JPH0461806B2 - - Google Patents

Info

Publication number
JPH0461806B2
JPH0461806B2 JP61085998A JP8599886A JPH0461806B2 JP H0461806 B2 JPH0461806 B2 JP H0461806B2 JP 61085998 A JP61085998 A JP 61085998A JP 8599886 A JP8599886 A JP 8599886A JP H0461806 B2 JPH0461806 B2 JP H0461806B2
Authority
JP
Japan
Prior art keywords
reaction
aqueous solution
apatite
solution
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61085998A
Other languages
Japanese (ja)
Other versions
JPS62260707A (en
Inventor
Izumi Hirasawa
Takayuki Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP8599886A priority Critical patent/JPS62260707A/en
Publication of JPS62260707A publication Critical patent/JPS62260707A/en
Publication of JPH0461806B2 publication Critical patent/JPH0461806B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、バイオセラミツクス或いはクロマト
充填材料の原料として用いうる高純度ヒドロキシ
アパタイトの製造方法に関するものである。 〔従来の技術及びその問題点〕 ヒドロキシアパタイト(以下、単にアパタイト
という)の製造方法としては、乾式法或いは湿式
法などが知られているが、乾式法は多量の熱を必
要とするばかりでなく、原料中に含まれる
CaCO3やその他の不純物が製品内に残留しアパ
タイトの純度を低下させるため、残留する
CaCO3やその他の不純物の除去がやつかいな問
題となつている。 また、湿式法では、反応の過程で反応液中に存
在している炭酸物質がCaイオンと反応したり、
原料中に混在しているCaCO3やその他の不純物
が製品中に混入してアパタイトの純度を下げるな
どの問題点があつた。 〔発明の目的〕 本発明は不純物特にCaCO3の含有量が極めて
少ないアパタイトの製造方法を提供することを目
的とするものである。 〔発明の構成〕 本発明は、リン酸イオンを含有する水溶液中の
リン酸イオンを、PH6以上でカルシウム化合物の
水溶液と反応させてアパタイトを製造する方法に
おいて、リン酸イオンを含有する水溶液中のリン
酸イオンと塩化カルシウム水溶液を強基性イオン
交換樹脂層を通過せしめたカルシウムイオン含有
水溶液中のカルシウムイオンとを反応液中の全炭
酸濃度が20mg/以下の条件下で反応させること
を特徴とする高純度アパタイトの製造方法であ
る。 本発明者らは、CaCO3やその他の不純物含有
量の少ない高純度アパタイトの製法について鋭意
研究した結果、反応液中の全炭酸濃度を20mg/
以下の条件下でリン酸イオンを含有する液中のリ
ン酸イオンとカルシウム化合物とを反応させるこ
とにより高純度のアパタイトを製造しうることを
見いだした。 反応液中の全炭酸濃度を20mg/以下とするに
は、Ca化合物の水溶液を強塩基性イオン交換樹
脂層に通したCaCl2の水溶液を使用することによ
り確実に達成しうる。 即ち、Ca(OH)2の水溶液を用いる場合、大気
中のCO2を吸収し、そのままではCaCO3が大量に
生成し、不純物が増大するが、CaCl2は中性塩で
あり、これを水に溶解しても、その水溶液は大気
中のCO3を吸収することはなく、CaCO3等の不純
物を増加することもない。 一方CaCOl2水溶液を強塩基性イオン交換樹脂
で処理すると、次の反応が起こる。 CaCl2+2R−OH→Ca(OH)2+2R−Cl この反応を密閉容器中で行えばCO2の吸収もな
く、アパタイトの製造に必要なCaイオンとOHイ
オンを同時に供給でき、しかも不純物であるClイ
オンはイオン交換樹脂に固定され、かつ、SiO2
等の不純物もイオン交換樹脂で除去しうると同時
に反応液中の全炭酸濃度を容易に20mg/以下と
することができる。 全炭酸濃度は、溶液中に溶存しているCO2
CO3 2-或いはHCO3 -等をCO2に換算した値であ
る。 次に図面に基いて本発明の実施例を説明する。
第1図において、純水又は蒸留水にリン酸塩を溶
解したのち、N2ガスで脱気した水溶液を管1を
通して密閉反応容器2に導入し、一方、CaCl2
溶液を管5から強塩基性イオン交換樹脂層6に通
した後密閉容器2中に導入し、撹拌機3で撹拌し
て反応させる。 CaCl2水溶液を強塩基性イオン交換樹脂層に通
すことにより、該溶液中に含有されている
CO3 2-、HCO3 -、SiO2などが除去されると共に反
応に必要なアルカリ(OH-)も供給される。 さらに必要に応じて管4を通じてNaOH溶液
等のアルカリ溶液を供給し、反応液をPH6以上、
好ましくはPH8〜9に調整する。 生成したアパタイトは、管8を通して容器底部
から排出し、乾燥して製品が得られる。反応排液
は、管7から排出される。 PHが6以下の場合にはアパタイトが生成しない
か、或いはCaHPO4が生成し易いので好ましくな
い。 密閉反応容器2の上部に空間部を設ける場合に
は窒素ガスを注入するのが好ましい。 第2図は流動反応容器を用いた例を示すもの
で、この場合、管1中でリン酸塩溶液と管5から
強塩基性イオン交換樹脂層を通して供給される
CaCl2水溶液を混合して反応器2′中に供給され
反応器2′の底部で反応が十分に進行するので、
撹拌器を用いる必要はない。また生成したアパタ
イトは分級層を形成するので、所定の高さの製品
排出管8より生成したアパタイトを排出すること
により粒径の揃つた製品を得ることができる。 リン酸塩水溶液とCaCl2水溶液は夫々別個に反
応容器2の底部に導入してもよい。 本発明において、リン酸イオン源としては
H3PO4、Na3PO4、K2HPO4、NH4H2PO4等を使
用でき、液の緩衝性を高めるためにNH4H2PO4
を用いるのが好ましい。 Ca2+及びリン酸イオンの添加率は、反応液中
のCa/P(モル比)が1.5〜1.7であることがよく、
好ましくは1.67とするのがよい。 反応に使用する水としては純水又は蒸留水を使
用しうるが、雑菌や微粒子の存在しない高品位の
アパタイトの製造する場合には超純水を使用する
のが好ましい。これらの水にリン酸イオン源を溶
解後、N2ガス等で脱気することにより、水中の
炭酸濃度を低下させるとよい。 アルカリ源としてはHaOH又はKOHの水溶液
が使用できる。 イオン交換樹脂としては、市販のゲル型の
Dowex SBR、Dowex SAR、マクロポーラス型
のMSA−1−2などの強塩基性イオン交換樹脂
を使用できる。 また、本発明におけるアパタイトはセラミツク
ス原料を対象としているので微細なものが要求さ
れることが多いが、若し粗大な結晶や造粒物が要
求される場合には、本発明で製造された高純度の
アパタイトを種晶して高温下に循環使用して結晶
の成長を図つてもよい。 実施例 1 純水にリン酸アンモニウムをリンとして1000
mg/になるように溶解し、N2ガスで脱気し水
中の炭酸濃度を5mg/以下としたのち、通水量
1m2/日の割合で4の密閉反応容器に供給し
た。一方強塩基性イオン交換樹脂(Dowex
SBR、20〜45メツシユ)40を充填した塔に7
%CaCl2溶液(溶媒・純水)を100c.c./水、SV=
1.0/時で流過せしめ、該流出液も前記密閉反応
容器に供給した。そして、密閉反応容器内の反応
液のPHが8.5となるように1%NaOH水溶液を注
入しつゝ80mmφ×40mmの羽根で15r.p.m.で撹拌し
て反応させてアパタイトを製造した。この時の反
応液中の全炭酸濃度は5mg/以下であつた。 実施例 2 密閉反応容器を使用することなく、開放反応容
器を使用した以外は実施例1と同様にアパタイト
を製造した。この時の反応液中の全炭酸濃度は18
mg/であつた。 比較例 1 純水の代りに水道水を使用した以外は実施例1
と同様にアパタイトを製造した。この時の反応液
中の全炭酸濃度は30mg/であつた。 比較例 2 CaCl2溶液を強塩基性イオン交換樹脂塔に通す
ことなくそのまゝ使用し、かつ純水の代りに水道
水を用い、開放反応容器を使用した以外は実施例
1と同様にアパタイトを製造した。この時の反応
液中の全炭酸濃度は40mg/であつた。 実施例1及び2並びに比較例1及び2で製造し
た反応生成物を抜き出しN2ガスの存在下に100℃
で2時間乾燥した後その組成を分析した。分析結
果を表−1に示す。
[Industrial Application Field] The present invention relates to a method for producing high-purity hydroxyapatite that can be used as a raw material for bioceramics or chromatograph packing materials. [Prior art and its problems] Dry methods and wet methods are known as methods for producing hydroxyapatite (hereinafter simply referred to as apatite), but the dry method not only requires a large amount of heat but also , contained in raw materials
Remaining because CaCO3 and other impurities remain in the product and reduce the purity of apatite
Removal of CaCO 3 and other impurities has become a difficult problem. In addition, in the wet method, carbonate substances present in the reaction solution react with Ca ions during the reaction process.
There were problems such as CaCO 3 and other impurities mixed in the raw materials entering the product and reducing the purity of the apatite. [Object of the Invention] An object of the present invention is to provide a method for producing apatite having an extremely low content of impurities, particularly CaCO 3 . [Structure of the Invention] The present invention provides a method for producing apatite by reacting phosphate ions in an aqueous solution containing phosphate ions with an aqueous solution of a calcium compound at a pH of 6 or higher. It is characterized by reacting phosphate ions and calcium ions in a calcium ion-containing aqueous solution obtained by passing a calcium chloride aqueous solution through a strongly basic ion exchange resin layer under conditions where the total carbonate concentration in the reaction solution is 20 mg/or less. This is a method for producing high-purity apatite. As a result of intensive research into the production method of high-purity apatite with low content of CaCO 3 and other impurities, the present inventors determined that the total carbon dioxide concentration in the reaction solution was 20mg/
We have discovered that highly pure apatite can be produced by reacting phosphate ions in a solution containing phosphate ions with calcium compounds under the following conditions. The total carbon dioxide concentration in the reaction solution can be reliably achieved by using an aqueous solution of CaCl 2 obtained by passing an aqueous solution of a Ca compound through a layer of a strongly basic ion exchange resin. In other words, when using an aqueous solution of Ca(OH) 2 , CO 2 in the atmosphere is absorbed, and if left as is, a large amount of CaCO 3 is produced, increasing the amount of impurities. However, CaCl 2 is a neutral salt, and when dissolved in water Even when dissolved in water, the aqueous solution does not absorb CO 3 from the atmosphere and does not increase impurities such as CaCO 3 . On the other hand, when an aqueous solution of CaCOl 2 is treated with a strongly basic ion exchange resin, the following reaction occurs. CaCl 2 +2R−OH → Ca(OH) 2 +2R−Cl If this reaction is carried out in a closed container, there will be no absorption of CO 2 , and the Ca ions and OH ions necessary for the production of apatite can be supplied at the same time, and they are free from impurities. Cl ions are fixed on the ion exchange resin and SiO 2
These impurities can be removed using an ion exchange resin, and at the same time, the total carbonic acid concentration in the reaction solution can be easily reduced to 20 mg/or less. The total carbon dioxide concentration is the CO 2 dissolved in the solution,
This is the value obtained by converting CO 3 2- or HCO 3 - etc. to CO 2 . Next, embodiments of the present invention will be described based on the drawings.
In FIG. 1, after dissolving phosphate in pure or distilled water, the aqueous solution degassed with N 2 gas is introduced into a sealed reaction vessel 2 through tube 1, while the CaCl 2 aqueous solution is introduced into a strong base through tube 5. After passing through a ion exchange resin layer 6, the mixture is introduced into a closed container 2, and stirred with a stirrer 3 to react. By passing an aqueous solution of CaCl 2 through a layer of strongly basic ion exchange resin,
CO 3 2− , HCO 3 , SiO 2 , etc. are removed, and alkali (OH ) necessary for the reaction is also supplied. Furthermore, if necessary, an alkaline solution such as NaOH solution is supplied through tube 4 to adjust the reaction solution to a pH of 6 or higher.
Preferably the pH is adjusted to 8-9. The generated apatite is discharged from the bottom of the container through the tube 8 and dried to obtain a product. The reaction waste liquid is discharged from pipe 7. If the pH is 6 or less, apatite is not generated or CaHPO 4 is easily generated, which is not preferable. When providing a space above the closed reaction vessel 2, it is preferable to inject nitrogen gas. Figure 2 shows an example using a flow reactor, in which the phosphate solution is fed in tube 1 and the phosphate solution is fed from tube 5 through a bed of strongly basic ion exchange resin.
The CaCl 2 aqueous solution is mixed and fed into the reactor 2', and the reaction proceeds sufficiently at the bottom of the reactor 2'.
There is no need to use a stirrer. Further, since the generated apatite forms a classification layer, a product with uniform particle size can be obtained by discharging the generated apatite from the product discharge pipe 8 at a predetermined height. The phosphate aqueous solution and the CaCl 2 aqueous solution may be introduced separately into the bottom of the reaction vessel 2. In the present invention, the phosphate ion source is
H 3 PO 4 , Na 3 PO 4 , K 2 HPO 4 , NH 4 H 2 PO 4 etc. can be used, and NH 4 H 2 PO 4 can be used to increase the buffering properties of the solution.
It is preferable to use The addition rate of Ca 2+ and phosphate ions is preferably such that Ca/P (molar ratio) in the reaction solution is 1.5 to 1.7.
Preferably it is 1.67. Although pure water or distilled water can be used as water for the reaction, it is preferable to use ultrapure water when producing high-grade apatite free of germs and fine particles. After dissolving the phosphate ion source in these waters, it is preferable to reduce the carbon dioxide concentration in the water by degassing with N 2 gas or the like. As an alkali source, an aqueous solution of HaOH or KOH can be used. As an ion exchange resin, commercially available gel type
Strongly basic ion exchange resins such as Dowex SBR, Dowex SAR, and macroporous type MSA-1-2 can be used. Furthermore, since the apatite used in the present invention is intended as a ceramic raw material, it is often required to be fine, but if coarse crystals or granules are required, the apatite produced in the present invention may be Seed crystals of pure apatite may be circulated and used at high temperatures to grow crystals. Example 1 Add ammonium phosphate to pure water as phosphorus to 1000
After dissolving the water in an amount of 1 m 2 /day and degassing with N 2 gas to reduce the carbon dioxide concentration in the water to 5 mg/day or less, the water was supplied to the sealed reaction vessel No. 4 at a rate of 1 m 2 /day. On the other hand, strongly basic ion exchange resin (Dowex
SBR, 20-45 mesh) into a tower filled with 40
%CaCl 2 solution (solvent/pure water) at 100c.c./water, SV=
It was allowed to flow through at a rate of 1.0/hour, and the effluent was also fed to the closed reaction vessel. Then, a 1% NaOH aqueous solution was injected so that the pH of the reaction solution in the sealed reaction container was 8.5, and the reaction was carried out by stirring at 15 rpm with a blade of 80 mmφ x 40 mm to produce apatite. The total carbon dioxide concentration in the reaction solution at this time was 5 mg/or less. Example 2 Apatite was produced in the same manner as in Example 1 except that an open reaction vessel was used instead of a closed reaction vessel. The total carbon dioxide concentration in the reaction solution at this time was 18
mg/. Comparative Example 1 Example 1 except that tap water was used instead of pure water
Apatite was produced in the same manner. The total carbon dioxide concentration in the reaction solution at this time was 30 mg/. Comparative Example 2 Apatite was produced in the same manner as in Example 1, except that the CaCl 2 solution was used as it was without passing it through the strongly basic ion exchange resin tower, tap water was used instead of pure water, and an open reaction vessel was used. was manufactured. The total carbon dioxide concentration in the reaction solution at this time was 40 mg/. The reaction products produced in Examples 1 and 2 and Comparative Examples 1 and 2 were extracted and heated at 100°C in the presence of N2 gas.
After drying for 2 hours, its composition was analyzed. The analysis results are shown in Table-1.

【表】 実施例 4 実施例1において反応容器中に重炭酸ソーダを
添加することにより炭酸濃度を変化させて得られ
た製品の組成を表−2に示す。
[Table] Example 4 Table 2 shows the composition of the product obtained by changing the carbonic acid concentration by adding sodium bicarbonate into the reaction vessel in Example 1.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、CaCO3やその他の不純物含
有量の少ない高純度とアパタイトを製造できるの
で、各種生体材料やクロマトの充填材として好適
な材料を提供しうる。
According to the present invention, high-purity apatite with low content of CaCO 3 and other impurities can be produced, making it possible to provide materials suitable for various biological materials and chromatograph fillers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は夫々本発明の反応を実施す
る反応装置の概略図であつて、第1図は密閉式反
応容器を使用した装置の概略図、第2図は流動反
応容器を使用した装置の概略図を示す。 1……リン酸塩溶液供給管、2……密閉反応容
器、2′……流動反応容器、3……撹拌機、4…
…アルカリ溶液供給管、5……カルシウム溶液供
給管、6……強塩基性イオン交換樹脂層、8……
アパタイト排出管。
Figures 1 and 2 are schematic diagrams of a reaction apparatus for carrying out the reaction of the present invention, respectively, in which Figure 1 is a schematic diagram of an apparatus using a closed reaction vessel, and Figure 2 is a schematic diagram of an apparatus using a fluidized reaction vessel. A schematic diagram of the device is shown. 1... Phosphate solution supply pipe, 2... Sealed reaction vessel, 2'... Fluid reaction vessel, 3... Stirrer, 4...
... Alkaline solution supply pipe, 5 ... Calcium solution supply pipe, 6 ... Strong basic ion exchange resin layer, 8 ...
Apatite drainage tube.

Claims (1)

【特許請求の範囲】 1 リン酸イオンを含有する水溶液中のリン酸イ
オンを、PH6以上でカルシウム化合物と反応させ
てヒドロキシアパタイトを製造する方法におい
て、リン酸イオンを含有する水溶液中のリン酸イ
オンと、塩化カルシウム水溶液を強塩基性イオン
交換樹脂層を通過せしめたカルシウムイオン含有
水溶液中のカルシウムイオンとを反応液中の全炭
酸濃度が20mg/以下の条件下で反応させること
を特徴とする高純度ヒドロキシアパタイトの製造
方法。 2 反応を密閉容器中で行なう特許請求の範囲第
1項又は第2項記載の高純度ヒドロキシアパタイ
トの製造方法。 3 反応液中の全炭酸濃度10mg/以下の条件下
で反応を行う特許請求の範囲第1項、第2項又は
第3項記載の高純度ヒドロキシアパタイトの製造
方法。
[Scope of Claims] 1. A method for producing hydroxyapatite by reacting phosphate ions in an aqueous solution containing phosphate ions with a calcium compound at pH 6 or higher, wherein the phosphate ions in an aqueous solution containing phosphate ions are reacted with a calcium compound at pH 6 or higher. and calcium ions in a calcium ion-containing aqueous solution obtained by passing a calcium chloride aqueous solution through a strongly basic ion exchange resin layer under conditions where the total carbonate concentration in the reaction solution is 20 mg/or less. Method for producing pure hydroxyapatite. 2. The method for producing high-purity hydroxyapatite according to claim 1 or 2, wherein the reaction is carried out in a closed container. 3. The method for producing high-purity hydroxyapatite according to claim 1, 2 or 3, wherein the reaction is carried out under conditions where the total carbonate concentration in the reaction solution is 10 mg/or less.
JP8599886A 1986-04-16 1986-04-16 Production of high purity hydroxyapatite Granted JPS62260707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8599886A JPS62260707A (en) 1986-04-16 1986-04-16 Production of high purity hydroxyapatite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8599886A JPS62260707A (en) 1986-04-16 1986-04-16 Production of high purity hydroxyapatite

Publications (2)

Publication Number Publication Date
JPS62260707A JPS62260707A (en) 1987-11-13
JPH0461806B2 true JPH0461806B2 (en) 1992-10-02

Family

ID=13874319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8599886A Granted JPS62260707A (en) 1986-04-16 1986-04-16 Production of high purity hydroxyapatite

Country Status (1)

Country Link
JP (1) JPS62260707A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5676976A (en) * 1995-05-19 1997-10-14 Etex Corporation Synthesis of reactive amorphous calcium phosphates
JP2014177399A (en) * 2014-04-28 2014-09-25 Asahi Kasei Chemicals Corp Recovery phosphorus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645814A (en) * 1979-09-25 1981-04-25 Kureha Chem Ind Co Ltd Hydroxyapatite, its ceramic material and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645814A (en) * 1979-09-25 1981-04-25 Kureha Chem Ind Co Ltd Hydroxyapatite, its ceramic material and its manufacture

Also Published As

Publication number Publication date
JPS62260707A (en) 1987-11-13

Similar Documents

Publication Publication Date Title
JP5201454B2 (en) Phosphorus recovery material and phosphorus recovery method
US8246836B2 (en) Process for treating substances contaminated by heavy metals
KR20170008261A (en) Process for producing a calcium phosphate reactant, reactant obtained and use thereof in the purification of liquid effluents
US4355014A (en) Stable calcium hypochlorite composition and method for manufacture thereof
KOJIMA et al. Synthesis of amorphous calcium carbonate and its crystallization
JPS6317771B2 (en)
JPS62183898A (en) Method for dephosphorization of sewage containing phosphorus
JP2019136703A (en) Manufacturing method of adsorbent containing fine hydrotalcite
US3701737A (en) Sodium carbonate-sodium bicarbonate agglomerates
JP2009034564A (en) Adsorbent for substance x that ionizes in alkaline solution, and method for isolating the same
US8013204B2 (en) Use of partly prehydrated lime for separating a solid matter/liquid mixture, method for treating sludge and purified sludge obtained by said method
JPH0461806B2 (en)
EP0692452B1 (en) Amorphous aluminosilicate and process for producing the same
KR20040007383A (en) Lime and Organic Lime Fertilizer Utilizing Lime Sludge and Organic Wastes and Its Manufacturing Method
JP4084751B2 (en) Method for producing precipitated calcium carbonate from industrial by-products containing high concentrations of calcium carbonate
JPS62260708A (en) Production of high purity hydroxyapatite
JPH0649574B2 (en) Method for producing fine cubic calcium carbonate
JPS62250990A (en) Treatment of waste water containing phosphate ion
JPH08206443A (en) Acidic gas absorbent and production thereof
JP3627988B2 (en) Dephosphorization material and dephosphorization method using the same
Judkins Jr et al. Crystal‐Seed Conditioning of Lime‐Softening Sludge
US2643226A (en) Water fluoridation and impurity coagulation
CA2138259A1 (en) Process for the removal of phosphorous
CA2196124C (en) Process for preparing colloidal calcium carbonate by particle size
JP2015091566A (en) Slurry for recovering phosphorus, method for preparing the slurry, and method for recovering phosphorus from phosphorus-containing waste water