JP3212587B1 - Humidity control building materials - Google Patents

Humidity control building materials

Info

Publication number
JP3212587B1
JP3212587B1 JP2000189690A JP2000189690A JP3212587B1 JP 3212587 B1 JP3212587 B1 JP 3212587B1 JP 2000189690 A JP2000189690 A JP 2000189690A JP 2000189690 A JP2000189690 A JP 2000189690A JP 3212587 B1 JP3212587 B1 JP 3212587B1
Authority
JP
Japan
Prior art keywords
humidity control
building material
aggregate
control building
humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000189690A
Other languages
Japanese (ja)
Other versions
JP2002012467A (en
Inventor
敏史 寺村
紀文 井須
憲次 稲垣
克己 平林
雅司 坂下
Original Assignee
クリオン株式会社
株式会社建材技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クリオン株式会社, 株式会社建材技術研究所 filed Critical クリオン株式会社
Priority to JP2000189690A priority Critical patent/JP3212587B1/en
Application granted granted Critical
Publication of JP3212587B1 publication Critical patent/JP3212587B1/en
Publication of JP2002012467A publication Critical patent/JP2002012467A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures

Abstract

【要約】 【課題】 湿気の吸放湿量、透湿性、および不燃性に優
れ、かつ建材として使用できる十分な強度を持った調湿
建材を提供する。 【解決手段】 主成分が炭酸カルシウムと非晶質シリカ
である成形体を炭酸硬化反応によって製造する。その成
形体は、窒素ガス吸着法により測定した比表面積が80
〜250m/g、平均細孔直径が1.5〜30.0n
mとなるようにし、かつ、その熱伝導率が0.4W/m
K以下となるようにする。
An object of the present invention is to provide a humidity control building material which is excellent in moisture absorption / desorption, moisture permeability, and nonflammability, and has sufficient strength to be used as a building material. SOLUTION: A molded article whose main components are calcium carbonate and amorphous silica is produced by a carbonic acid curing reaction. The molded product has a specific surface area of 80 as measured by a nitrogen gas adsorption method.
250250 m 2 / g, average pore diameter 1.5-30.0 n
m and its thermal conductivity is 0.4 W / m
K or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に不燃性に優れ
た無機系で、室内の湿度を調整する機能を持つ調湿建材
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a humidity control building material which is an inorganic material having excellent non-combustibility and has a function of controlling indoor humidity.

【0002】[0002]

【従来の技術】従来から調湿性のある建築材として、一
般に炭酸カルシウムを主成分としたしっくいがある。し
っくいは調湿建材として古くから使用されているが、実
際は吸放湿量が少ない。そして、乾燥収縮によるクラッ
クを防止するために、厚くしたり、例えばすさ等の補強
繊維を多量に混入する必要がある。しかし、厚くすると
吸放湿量は増えるが透湿性が落ちるという問題があり、
調湿性能は上がらない。
2. Description of the Related Art Conventionally, plasters containing calcium carbonate as a main component have been used as building materials having a humidity control property. Plaster has been used for a long time as a humidity control building material, but actually has a small amount of moisture absorption and desorption. Then, in order to prevent cracks due to drying shrinkage, it is necessary to increase the thickness or to mix a large amount of reinforcing fibers such as soot. However, there is a problem that the moisture absorption and desorption increases as the thickness increases, but the moisture permeability decreases.
Humidity control performance does not increase.

【0003】このしっくいの調湿性を改善した材料とし
て、非晶質シリカを含む珪藻土を内添したしっくいや、
非晶質シリカを含む珪藻土を内添したセメント板がある
が、珪藻土がしっくいやセメントのアルカリ成分によっ
て変質し、本来珪藻土が持っている高い比表面積を低下
させてしまい、十分に調湿効果がでない。
[0003] Plaster containing diatomaceous earth containing amorphous silica is used as a material for improving the humidity control property of the plaster.
There is a cement plate with diatomaceous earth containing amorphous silica inside.However, diatomaceous earth is deteriorated by plaster and alkali components of cement, lowering the high specific surface area that diatomaceous earth originally has, and has a sufficient humidity control effect. Not.

【0004】また、建材としては、一般的に強度、寸法
安定性や不燃性が求められるが、前述の材料は重量があ
る割に強度が低い。つまり比強度が低い。また、吸水に
よる長さ変化率が大きく、クラックが発生したり寸法安
定性に劣る。そして、クラック防止のために、すさ等を
多量に混入すると不燃性が下がる等の問題がある。
Further, building materials generally require strength, dimensional stability and incombustibility, but the above-mentioned materials have low strength in spite of their weight. That is, the specific strength is low. In addition, the length change rate due to water absorption is large, and cracks occur and dimensional stability is poor. When a large amount of soot is mixed in to prevent cracks, there is a problem in that the incombustibility is reduced.

【0005】[0005]

【発明が解決しようとする課題】本発明は、以上のよう
な問題を解決し、湿気の吸放湿量、透湿性に優れ、かつ
建材として使用できる十分な強度を持った不燃性調湿建
材を提供することを目的とするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems, and is a non-flammable humidity-controlling building material having an excellent moisture absorption / desorption amount, excellent moisture permeability, and sufficient strength to be used as a building material. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段及び作用】本発明の調湿建
材は、炭酸硬化反応によって製造された成形体であっ
て、主成分が炭酸カルシウムと非晶質シリカである成形
体からなる調湿建材において、窒素ガス吸着法によるそ
の比表面積が80〜250m /g、平均細孔直径が
1.5〜30.0nmであり、かつ、熱伝導率を0.4
W/mK以下としたところに特徴を有する。ここで、熱
伝導率はJIS A1412「熱断熱材の熱伝導率及び
熱抵抗の測定方法」に従って測定した数値をいう。
SUMMARY OF THE INVENTION The humidity control building material of the present invention is a molded article produced by a carbonic acid curing reaction, which comprises a molded article whose main components are calcium carbonate and amorphous silica. In the building material, the specific surface area by the nitrogen gas adsorption method is 80 to 250 m 2 / g, the average pore diameter is 1.5 to 30.0 nm, and the thermal conductivity is 0.4.
It is characterized by being at most W / mK. Here, the thermal conductivity refers to a value measured according to JIS A1412 “Method of measuring thermal conductivity and thermal resistance of thermal insulation”.

【0007】人間が快適に生活していくための相対湿度
条件は、一般に40〜70%の間がよいといわれてい
る。室内湿度をその間に保つためには、その範囲におい
てすぐれた調湿能力を発揮する調湿建材が適している。
また、調湿材とは、表面物理の観点からみた場合、高湿
度雰囲気では材料が持つ毛細管により空気中の水蒸気を
吸着し、低湿度雰囲気では吸着された水分を空気中に放
出する能力が高い材料であるといえる。
[0007] It is generally said that the relative humidity condition for human beings to live comfortably is between 40 and 70%. In order to maintain the room humidity in the meantime, a humidity control building material exhibiting excellent humidity control performance in that range is suitable.
Also, when viewed from the viewpoint of surface physics, a humidity control material has a high ability to adsorb water vapor in the air by a capillary tube of the material in a high humidity atmosphere and release the adsorbed moisture into the air in a low humidity atmosphere. It can be said that it is a material.

【0008】では実際にどのような材料が優れた調湿建
材となり得るかについて鋭意研究した結果、発明者ら
は、炭酸硬化反応によって製造された成形体であって主
成分が炭酸カルシウムと非晶質シリカからなるものにお
いては、平均細孔直径及び比表面積が調湿性能に大きく
影響することを見い出した。すなわち、調湿は材料内部
にある微細空隙壁に水蒸気が吸着・離脱することによっ
て行われるため、微細な細孔を持ち、かつ、比表面積の
大きな材料ほど吸放湿量が高い。しかし、細孔径が極端
に小さい場合には、水蒸気の離脱が困難になり吸湿はす
るが放湿しない状態になるので、比表面積が80〜25
0m/gであって、平均細孔直径が1.5〜30.0
nmの範囲が最適である。
As a result of intensive studies on what kind of material can actually be an excellent humidity control building material, the present inventors have found that a molded product produced by a carbonation hardening reaction, the main components of which are calcium carbonate and amorphous It has been found that in the case of porous silica, the average pore diameter and the specific surface area greatly affect the humidity control performance. That is, the humidity is adjusted by adsorbing / desorbing the water vapor to / from the minute void walls inside the material, so that a material having fine pores and a larger specific surface area has a higher moisture absorption / release amount. However, when the pore diameter is extremely small, it becomes difficult to release water vapor, and moisture is absorbed but not released, so that the specific surface area is 80 to 25.
0 m 2 / g and the average pore diameter is 1.5-30.0
The range of nm is optimal.

【0009】さらに、調湿建材としては、熱伝導率も重
要な要素であることが見いだされた。これが例えば壁材
料として使用されると、室外側が外気によって冷却され
る冬季では、熱伝導率が高いと室内側も低温になり、室
内側の表面に結露を生ずることがある。特に調湿建材を
断熱性の低いコンクリート壁に取り付けた場合には、こ
のような現象が起こりやすい。調湿建材表面に結露した
場合は、その結露水は内部に吸収されていくが、結露水
は水蒸気でなく液体であるため、材料内部への進入は遅
くなり、表層に過剰な水分が分布することになる。この
ことは調湿建材にとって問題とされるべきである。表層
に液体としての水分が過剰に集中すると、材料内部への
水分の吸収率が低下するため、その後の調湿性が低下す
ることになるからである。さらには、液体状に存在する
水分はカビの発生を促し、美観上、健康上好ましくない
状態になる可能性がある。日本の気候状況および住宅の
壁構造から、木材を内装仕上げに使用した場合に表面結
露が起きにくいことがわかっている。一般的に使用され
る木材の熱伝導率は、JIS A1412「熱断熱材の
熱伝導率及び熱抵抗の測定方法」に従って測定すると、
高くても0.4W/mK(カエデ等)である。そこで、
0.4W/mK以下にした本発明の調湿建材について研
究した結果、調湿性に非常に優れていることが究明され
た。これを越えると、壁体の両側で温度差が大きいとき
に表層に結露水が発生してその後の吸湿性が急激に低下
するからである。
[0009] Further, it has been found that thermal conductivity is also an important factor as a humidity control building material. If this is used, for example, as a wall material, in winter when the outside of the room is cooled by the outside air, if the thermal conductivity is high, the inside of the room will also be cold, and dew condensation may occur on the surface of the inside of the room. In particular, such a phenomenon is likely to occur when the humidity control building material is attached to a concrete wall having low heat insulation. If dew forms on the surface of the humidity control building material, the dew water will be absorbed inside, but because the dew water is a liquid rather than water vapor, it will enter the material more slowly and excess moisture will be distributed to the surface layer Will be. This should be a problem for humidity-controlled building materials. This is because if water as a liquid is excessively concentrated on the surface layer, the rate of absorption of water into the material will be reduced, and the subsequent humidity control will be reduced. Furthermore, the water present in the liquid state promotes the occurrence of mold, and may be undesirably aesthetically and healthily. The weather conditions in Japan and the wall structure of houses have shown that when wood is used for interior finishing, surface condensation is unlikely to occur. The thermal conductivity of commonly used wood is measured according to JIS A1412 “Method of measuring thermal conductivity and thermal resistance of thermal insulation”.
It is at most 0.4 W / mK (maple etc.). Therefore,
As a result of studying the humidity-controlling building material of the present invention having a water content of 0.4 W / mK or less, it was found that the humidity-controlling material was very excellent. If the temperature exceeds this, when the temperature difference is large on both sides of the wall, dew condensation water is generated on the surface layer, and the subsequent hygroscopicity rapidly decreases.

【0010】また、炭酸硬化反応により製造された成形
体の組成を、炭酸カルシウムが15%〜65%、非晶質
シリカが15%〜45%、および骨材と多孔質材の一方
または双方で構成させるのが好ましい。さらに、炭酸カ
ルシウム中にバテライトが含まれるようにするとより好
ましい。これらの組成により、全体として数nmの微細
孔を持つ比表面積の非常に大きな材料となるからであ
る。なお、前記成形体には骨材及び多孔質材の一方又は
双方が60%以下含むことができ、多孔質材が60%以
下であれば、十分な比強度を保ちながら調湿性能をあげ
ることができる。
[0010] The composition of the molded product produced by the carbonic acid curing reaction is composed of 15% to 65% of calcium carbonate, 15% to 45% of amorphous silica, and one or both of an aggregate and a porous material. It is preferred to configure. Further, it is more preferable to include vaterite in calcium carbonate. This is because these compositions result in a material having a very large specific surface area having micropores of several nm as a whole. In addition, the molded article may contain 60% or less of one or both of the aggregate and the porous material. If the porous material is 60% or less, the humidity control performance is improved while maintaining sufficient specific strength. Can be.

【0011】また、骨材が60%以下かつ骨材の平均粒
径を10μm以上とすることにより、JIS A 54
30に示される、吸水による長さ変化率を0.25%以
下とすることができ、寸法安定性にも優れた特徴を持つ
こともできる。吸水による長さ変化率はJIS A 5
430に示されるように0.25%以下が望ましいとい
えるからである。ここで骨材には、珪石粉末、長石粉
末、雲母、人工軽量骨材等を用いることができ、また、
多孔質材には、アルミナ珪酸塩類を含むものや軽石やバ
ルン状充填材等を用いることができる。なお、主成分の
炭酸カルシウムは、700℃以上の高温で加熱されると
吸熱反応を起こして二酸化炭素と酸化カルシウムに解離
するから、不燃性に優れた建材でもある。
[0011] In addition, by setting the aggregate to 60% or less and the average particle size of the aggregate to 10 µm or more, JIS A54
The length change rate due to water absorption shown in No. 30 can be set to 0.25% or less, and the dimensional stability can be excellent. The length change rate due to water absorption is JIS A5
This is because, as indicated by 430, 0.25% or less is desirable. Here, as the aggregate, silica stone powder, feldspar powder, mica, artificial lightweight aggregate, and the like can be used.
As the porous material, a material containing alumina silicates, a pumice stone, a balun-like filler, or the like can be used. In addition, since calcium carbonate as a main component causes an endothermic reaction when heated at a high temperature of 700 ° C. or more and dissociates into carbon dioxide and calcium oxide, it is also a building material excellent in noncombustibility.

【0012】[0012]

【発明の実施の形態】本発明の調湿建材の出発原料とし
て、石灰質原料粉末と珪酸質原料粉末を用い、それを任
意のカルシウムとシリカ成分のモル比率(CaO/Si
)となるように調整する。過剰なSiOは後述の
水和反応またはオートクレーブ反応で反応せず骨材とし
て残る。残った骨材の平均直径は10μm〜3mmが望
ましい。石灰質原料粉末として普通セメント、早強セメ
ント等のポルトランドセメント、消石灰、生石灰等の一
種または2種以上の混合物が使用できる。また、珪酸質
原料粉末としては、珪砂、珪石粉末、石炭灰、シリカゲ
ル、クリストバライト、珪藻土等の一種または2種以上
の混合物が使用できる。ただし、別途骨材及び多孔質材
の一方又は双方を必要に応じて60%以下混入しても良
い。
BEST MODE FOR CARRYING OUT THE INVENTION As a starting material of a humidity control building material according to the present invention, a calcareous raw material powder and a siliceous raw material powder are used, and these are mixed with an arbitrary molar ratio of calcium and silica components (CaO / Si).
O 2 ). Excess SiO 2 does not react in a hydration reaction or an autoclave reaction described later and remains as aggregate. The average diameter of the remaining aggregate is desirably 10 μm to 3 mm. As the calcareous raw material powder, one or a mixture of two or more of Portland cement such as ordinary cement and early-strength cement, slaked lime, quick lime and the like can be used. In addition, as the siliceous raw material powder, one or a mixture of two or more of silica sand, silica powder, coal ash, silica gel, cristobalite, diatomaceous earth and the like can be used. However, one or both of the aggregate and the porous material may be separately mixed as needed by 60% or less.

【0013】混入できる骨材は例えば珪石粉末、長石粉
末、雲母、人工軽量骨材などがあり、その場合の平均粒
径も10μm〜3mmが望ましい。多孔質材は例えばア
ルミナ珪酸塩類を含むものや軽石やバルン状充填材等が
ある。なお、骨材と多孔質材の添加は、反応前または、
後述する加圧成形前でも良い。それを水和反応もしくは
オートクレーブ反応で、珪酸カルシウム系の水和物を生
成する。例えば180℃ではその主成分がトバモライト
であり、余剰な珪酸質原料が骨材となる粉末が合成でき
る。これを、プレス機を使用して板状に加圧成形を行
う。加圧力は5〜30MPaが望ましい。なお、加圧成
形を行う前に、0.1〜5.0%の補強繊維、0.01
〜5%の無機顔料、0.01〜5%の消臭効果のある化
学吸着剤を混入しても良い。さらに、材料の強度を増加
させる目的で普通、早強、中庸熱、白色などのポルトラ
ンドセメントやγ−CSを炭酸硬化後材料の炭酸カル
シウム含有量が65%を越えないように混入してもよ
い。なお、ポルトランドセメントを使用する場合には、
そのセメントの一部または全部が水和反応したものでも
構わない。
The aggregate that can be mixed is, for example, silica powder, feldspar powder, mica, artificial lightweight aggregate, and the like, and in this case, the average particle size is desirably 10 μm to 3 mm. Examples of the porous material include those containing alumina silicates, pumice, and balun-like filler. In addition, the addition of the aggregate and the porous material before the reaction or
It may be before pressure molding described below. It is subjected to a hydration reaction or an autoclave reaction to produce a calcium silicate-based hydrate. For example, at 180 ° C., the main component is tobermorite, and a powder can be synthesized in which the surplus siliceous raw material becomes an aggregate. This is press-formed into a plate shape using a press machine. The pressure is desirably 5 to 30 MPa. In addition, before performing pressure molding, 0.1-5.0% of reinforcement fiber, 0.01
A chemical adsorbent having a deodorant effect of 0.01 to 5% may be mixed with an inorganic pigment of 5 to 5%. Further, for the purpose of increasing the strength of the material, Portland cement such as ordinary, fast, moderate heat, white, or γ-C 2 S is mixed in so that the calcium carbonate content of the material after carbonation hardening does not exceed 65%. Is also good. When using Portland cement,
Some or all of the cement may have undergone a hydration reaction.

【0014】次に、これを炭酸ガスを使用して密閉容器
内で反応硬化させる。反応条件は、温度が0〜100
℃、炭酸ガス濃度が2〜100%が工業的には好ましい
が、例えば燃焼時に発生する排気ガス中の炭酸ガス等も
使用できる。炭酸硬化反応により、トバモライト中のカ
ルシウム成分が炭酸カルシウムとなり抜けだし、細孔を
多数有する非晶質シリカができる。この多孔質性が吸放
湿性だけでなく、熱伝導率にも影響を与える。また、炭
酸カルシウムは、その主成分がカルサイトだけではな
く、微細なバテライトも生成する。これらの生成物によ
り数nmの微細孔を持つ表面積が非常に大きな材料とな
る。
Next, this is reacted and cured in a closed container using carbon dioxide gas. The reaction conditions are as follows.
C. and a carbon dioxide concentration of 2 to 100% are industrially preferable. For example, carbon dioxide in exhaust gas generated during combustion can be used. By the carbonic acid curing reaction, the calcium component in the tobermorite escapes as calcium carbonate, and amorphous silica having many pores is formed. This porosity affects not only moisture absorption / release properties but also thermal conductivity. In addition, calcium carbonate produces not only calcite as a main component but also fine vaterite. These products result in materials with very large surface areas having micropores of a few nm.

【0015】なお、製造にはトバモライトの他に、ゾノ
トライトやCSH等の珪酸カルシウム系の水和物または
それらを主成分とする廃材が使用できる。例えば、軽量
気泡コンクリート粉末、窯業系サイジング等のセメント
二次製品の破砕品、コンクリート廃材、セメントスラッ
ジなどが利用できる。また、この材料は十分な比強度を
もつため調湿性のある建材として利用できる。そして、
前記の主成分の比率は炭酸カルシウムが15%〜65
%、非晶質シリカが15%〜45%であることが望まし
い。また、骨材及び多孔質材の一方又は双方が60%以
下含まれ、骨材の平均粒径が10μm以上であることが
望ましい。
In addition, in addition to tobermorite, calcium silicate-based hydrates such as zonotolite and CSH or waste materials containing these as a main component can be used for the production. For example, lightweight cellular concrete powder, crushed products of cement secondary products such as ceramic sizing, waste concrete, cement sludge, and the like can be used. In addition, since this material has a sufficient specific strength, it can be used as a building material having a humidity control property. And
The ratio of the main component is 15% to 65% calcium carbonate.
%, And amorphous silica is desirably 15% to 45%. In addition, it is desirable that one or both of the aggregate and the porous material be contained at 60% or less, and the average particle size of the aggregate be 10 μm or more.

【0016】本実施形態の調湿建材は、湿気伝導率が8
ng/(m・s・Pa)以上あり湿度変化に対するレス
ポンスが良い。図1に本発明に係る調湿建材の細孔径分
布の一例を示すが、平均細孔径の両側にそれぞれピーク
を持つことが特徴であり、平均より小さい細孔径が比表
面積を大きくし、大きな細孔径が湿気伝導率を大きくす
る働きがあり、その相乗効果で高い調湿性が得られる。
The humidity control building material of the present embodiment has a moisture conductivity of 8
ng / (ms · Pa) or more and good response to humidity change. FIG. 1 shows an example of the pore size distribution of the humidity control building material according to the present invention. The pore size distribution is characterized by having peaks on both sides of the average pore size. The pore diameter has a function of increasing the moisture conductivity, and a high humidity control property can be obtained by the synergistic effect.

【0017】また、実際の湿度変化雰囲気での評価とし
て、25℃の一定温度条件で湿度70%、30%を24
時間づつ保持する48時間1サイクルの試験を行い、材
料の重量変化を測定し、単位面積当たりの吸放湿量を測
定したところ、単位面積当たり80g/m以上あり吸
放湿量が大きい。また、調湿性能のパラメーターとして
は、吸放湿量のみでは十分でなく、周囲の湿度変化に対
応する応答性も重要なファクターである。その因子は湿
気伝導率で評価できる。湿気伝導率が高い材料は、湿度
変化に対するレスポンスが速く、調湿建材としては好ま
しい。ただし、湿気伝導率が高すぎる材料は一般に連続
した空隙が多く、密度が低くなるため、吸放湿量および
強度が低くなるものが多い。
In addition, as an evaluation in an actual humidity changing atmosphere, the humidity of 70% and 30% were measured under a constant temperature condition of 25 ° C. for 24 hours.
Were tested for 48 hours per cycle for time increments held, by measuring the weight change of the material, it was measured absorption and wet weight per unit area, there per 80 g / m 2 or more per unit area Hygroscopic amount is large. Further, as a parameter of the humidity control performance, the amount of moisture absorption / release alone is not sufficient, and the responsiveness to changes in ambient humidity is also an important factor. The factor can be evaluated by moisture conductivity. A material having a high moisture conductivity has a quick response to a change in humidity, and is preferable as a humidity control building material. However, a material having too high a moisture conductivity generally has many continuous voids and a low density, so that the amount of moisture absorbed and released and the strength are often low.

【0018】例えば0.3m幅×0.6m長さ×0.0
06m厚さの建材で、0.3m幅を片持ちはりとした場
合の最大引っ張り応力から計算すると、曲げ強度(kg
/m )/かさ密度(kg/m)で算出される比強度
が約180m必要であるが、この調湿建材はそれ以上の
比強度を有するため強度的にも十分である。なお、望ま
しいかさ密度は500〜2000kg/m程度であ
る。
For example, 0.3 m width × 0.6 m length × 0.0
For building materials of 06m thickness and 0.3m width cantilever
The bending strength (kg
/ M 2) / Bulk density (kg / m3)
About 180m, but this humidity control building material
Since it has a specific strength, the strength is sufficient. Desired
The bulk density is 500-2000kg / m3About
You.

【0019】[0019]

【実施例1】石灰質原料粉末と珪酸質原料粉末を使い、
CaO/SiOが0.25となるように粉体を調整し
た。それをオートクレーブで、180℃の温度条件で4
時間トバモライトの合成を行った。できた粉体を、プレ
ス成型機を用いて成形圧力を20MPaで、300mm
×300mm×12mm厚さの板を成形した。
Example 1 Using calcareous raw material powder and siliceous raw material powder,
The powder was adjusted so that CaO / SiO 2 became 0.25. It was placed in an autoclave at 180 ° C for 4 hours.
The synthesis of time tobermorite was performed. The resulting powder was molded using a press molding machine at a molding pressure of 20 MPa and a pressure of 300 mm.
A plate having a thickness of 300 mm x 12 mm was formed.

【0020】それを前記の方法で市販の炭酸ガスを使用
し、炭酸硬化させることにより、炭酸カルシウムが29
%、非晶質シリカが21%、骨材が49%である調湿建
材を製造した。成分の分析は、炭酸カルシウムは、試料
を6Nの塩酸で溶解して、発生する炭酸ガス量から計算
した。非晶質シリカは、2Nの水酸化ナトリウムで溶解
した量から計算した。
By using a commercially available carbon dioxide gas by the above-mentioned method and subjecting it to carbonation hardening, calcium carbonate is reduced to 29%.
%, Amorphous silica 21%, and aggregate 49%. In the analysis of the components, calcium carbonate was calculated from the amount of carbon dioxide gas generated by dissolving the sample with 6N hydrochloric acid. Amorphous silica was calculated from the amount dissolved in 2N sodium hydroxide.

【0021】骨材は、まず、試料を6Nの塩酸で溶解し
た後、溶解液をろ過し温水で十分洗浄する。次に、ろ紙
上に残ったものを2Nの水酸化ナトリウムで溶解し、塩
酸で中和した後ろ過し温水で十分洗浄する。最後にろ紙
上に残ったものが骨材であるのでこれを定量した。な
お、骨材の平均粒径は、SALD−2000粒度分布測
定装置(株式会社島津製作所製)を用いて粒度分布を測
定し、平均粒径を求めた。これにより、骨材の平均粒径
が68μmと求められた。次に比表面積と平均細孔直径
を窒素吸着法、具体的には、マイクロメリテックス ア
サップ 2400(株式会社島津製作所製)を用い測定
したところ、比表面積は92m/gで、平均細孔直径
は9.5nmであった。
For the aggregate, first, a sample is dissolved in 6N hydrochloric acid, and then the solution is filtered and sufficiently washed with warm water. Next, the residue on the filter paper is dissolved with 2N sodium hydroxide, neutralized with hydrochloric acid, filtered, and sufficiently washed with warm water. Finally, aggregate remaining on the filter paper was determined. The average particle size of the aggregate was determined by measuring the particle size distribution using a SALD-2000 particle size distribution measuring device (manufactured by Shimadzu Corporation). As a result, the average particle size of the aggregate was determined to be 68 μm. Next, the specific surface area and the average pore diameter were measured using a nitrogen adsorption method, specifically, Micromeritex Asap 2400 (manufactured by Shimadzu Corporation). The specific surface area was 92 m 2 / g, and the average pore diameter was 92 m 2 / g. Was 9.5 nm.

【0022】次にJIS A1324に準ずる方法によ
り、湿気伝導率を測定したところ、10.4ng/(m
・s・Pa)であった。また、JIS A1412に準
ずる方法で熱伝導率を測定したところ0.36W/mK
であった。次に吸放湿量を測定するために、一定温度の
元で湿度変化を一定間隔で繰り返す試験を以下の通り行
った。まず材料を、300mm角面を1面だけ調湿作用
するように、他の5面をアルミニウムシールで防湿処理
を行った。これを環境試験器内で25℃の一定温度で、
湿度を30%に保ち試験体重量変動がなくなるまで放置
した。
Next, when the moisture conductivity was measured by a method according to JIS A1324, it was 10.4 ng / (m
S · Pa). When the thermal conductivity was measured by a method according to JIS A1412, it was 0.36 W / mK.
Met. Next, in order to measure the amount of moisture absorbed / released, a test in which the humidity was changed at constant intervals under a constant temperature was performed as follows. First, the material was subjected to a moisture-proof treatment with an aluminum seal on the other five surfaces so that only one surface of a 300 mm square surface had a humidity control effect. At a constant temperature of 25 ° C in an environmental tester,
The humidity was maintained at 30%, and the specimen was allowed to stand until there was no change in weight.

【0023】次に湿度を70%へ変更し24時間保持し
湿度上昇時の吸湿による重量変化を測定し、その後30
%へ変更し24時間保持し湿度低下による放湿時の重量
変化を測定する48時間1サイクルの試験を行い、試験
体の単位面積当たりの吸放湿量を測定した。なお、吸放
湿量は次の式で求めた。 吸放湿量=((吸湿時の重量変化+放湿時の重量変化)
/2)/試験体面積 その結果、123g/mであった。次に材料を100
mm×25mm×12mm(厚さ)に加工し、そのかさ
密度と曲げ強度を測定し、比強度を算出したところ、5
32mであった。最後にJIS A 5430に準ずる
方法で、吸水による長さ変化率を測定したところ、0.
14%であった。
Next, the humidity was changed to 70%, kept for 24 hours, and the change in weight due to moisture absorption when the humidity increased was measured.
%, And held for 24 hours, and a 48-hour one-cycle test was performed in which the change in weight during moisture release due to a decrease in humidity was measured, and the amount of moisture absorbed and released per unit area of the test specimen was measured. The amount of moisture absorption / release was determined by the following equation. Moisture absorption / desorption amount = ((weight change at the time of moisture absorption + weight change at the time of moisture release)
/ 2) / Specimen area The result was 123 g / m 2 . Then add 100
mm × 25 mm × 12 mm (thickness), the bulk density and bending strength were measured, and the specific strength was calculated.
It was 32 m. Finally, the length change rate due to water absorption was measured by a method according to JIS A 5430.
14%.

【0024】以上の結果を表1に示す。図1に細孔径の
分布図を示すが、平均細孔径9.5nmの両側にそれぞ
れピークを持つことが特徴であり、平均より小さい細孔
径が比表面積を大きくし、大きな細孔径が湿気伝導率を
大きくする働きがあり、その相乗効果で高い調湿性が得
られた。
Table 1 shows the above results. FIG. 1 shows a distribution diagram of the pore diameter, which is characterized by peaks on both sides of the average pore diameter of 9.5 nm. The pore diameter smaller than the average increases the specific surface area, and the large pore diameter indicates the moisture conductivity. And a high humidity control was obtained by the synergistic effect.

【表1】 [Table 1]

【実施例2】石灰質原料粉末と珪酸質原料粉末を使い、
CaO/SiOが0.4となるように粉体を調整し
た。これを実施例1に示す手順で炭酸硬化を行い、炭酸
カルシウムが40%、非晶質シリカが29%、骨材が2
9%である調湿建材を製造した。それを実施例1に示す
方法で各種の測定を行った。以上の結果を表1に示す。
Example 2 Using calcareous raw material powder and siliceous raw material powder,
The powder was adjusted so that CaO / SiO 2 became 0.4. This was subjected to carbonation hardening according to the procedure shown in Example 1, and calcium carbonate was 40%, amorphous silica was 29%, and aggregate was 2%.
A 9% humidity controlled building material was produced. Various measurements were performed by the method described in Example 1. Table 1 shows the above results.

【0025】[0025]

【実施例3】石灰質原料粉末と珪酸質原料粉末を使い、
CaO/SiOが0.6となるように粉体を調整し
た。これを実施例1に示す手順で炭酸硬化を行い、炭酸
カルシウムが50%、非晶質シリカが36%、骨材が1
2%である調湿建材を製造した。それを実施例1に示す
方法で各種の測定を行った。以上の結果を表1に示す。
Example 3 Using calcareous raw material powder and siliceous raw material powder,
The powder was adjusted so that CaO / SiO 2 became 0.6. This was subjected to carbonation hardening according to the procedure shown in Example 1, and calcium carbonate was 50%, amorphous silica was 36%, and aggregate was 1%.
A 2% moisture-control building material was produced. Various measurements were performed by the method described in Example 1. Table 1 shows the above results.

【0026】[0026]

【実施例4】石灰質原料粉末と珪酸質原料粉末を使い、
CaO/SiOが0.8となるように粉体を調整し
た。これを実施例1に示す手順で炭酸硬化を行い、炭酸
カルシウムが57%、非晶質シリカが41%、骨材が1
%である調湿建材を製造した。それを実施例1に示す方
法で各種の測定を行った。以上の結果を表1に示す。
Example 4 Using calcareous raw material powder and siliceous raw material powder,
The powder was adjusted so that CaO / SiO 2 became 0.8. This was subjected to carbonation hardening according to the procedure shown in Example 1, and calcium carbonate was 57%, amorphous silica was 41%, and aggregate was 1%.
% Humidity-control building material was manufactured. Various measurements were performed by the method described in Example 1. Table 1 shows the above results.

【0027】[0027]

【実施例5】実施例4と同じ石灰質原料粉末と珪酸質原
料粉末を使い、CaO/SiOが0.8となるように
粉体を調整した。この粉体100重量部に対し、平均粒
径が8μmである珪石微粉末を14重量部ミキサーで混
合した。これを実施例1に示す手順で炭酸硬化を行い、
炭酸カルシウムが50%、非晶質シリカが36%、骨材
が12%である調湿建材を製造した。それを実施例1に
示す方法で各種の測定を行った。以上の結果を表1に示
す。
Example 5 Using the same calcareous raw material powder and siliceous raw material powder as in Example 4, the powder was adjusted so that CaO / SiO 2 became 0.8. 14 parts by weight of a fine silica powder having an average particle diameter of 8 μm was mixed with 100 parts by weight of this powder with a mixer. This is subjected to carbonic acid curing according to the procedure shown in Example 1,
Humidity-control building materials with 50% calcium carbonate, 36% amorphous silica and 12% aggregate were produced. Various measurements were performed by the method described in Example 1. Table 1 shows the above results.

【0028】[0028]

【実施例6】実施例1と同じ石灰質原料粉末と珪酸質原
料粉末を使い、CaO/SiOが0.25となるよう
に粉体を調整した。この粉体100重量部に対し、多孔
質材粉末として粒径が74μm以下である粘土を30重
量部ミキサーで混合した。これを実施例1に示す手順で
炭酸硬化を行い、炭酸カルシウムが22%、非晶質シリ
カが16%、骨材が37%、多孔質材が23%である調
湿建材を製造した。それを実施例1に示す方法で各種の
測定を行った。以上の結果を表1に示す。
Example 6 Using the same calcareous raw material powder and siliceous raw material powder as in Example 1, the powder was adjusted so that CaO / SiO 2 became 0.25. To 100 parts by weight of this powder, 30 parts by weight of a clay having a particle size of 74 μm or less was mixed as a porous material powder with a mixer. This was subjected to carbonation hardening according to the procedure shown in Example 1 to produce a humidity control building material in which calcium carbonate was 22%, amorphous silica was 16%, aggregate was 37%, and porous material was 23%. Various measurements were performed by the method described in Example 1. Table 1 shows the above results.

【0029】[0029]

【実施例7】実施例4と同じ石灰質原料粉末と珪酸質原
料粉末を使い、CaO/SiOが0.8となるように
粉体を調整した。この粉体100重量部に対し、多孔質
材粉末として粒径が74μm以下である粘土を140重
量部ミキサーで混合した。これを実施例1に示す手順で
炭酸硬化を行い、炭酸カルシウムが23%、非晶質シリ
カが17%、骨材が0.4%、多孔質材が58%である
調湿建材を製造した。それを実施例1に示す方法で各種
の測定を行った。以上の結果を表1に示す。
Example 7 Using the same calcareous raw material powder and siliceous raw material powder as in Example 4, the powder was adjusted so that CaO / SiO 2 became 0.8. Clay having a particle size of 74 μm or less as a porous material powder was mixed with 100 parts by weight of this powder using a 140 part by weight mixer. This was subjected to carbonation hardening according to the procedure shown in Example 1 to produce a humidity control building material having 23% of calcium carbonate, 17% of amorphous silica, 0.4% of aggregate, and 58% of porous material. . Various measurements were performed by the method described in Example 1. Table 1 shows the above results.

【0030】[0030]

【実施例8】実施例1と同じ石灰質原料粉末と珪酸質原
料粉末を使い、CaO/SiOが0.25となるよう
に粉体を調整した。この粉体100重量部に対し、普通
ポルトランドセメントを10重量部ミキサーで混合し
た。これを実施例1に示す手順で炭酸硬化を行い、炭酸
カルシウムが60%、非晶質シリカが17%、骨材が2
3%である調湿建材を製造した。それを実施例1に示す
方法で各種の測定を行った。以上の結果を表1に示す。
Example 8 Using the same calcareous raw material powder and siliceous raw material powder as in Example 1, the powder was adjusted so that CaO / SiO 2 became 0.25. To 100 parts by weight of the powder, 10 parts by weight of ordinary Portland cement was mixed with a mixer. This was subjected to carbonation hardening according to the procedure shown in Example 1, and calcium carbonate was 60%, amorphous silica was 17%, and aggregate was 2%.
A 3% moisture conditioning building material was produced. Various measurements were performed by the method described in Example 1. Table 1 shows the above results.

【0031】実施例1から実施例8において、比表面積
が80〜250m/g、平均細孔直径が1.5〜3
0.0nmとなるため、湿気伝導率が10.0ng/
(m・s・Pa)以上あり、吸放湿量が80g/m
上となり調湿性能が高く、比強度も180m以上を満足
する十分な強度がある調湿建材が得られた。また、熱伝
導率はいずれも0.4W/mK以下となり、内外両面で
温度差が大きな環境で使用しても結露水による調湿性の
低下を生じさせないものであった。しかも、骨材の平均
粒径を10μm以上としており、吸水による長さ変化率
0.25%以下を満足した。
In Examples 1 to 8, the specific surface area is 80 to 250 m 2 / g, and the average pore diameter is 1.5 to 3
0.0 nm, the moisture conductivity is 10.0 ng /
(M · s · Pa) or more, the moisture absorption / desorption amount was 80 g / m 2 or more, the humidity control performance was high, and the humidity control building material with sufficient strength to satisfy the specific strength of 180 m or more was obtained. In addition, the thermal conductivity was 0.4 W / mK or less in both cases, and even when used in an environment having a large temperature difference between the inside and outside, no deterioration in humidity control due to dew water was caused. Moreover, the average particle size of the aggregate was 10 μm or more, and the ratio of change in length due to water absorption was 0.25% or less.

【0032】[0032]

【比較例1】水酸化カルシウム7kgと珪藻土3kgに
対し、水を5.5kg、つのまたを0.3kg加え混練
した。それを型枠に入れ、300mm×300mm×1
2mm(厚さ)、100mm×25mm×12mm(厚
さ)の試験体に加工した。それぞれの試験体を4週間硬
化させ、実施例1に示す方法で各種の測定を行った。
Comparative Example 1 To 7 kg of calcium hydroxide and 3 kg of diatomaceous earth, 5.5 kg of water and 0.3 kg of forefoot were added and kneaded. Put it in a mold, 300mm x 300mm x 1
It was processed into a test specimen of 2 mm (thickness), 100 mm × 25 mm × 12 mm (thickness). Each test specimen was cured for 4 weeks, and various measurements were performed by the method shown in Example 1.

【0033】結果は比表面積が75m/gと小さく、
平均細孔直径も1.4nmと小さいため、湿気伝導率は
7.3ng/(m・s・Pa)と小さく、吸放湿量も3
8g/m と低く調湿性能に劣った。また比強度も5
5mと小さかった。また、骨材の平均粒径が9μmと小
さいため、吸水による長さ変化率も0.4%と大きく調
湿建材としては使用しにくいことが分かった。以上の結
果を表1に示す。
As a result, the specific surface area was as small as 75 m 2 / g.
Since the average pore diameter is as small as 1.4 nm, the moisture conductivity is as small as 7.3 ng / (ms · Pa), and the moisture absorption / release amount is 3
As low as 8 g / m 2 , the humidity control performance was poor. The specific strength is 5
It was as small as 5m. In addition, since the average particle size of the aggregate was as small as 9 μm, the rate of change in length due to water absorption was as large as 0.4%, indicating that it was difficult to use as a humidity control building material. Table 1 shows the above results.

【0034】[0034]

【比較例2】ポルトランドセメント7kgと珪藻土3k
gに対し、水を6.5kg加え混練した。それを型枠に
入れ、300mm×300mm×12mm(厚さ)、1
00mm×25mm×12mm(厚さ)の試験体に加工
した。それぞれの試験体を4週間硬化させ、実施例1に
示す方法で各種の測定を行った。
Comparative Example 2 Portland cement 7 kg and diatomaceous earth 3 k
6.5 kg of water was added to and kneaded with the mixture. Put it in a mold, 300mm x 300mm x 12mm (thickness), 1
It was processed into a test specimen of 00 mm × 25 mm × 12 mm (thickness). Each test specimen was cured for 4 weeks, and various measurements were performed by the method shown in Example 1.

【0035】結果は比表面積が60m /gと小さ
く、平均細孔直径も1.3nmと小さかった。また、湿
気伝導率は17.5ng/(m・s・Pa)と大きかっ
たが、吸放湿量が27g/mと低く調湿性能に劣っ
た。また比強度は425mと十分高いが、骨材の平均粒
径が8μmと小さかったため、乾燥時にクラックが入っ
てしまうほど収縮が大きく、吸水による長さ変化率が測
定できなかった。つまり、調湿建材としては使用しにく
いことが分かった。また、熱伝導率が0.46W/mK
以上となった比較例1及び2では、これを建築物の外壁
に使用したときには、例えば冬期に外気が低温時となる
と内壁面も冷却されて室内側に表面結露が発生すること
が予想される。
As a result, the specific surface area was as small as 60 m 2 / g, and the average pore diameter was as small as 1.3 nm. Further, the moisture conductivity was as large as 17.5 ng / (m · s · Pa), but the moisture absorption / desorption amount was as low as 27 g / m 2 and the humidity control performance was poor. Although the specific strength was sufficiently high at 425 m, the average particle size of the aggregate was as small as 8 μm. Therefore, the shrinkage was large enough to cause cracks during drying, and the length change rate due to water absorption could not be measured. That is, it turned out that it is difficult to use as a humidity control building material. Further, the thermal conductivity is 0.46 W / mK.
In Comparative Examples 1 and 2 described above, when this is used for the outer wall of a building, for example, when the outside air is at a low temperature in winter, the inner wall surface is also cooled, and surface dew condensation is expected to occur on the indoor side. .

【0036】[0036]

【比較例3】実施例1と同じ石灰質原料粉末と珪酸質原
料粉末を使い、CaO/SiOが0.25となるよう
に粉体を調整した。この粉体100重量部に対し、骨材
として粒径が100μm以下であるアルミナ粉末を20
重量部ミキサーで混合した。これを実施例1に示す手順
で炭酸硬化を行い、炭酸カルシウムが24%、非晶質シ
リカが18%、骨材が58%である調湿建材を製造し
た。それを実施例1に示す方法で各種の測定を行った。
以上の結果を表1に表す。結果は比表面積および平均細
孔直径はそれぞれ82m/gと9.9nmであった。
また、湿気伝導率は9.5ng(m・s・Pa)、吸放
湿量が102g/mと調湿性能は高い。しかし、熱伝
導率が0.62W/mKであり、建築物の壁材に使用し
たときには、例えば冬季に外気が低温時となると内壁面
も冷却されて室内側に表面結露が発生することが予想さ
れる。
Comparative Example 3 Using the same calcareous raw material powder and siliceous raw material powder as in Example 1, the powder was adjusted so that CaO / SiO 2 became 0.25. Alumina powder having a particle size of 100 μm or less is used as an aggregate for 20 parts by weight of the powder.
The mixture was mixed with a weight part mixer. This was subjected to carbonation hardening according to the procedure shown in Example 1 to produce a humidity control building material having 24% calcium carbonate, 18% amorphous silica, and 58% aggregate. Various measurements were performed by the method described in Example 1.
Table 1 shows the above results. As a result, the specific surface area and the average pore diameter were 82 m 2 / g and 9.9 nm, respectively.
The moisture conductivity is 9.5 ng (m · s · Pa), and the moisture absorption / desorption amount is 102 g / m 2, and the humidity control performance is high. However, the thermal conductivity is 0.62 W / mK, and when it is used as a wall material for a building, it is expected that, for example, when the outside air temperature is low in winter, the inner wall surface is also cooled and surface dew condensation occurs on the indoor side. Is done.

【0037】[0037]

【発明の効果】上述のように、本発明により、優れた調
湿性を持ち、強度も十分ある不燃性に優れた調湿建材が
得られ、しかも、熱伝導率が0.4W/mK以下である
から、表面結露が生じにくく、安定して調湿性を発揮で
きるという効果を奏する。
As described above, according to the present invention, it is possible to obtain a moisture-control building material having excellent humidity control properties, sufficient strength and excellent nonflammability, and a heat conductivity of 0.4 W / mK or less. Therefore, there is an effect that the surface dew condensation hardly occurs and the humidity control can be stably exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における細孔径分布を示すグ
ラフである。
FIG. 1 is a graph showing a pore size distribution in Example 1 of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲垣 憲次 愛知県尾張旭市下井町下井2035番地 株 式会社建材技術研究所内 (72)発明者 平林 克己 愛知県尾張旭市下井町下井2035番地 株 式会社建材技術研究所内 (72)発明者 坂下 雅司 愛知県尾張旭市下井町下井2035番地 株 式会社建材技術研究所内 (56)参考文献 特開 平7−284628(JP,A) 特開 平8−81284(JP,A) 特開 平7−25679(JP,A) 特開 平9−12404(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 28/18 - 28/22 C04B 40/02 B01D 53/28 E04B 1/64 C04B 28/00 C04B 28/10 C04B 12/00 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kenji Inagaki 2035 Shimo-machi, Shioi-machi, Owariasahi-shi, Aichi Prefecture Inside the Building Materials Research Laboratory (72) Katsumi Hirabayashi 2035, Shimoi-machi, Shioi-machi, Owariasahi-shi, Aichi, Japan Within the Technical Research Institute (72) Inventor Masashi Sakashita 2035, Shimoi-machi, Shioi-machi, Owariasahi-shi, Aichi Prefecture, Japan Construction Materials Research Laboratory (56) References JP-A-7-284628 (JP, A) JP-A-8-81284 (JP) , A) JP-A-7-25679 (JP, A) JP-A-9-12404 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C04B 28/18-28/22 C04B 40/02 B01D 53/28 E04B 1/64 C04B 28/00 C04B 28/10 C04B 12/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭酸硬化反応によって製造された成形
体であって主成分が炭酸カルシウムと非晶質シリカであ
る成形体からなる調湿建材において、窒素ガス吸着法に
よるその比表面積が80〜250m/g、平均細孔直
径が1.5〜30.0nmであり、かつ、熱伝導率が
0.4W/mK以下であることを特徴とする調湿建材。
1. A humidity control building material comprising a molded product produced by a carbonic acid curing reaction and comprising calcium carbonate and amorphous silica as main components, having a specific surface area of 80 to 250 m by a nitrogen gas adsorption method. 2 / g, an average pore diameter of 1.5 to 30.0 nm, and a thermal conductivity of 0.4 W / mK or less.
【請求項2】 比強度が180m以上であることを特徴
とする請求項1記載の調湿建材。
2. The humidity control building material according to claim 1, wherein the specific strength is 180 m or more.
【請求項3】 前記成形体中に炭酸カルシウムが15%
〜65%、非晶質シリカが15%〜45%並びに骨材及
び多孔質材の一方又は双方が含まれることを特徴とする
請求項1又は2に記載の調湿建材。
3. The molded product contains 15% of calcium carbonate.
3. The humidity control building material according to claim 1, wherein the humidity controlling material comprises about 65%, about 15% to about 45% of amorphous silica, and one or both of an aggregate and a porous material. 4.
【請求項4】 前記炭酸カルシウムにはバテライトが含
まれることを特徴とする請求項1から3のいずれかに記
載の調湿建材。
4. The humidity control building material according to claim 1, wherein said calcium carbonate contains vaterite.
【請求項5】 前記骨材及び多孔質材の一方又は双方が
60%以下含まれることを特徴とする請求項3又は4に
記載の調湿建材。
5. The humidity control building material according to claim 3, wherein one or both of the aggregate and the porous material are contained in an amount of 60% or less.
JP2000189690A 2000-06-23 2000-06-23 Humidity control building materials Expired - Lifetime JP3212587B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000189690A JP3212587B1 (en) 2000-06-23 2000-06-23 Humidity control building materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000189690A JP3212587B1 (en) 2000-06-23 2000-06-23 Humidity control building materials

Publications (2)

Publication Number Publication Date
JP3212587B1 true JP3212587B1 (en) 2001-09-25
JP2002012467A JP2002012467A (en) 2002-01-15

Family

ID=18689287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000189690A Expired - Lifetime JP3212587B1 (en) 2000-06-23 2000-06-23 Humidity control building materials

Country Status (1)

Country Link
JP (1) JP3212587B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102324820B1 (en) * 2019-12-24 2021-11-11 (주)한진디엔비 remote management system of excavator
KR102604505B1 (en) * 2021-05-11 2023-11-20 주식회사 한화 Drilling device and drilling management system including the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187324A (en) * 2003-01-15 2005-07-14 Sekisui Chem Co Ltd Carbonated hardened body
UA119440C2 (en) * 2013-03-14 2019-06-25 Солідіа Текнолоджиз, Інк. Curing systems for materials that consume carbon dioxide
TW201533304A (en) * 2013-10-04 2015-09-01 Solidia Technologies Inc Hollow-core articles and composite materials, methods of production and uses thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3386225B2 (en) * 1993-03-04 2003-03-17 クリオン株式会社 Method for producing carbonic acid-cured molded product and precursor thereof, and moisture absorbing / releasing material comprising the molded product
JP3391544B2 (en) * 1994-04-20 2003-03-31 クリオン株式会社 Humidity control material and its manufacturing method
JP3499304B2 (en) * 1994-09-12 2004-02-23 クリオン株式会社 Method for strengthening carbonic acid cured material
JPH0912404A (en) * 1995-06-29 1997-01-14 Doukai Kagaku Kogyo Kk Moisture conditioning and insect control under floor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102324820B1 (en) * 2019-12-24 2021-11-11 (주)한진디엔비 remote management system of excavator
KR102604505B1 (en) * 2021-05-11 2023-11-20 주식회사 한화 Drilling device and drilling management system including the same

Also Published As

Publication number Publication date
JP2002012467A (en) 2002-01-15

Similar Documents

Publication Publication Date Title
Černý et al. Effect of pozzolanic admixtures on mechanical, thermal and hygric properties of lime plasters
RU2506241C2 (en) Stable magnesial oxychloride cement and method of obtaining thereof
JP5687716B2 (en) Hydraulic lime composition
JP3212589B1 (en) Humidity control building materials
JP3212587B1 (en) Humidity control building materials
JP3212586B1 (en) Humidity control building materials
JP3212588B1 (en) Humidity control building material having deodorizing function and method for producing the same
JP3212590B1 (en) Humidity control building materials
JP4009619B2 (en) Building material and method of manufacturing building material
KR100915018B1 (en) Preparation of nano pore control type Alc panel
JP3212591B1 (en) Humidity control building materials
JP3065607B1 (en) Humidity control building materials
KR100925355B1 (en) Preparation of nano pore control type Alc panel
Cheng et al. Thermal and Waterproof Properties of Foamed Concrete with Nano SiO 2 Aerogel and Organosilicon Waterproofing Agent
JP2006001794A (en) Moisture absorbing/releasing building material and method for producing the same
JP6912872B2 (en) Manufacturing method of humidity control building materials
JP7393167B2 (en) lightweight aerated concrete
JP3979592B2 (en) Method for producing humidity conditioning building material using allophane or imogolite-containing composition
SK6561Y1 (en) Maintenance dry plaster mixture
KR101376297B1 (en) ALC composition for carbonation resistance enhancement
Monique et al. Durability of tubular geopolymer reinforced with silica sand
JP2003286088A (en) Moisture absorbing/releasing building material
JP3989366B2 (en) Building material composition and building material
JP2005306665A (en) Building material and method of manufacturing building material
JP2003146719A (en) Composition for building material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9