JP3386225B2 - Method for producing carbonic acid-cured molded product and precursor thereof, and moisture absorbing / releasing material comprising the molded product - Google Patents

Method for producing carbonic acid-cured molded product and precursor thereof, and moisture absorbing / releasing material comprising the molded product

Info

Publication number
JP3386225B2
JP3386225B2 JP7242794A JP7242794A JP3386225B2 JP 3386225 B2 JP3386225 B2 JP 3386225B2 JP 7242794 A JP7242794 A JP 7242794A JP 7242794 A JP7242794 A JP 7242794A JP 3386225 B2 JP3386225 B2 JP 3386225B2
Authority
JP
Japan
Prior art keywords
precursor
cured molded
weight
molded product
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7242794A
Other languages
Japanese (ja)
Other versions
JPH0725679A (en
Inventor
敏史 寺村
紀文 井須
Original Assignee
クリオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クリオン株式会社 filed Critical クリオン株式会社
Priority to JP7242794A priority Critical patent/JP3386225B2/en
Publication of JPH0725679A publication Critical patent/JPH0725679A/en
Application granted granted Critical
Publication of JP3386225B2 publication Critical patent/JP3386225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ケイ酸カルシウム水和
物と炭酸ガスとの反応を利用して、建物の室内の湿度を
調整する機能、すなわち、吸放湿性に優れた建築材料、
土木用資材又はろ過材として有用な、低比重でかつ高強
度な炭酸硬化成形体及びそれを得るのに有効な前駆体の
製造方法並びに前記硬化成形体の用途に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention utilizes a reaction between calcium silicate hydrate and carbon dioxide gas to adjust the humidity inside a building, that is, a building material excellent in moisture absorption and desorption.
The present invention relates to a carbonic acid-cured molded product having a low specific gravity and high strength, which is useful as a civil engineering material or a filtering material, a method for producing a precursor effective for obtaining the same, and an application of the cured molded product.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来か
ら、軽量気泡コンクリートの成形体を炭酸化反応させる
技術は公知である(特公昭55−23787号公報の比
較例2の欄)。しかしながら、この技術を特に工夫を凝
らすことなく実施してみると、炭酸化反応により得られ
た硬化体(以下炭酸化硬化成形体という)は強度低下を
起こしたり、亀裂を発生させたりして、いわゆる中性化
劣性を生じるという問題がある。例えば、軽量気泡コン
クリートの代表例であるALCの成形体は通常15〜1
8kgf/cmの曲げ強度を有しているが、この成形
体からの炭酸化硬化成形体の曲げ強度は0〜10kgf
/cmと低下する。さらに曲げ強度低下のみならず、
材料の寸法が大きくなるほど亀裂が多数発生し、材料自
体の利用価値もなくなるという問題もある。
2. Description of the Related Art Conventionally, a technique for carbonating a molded body of lightweight cellular concrete is known (column of Comparative Example 2 of Japanese Patent Publication No. 55-23787). However, if this technique is carried out without particular ingenuity, the cured product obtained by the carbonation reaction (hereinafter referred to as the carbonation-cured molded product) may have reduced strength or cracks, There is a problem of so-called neutralization inferiority. For example, a molded product of ALC, which is a typical example of lightweight cellular concrete, is usually 15 to 1
It has a bending strength of 8 kgf / cm 2, but the bending strength of the carbonation-cured molded product from this molded product is 0 to 10 kgf.
/ Cm 2 and decrease. Furthermore, not only the bending strength is reduced,
There is also a problem that as the size of the material increases, more cracks occur and the utility value of the material itself is lost.

【0003】さらに、高密閉化及び高断熱化された近年
の建築物では、湿度変化に伴う弊害が発生している。例
えば、室内で発生した水分が壁面で結露することによっ
て、(1)カビを発生させ、美観上を損なう。(2)建
物自体の寿命を縮める。(3)カビやダニの発生により
住人の健康障害を引き起こす。逆に極端な乾燥状態にお
いては住人の喉を痛めたり、建物、家具、絵画等へ悪影
響を与える。このような弊害や悪影響に対処するために
従来吸放湿性の優れた建築材料が使用されている。その
代表的なものとして木材、ケイ酸カルシウム材やゼオラ
イト複合材がある。木材は耐火性や寸法安定性に劣り、
ケイ酸カルシウム材及びゼオライト複合材は吸放湿量が
十分でないため、それらを使用した建物の室内は乾燥ぎ
みになるという問題がある。本発明の課題は、前記の問
題を最少限に抑制できる炭酸硬化成形体及びその前駆体
の製造方法並びに前記成形体の用途を提供することにあ
る。
Moreover, in recent years, highly hermetically sealed and highly heat-insulated buildings suffer from adverse effects due to changes in humidity. For example, the moisture generated in the room is condensed on the wall surface, which causes (1) mold to spoil the appearance. (2) Shorten the life of the building itself. (3) Occurrence of mold and mites causes health problems of residents. On the contrary, when it is extremely dry, it may hurt the residents' throat and adversely affect buildings, furniture and paintings. In order to deal with such adverse effects and adverse effects, building materials having excellent moisture absorption and desorption properties have been conventionally used. Typical examples are wood, calcium silicate materials and zeolite composite materials. Wood has poor fire resistance and dimensional stability,
Since the calcium silicate material and the zeolite composite material do not have sufficient moisture absorption and desorption amount, there is a problem that the interior of the building using them becomes completely dry. An object of the present invention is to provide a method for producing a carbonate-cured molded product and a precursor thereof, which can suppress the above problems to a minimum, and an application of the molded product.

【0004】[0004]

【課題を解決するための手段】本請求項1記載の発明は
前記の課題を解決するために、軽量気泡コンクリートの
粉粒体と水を混合すること、得られた混合物を加圧下で
成形すること及び得られた成形体を炭酸ガス雰囲気下で
養生するという手段を採用する。本請求項6の発明は、
軽量気泡コンクリートの粉粒体と水を混合すること及び
得られた混合物を加圧下成形するという手段を採用す
る。本請求項9の発明は請求項1の発明で得られた炭酸
硬化成形体を建物の室内の内壁等の吸放湿材等の用途に
使用することを要旨とする。
In order to solve the above-mentioned problems, the invention according to the first aspect of the present invention comprises mixing powdery particles of lightweight cellular concrete with water, and molding the resulting mixture under pressure. And that the obtained molded body is cured in a carbon dioxide atmosphere. The invention of claim 6 is
The mixing granular material and water lightweight concrete and the resulting mixture employing a means of molding under pressure. A ninth aspect of the present invention is characterized in that the carbonic acid-cured molded product obtained in the first aspect is used as a moisture absorbing / releasing material such as an inner wall of a room of a building.

【0005】[0005]

【作用】本発明の作用を物理的に説明すると次の通りで
ある。軽量気泡コンクリートの成形体を一旦粉粒体にし
てからその粉粒体と水との混合物から再度成形体にし、
それを炭酸化反応に処することによって前記粉粒体を経
由しない従来技術より曲げ強度の低下が抑制される理由
は、必ずしも明確でないが、次のように考えることがで
きる。
The operation of the present invention is physically explained as follows. Once the light-weight cellular concrete compact is made into a powder, then the mixture of the powder and water is made into a compact again.
The reason why the decrease in bending strength is suppressed by subjecting it to a carbonation reaction as compared with the prior art that does not go through the granular material is not always clear, but it can be considered as follows.

【0006】普通コンクリートの炭酸化反応で見られる
収縮現象{「コンクリートのひび割れ総合資料」第29
9〜900頁(1977年)中部開発経営センター編}
は、珪酸質原料、石灰質原料及び水から製造された軽量
気泡コンクリート成形体の炭酸化反応にも見られる。軽
量気泡コンクリートが炭酸化によって収縮するとき、そ
の組織が均質的かつ全体的に収縮すればよいのである
が、概念としてブロックを形成しながら収縮する。これ
から微視的、巨視的な亀裂を生む。また、炭酸化反応に
処される成形体が大型になると、炭酸化反応は表面から
生じ、これが炭酸化硬化成形体全体の強度低下になって
顕在化する。
Shrinkage phenomenon observed in carbonation reaction of ordinary concrete {"Comprehensive data on cracks in concrete" No. 29
9-900 pages (1977) Chubu Development Management Center Edition}
Is also found in the carbonation reaction of lightweight cellular concrete compacts made from siliceous raw materials, calcareous raw materials and water. When lightweight cellular concrete shrinks due to carbonation, it is sufficient that its structure shrinks uniformly and entirely, but as a concept, it shrinks while forming blocks. From now on, microscopic and macroscopic cracks will be created. In addition, when the molded product subjected to the carbonation reaction becomes large , the carbonation reaction occurs from the surface, and this becomes apparent as the strength of the entire carbonation-cured molded product decreases.

【0007】これに対して、炭酸化反応させようとする
前駆体は、軽量気泡コンクリートの粉粒体を水の存在下
で加圧凝固させたものである。密接した粉粒体は炭酸化
反応による材料の収縮を低減し、亀裂を抑制する。ま
た、前駆体は粉粒体の凝固体であるので、炭酸ガスを前
駆体の内部まで入り込ませて成形体の炭酸化を均質に進
行させ、その結果炭酸化硬化成形体において全体として
強度低下を抑制する。
On the other hand, the precursor to be subjected to the carbonation reaction is a powder of light-weight cellular concrete which is pressure-solidified in the presence of water. The close-contacted granules reduce the shrinkage of the material due to the carbonation reaction and suppress cracking. Further, since the precursor is a solidified body of powder and granules, carbon dioxide gas is allowed to enter the inside of the precursor to uniformly promote carbonation of the molded body, and as a result, the strength of the carbonation-cured molded body as a whole is reduced. Suppress.

【0008】また、本発明の作用を化学的に把握する
と、次の通りである。軽量気泡コンクリートの粉粒体と
水とを混合すると、水が前記粉粒体同士を流動化する流
動化剤として作用するだけでなく、前駆体の強度発現用
のバインダーとして作用し、加えて、後の炭酸化反応時
に炭酸ガスを溶解させて炭酸にする。次に得られた混合
物を加圧下で成形すると、所定の形状の成形体となる。
この成形体を炭酸ガスの雰囲気下で養生すると、その成
形体を構成している軽量気泡コンクリートのケイ酸カル
シウム水和物が炭酸の水素イオンにアタックされ、カル
シウムイオンを溶出する。
Further, the action of the present invention is chemically understood as follows. When powder and particles of lightweight cellular concrete are mixed with water, not only water acts as a fluidizing agent for fluidizing the particles, but also acts as a binder for strength development of the precursor, in addition, During the subsequent carbonation reaction, carbon dioxide is dissolved into carbon dioxide. Then, the obtained mixture is molded under pressure to obtain a molded product having a predetermined shape.
When this molded product is aged in an atmosphere of carbon dioxide gas, the calcium silicate hydrate of the light-weight cellular concrete forming the molded product is attacked by hydrogen ions of carbonic acid to elute calcium ions.

【0009】このカルシウムイオンは、炭酸水素イオン
又は炭酸イオンと反応して炭酸水素カルシウム又は炭酸
カルシウムになるとともに、炭酸硬化成形体強度を補
強する。カルシウムイオンが溶出されてしまったケイ酸
カルシウム水和物は結局細孔を多数有するシリカスケル
トンゲルになり、この細孔が炭酸硬化成形体の比表面積
の増大をもたらし、吸放湿の作用を発揮する。なお、シ
リカスケルトンは炭酸硬化成形体の断面を電子顕微鏡に
よる観察及びX線回折並びに、前記成形体の一部をサル
チル酸処理、塩酸処理及びアルカリ性溶液処理等により
順次処理する湿式分析を総合して判定できる。詳細は
「第47回セメント技術大会講演集」第450〜455
頁(1993年)及び「第45回セメント技術大会講演
集」第270〜275頁(1991年)に記載されてい
る。
This calcium ion reacts with hydrogen carbonate ion or carbonate ion to form calcium hydrogen carbonate or calcium carbonate, and reinforces the strength of the carbonic acid-cured molded product. Calcium silicate hydrate, from which calcium ions have been eluted, turns into a silica skeleton gel with many pores, and these pores increase the specific surface area of the carbonation-cured molded product, exerting the function of absorbing and releasing moisture. To do. The silica skeleton is obtained by observing the cross section of the carbonic acid-cured molded article with an electron microscope and X-ray diffraction, and by wet analysis in which a part of the molded body is sequentially treated by salicylic acid treatment, hydrochloric acid treatment, alkaline solution treatment and the like. You can judge. For details, see “The 47th Cement Technology Conference Lectures”, 450-455.
Page (1993) and "Proceedings of the 45th Cement Technology Conference", pages 270-275 (1991).

【0010】次の、本発明の適用範囲を説明する。本発
明に使用される軽量気泡コンクリートは、ケイ酸質原料
及び石灰質原料を主成分とする水スラリーにアルミニウ
ム金属粉、有機系発泡剤又は軽量骨材を混入し、型枠打
設して硬化させた後オートクレーブ養生し又は蒸気養生
して製造されたものであり、カルシウムを酸化カルシウ
ム換算で10〜35重量%含有する。このような軽量気
泡コンクリートの代表例としてALCがある。
The scope of application of the present invention will be described below. The lightweight cellular concrete used in the present invention is obtained by mixing aluminum metal powder, an organic foaming agent or a lightweight aggregate into a water slurry containing siliceous raw materials and calcareous raw materials as main components, and setting it in a mold to cure it. After that, it is produced by autoclaving or steam curing, and contains 10 to 35% by weight of calcium in terms of calcium oxide. ALC is a typical example of such lightweight cellular concrete.

【0011】本発明の前駆体の原料は、前記のように製
造された軽量気泡コンクリートの成形体を破砕・粉砕す
ることにより得られた粉粒体であるが、場合によって前
記成形体を装飾加工するとき発生する研削粉粒体を利用
することができる。この粉粒体の粉粒度は、前駆体及び
炭酸硬化成形体の物性、特に強度に大きく影響を及ぼ
す。高強度を有する炭酸化硬化成形体を得るには軽量気
泡コンクリートの粉粒体としてブレーン測定法で0.5
〜1.2m/g(ブレーン値)になるように粉粒度を
調整した方がよい。
The precursor material of the present invention is a powder or granular material obtained by crushing and crushing the lightweight cellular concrete compact produced as described above. It is possible to utilize the grinding powder particles that are generated during the process. The powder particle size of the powder granules greatly affects the physical properties of the precursor and the carbonic acid-cured molded product, particularly the strength. In order to obtain a carbonation-cured molded product having high strength, it is used as a powder of light-weight cellular concrete in 0.5 by the Blaine measurement method.
It is better to adjust the powder particle size so that the powder particle size is about 1.2 m 2 / g (Blaine value).

【0012】ブレーン値が0.5m/g未満の場合
は、加圧成形による粉粒体同士の接触頻度が少なくなる
ので、前駆体の強度が低くなり、その結果その後の炭酸
養生によって得られた成形体の強度も低くなる。従っ
て、大型炭酸化硬化成形体の製造時に同硬化成形体に亀
裂が入り易くなる。一方ブレーン値が1.2m/gよ
りも大きい粉粒体を使用すると、粉砕に要するエネルギ
ーが多大になる。また、加圧成形の際に加圧能力の大き
なプレス機が必要となる。
When the Blaine value is less than 0.5 m 2 / g, the frequency of contact between the powder and granules due to pressure molding becomes low, so that the strength of the precursor becomes low and, as a result, the carbon dioxide is obtained by subsequent carbonation. Also, the strength of the molded body becomes low. Therefore, when the large-sized carbonation-cured molded product is manufactured, the cured molded product is easily cracked. On the other hand, when powder particles having a Blaine value of more than 1.2 m 2 / g are used, the energy required for pulverization becomes large. In addition, a press machine having a large pressurizing capacity is required for press molding.

【0013】また、軽量気泡コンクリートの粉粒体に混
合する水は、前記した作用を発揮させるために、前記粉
粒体100重量部に対して40〜60重量部の割合で使
用されることが望ましい。水の混合量が40重量部未満
であると、前駆体製造時に、すなわち、プレス成形時に
水による粒子間の結合が十分でないため、前駆体自体の
強度が小さくなるだけでなく、その前駆体の炭酸化反
応、特に圧縮された炭酸ガスの強制的な反応において、
前駆体は損傷を受けて強度が低くなる。また、前駆体を
大型化するとその周縁部から中心に向かって亀裂が発生
し易くなる。
Further, the water mixed with the particles of the lightweight cellular concrete may be used in an amount of 40 to 60 parts by weight with respect to 100 parts by weight of the particles in order to exert the above-mentioned effects. desirable. If the amount of water mixed is less than 40 parts by weight, the strength of the precursor itself is reduced and the strength of the precursor itself is reduced because the bond between particles due to water is insufficient during the production of the precursor, that is, during press molding. In the carbonation reaction, especially the forced reaction of compressed carbon dioxide,
The precursor is damaged and becomes less strong. Also, the precursor
When the size is increased, cracks are likely to occur from the peripheral portion toward the center.

【0014】他方、水の混合量が60重量部を越えると
前駆体の成形時に余剰の水を出すために余分な加圧エネ
ルギーを必要とする。場合によっては余剰の水とともに
原料が流出して圧力が上昇せず、炭酸化硬化成形体の比
重及び強度が低下する。さらに、炭酸化硬化成形体が層
間剥離を起こす。加圧成形方法としては一軸プレス、圧
延、押出し等の加圧成形が利用できる。しかし、加圧条
件は前駆体及び炭酸化硬化成形体の物性に大きく影響を
与えるので、前駆体を製造する加圧力は50〜300k
gf/cmの範囲が望ましい。
On the other hand, if the amount of water mixed exceeds 60 parts by weight, extra pressurizing energy is required to produce excess water during the molding of the precursor. In some cases, the raw material flows out with excess water, the pressure does not rise, and the specific gravity and strength of the carbonation-cured molded product decrease. Further, the carbonation-cured molded product causes delamination. As a pressure molding method, pressure molding such as uniaxial pressing, rolling, and extrusion can be used. However, since the pressurizing condition has a great influence on the physical properties of the precursor and the carbonation-cured molded product, the pressing force for manufacturing the precursor is 50 to 300 k.
A range of gf / cm 2 is desirable.

【0015】加圧力が50kgf/cm未満では、成
形体は緻密にならず、成形体そのもののハンドリングが
困難になるばかりでなく、炭酸化によって亀裂が発生す
る。逆に300kgf/cmを越えると前駆体が緻密
になり過ぎて炭酸化反応が遅くなり、さらに、大型成形
体を作成する上で巨大なプレス機が必要になる。
If the applied pressure is less than 50 kgf / cm 2 , the molded body will not be dense, and it will be difficult to handle the molded body itself, and cracks will occur due to carbonation. On the other hand, if it exceeds 300 kgf / cm 2 , the precursor becomes too dense and the carbonation reaction slows down, and a huge press machine is required to prepare a large-sized compact.

【0016】以上のように製造された前駆体は単独で炭
酸化反応させても曲げ強度の低下が抑制され、炭酸化硬
化成形体製造用の優れた中間製品になる。そこで、この
中間製品を続いて炭酸ガス雰囲気下において炭酸化反応
に処せられる。反応条件として、炭酸ガスの濃度、温
度、相対湿度、圧力、反応前の真空工程の有無等がある
が、通常、炭酸ガス濃度は2〜100%、温度は室温〜
100℃、相対湿度は80%以上、圧力は大気圧〜10
気圧の範囲が工業的に好ましい。
The precursor produced as described above suppresses the decrease in bending strength even if it is subjected to a carbonation reaction alone, and becomes an excellent intermediate product for producing a carbonation-cured molded article. Therefore , this intermediate product is subsequently subjected to a carbonation reaction in a carbon dioxide atmosphere. The reaction conditions include the concentration of carbon dioxide, temperature, relative humidity, pressure, presence or absence of a vacuum step before the reaction, etc., but normally the concentration of carbon dioxide is 2 to 100%, and the temperature is room temperature to
100 ° C, relative humidity 80% or more, pressure is atmospheric pressure to 10
The range of atmospheric pressure is industrially preferable.

【0017】[0017]

【比較例1】次に、具体的に本発明の効果を比較例及び
実施例をもって説明する。まず、最初に出発原料から軽
量気泡コンクリートの成形体を得る方法及びその成形体
を粉砕することなく炭酸化反応させた実験を比較例とし
て示す。珪石粉末60重量部、石灰粉末17重量部、セ
メント20重量部及び石膏3重量部を水70重量部と共
に撹拌混合して、アルミニウム粉末の存在下で型枠に打
設した。打設して得られた原料スラリーを約3時間その
まま放置して発泡硬化させた。得られた発泡硬化物をオ
ートクレーブに入れて180℃、約10気圧の水蒸気雰
囲気下で約6時間養生することによりALC成形体を製
造した。
Comparative Example 1 Next, the effects of the present invention will be specifically described with reference to Comparative Examples and Examples. First, a method for obtaining a compact of lightweight cellular concrete from a starting material and an experiment in which the compact is subjected to a carbonation reaction without crushing are shown as comparative examples. 60 parts by weight of silica powder, 17 parts by weight of lime powder, 20 parts by weight of cement and 3 parts by weight of gypsum were stirred and mixed with 70 parts by weight of water, and the mixture was poured into a mold in the presence of aluminum powder. The raw material slurry obtained by casting was left as it was for about 3 hours to be foam-cured. The obtained foamed cured product was placed in an autoclave and cured in a steam atmosphere at 180 ° C. and about 10 atm for about 6 hours to produce an ALC molded body.

【0018】前記ALC成形体の主生成物はトバモライ
トであることがX線回折像から判明した。また、前記成
形体は比重0.52、圧縮強度62kgf/cm、曲
げ強度15kgf/cmで、BET法による比表面積
は、20.5m/gであった。この成形体を100×
100×20mmの大きさに切断して飽水状態にした後
温度30℃、相対湿度98%の雰囲気に制御した容器に
入れて、濃度3%の炭酸ガスを送入した。炭酸化反応を
20日行った後、得られた炭酸化硬化物中のカルシウム
量に対する炭酸化率を、酸処理による炭酸ガス発生量よ
り求めた。また前記炭酸化硬化物を100×25×20
mmの大きさに切断し、その比重及び曲げ強度を測定し
た。その結果を表1に比較例1として示した。
It was found from the X-ray diffraction pattern that the main product of the ALC molded product was tobermorite. Further, the shaped body is a specific gravity 0.52, compressive strength 62kgf / cm 2, the flexural strength 15 kgf / cm 2, the specific surface area by BET method was 20.5 m 2 / g. 100 × this molded body
After cutting into a size of 100 × 20 mm to make it saturate, it was placed in a container controlled to have an atmosphere of a temperature of 30 ° C. and a relative humidity of 98%, and carbon dioxide gas having a concentration of 3% was fed. After carrying out the carbonation reaction for 20 days, the carbonation rate with respect to the amount of calcium in the obtained carbonation cured product was determined from the amount of carbon dioxide gas generated by the acid treatment. In addition, the carbonation cured product is 100 × 25 × 20
It was cut into a size of mm and its specific gravity and bending strength were measured. The results are shown in Table 1 as Comparative Example 1.

【0019】[0019]

【実施例1】次に比較例1で製造したALC成形体を使
用して、本発明を具体化した実施例を示す。まず、比較
例1で製造したALC成形体を粉砕した。このとき、粉
砕に要する時間を変えてブレーン値0.87、1.07
及び1.15m/gの粉粒体を製造した。これらの粉
粒体にそれの100重量部を基準にして50重量%の水
を加えて均一に混合した後、型枠に入れ、100kgf
/cm 圧力で加圧成形し、比較例1と同じ大きさの
成形体を得た。得られた成形体の乾燥時の比重は1.
0、曲げ強度は15〜17kgf/cmであった。こ
の成形体を温度30℃、相対湿度98%の雰囲気に設定
した容器内に静置し、濃度3%の炭酸ガスを送り込ん
だ。炭酸化反応時間を種々変えて、容器から炭酸化硬化
成形体を取り出し、105℃で24時間乾燥させた後、
反応率、比重及び曲げ強度等を測定した。その結果を表
1に示す。炭酸化反応とともに比重及び曲げ強度が増加
していた。特にブレーン値が増加すると、反応率が同じ
でも強度増加量が大きい。
Example 1 Next, an example in which the present invention is embodied using the ALC molded body produced in Comparative Example 1 will be shown. First, the ALC molded body manufactured in Comparative Example 1 was crushed. At this time, the Blaine values of 0.87 and 1.07 were changed by changing the time required for crushing.
And 1.15 m 2 / g of granules were produced. 50% by weight of water based on 100 parts by weight of these powders and granules was added and uniformly mixed, and then placed in a mold to obtain 100 kgf.
Pressure molding was performed at a pressure of / cm 2 to obtain a molded body having the same size as in Comparative Example 1. The specific gravity of the obtained molded product when dried was 1.
0, the bending strength was 15 to 17 kgf / cm 2 . This molded body was allowed to stand still in a container set in an atmosphere having a temperature of 30 ° C. and a relative humidity of 98%, and carbon dioxide gas having a concentration of 3% was fed. After changing the carbonation reaction time variously, the carbonation-cured molded product was taken out of the container and dried at 105 ° C. for 24 hours,
The reaction rate, specific gravity and bending strength were measured. The results are shown in Table 1. The specific gravity and bending strength increased with the carbonation reaction. Particularly increased Blaine Then, a large strength increase reaction rate even identical.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【実施例2】この実施例ではALC成形体中の水分が炭
酸化硬化物の物性にどのように影響を与えるかを見る。
比較例1で製造したALC成形体をそのブレーン値0.
87cm/gになるように粉砕した。得られた粉粒体
を105℃で重量が恒量になるまで約24時間乾燥させ
た。この乾燥した粉粒体に対して、水を25〜65重量
部まで5重量部毎に添加して両者が均一になるよう混合
した。混合された粉粒体を型枠に入れ、100kgf/
cmの圧力で加圧成形した。脱型した成形体を密閉容
器に入れて真空ポンプで約−50mmHgまで脱気し、
続いて炭酸ガスを2気圧まで送入した。なお、温度は制
御せず、室温20〜28℃の範囲で炭酸化反応を行なっ
た。この条件でも成形体は炭酸化反応に伴う発熱で60
〜80℃まで温度上昇する。加圧ガスを送入後、約10
時間で炭酸化硬化成形体を取り出し、105℃で24時
間乾燥させた後、炭酸化硬化成形体の反応率、比重及び
曲げ強度を測定して、図1に示す結果を得た。
Example 2 In this example, how the water content in the ALC molded product affects the physical properties of the carbonation cured product is examined.
The ALC molded body produced in Comparative Example 1 had a Blaine value of 0.
It was crushed to 87 cm 2 / g. The obtained granular material was dried at 105 ° C. for about 24 hours until the weight became constant. 25 to 65 parts by weight of water was added to the dried powdery granules every 5 parts by weight, and they were mixed so as to be uniform. Put the mixed powder and granules in a mold and put 100kgf /
It was pressure molded at a pressure of cm 2 . Put the demolded compact into a closed container and degas it with a vacuum pump to about -50 mmHg.
Subsequently, carbon dioxide gas was fed up to 2 atm. The temperature was not controlled, and the carbonation reaction was carried out at room temperature in the range of 20 to 28 ° C. Even under these conditions, the molded body generated heat due to the carbonation reaction, and the temperature was 60
Temperature rises to ~ 80 ° C. After sending pressurized gas, about 10
The carbonation-cured molded body was taken out for a certain period of time, dried at 105 ° C. for 24 hours, and then the reaction rate, specific gravity and bending strength of the carbonated cured molded body were measured, and the results shown in FIG. 1 were obtained.

【0022】この実施例では炭酸化硬化成形体の炭酸化
率は90%以上になった。粉粒体に添加した水が40重
量部未満であると、同一加圧条件下で比重は低く、強度
も高くない。また本実施例のように圧縮ガスによる急速
な反応では炭酸化硬化成形体が損傷を受け、硬化成形体
の周縁部から中心に向かって、亀裂の発生が確認でき
た。一方粉粒体に添加した水が60重量部を越えると、
粉粒体の流動性が急激に高まり、水の排出とともに粉粒
体自体が一部流れ出した。この場合には強度も低く、破
断するような亀裂が発生するか、または層間剥離が発生
する。層間剥離は加圧成形時に余剰の水が加圧方向と直
交する方向に移動するため生じると考えられる。
In this example, the carbonation rate of the carbonation-cured molded product was 90% or more. If the amount of water added to the granules is less than 40 parts by weight, the specific gravity is low and the strength is not high under the same pressure condition. Further, as in the present example, the rapid reaction by the compressed gas damaged the carbonation-cured molded product, and it was confirmed that cracks were generated from the peripheral portion of the cured molded product toward the center. On the other hand, if the amount of water added to the granules exceeds 60 parts by weight,
The fluidity of the granular material sharply increased, and part of the granular material itself flowed out as the water was discharged. In this case, the strength is also low, and cracks such as breaking occur or delamination occurs. It is considered that delamination occurs because excess water moves in a direction orthogonal to the pressing direction during pressure molding.

【0023】[0023]

【実施例3】粉粒体と水との混合物を加圧成形して成形
体を製造するとき、加圧力が炭酸化硬化成形体の物性に
どのように影響を与えるかを見た。比較例1で作成した
ALC成形体をブレーン値が1.07m/gになるよ
うに粉砕した。得られた粉粒体100重量部につき含水
量が50重量になるように水を添加し、両者を均一に混
合した。水と混合された粉粒体を型枠に入れて加圧成形
した。
[Example 3] When a mixture of powder and granules and water was pressure-molded to produce a molded body, it was observed how the applied pressure affects the physical properties of the carbonation-cured molded body. The ALC molded body prepared in Comparative Example 1 was pulverized to a Blaine value of 1.07 m 2 / g. Water was added so that the water content was 50 parts by weight per 100 parts by weight of the obtained powder and granules, and both were uniformly mixed. The granules mixed with water were put into a mold and pressure-molded.

【0024】脱型後で得られた前駆体としての成形体を
密閉容器に入れ、真空ポンブで約−50mmHgまで脱
気し、続いて炭酸ガスを2気圧まで送入して炭酸化反応
を行なった。なお、反応の温度は制御せず、室温20〜
28℃の範囲で炭酸化反応を行なった。加圧ガス送入
後、約1時間で炭酸化硬化成形体を取り出し、105℃
で24時間乾燥させた後、炭酸化硬化成形体の反応率、
比重及び曲げ強度を測定して、表2に示す結果を得た。
本実施例では上記養生条件で前駆体は70%以上炭酸化
して炭酸化硬化成形体になる。加圧力が50kg/cm
以下では比重、強度が低いだけでなく、炭酸化硬化成
形体の周縁部から中心部に向かって亀裂が発生した。ま
た、表面には粉粒体の一部が成形体になり得ず残ってい
るのが観察された。
A molded body as a precursor obtained after demolding was placed in a closed container and deaerated to about -50 mmHg by a vacuum pump, and then carbon dioxide gas was fed up to 2 atm to carry out a carbonation reaction. It was The reaction temperature is not controlled and the room temperature is 20 to
Carbonation reaction was carried out in the range of 28 ° C. About 1 hour after feeding the pressurized gas, the carbonation-cured molded product was taken out and kept at 105 ° C.
After drying for 24 hours, the reaction rate of the carbonation-cured molded product,
The specific gravity and bending strength were measured and the results shown in Table 2 were obtained.
In this embodiment , 70% or more of the precursor is carbonated under the above curing conditions to form a carbonation-cured molded product. Applied pressure is 50kg / cm
When it was 2 or less, not only the specific gravity and the strength were low, but also cracks were generated from the peripheral portion to the central portion of the carbonation-cured molded product. Further, it was observed that a part of the powder and granules could not be formed into a compact and remained on the surface.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【実施例4】実施例1の表1に記載したサンプル番号2
−9と同じ条件で寸法100×100×12mmの炭酸
化硬化成形体からなる成形体を作成した。比較のため周
知のALC、石膏ボード、ヒノキ材、ラワン合板(合
板)、繊維補強ケイ酸カルシウム系人造木材(人造木
材)、ゼオライトセメントパネル(ゼオライト板)を前
記同様の大きさに切り出した。これらの試験体を60℃
の通風状態下で24時間乾燥させた後、100×100
mmの1面を残して後の5面をアルミニウム製粘着テー
プで覆った。これらの試験体を秤量後恒温恒湿チャンバ
ーに入れて、20℃、相対湿度60%と20℃相対湿度
30%の条件を交互に96時間ずつ保持し、経時的に秤
量することによって吸湿量を測定した。その結果を単位
面積当たりの吸湿量として図2に示す。
Example 4 Sample No. 2 described in Table 1 of Example 1
Under the same conditions as in -9, a molded body made of a carbonation-cured molded body having dimensions of 100 x 100 x 12 mm was prepared. For comparison, well-known ALC, gypsum board, cypress wood, lauan plywood (plywood), fiber-reinforced calcium silicate-based artificial wood (artificial wood), and zeolite cement panel (zeolite board) were cut into the same size as above. These test specimens at 60 ° C
100 x 100 after drying for 24 hours under
The remaining 5 surfaces were covered with an aluminum adhesive tape, leaving one mm surface. These test pieces were weighed and then placed in a constant temperature and constant humidity chamber, and the conditions of 20 ° C., relative humidity 60% and 20 ° C. relative humidity 30% were alternately held for 96 hours respectively, and the moisture absorption amount was measured by weighing over time. It was measured. The result is shown in FIG. 2 as the amount of moisture absorption per unit area.

【0027】その結果、図2から明らかなように乾燥状
態からの初期の吸湿量は、石膏ボードで約30g/
、ALCて約60g/m、ヒノキ材及び合板等の
天然木材で約200g/m、人造木材及びゼオライト
板で約200g/mであるのに対して、本発明の成形
体のそれは約630g/mと大きかった。さらに、湿
度変化を伴う吸湿量の変化も天然木材、人造木材及びゼ
オライト板の吸湿量の変化は約150g/mであるの
に対して、本発明に係る成形体の吸湿量の変化は約33
0g/mと大きく天然木材よりも優れた吸放湿性を示
す。本発明はその根本的技術思想を踏襲して発明の効果
を著しく損なわない限度において前記実施の態様を一部
変更して実施することができる。例えば、前駆体、炭酸
化硬化成形体又は吸放湿材の中に補強繊維、充填材、バ
インダー等を混入することができる。この場合、補強繊
維としては、木質繊維、合成繊維等の有機質繊維、ガラ
ス繊維、炭素繊維、各種鉱物繊維などの無機質繊維を使
用することができる。炭酸化反応においては常温でかつ
中性で行う方がよい。ガラス繊維や合成繊維を使用する
ことができるからである。補強繊維の混入量は成形体の
強度や靭性を向上させる場合は0.5〜5.0容量%添
加される。
As a result, as is clear from FIG. 2, the initial moisture absorption from the dry state is about 30 g / gypsum board.
m 2, ALC Te about 60 g / m 2, about 200 g / m 2 of natural wood such as Hinoki and plywood, whereas about 200 g / m 2 in artificial wood and zeolites plate, the molded article of the present invention It was as large as about 630 g / m 2 . Further, moisture absorption change natural wood with humidity changes, while the change in the moisture absorption of artificial wood and zeolite plate is about 150 g / m 2, moisture absorption amount of change of a molded article according to the present invention is about 33
It is as large as 0 g / m 2 and exhibits a moisture absorption / release property superior to that of natural wood. The present invention can be carried out by partially modifying the above-described embodiment within the scope of not significantly impairing the effects of the invention by following the fundamental technical idea. For example, reinforcing fibers, fillers, binders and the like can be mixed in the precursor, the carbonation-cured molded product or the moisture absorbing / releasing material. In this case, as the reinforcing fibers, it is possible to use organic fibers such as wood fibers and synthetic fibers, inorganic fibers such as glass fibers, carbon fibers and various mineral fibers. The carbonation reaction is preferably performed at room temperature and neutrality. This is because glass fibers and synthetic fibers can be used. The reinforcing fiber is added in an amount of 0.5 to 5.0% by volume to improve the strength and toughness of the molded product.

【0028】前記充填材としては、珪砂、ケイ藻土、前
記以外の粘土鉱物、非晶質シリカ、スラグ、フライアッ
シュ、シラスバルーン、軽量骨材、樹脂粒子等の普通の
セメント成形体に使用可能な充填材を50容量%以下の
範囲で使用できる。大型成形体を製造する場合は前駆体
に高い強度が要求されるので、バインダーを使用した方
がよい。その場合、親水性を有するバインダーで、ポリ
ビニルアルコールやポリエチレングリコール等が使用さ
れる。
The filler can be used for ordinary cement moldings such as silica sand, diatomaceous earth, clay minerals other than the above, amorphous silica, slag, fly ash, shirasu balloon, lightweight aggregate, resin particles and the like. Various fillers can be used in the range of 50% by volume or less. When manufacturing a large-sized molded product, a high strength is required for the precursor, and thus it is better to use a binder. In that case, polyvinyl alcohol, polyethylene glycol, or the like is used as the hydrophilic binder.

【0029】本発明に係る成形体は上記したように優れ
た吸放湿性を示すので、住宅の内装用建材として間仕切
り、床、天井、押入れの壁面、美術品の収納容器、博物
館、美術館の展示室や倉庫の内壁等の用途に有効に利用
できる。
Since the molded product according to the present invention exhibits excellent moisture absorption and desorption properties as described above, it is used as a building material for interiors of houses such as partitions, floors, ceilings, wall surfaces of closets, storage containers for works of art, exhibits in museums and museums. It can be effectively used for interior walls of rooms and warehouses.

【0030】[0030]

【発明の効果】以上詳述したように、軽量気泡コンクリ
ートの成形体をそのまま炭酸化する従来技術と異なり、
前記成形体を一旦粉粒体にしてからその粉粒体を特定の
媒体と混合した後、成形し、次いて炭酸化反応に処して
いるので、簡単な方法で炭酸硬化成形体又は成形体の強
度低下や亀裂等、いわゆる中性化劣性を生じるという問
題を解消できるだけでなく、吸放湿性を著しく高めるこ
とができるという優れた効果を発揮する。
As described above in detail, unlike the prior art in which the lightweight cellular concrete compact is carbonated as it is,
After the molded body is once formed into a powder and granules, the powder and granules are mixed with a specific medium, molded, and then subjected to a carbonation reaction. Not only can the problems of so-called neutralization inferiority, such as strength reduction and cracking, be solved, but the moisture absorption and desorption properties can be significantly enhanced, which is an excellent effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例3における含水量と曲げ強度及び比重の
関係を示す線図。
FIG. 1 is a diagram showing the relationship between water content, flexural strength and specific gravity in Example 3.

【図2】実施例4おける成形体の吸放湿性を示す線図。FIG. 2 is a diagram showing the moisture absorptive and desorptive properties of a molded article in Example 4.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C04B 38/00 - 38/10 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) C04B 38/00-38/10

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 軽量気泡コンクリートの粉粒体と水を混
合すること、得られた混合物を加圧下で成形すること及
び得られた成形体を炭酸ガス雰囲気下で養生することか
らなる炭酸硬化成形体を製造する方法。
1. Carbonation-hardening molding comprising mixing powder of light-weight cellular concrete with water, molding the mixture obtained under pressure, and curing the obtained molding in a carbon dioxide atmosphere. How to make a body.
【請求項2】 軽量気泡コンクリートがトバモライトを
含有している請求項1記載の炭酸硬化成形体を製造する
方法。
2. The method for producing a carbonate-cured molded article according to claim 1, wherein the lightweight cellular concrete contains tobermorite.
【請求項3】 前記粉粒体の比表面積がブレーン測定法
で0.5〜1.2m/gである請求項1記載の炭酸硬
化成形体を製造する方法。
3. The method for producing a carbonic acid-cured molded article according to claim 1, wherein the specific surface area of the powdery or granular material is 0.5 to 1.2 m 2 / g by the Blaine measurement method.
【請求項4】 前記混合物が50〜300kgf/cm4. The mixture is 50 to 300 kgf / cm.
Two の圧力で加圧される請求項1記載の炭酸硬化成形体をThe carbonic acid-cured molded article according to claim 1, which is pressurized at a pressure of
製造する方法。Method of manufacturing.
【請求項5】 水が粉粒体100重量部に対して40
〜60重量部の割合で混合される請求項1記載の炭酸硬
化成形体を製造する方法。
5. Water is added to 40 parts by weight of 100 parts by weight of powder and granules.
The method for producing a carbonic acid-cured molded article according to claim 1, wherein the carbonic acid-cured molded article is mixed in a proportion of about 60 parts by weight.
【請求項6】 軽量気泡コンクリートの粉粒体と水を混
合すること及び得られた混合物を加圧下で成形すること
からなる炭酸硬化成形体用の前駆体を製造する方法。
6. A method for producing a precursor for a carbonate-cured molded body, which comprises mixing water-mixed powder of light-weight cellular concrete with water and molding the resulting mixture under pressure.
【請求項7】 軽量気泡コンクリートがトバモライトを
含有している請求項6記載の炭酸硬化成形体用の前駆体
を製造する方法。
7. A method of lightweight cellular concrete to produce a precursor for carbonated cured molded article of claim 6 wherein containing the tobermorite.
【請求項8】 前記粉粒体の比表面積がブレーン測定法
で0.5〜1.2m/gであり、前記混合物が50〜
300kgf/cmの圧力で加圧される請求項6記載
の炭酸硬化成形体用の前駆体を製造する方法。
8. The specific surface area of the powder or granular material is 0.5~1.2m 2 / g in Blaine assay, wherein the mixture 50
The method for producing a precursor for a carbonate-cured molded article according to claim 6 , wherein the precursor is pressurized at a pressure of 300 kgf / cm 2 .
【請求項9】 水が粉粒体100重量部に対して40
〜60重量部の割合で混合される請求項6記載の炭酸硬
化成形体用の前駆体を製造する方法。
9. Water is added to 40 parts by weight of 100 parts by weight of powder and granules.
The method for producing a precursor for a carbonate-cured molded article according to claim 6 , wherein the precursor is mixed in a proportion of about 60 parts by weight.
【請求項10】 軽量気泡コンクリートの粉粒体の炭酸
硬化成形体であって、その成形体がシリカスケルトンゲ
ルを含有している吸放湿材。
10. A moisture absorbing / releasing material, which is a carbonate-cured molded product of a lightweight cellular concrete powder, the molded product containing a silica skeleton gel.
JP7242794A 1993-03-04 1994-03-03 Method for producing carbonic acid-cured molded product and precursor thereof, and moisture absorbing / releasing material comprising the molded product Expired - Fee Related JP3386225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7242794A JP3386225B2 (en) 1993-03-04 1994-03-03 Method for producing carbonic acid-cured molded product and precursor thereof, and moisture absorbing / releasing material comprising the molded product

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8507893 1993-03-04
JP5-85078 1993-03-04
JP7242794A JP3386225B2 (en) 1993-03-04 1994-03-03 Method for producing carbonic acid-cured molded product and precursor thereof, and moisture absorbing / releasing material comprising the molded product

Publications (2)

Publication Number Publication Date
JPH0725679A JPH0725679A (en) 1995-01-27
JP3386225B2 true JP3386225B2 (en) 2003-03-17

Family

ID=26413561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7242794A Expired - Fee Related JP3386225B2 (en) 1993-03-04 1994-03-03 Method for producing carbonic acid-cured molded product and precursor thereof, and moisture absorbing / releasing material comprising the molded product

Country Status (1)

Country Link
JP (1) JP3386225B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4664462B2 (en) * 1999-10-26 2011-04-06 クリオン株式会社 Method for producing carbonated cured body
JP3735233B2 (en) * 2000-04-19 2006-01-18 積水化学工業株式会社 Method for producing inorganic carbonized cured body
AU5257001A (en) * 2000-04-26 2001-11-07 Olympus Optical Co., Ltd. Holder mechanism
JP3212586B1 (en) * 2000-06-22 2001-09-25 クリオン株式会社 Humidity control building materials
JP3212588B1 (en) * 2000-06-23 2001-09-25 クリオン株式会社 Humidity control building material having deodorizing function and method for producing the same
JP3212587B1 (en) * 2000-06-23 2001-09-25 クリオン株式会社 Humidity control building materials
JP3212589B1 (en) * 2000-06-28 2001-09-25 クリオン株式会社 Humidity control building materials
JP3212591B1 (en) * 2000-07-14 2001-09-25 クリオン株式会社 Humidity control building materials
JP2002201085A (en) * 2000-12-27 2002-07-16 Clion Co Ltd Method of manufacturing carbonation cured compact
JP3809087B2 (en) * 2001-01-29 2006-08-16 積水化学工業株式会社 Manufacturing method of dephosphorization material
JP2002356385A (en) * 2001-06-01 2002-12-13 Clion Co Ltd Method of manufacturing carbon dioxide hardened compact
JP3809088B2 (en) * 2001-10-17 2006-08-16 積水化学工業株式会社 Dephosphorization material
JP2003236822A (en) * 2002-02-19 2003-08-26 Clion Co Ltd Method for manufacturing molding material and fixture for manufacture
JP2016164097A (en) * 2013-07-05 2016-09-08 旭化成建材株式会社 Inorganic foam panel
MX2016005719A (en) * 2013-11-05 2016-09-21 Kuraray Co Fiber-reinforced carbonated hydraulic inorganic molded plate and method for producing same.
WO2020046927A1 (en) * 2018-08-27 2020-03-05 Solidia Technologies, Inc. Multi-step curing of green bodies

Also Published As

Publication number Publication date
JPH0725679A (en) 1995-01-27

Similar Documents

Publication Publication Date Title
JP3386225B2 (en) Method for producing carbonic acid-cured molded product and precursor thereof, and moisture absorbing / releasing material comprising the molded product
US10040720B2 (en) Thermally insulating aerogel based rendering materials
US9150456B2 (en) Manufacture of articles from fly ash
CA2278517C (en) A light-weight material containing expanded perlite, and a process for producing same
CN100528791C (en) High-strength light concrete block and manufacturing method thereof
JP3391544B2 (en) Humidity control material and its manufacturing method
EP2799409A1 (en) Thermally insulating aerogel based rendering materials
CN103011896A (en) Foam concrete
RU2365555C2 (en) Granulated compositional filler for silicate wall products based on tripoli, diatomite and silica clay, composition of raw material mixture for silicate wall products manufacturing, method of obtaining silicate wall products and silicate wall product
RU2476402C2 (en) Gypsum mixture
WO1999042418A1 (en) Cured calcium silicate object with high strength
CN101244919B (en) Technique for producing loess foaming light brick
US3652310A (en) Method of producing lightweight, heat-insulating construction elements from lime and silicate and products thereof
JP3524963B2 (en) Conditioning gypsum board and method for producing the same
JP2000319074A (en) Production of lightweight carbonate hardened body
JP2001270766A (en) Inorganic board and humidity-controlling building material
JP2727287B2 (en) Manufacturing method of building materials for humidity control
JP2001240457A (en) Humidity conditioning formed article and method for producing the same
RU2426703C1 (en) Method to make granulated porous filler for concretes
JPH1033979A (en) Method of manufacturing humidity control material
JP2003267769A (en) Wood cement board and method of manufacturing it
JP2004043283A (en) Carbonated hardened body and its producing method
JP2003165762A (en) Moisture-adsorbing and releasing inorganic formed body
JP2003117911A (en) Method for manufacturing humidity controllable fiber plate containing composite natural mineral and humidity controllable fiber plate
JP2002160961A (en) Gypsum board having absorption and desorption properties of moisture

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140110

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees