JP3809088B2 - Dephosphorization material - Google Patents

Dephosphorization material Download PDF

Info

Publication number
JP3809088B2
JP3809088B2 JP2001319794A JP2001319794A JP3809088B2 JP 3809088 B2 JP3809088 B2 JP 3809088B2 JP 2001319794 A JP2001319794 A JP 2001319794A JP 2001319794 A JP2001319794 A JP 2001319794A JP 3809088 B2 JP3809088 B2 JP 3809088B2
Authority
JP
Japan
Prior art keywords
phosphorus
dephosphorization
granular material
calcium
containing water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001319794A
Other languages
Japanese (ja)
Other versions
JP2003117566A (en
Inventor
毅 井上
高志 大杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2001319794A priority Critical patent/JP3809088B2/en
Publication of JP2003117566A publication Critical patent/JP2003117566A/en
Application granted granted Critical
Publication of JP3809088B2 publication Critical patent/JP3809088B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、リン含有水中からリンを除去するための脱リン材に関するものである。
【0002】
【従来の技術】
リン含有水中からリンを除去する手法としては、生物学的処理法、物理化学的処理法がある。
【0003】
生物学的処理法は、リンを過剰に摂取する細菌を活性汚泥中に増殖させることによって行う処理法であり、リンを過剰に摂取した状態で汚泥を系外に排除することでリン除去が達成される。この手法には、系外排除された汚泥を長時間嫌気状態で放置するとリンを再放出するという欠点があり、そのため、汚泥濃縮系からの返流水中のリン濃度に注意を要し、汚泥濃縮機を用いる速やかな濃縮や再放出されたリンの凝集処理等が必要になる。
【0004】
物理化学的処理法は、更に、電気分解法、凝集沈殿法、吸着除去法、晶析脱リン法等に分類される。
【0005】
電気分解法は、リン含有水中にアルミニウムや鉄等の電極板を設置し、電流を流すことにより、リン含有水中のリンを不溶性のリン酸アルミニウムやリン酸鉄として除去する手法である。この手法には、電気の使用、水素の発生といった安全面の問題と、汚泥の発生量が多いがゆえの二次廃棄物処理の問題といった欠点を有する。
【0006】
凝集沈殿法は、リン含有水中に硫酸アルミニウム[Al2(SO4)3・18H2O] 等のアルミニウム塩や、硫酸第一鉄(FeSO4 6H2O)、塩化第二鉄(FeCl3 6H2O)等の鉄塩といった凝集剤を添加し、リン含有水中のリンを不溶性の化合物にすることにより除去する方法である。この手法においては、安定したリン除去を行うための金属塩量は、存在するリン量に対してモル比で3倍以上必要とされており、多量の凝集汚泥が発生するという欠点がある。
【0007】
吸着除去法は、リン含有水中に活性炭やゼオライト等の微細孔を有する物質を添加し、リン含有水中のリンを主としてリン酸態で微細孔に吸着させて除去する方法である。この方法においては、吸着能力が低いためリンの除去効率が悪いのと吸着剤の単価が高い等の欠点がある。
【0008】
晶析脱リン法は、リン含有水中にリン酸カルシウム等からなる結晶を種晶として添加することにより、リン含有水中のリンを種晶上にヒドロキシアパタイト[Ca10(OH)2・(PO4)6]等の不溶物質として析出させる晶析作用を利用したリンの除去方法である。汚泥の発生量が極めて少なく、安全であると同時により経済的である等というメリットから多くの研究開発がなされている方法である。
【0009】
例えば、セメント材料をオートクレーブ処理し、珪酸カルシウム水和物とすることでカルシウム溶出量を一定に制御した晶析方法が提案されている(特開昭62−183898号公報)。
【0010】
しかし、この方法では、珪酸カルシウム水和物のカルシウム溶出量の範囲が限定されるため、被処理水のリン濃度に応じた効率的に晶析脱リンを行うことは困難であった。
【0011】
そこで、特開平10−34167号公報には、種晶として珪酸カルシウム水和物を主体とした物質を脱リン材として用い、これを反応槽中に充填させ、リン含有水を前記反応槽に通流・滞留させることで、リン含有水中からリンをヒドロキシアパタイト[Ca10(OH)2・(PO4)6]として晶析除去する方法が開示されている。この方法では、脱リン材のカルシウム溶出性が低いため、カルシウム源として塩化カルシウム(CaCl2)を添加することで対処しているが、手間がかかる、添加量を管理しなければならない等の欠点を有する。
【0012】
【発明が解決しようとする課題】
本発明は、上記従来の問題点に鑑み、適度なカルシウムの溶出性を有し、効果的かつ容易にリン含有水中からリンを除去することが可能な脱リン材を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明の脱リン材は、カルシウムイオンを溶出可能な平均粒径0.5〜100mmの粉粒体の少なくとも表層部が、0.2〜20MPa、30〜200℃の加圧加温下で二酸化炭素によって炭酸化処理されてなり、該粉粒体の中心部のpHが、表層部のpHより高くなされているものである。
【0014】
以下、本発明について更に詳細に説明する。
本発明におけるカルシウムイオンを溶出可能な粉粒体(以下、単に「粉粒体」ということがある)としては特に限定されず、ワラストナイト、トバモライト、ゾノトライト、ヒレブランライト、アフィライト等のケイ酸カルシウム化合物、アパタイト等のリンカイ石、ドロマイト等のカルシウムとマグネシウムの炭酸塩鉱物、普通ポルトランドセメントや早強ポルトランドセメント等のセメント及びその水和物;石膏、炭酸カルシウム、リン酸カルシウム等のイオン化合物及びこれらと水酸化カルシウム又は酸化カルシウムとの混合物;又は、これらの廃棄物等が挙げられる。また、リン含有水中に添加した際に、カルシウムイオンの溶出量が少ないと、脱リン効率が低下するので、カルシウムイオンの溶出が比較的多く、かつ容易に手に入れやすいセメント及びその水和物が好適に用いられる。
【0015】
上記粉粒体の粒径については特に限定されないが、平均粒径が小さすぎると、リン含有水中に添加した際に、特に水流があると流れてしまう可能性が高く、大きすぎると、晶析反応に必要な表面積を確保しにくくなるので0.5〜100mmが好ましく、より好ましくは5〜50mmである。
【0016】
本発明の脱リン材は、該粉粒体の少なくとも表層部が炭酸化されているものである。
粉粒体の少なくとも表層部が炭酸化されていることにより、脱リン材として使用されたときに、アルカリ分の過剰な溶出を防止し、多量の凝集沈殿(汚泥)の発生を防ぐことができる。
【0017】
本発明における炭酸化の方法は特に限定されず、例えば、加圧加温下で、気体、超臨界状態の二酸化炭素で処理する方法等が挙げられる。
【0018】
本発明において、加圧加温下の二酸化炭素で処理する場合、加圧圧力は特に限定されないが、低すぎると粉粒体の表層部の炭酸化が不十分となり、加圧圧力が高すぎても、炭酸化の反応効率は大きく変わらず、逆に多大のエネルギーを要するので、生産性の低下や設備の大型化を招くとともに、粉粒体の炭酸化が内部まで進行し、脱リン材として使用されたときに、カルシウムイオンの溶出が低減し、結果として脱リン効率の低下を来たすことがある。
従って、加圧圧力は、0.2MPa以上が好ましく、より好ましくは5〜20MPaである。
【0019】
また、加温温度も特に限定されないが、低すぎると粉粒体の表層部の炭酸化が不十分となり、加温温度が高すぎても、炭酸化反応は迅速になるものの多大のエネルギーが必要になる。
従って、加温温度は、30℃以上が好ましく、より好ましくは50〜200℃である。
【0020】
炭酸化処理の時間は、用いる粉粒体の種類、加圧圧力及び加温温度で異なるが、短すぎると炭酸化処理反応が充分に起こらないことがあり、長すぎてもそれ以上の効果は得られず、逆に消費エネルギーや設備面から見ても工業的に合理的でなくなるので、24時間以内が好ましく、より好ましくは5〜120分である。
【0021】
本発明において、上記粉粒体の中心部のpHは、表層部のpHより高くなされている。
このようになされていることにより、脱リン材として使用されたときに、リン含有水中への適度なアルカリ分の溶出が行われ、脱リン効率が大幅に増加する。この場合、上記粉粒体の中心部のpHは、低すぎると脱リン効率が低下し、高すぎると多量の凝集沈殿(汚泥)を発生するので7.5〜13.5が好ましい。
【0022】
【実施例】
以下に実施例を挙げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
【0023】
脱リン材の作製
(実施例1)
普通ポルトランドセメント100重量部及び水20重量部を撹拌型ミキサーに供給して1分間混合して造粒し、その後、平均粒径が15mmとなるように分級して粉粒体を得、得られた粉粒体を、10MPa、100℃の二酸化炭素が充填され、密封されたオークレーブ中に供給して、30分間炭酸化処理を施し、表層部が炭酸化された粉粒体からなる脱リン材を得た。
【0024】
(実施例2)
炭酸化処理の時間を60分間としたこと以外は、実施例1と同様にして脱リン材を得た。
【0025】
(比較例1)
脱リン材として、トバモライト(三菱マテリアル社製、粒径約1〜2mm)を炭酸化処理を施さずに用いた。
【0026】
(比較例2)
炭酸化処理を施さなかったこと以外は、実施例1と同様にして脱リン材を得た。
【0027】
(比較例3)
普通ポルトランドセメント100重量部及び水10重量部を撹拌型ミキサーに供給して1分間混合して造粒して粉粒体を得、得られた粉粒体を開放容器に供給し、該容器中に10MPa、100℃の二酸化炭素を流入し、60分間炭酸化処理を施し、中心部まで炭酸化された平均粒径15mmの粉粒体からなる脱リン材を得た。
【0028】
脱リン材の特性
・pHの測定
実施例1、2、比較例2、3で得られた脱リン材の中心部及び表層部を削り取った粉それぞれ100重量部を500重量部のイオン交換水に分散させた上澄み液のpHを、pH測定機(HORIBA社製、品番「B−212)により測定し、結果を表1に示した。
【0029】
脱リン材の性能評価
水道水にリン酸水素二ナトリウム(Na2HPO4: 和光純薬工業社製)を、リン濃度が5ppmになるように溶解させたリン含有水1000gに、実施例1、2、比較例1〜3で得られた脱リン材を50g添加し、24時間経過した後のリン含有水中のリン濃度を、ICP発光分析装置(セイコー電子社製、型式「SPS4000)を用いて測定した。
次いで、リン含有水にさらにリン濃度として5ppm分のリン酸水素二ナトリウムを添加し溶解させ、24時間経過した後のリン含有水中のリン濃度を、ICP発光分析装置を用いて測定した。
得られた結果を表1に纏めて示した。
【0030】
【表1】

Figure 0003809088
【0031】
【発明の効果】
本発明の脱リン材は、カルシウムイオンを溶出可能な平均粒径0.5〜100mmの粉粒体の少なくとも表層部が、0.2〜20MPa、30〜200℃の加圧加温下で二酸化炭素によって炭酸化処理されてなり、該粉粒体の中心部のpHが、表層部のpHより高くなされているものであるから、適度なカルシウムの溶出性を有し、効果的かつ容易にリン含有水中からリンを除去することが可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dephosphorization material for removing phosphorus from phosphorus-containing water.
[0002]
[Prior art]
Methods for removing phosphorus from phosphorus-containing water include biological treatment methods and physicochemical treatment methods.
[0003]
Biological treatment method is a treatment method that is performed by growing bacteria that consume excessive phosphorus in activated sludge. Phosphorus removal is achieved by removing sludge out of the system with excessive intake of phosphorus. Is done. This method has the disadvantage of re-releasing phosphorus if the sludge removed outside the system is left in an anaerobic condition for a long time. Therefore, it is necessary to pay attention to the phosphorus concentration in the return water from the sludge concentration system. A quick concentration using a machine, agglomeration treatment of re-released phosphorus, and the like are required.
[0004]
The physicochemical treatment method is further classified into an electrolysis method, a coagulation precipitation method, an adsorption removal method, a crystallization dephosphorization method, and the like.
[0005]
The electrolysis method is a method in which phosphorus in water containing phosphorus is removed as insoluble aluminum phosphate or iron phosphate by installing an electrode plate such as aluminum or iron in the water containing phosphorus and passing an electric current. This method has drawbacks such as safety problems such as the use of electricity and generation of hydrogen, and secondary waste disposal problems due to the large amount of sludge generated.
[0006]
In the coagulation precipitation method, aluminum salts such as aluminum sulfate [Al 2 (SO 4 ) 3 · 18H 2 O], ferrous sulfate (FeSO 4 6H 2 O), ferric chloride (FeCl 3 6H) 2 O) is a method in which a flocculant such as an iron salt is added to remove phosphorus in phosphorus-containing water by making it an insoluble compound. In this method, the amount of metal salt for performing stable phosphorus removal is required to be 3 times or more in molar ratio with respect to the amount of phosphorus present, and there is a drawback that a large amount of coagulated sludge is generated.
[0007]
The adsorption removal method is a method in which a substance having fine pores such as activated carbon or zeolite is added to phosphorus-containing water, and phosphorus in the phosphorus-containing water is mainly adsorbed to the fine pores in a phosphoric acid state and removed. This method has drawbacks such as low phosphorus removal efficiency due to low adsorption capacity and high unit price of the adsorbent.
[0008]
In the crystallization dephosphorization method, a crystal made of calcium phosphate or the like is added as a seed crystal to phosphorus-containing water, so that phosphorus in the phosphorus-containing water is hydroxyapatite [Ca 10 (OH) 2. (PO 4 ) 6 ] To remove phosphorus using a crystallization effect that precipitates as an insoluble substance. The amount of sludge generated is extremely small, and it is a method that has undergone many research and development due to the advantages of being safe and more economical.
[0009]
For example, a crystallization method has been proposed in which a cement material is autoclaved to obtain calcium silicate hydrate so that the amount of calcium elution is controlled to be constant (Japanese Patent Laid-Open No. 62-183898).
[0010]
However, in this method, since the range of calcium elution amount of calcium silicate hydrate is limited, it has been difficult to efficiently perform crystallization dephosphorization according to the phosphorus concentration of the water to be treated.
[0011]
Therefore, in JP-A-10-34167, a substance mainly composed of calcium silicate hydrate as a seed crystal is used as a dephosphorization material, this is filled in a reaction tank, and phosphorus-containing water is passed through the reaction tank. A method is disclosed in which phosphorus is crystallized and removed as hydroxyapatite [Ca 10 (OH) 2. (PO 4 ) 6 ] from phosphorus-containing water by flowing and retaining. In this method, since the calcium elution of the dephosphorizing material is low, it is dealt with by adding calcium chloride (CaCl 2 ) as a calcium source, but it takes time and has to manage the amount of addition. Have
[0012]
[Problems to be solved by the invention]
In view of the above-described conventional problems, an object of the present invention is to provide a dephosphorization material that has moderate calcium elution and that can effectively and easily remove phosphorus from phosphorus-containing water. .
[0013]
[Means for Solving the Problems]
In the dephosphorizing material of the present invention, at least the surface layer portion of the granular material having an average particle diameter of 0.5 to 100 mm capable of eluting calcium ions is oxidized at a pressure of 0.2 to 20 MPa and 30 to 200 ° C. it is treated carbonated by carbon, the pH of the central portion of the powder or granular material is one that has been made higher than the pH of the surface layer portion.
[0014]
Hereinafter, the present invention will be described in more detail.
In the present invention, the granular material capable of eluting calcium ions (hereinafter sometimes simply referred to as “a granular material”) is not particularly limited, and it may be a silica such as wollastonite, tobermorite, zonotrite, Hillebranlite, Affilite. Calcium acid compounds, calcite such as apatite, carbonate minerals of calcium and magnesium such as dolomite, cements such as ordinary Portland cement and early strength Portland cement and hydrates thereof; ionic compounds such as gypsum, calcium carbonate and calcium phosphate and these And a mixture of calcium hydroxide or calcium oxide; or wastes thereof. In addition, when added to phosphorus-containing water, if the calcium ion elution amount is small, the dephosphorization efficiency decreases, so that the calcium ion elution is relatively large and easy to obtain cement and its hydrates. Are preferably used.
[0015]
The particle size of the powder is not particularly limited, but if the average particle size is too small, when added to phosphorus-containing water, there is a high possibility of flowing especially when there is a water flow, and if too large, crystallization will occur. Since it becomes difficult to ensure the surface area required for reaction, 0.5-100 mm is preferable, More preferably, it is 5-50 mm.
[0016]
The dephosphorizing material of the present invention is one in which at least the surface layer portion of the granular material is carbonated.
When at least the surface layer of the granular material is carbonated, when used as a dephosphorization material, excessive elution of alkali can be prevented, and a large amount of coagulation sedimentation (sludge) can be prevented. .
[0017]
The carbonation method in the present invention is not particularly limited, and examples thereof include a method of treating with gas and supercritical carbon dioxide under pressure and heating.
[0018]
In the present invention, when treating with carbon dioxide under pressure and heating, the pressure is not particularly limited, but if it is too low, carbonation of the surface layer of the granular material becomes insufficient and the pressure is too high. However, the carbonation reaction efficiency does not change significantly, and on the contrary, a great deal of energy is required, leading to a decrease in productivity and an increase in equipment size, and the carbonation of the granular material proceeds to the inside, and as a dephosphorizing material. When used, calcium ion elution may be reduced, resulting in reduced dephosphorization efficiency.
Therefore, the pressurizing pressure is preferably 0.2 MPa or more, and more preferably 5 to 20 MPa.
[0019]
Also, the heating temperature is not particularly limited, but if it is too low, carbonation of the surface part of the granular material will be insufficient, and even if the heating temperature is too high, the carbonation reaction will be rapid but requires a lot of energy. become.
Therefore, the heating temperature is preferably 30 ° C. or higher, more preferably 50 to 200 ° C.
[0020]
The time of carbonation treatment varies depending on the type of granular material to be used, pressurization pressure and heating temperature, but if it is too short, the carbonation treatment reaction may not occur sufficiently. It is not obtained, and conversely, it is industrially unreasonable even from the viewpoint of energy consumption and facilities, so it is preferably within 24 hours, more preferably 5 to 120 minutes.
[0021]
In this invention, pH of the center part of the said granular material is made higher than pH of a surface layer part.
By being done in this way, when used as a dephosphorization material, a moderate alkali content is eluted in phosphorus-containing water, and the dephosphorization efficiency is greatly increased. In this case, if the pH of the central part of the granular material is too low, the dephosphorization efficiency is lowered, and if it is too high, a large amount of coagulated sediment (sludge) is generated, so 7.5-13.5 is preferable.
[0022]
【Example】
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited only to these examples.
[0023]
Production of dephosphorization material (Example 1)
100 parts by weight of ordinary Portland cement and 20 parts by weight of water are supplied to a stirring mixer, mixed for 1 minute and granulated, and then classified so that the average particle size becomes 15 mm to obtain a granular material. The dephosphorization material which consists of the granular material with which the surface layer part was carbonized by supplying the granular material which was filled with the carbon dioxide of 10 Mpa and 100 degreeC, and was sealed in the oclave, and performing carbonation processing for 30 minutes Got.
[0024]
(Example 2)
A dephosphorization material was obtained in the same manner as in Example 1 except that the carbonation time was 60 minutes.
[0025]
(Comparative Example 1)
Tobermorite (manufactured by Mitsubishi Materials Corporation, particle size of about 1 to 2 mm) was used as a phosphorus removal material without being subjected to carbonation treatment.
[0026]
(Comparative Example 2)
A dephosphorization material was obtained in the same manner as in Example 1 except that the carbonation treatment was not performed.
[0027]
(Comparative Example 3)
100 parts by weight of ordinary Portland cement and 10 parts by weight of water are supplied to a stirring mixer, mixed for 1 minute and granulated to obtain a granular material, and the obtained granular material is supplied to an open container. Then, carbon dioxide at 10 MPa and 100 ° C. was introduced, and carbonation treatment was performed for 60 minutes to obtain a dephosphorization material composed of a granular material having an average particle diameter of 15 mm that was carbonized to the center.
[0028]
Measurement Example 1 Characteristics · pH dephosphorization material, ion-exchanged water in the center and the powder each 100 parts by weight of scraped surface portion 500 parts by weight of the dephosphorization material obtained in Comparative Examples 2 and 3 The pH of the dispersed supernatant was measured with a pH meter (product number “B-212” manufactured by HORIBA), and the results are shown in Table 1.
[0029]
Performance evaluation of dephosphorization material To 1000 g of phosphorus-containing water in which disodium hydrogen phosphate (Na 2 HPO 4 : manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in tap water so that the phosphorus concentration was 5 ppm, 50 g of the phosphorus removal material obtained in Examples 1 and 2 and Comparative Examples 1 to 3 was added, and the phosphorus concentration in the phosphorus-containing water after 24 hours was measured using an ICP emission spectrometer (model “SPS4000, manufactured by Seiko Denshi Co., Ltd.). ).
Subsequently, disodium hydrogen phosphate corresponding to 5 ppm as a phosphorus concentration was further added to the phosphorus-containing water and dissolved, and the phosphorus concentration in the phosphorus-containing water after 24 hours was measured using an ICP emission spectrometer.
The obtained results are summarized in Table 1.
[0030]
[Table 1]
Figure 0003809088
[0031]
【The invention's effect】
In the dephosphorizing material of the present invention, at least the surface layer portion of the granular material having an average particle diameter of 0.5 to 100 mm capable of eluting calcium ions is oxidized at a pressure of 0.2 to 20 MPa and 30 to 200 ° C. it is treated carbonated by carbon, since pH in the center of the powder or granular material is one that has been made higher than the pH of the surface layer portion has a dissolution of moderate calcium, effectively and easily phosphorus It becomes possible to remove phosphorus from the contained water.

Claims (1)

カルシウムイオンを溶出可能な平均粒径0.5〜100mmの粉粒体の少なくとも表層部が、0.2〜20MPa、30〜200℃の加圧加温下で二酸化炭素によって炭酸化処理されてなり、該粉粒体の中心部のpHが、表層部のpHより高くなされていることを特徴とする脱リン材。At least the surface layer portion of the granular material elutable average particle size 0.5~100mm calcium ions, 0.2~20MPa, are treated carbonation made by carbon dioxide under pressure and heating of 30 to 200 ° C. A dephosphorization material characterized in that the pH of the central part of the granular material is higher than the pH of the surface layer part.
JP2001319794A 2001-10-17 2001-10-17 Dephosphorization material Expired - Fee Related JP3809088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001319794A JP3809088B2 (en) 2001-10-17 2001-10-17 Dephosphorization material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001319794A JP3809088B2 (en) 2001-10-17 2001-10-17 Dephosphorization material

Publications (2)

Publication Number Publication Date
JP2003117566A JP2003117566A (en) 2003-04-22
JP3809088B2 true JP3809088B2 (en) 2006-08-16

Family

ID=19137298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001319794A Expired - Fee Related JP3809088B2 (en) 2001-10-17 2001-10-17 Dephosphorization material

Country Status (1)

Country Link
JP (1) JP3809088B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62183898A (en) * 1986-02-10 1987-08-12 Onoda Cement Co Ltd Method for dephosphorization of sewage containing phosphorus
JPH0342096A (en) * 1989-04-21 1991-02-22 Shigenobu Kasamatsu Method for removing phosphate ion and sulfate ion in water
JP3386225B2 (en) * 1993-03-04 2003-03-17 クリオン株式会社 Method for producing carbonic acid-cured molded product and precursor thereof, and moisture absorbing / releasing material comprising the molded product
JP3391544B2 (en) * 1994-04-20 2003-03-31 クリオン株式会社 Humidity control material and its manufacturing method
JP3627988B2 (en) * 1994-12-28 2005-03-09 クリオン株式会社 Dephosphorization material and dephosphorization method using the same
JP2934826B2 (en) * 1996-03-19 1999-08-16 工業技術院長 Method for producing acid-resistant calcium silicate filter aid
JP3308196B2 (en) * 1996-12-28 2002-07-29 三菱マテリアル株式会社 Manufacturing method of phosphorus removal material
JPH119989A (en) * 1997-06-23 1999-01-19 Ootake Seramu Kk Ceramic adsorber and its manufacture
JP3379924B2 (en) * 1999-10-18 2003-02-24 株式会社ホクコン Adsorbent
JP2001259414A (en) * 2000-03-23 2001-09-25 Mitsubishi Materials Corp Phosphorus recovering material

Also Published As

Publication number Publication date
JP2003117566A (en) 2003-04-22

Similar Documents

Publication Publication Date Title
Lu et al. Removal mechanism of phosphate from aqueous solution by fly ash
CN103626276B (en) The composite dephosphorizing agent of a kind of phosphorus-containing wastewater and application process thereof
Yuan et al. Kinetic and thermodynamic studies on the phosphate adsorption removal by dolomite mineral
Momberg et al. The removal of phosphate by hydroxyapatite and struvite crystallisation in South Africa
Yang et al. Phosphate recovery through adsorption assisted precipitation using novel precipitation material developed from building waste: behavior and mechanism
CN101774669B (en) Composite dephosphorizing agent for treating acidic wastewater containing phosphorus and preparation and application methods thereof
CN102115234A (en) Preparation method of flocculant capable of removing phosphate from red mud
CN114225905A (en) Adsorbing material and preparation method and application thereof
CN101774712A (en) Method for removing low-valence inorganic phosphorus in waste water
JP2005028281A (en) Composite adsorbent and method for wastewater treatment by using the adsorbent
Zhou et al. Preparation of nano‐structured pig bone hydroxyapatite for high‐efficiency adsorption of Pb2+ from aqueous solution
CA2618170A1 (en) Coagulant useful in wastewater treatment and process for preparing thereof
Li et al. Enhanced removal of phosphate by electrogenerated iron combined with mechanically activated calcite
Hermassi et al. Detrimental effects of magnesium (II) on hydroxyapatite precipitation from synthetic industrial brines
JPH0427898B2 (en)
JP3809088B2 (en) Dephosphorization material
JP4631425B2 (en) Method and apparatus for treating fluorine-containing wastewater containing phosphoric acid
KR101269140B1 (en) Manufacturing method of Phosphorus Absorbent with Hydroxide
CN103601311A (en) Method for removing fluorine, phosphor, and arsenic from tungsten ion exchange wastewater
Deng et al. The surface regulation of calcite for defluoridation by fluorapatite-induced crystallization
JP2002205077A (en) Method and apparatus for treating organic sewage
Sollo Jr et al. Fluoride removal from potable water supplies
JP3809087B2 (en) Manufacturing method of dephosphorization material
JP2003305479A (en) Method for producing dephosphorizing material
KR101707769B1 (en) Water treatment agent manufacturing method and a water treatment agent is made by him

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees