処理で効率よくリンを除去でき、維持管理も
容易である。よって、工場排水、下水線もちろん、家畜
汚水、生活雑排水等、今まで困難とされていた中小規模
の脱リン処理を容易にかつ経済的に行うことができる。
<Effects of the Invention> As specifically explained above along with test examples and examples, the method of the present invention can efficiently remove phosphorus through simple and easy treatment without requiring complicated steps, and can maintain It is also easy to manage. Therefore, it is possible to easily and economically carry out dephosphorization treatment on small and medium scales, which has been considered difficult until now, for industrial wastewater, sewage lines, livestock sewage, household wastewater, etc.

なお1本発明方法で長期に亘って使用し。Note that the method of the present invention can be used for a long period of time.

使用済となった多孔質処理材は、珪酸石灰質肥料ならび
にリン酸質肥料、あるいはリンの原料として再利用でき
るので、さらに経済的である。
The used porous treated material can be reused as a raw material for silicate lime fertilizer, phosphoric acid fertilizer, or phosphorus, which is more economical.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第7図は本発明にかがり、第1図は本発明方法
の工程図、第2図は試験例に用い九実験装置の説明図、
第3図は試験例1におけるリン除去率と試験液の−との
関係を示すグラフ、第4図は試験例1におけるリン除去
率と試験液のカルシウムイオン濃度との関係を示すグラ
フ、第5図は試験例2におけるリン除去率と処理材の空
隙率との関係を示すグラフ、第6図は試験例3における
リン除去率と処理材の粒度との関係を示すグラフ、第7
図は実施例の結果を示すグラフであシ、第8図(a)は
従来技術にかかる凝集沈殿法の工程図、第8図(b)は
従来技術にがかる晶析法の工程図である。
Figures 1 to 7 are related to the present invention, Figure 1 is a process diagram of the method of the present invention, Figure 2 is an explanatory diagram of the nine experimental apparatus used in the test example,
Fig. 3 is a graph showing the relationship between the phosphorus removal rate and - of the test solution in Test Example 1, Fig. 4 is a graph showing the relationship between the phosphorus removal rate and the calcium ion concentration of the test solution in Test Example 1, and Fig. 5 The figure is a graph showing the relationship between the phosphorus removal rate and the porosity of the treated material in Test Example 2. Figure 6 is a graph showing the relationship between the phosphorus removal rate and the particle size of the treated material in Test Example 3.
The figures are graphs showing the results of the examples. Figure 8 (a) is a process diagram of the coagulation-precipitation method according to the prior art, and Figure 8 (b) is a process diagram of the crystallization method according to the prior art. .

Claims (1)

【特許請求の範囲】 1)珪酸カルシウム水和物を主たる構成物とするととも
に50〜90%の空隙率を有する多孔質処理材をカラム
又は充填槽内に充填して充填層を形成し、この充填層中
にリンを含む汚水を通水して接触させることを特徴とす
るリンを含む汚水の脱リン方法。 2)多孔質処理材は、珪酸質原料と石灰質原料とを主原
料とするスラリーにアルミニウム粉末などの起泡剤を添
加して高温高圧下で水熱反応処理して得られる成形物、
あるいはこの成形物を破砕して得られる破砕物である特
許請求の範囲第1項記載のリンを含む汚水の脱リン方法
。 3)多孔質処理材は、珪酸質原料と石灰質原料とを主原
料とするスラリーを高温高圧下で水熱反応処理して必要
ならば粉砕して得られる粉状物を、気泡を入れて造粒あ
るいは成形した造粒物あるいは成形物である特許請求の
範囲第1項記載のリンを含む汚水の脱リン方法。 4)珪酸カルシウム水和物は、トパモライト、ゾノトラ
イト、CSHゲル、フオシヤジヤイト、ジヤイロライト
、ヒレプランダイトの群から選ばれる1種あるいは2種
以上のものである特許請求の範囲第1項、第2項あるい
は第3項記載のリンを含む汚水の脱リン方法。 5)多孔質処理材の大きさが0.5〜10mmである特
許請求の範囲第1項、第2項、第3項あるいは第4項記
載のリンを含む汚水の脱リン方法。
[Scope of Claims] 1) A column or a packed tank is filled with a porous treatment material containing calcium silicate hydrate as a main constituent and having a porosity of 50 to 90% to form a packed bed. A method for dephosphorizing sewage containing phosphorus, comprising passing the sewage containing phosphorus through a packed bed and bringing it into contact with the sewage. 2) Porous treated material is a molded product obtained by adding a foaming agent such as aluminum powder to a slurry whose main raw materials are silicic raw materials and calcareous raw materials, and subjecting it to hydrothermal reaction treatment at high temperature and high pressure.
Alternatively, the method for dephosphorizing wastewater containing phosphorus according to claim 1, which is a crushed product obtained by crushing this molded product. 3) Porous treated material is produced by adding air bubbles to the powder obtained by hydrothermal reaction treatment of a slurry whose main raw materials are silicic acid raw materials and calcareous raw materials under high temperature and high pressure, and pulverizing if necessary. The method for dephosphorizing sewage containing phosphorus according to claim 1, which is a granule or a molded granule or a molded product. 4) Calcium silicate hydrate is one or more selected from the group of topamorite, xonotlite, CSH gel, phosiyaite, gyalolite, and heleprandite. The method for dephosphorizing wastewater containing phosphorus according to item 3. 5) A method for dephosphorizing wastewater containing phosphorus according to claim 1, 2, 3, or 4, wherein the porous treatment material has a size of 0.5 to 10 mm.
JP2594886A 1986-02-10 1986-02-10 Method for dephosphorization of sewage containing phosphorus Granted JPS62183898A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2594886A JPS62183898A (en) 1986-02-10 1986-02-10 Method for dephosphorization of sewage containing phosphorus
AU70206/87A AU595013B2 (en) 1986-02-10 1987-02-09 Method for treating waste water
NL8720037A NL8720037A (en) 1986-02-10 1987-02-09 METHOD FOR TREATING WASTE WATER.
DE19873790061 DE3790061T1 (en) 1986-02-10 1987-02-09
CH3929/87A CH670627A5 (en) 1986-02-10 1987-02-09
US07/130,875 US4917802A (en) 1986-02-10 1987-02-09 Method for treating waste water
PCT/JP1987/000080 WO1987004695A1 (en) 1986-02-10 1987-02-09 Process for treating waste water
GB8722169A GB2196955B (en) 1986-02-10 1987-02-09 Method for treating waste water.
SE8703919A SE466445B (en) 1986-02-10 1987-10-09 SETTLE TO TREAT WASTE WATER
DK530287A DK530287D0 (en) 1986-02-10 1987-10-09 PROCEDURE FOR WASTE TREATMENT
SE9102979A SE9102979L (en) 1986-02-10 1991-10-14 SETTLE TO TREAT WASTE WATER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2594886A JPS62183898A (en) 1986-02-10 1986-02-10 Method for dephosphorization of sewage containing phosphorus

Publications (2)

Publication Number Publication Date
JPS62183898A true JPS62183898A (en) 1987-08-12
JPH0220315B2 JPH0220315B2 (en) 1990-05-08

Family

ID=12179977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2594886A Granted JPS62183898A (en) 1986-02-10 1986-02-10 Method for dephosphorization of sewage containing phosphorus

Country Status (1)

Country Link
JP (1) JPS62183898A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10235344A (en) * 1996-12-28 1998-09-08 Mitsubishi Materials Corp Dephosphorization material and its production
JP2002292372A (en) * 2001-01-29 2002-10-08 Sekisui Chem Co Ltd Method for producing dephosphorizing agent
WO2002079100A1 (en) * 2001-03-29 2002-10-10 Nippon Steel Chemical Co., Ltd. Acidic-wastewater treating material and method of treating acidic wastewater
JP2003117566A (en) * 2001-10-17 2003-04-22 Sekisui Chem Co Ltd Dephosphorizing material
JP2003275774A (en) * 2002-03-25 2003-09-30 Mitsubishi Materials Corp Method for regenerating phosphorus recovering material and method for recovering phosphorus
JP2006026616A (en) * 2004-07-22 2006-02-02 Nagasaki Prefecture Water clarifying material and manufacturing method of water clarifying material
JP2007268409A (en) * 2006-03-31 2007-10-18 Nagasaki Prefecture Phosphorus removal method and apparatus
JP2008188484A (en) * 2007-01-31 2008-08-21 Onoda Chemical Industry Co Ltd Treatment method of fluorine-containing wastewater
JP2009285635A (en) * 2008-05-30 2009-12-10 Onoda Chemical Industry Co Ltd Phosphorus recovery material and method for recovering phosphorus
JP2009285636A (en) * 2008-05-30 2009-12-10 Onoda Chemical Industry Co Ltd Phosphorus recovery material, method of manufacturing the same, and phosphorus recovery method
JP2010042365A (en) * 2008-08-13 2010-02-25 Yukio Yanagisawa Dephosphorizing material, dephosphorizing apparatus and dephosphorization by-product
JP2015091566A (en) * 2013-11-08 2015-05-14 太平洋セメント株式会社 Slurry for recovering phosphorus, method for preparing the slurry, and method for recovering phosphorus from phosphorus-containing waste water

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5972050B2 (en) 2012-05-25 2016-08-17 太平洋セメント株式会社 Method for producing phosphorus recovery material
MY174928A (en) * 2013-07-16 2020-05-22 Taiheiyo Cement Corp Method for purifying water quality of fish and shellfish farm

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10235344A (en) * 1996-12-28 1998-09-08 Mitsubishi Materials Corp Dephosphorization material and its production
JP2002292372A (en) * 2001-01-29 2002-10-08 Sekisui Chem Co Ltd Method for producing dephosphorizing agent
US7048860B2 (en) 2001-03-29 2006-05-23 Nippon Steel Chemical Co., Ltd. Material for treating acidic waste water
WO2002079100A1 (en) * 2001-03-29 2002-10-10 Nippon Steel Chemical Co., Ltd. Acidic-wastewater treating material and method of treating acidic wastewater
AU2002241323B2 (en) * 2001-03-29 2007-12-06 Nippon Steel Chemical Co., Ltd. Acidic-wastewater treating material and method of treating acidic wastewater
JP2003117566A (en) * 2001-10-17 2003-04-22 Sekisui Chem Co Ltd Dephosphorizing material
JP2003275774A (en) * 2002-03-25 2003-09-30 Mitsubishi Materials Corp Method for regenerating phosphorus recovering material and method for recovering phosphorus
JP2006026616A (en) * 2004-07-22 2006-02-02 Nagasaki Prefecture Water clarifying material and manufacturing method of water clarifying material
JP2007268409A (en) * 2006-03-31 2007-10-18 Nagasaki Prefecture Phosphorus removal method and apparatus
JP4649596B2 (en) * 2006-03-31 2011-03-09 長崎県 Phosphorus removal method and phosphorus removal apparatus
JP2008188484A (en) * 2007-01-31 2008-08-21 Onoda Chemical Industry Co Ltd Treatment method of fluorine-containing wastewater
JP2009285635A (en) * 2008-05-30 2009-12-10 Onoda Chemical Industry Co Ltd Phosphorus recovery material and method for recovering phosphorus
JP2009285636A (en) * 2008-05-30 2009-12-10 Onoda Chemical Industry Co Ltd Phosphorus recovery material, method of manufacturing the same, and phosphorus recovery method
JP2010042365A (en) * 2008-08-13 2010-02-25 Yukio Yanagisawa Dephosphorizing material, dephosphorizing apparatus and dephosphorization by-product
JP2015091566A (en) * 2013-11-08 2015-05-14 太平洋セメント株式会社 Slurry for recovering phosphorus, method for preparing the slurry, and method for recovering phosphorus from phosphorus-containing waste water

Also Published As

Publication number Publication date
JPH0220315B2 (en) 1990-05-08

Similar Documents

Publication Publication Date Title
JPS62183898A (en) Method for dephosphorization of sewage containing phosphorus
JP5201454B2 (en) Phosphorus recovery material and phosphorus recovery method
US4917802A (en) Method for treating waste water
US9656109B1 (en) Process for preparation of a granular humic mineral reagent
CN101376531B (en) MAP (guano) crystal precipitating stuffing and preparation thereof
EP2857361A1 (en) Phosphorus recovery material, method for producing phosphorus recovery material, and phosphorus recovery method
WO2012176579A1 (en) Method for recovering phosphorus and using same as fertilizer
JP4827045B2 (en) Water purification material and method for producing water purification material
JP2007054732A (en) Sewage treatment material and its production method
CN109908860A (en) A kind of phosphorus adsorbent and its application using waterworks sludge preparation
JPH0620542B2 (en) Method for manufacturing wastewater treatment agent
JPH0759171B2 (en) Manufacture method of artificial fishing reef
JPS6342788A (en) Cleaning method for water tank
WO1995025586A1 (en) Dephosphorizing material and dephosphorizing method
JPS62250990A (en) Treatment of waste water containing phosphate ion
JP3627988B2 (en) Dephosphorization material and dephosphorization method using the same
JP2003290783A (en) Phosphoric acid removing agent and method for manufacturing the same, and method for removing phosphoric acid
JP2015091566A (en) Slurry for recovering phosphorus, method for preparing the slurry, and method for recovering phosphorus from phosphorus-containing waste water
CN104843728A (en) Treatment method for synthesizing crystallization mother liquor of silicon-aluminum or silicon aluminum phosphate molecular sieve by use of hydrothermal crystallization method
JP2000342960A (en) Dephosphorization agent and manufacture of the same
JPH0378157B2 (en)
JPH0461806B2 (en)
JP2015196146A (en) Phosphorus recovery material for phosphorus-containing water and phosphorus recovery method using the phosphorus recovery material
Benmansoura et al. Chemical calcium phosphate precipitation using lime hydrates in a fluidized bed reactor
JPH0683832B2 (en) Microorganism carrier

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term