KR100925355B1 - Preparation of nano pore control type Alc panel - Google Patents

Preparation of nano pore control type Alc panel Download PDF

Info

Publication number
KR100925355B1
KR100925355B1 KR1020070053788A KR20070053788A KR100925355B1 KR 100925355 B1 KR100925355 B1 KR 100925355B1 KR 1020070053788 A KR1020070053788 A KR 1020070053788A KR 20070053788 A KR20070053788 A KR 20070053788A KR 100925355 B1 KR100925355 B1 KR 100925355B1
Authority
KR
South Korea
Prior art keywords
panel
silica sand
nano
inorganic material
binder
Prior art date
Application number
KR1020070053788A
Other languages
Korean (ko)
Other versions
KR20080105773A (en
Inventor
강대구
이종규
추용식
권춘우
Original Assignee
(주) 에스와이씨
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 에스와이씨, 한국세라믹기술원 filed Critical (주) 에스와이씨
Priority to KR1020070053788A priority Critical patent/KR100925355B1/en
Publication of KR20080105773A publication Critical patent/KR20080105773A/en
Application granted granted Critical
Publication of KR100925355B1 publication Critical patent/KR100925355B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/08Diatomaceous earth
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/10Clay
    • C04B14/106Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/14Minerals of vulcanic origin
    • C04B14/16Minerals of vulcanic origin porous, e.g. pumice
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • C04B22/062Oxides, Hydroxides of the alkali or alkaline-earth metals
    • C04B22/064Oxides, Hydroxides of the alkali or alkaline-earth metals of the alkaline-earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • C04B22/142Sulfates
    • C04B22/143Calcium-sulfate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals

Abstract

본 발명에 의하면 (a) 소석회, 규사, 시멘트 및 석고를 함유하며 상기 소석회와 규사로 CaO/SiO2비를 0.5-1.0로 조절한 기재성분과, (b) 다공성 무기재 및 (c) 바인더를 혼합하여 소정형상의 패널로 가압성형하고, 100℃∼200℃의 온도 조건에서 수열합성반응시켜 나노기공 제어형 조습기능 경량기포콘크리트 패널을 제조하는 방법이 제공된다. According to the present invention, (a) slaked lime, silica sand, cement and gypsum are mixed with a base component having a CaO / SiO 2 ratio of 0.5-1.0 by the slaked lime and silica sand, (b) a porous inorganic material and (c) a binder Thereby, there is provided a method for forming a nano-pore controlled humidity control foamed light weight concrete panel by press-molding a predetermined shape panel and performing hydrothermal synthesis reaction at a temperature of 100 ° C. to 200 ° C.

경량기포콘크리트, 토베모라이트, 수열합성 Lightweight Foamed Concrete, Tobe Morite, Hydrothermal Synthesis

Description

나노기공 제어형 조습기능 경량기포콘크리트 패널의 제조방법{Preparation of nano pore control type Alc panel} Manufacturing method of light weight concrete panel with nano-pore control humidity control function {Preparation of nano pore control type Alc panel}

도 1은 다양한 형태의 트베모라이트결정을 설명하기 위한 CaO-SiO2-H2O 조성도.1 is a CaO-SiO2-H2O compositional diagram for explaining various forms of tbemorite crystals.

도 2는 토베모라이트 결정구조를 보여주는 모형도.Figure 2 is a model showing the tobemorite crystal structure.

도 3은 본 발명 패널의 물의 확산 및 흡착 작용을 보여주는 설명도.3 is an explanatory diagram showing the diffusion and adsorption action of water in the panel of the present invention.

도 4는 본 발명의 실시예에 따르는 기포제의 종류 및 함량별 패널의 흡방습 특성 시험결과를 도시한 그래프로서, 도 4a는 규조토, 도 4b는 황토, 도 4c는 메타카올린을 다공성 무기재로 사용한 패널의 흡방습 특성 시험결과를 도시한 그래프.Figure 4 is a graph showing the results of the moisture-absorbing moisture absorption characteristics of the panel according to the type and content of the foaming agent according to an embodiment of the present invention, Figure 4a is diatomaceous earth, Figure 4b is ocher, Figure 4c is used as a porous inorganic material metakaolin Graph showing the moisture absorption and moisture resistance test results of the panel.

도 5는 종래 패널의 표면과 내부 및 대조예 패널의 표면과 내부의 주사전자현미경 사진.5 is a scanning electron micrograph of the surface and interior of the conventional panel and the surface and the interior of the control panel.

도 6은 본 발명에 따라 규조토 10% 혼합된 패널의 표면과 내부 및 규조토 30% 혼합된 패널의 표면과 내부의 주사전자현미경 사진.Figure 6 is a scanning electron micrograph of the surface and the inside and the surface of the inside and the diatomaceous earth 30% mixed panel of the diatomaceous earth 10% mixed according to the present invention.

본 발명은 경량기포콘크리트(ALC) 패널의 제조에 관한 것으로서, 보다 구체적으로 건식성형과 수열합성법을 이용하여 나노기공 제어형 조습기능 경량기포콘크리트 패널을 제조하는 방법에 관한 것이다. The present invention relates to the manufacture of lightweight foamed concrete (ALC) panels, and more particularly, to a method for manufacturing nanoporous controlled humidity-absorbing lightweight foamed concrete panels using dry molding and hydrothermal synthesis.

최근 건축용 소재로서 유기 소재는 휘발성 유기화합물(VOC) 발생으로 인한 인체 유해성, 화재위험 등으로 인하여 그 사용이 규제되고 있고, 무기 소재의 사용량이 점차 증가하고 있으며, 무기 소재는 단순 내장재의 기능뿐만 아니라 인체에 유익한 기능성을 발현할 수 있도록 제어되고 있다. 상기와 같은 건축 내장재의 변화는 방송 및 기타 언론 보도에 의한 유기질 내장재의 인체 유해성이 널리 알려지면서 소비자의 요구 수준이 대폭 높아졌으며, 이에 따라 요구 수준에 적합하도록 무기질 내장재의 기능성이 점차 개발되고 있기 때문이다. Recently, the use of organic materials as building materials is regulated due to human health hazards and fire hazards caused by volatile organic compounds (VOC), and the use of inorganic materials is gradually increasing, and inorganic materials are not only functions of interior materials. It is controlled to express the beneficial functionality to the human body. Such changes in building interior materials have greatly increased the level of consumer's demand due to the widespread public health of organic interior materials caused by broadcasting and other media reports, and accordingly, the functionality of inorganic interior materials has been gradually developed to meet the demand level. to be.

최근 일본에서는 무기질 패널의 대표적 기술 중 하나로 언급되는 다공성 무기소재의 제어에 의한 습도조절기능 (조습기능-숨 쉬는, 호흡하는 소재로 알려져 있음.) 및 단열특성 발현형 패널을 생산 판매하고 있다. Recently, Japan produces and sells humidity control function (humidity function, breathing material, known as breathing material) and insulation type expression panel by controlling porous inorganic material, which is mentioned as one of the representative technologies of inorganic panel.

상기의 특성을 만족시킬 수 있는 제품을 개발하기 위해서는 나노기공을 제어할 수 있고, 다공성 패널을 제조할 수 있는 패널 제조 기술개발이 필수적으로 이루어져야 한다. 특히 기존 고온에서 소성된 조습타일은 수입에 의존하고 있으며, 제조시 1000℃ 이상에서 소성하여야 하는 에너지 다소비형 패널이다. 따라서 에너지 저소비형의 저온형 패널 개발이 필수적이다.In order to develop a product that can satisfy the above characteristics, it is essential to develop a panel manufacturing technology capable of controlling nanopores and manufacturing a porous panel. In particular, humidity tiles fired at existing high temperatures are imported and depend on imports. Therefore, it is essential to develop a low energy consumption low temperature panel.

기공 및 수분 제어가 가능한 건축내장용 혼성복합기능형 나노기공제어 세라믹 패널 개발시, 단열특성 및 결로 저감기능까지 부여할 수 있는 고기능성 제품을 생산할 수 있다. 이에 따라 기존 ALC, 석고보드, 기타 내·외벽 마감재의 경제성 및 품질상의 문제점을 해결할 수 있는 고부가가치의 패널의 제조가 가능하며, 특히 일본으로부터 수입하는 고온형 제품을 저온형 제품으로 대체할 수 있는 기술개발이 확립될 경우, 수입대체효과뿐만 아니라 수출까지도 가능한 제품이 될 것이다. When developing hybrid composite functional nano-pore control ceramic panel for building interior which can control pore and moisture, it is possible to produce high functional products that can provide insulation and condensation reduction function. As a result, it is possible to manufacture high value-added panels that can solve the economic and quality problems of existing ALC, gypsum board, and other interior and exterior wall finishing materials. In particular, it is possible to replace high-temperature products imported from Japan with low-temperature products. If technology development is established, it will be possible to export as well as import substitution effect.

따라서 본 발명은 낮은 에너지로 제조할 수 있는, 기공 및 수분 제어가 가능한 건축내장용 혼성복합기능형 나노기공제어 세라믹 패널을 제공하는 것을 기술적 과제로 한다.Accordingly, an object of the present invention is to provide a hybrid composite functional nano-pore control ceramic panel for building interiors, which can be manufactured with low energy, and capable of controlling pores and moisture.

본 발명에 의하면 (a) 소석회, 규사, 시멘트 및 석고를 함유하며 상기 소석회와 규사로 CaO/SiO2비를 0.5-1.0로 조절한 기재성분과, (b) 규조토, 메타카올린, 황토 및 화산석으로 이루어진 군에서 선택되는 다공성재료와, (c) 바인더를 혼련하여 소정형상의 패널로 가압성형하고, 100℃∼200℃의 온도 조건에서 수열합성반응시키는 것을 특징으로 하는 나노기공 제어형 조습기능 경량기포콘크리트 패널의 제조방법이 제공된다. According to the present invention, (a) containing slaked lime, silica sand, cement and gypsum, the base component of which the CaO / SiO 2 ratio is adjusted to 0.5-1.0 with slaked lime and silica, and (b) diatomaceous earth, metakaolin, ocher and volcanic stone. The porous material selected from the group and (c) the binder is kneaded and press-molded into a panel having a predetermined shape and subjected to hydrothermal synthesis reaction at a temperature of 100 ° C. to 200 ° C. Provided is a method for preparing.

이하, 본 발명을 보다 상세하게 설명하기로 한다. Hereinafter, the present invention will be described in more detail.

본 발명에 따라 수열합성법을 이용하면 낮은 에너지로 소망하는 특성의 패널을 제조할 수 있다. 본 발명에서 이용하는 수열합성법은 CaO를 주성분으로 하는 원료와 SiO2를 주성분으로 하는 원료를 혼합수와 혼합한 후, 100℃∼200℃의 온도 조건에서 수열합성 반응시키는 것이다. The hydrothermal synthesis method according to the present invention enables the production of panels of desired properties with low energy. The hydrothermal synthesis method used in this invention mixes the raw material which has CaO as a main component, and the raw material which has SiO2 as a main component with mixed water, and then performs a hydrothermal synthesis reaction on temperature conditions of 100 degreeC-200 degreeC.

테일러(Taylor) 등은 상기의 온도조건에서 토베모라이트 결정이 생성되는 과정을 다음과 같이 설명하였다: Taylor et al. Described the process by which tobemorite crystals were produced under the above temperature conditions:

1) CaO/SiO2 몰비가 0.8 이하에서는 반응초기 생성물인 CSH(II)와 SiO2의 반응으로 CSH(I)이 생성되고, CSH(I)은 반응이 진행됨에 따라 토베모라이트로 변화. 이 반응속도는 온도에 의존하며, 반응온도가 충분히 높으면, 조노틀라이트(Xonotlite)로 변화하기도 함.1) When the CaO / SiO2 molar ratio is 0.8 or less, CSH (I) is produced by the reaction of CSH (II), which is an initial product of reaction, and SiO2, and CSH (I) is changed to tobemorite as the reaction proceeds. This reaction rate depends on the temperature and, if the reaction temperature is high enough, it may change to Zonotlite.

2) CaO/SiO2 몰비가 0.8∼1.0 사이에서는 반응초기에 CSH(II)와 CSH(I)이 생성되며, CaO는 SiO2보다 먼저 소실됨. 2) When the molar ratio of CaO / SiO2 is between 0.8 and 1.0, CSH (II) and CSH (I) are formed at the beginning of the reaction, and CaO is lost before SiO2.

본 발명에서 사용되는 기재성분은 생석회, 규사, 시멘트 및 석고를 함유하며, 생석회와 규사로 CaO/SiO2비를 0.5-1.0로 조절한 것으로서 수열합성에 의해 트베모라이트 수화물이 생성된다. The base component used in the present invention contains quicklime, silica sand, cement, and gypsum, and the tbemorite hydrate is produced by hydrothermal synthesis by adjusting the CaO / SiO 2 ratio to 0.5-1.0.

또한 본 발명에서 사용되는 다공성재료는 적절한 나노기공을 제어하기 위해서 사용되는 것으로서, 규조토, 메타카올린, 황토 및 화산석으로 이루어진 군에서 선택되는 1종 또는 2종의 혼합물이 바람직하며, 그 사용량은 기재성분 100중량부에 대하여 30중량부 이하, 보다 바람직하게 1 내지 30중량부이다. In addition, the porous material used in the present invention is used to control the appropriate nano-pores, one or two or more mixtures selected from the group consisting of diatomaceous earth, metakaolin, ocher and volcanic stone, the amount of the base component It is 30 weight part or less with respect to 100 weight part, More preferably, it is 1-30 weight part.

본 발명에서는 기재성분과 다공성재료를 혼합하여 건식성형하기 위해서 바인더를 사용한다. 사용하기에 바람직한 바인더로는 폴리비닐알코올(PVA), 물유리 등이 있다. In the present invention, a binder is used to dry form the base component and the porous material by mixing. Preferred binders for use include polyvinyl alcohol (PVA), water glass and the like.

본 발명에서 사용하는 기재성분과 다공성 무기재의 화학성분은 표 1에 제시된다.The chemical composition of the base component and the porous inorganic material used in the present invention is shown in Table 1.

Figure 112007040346738-pat00001
Figure 112007040346738-pat00001

본 발명에 의하면 기재성분, 다공성재료 및 바인더를 혼합하고 소정형상의 패널로 가압성형하게 된다. 예를 들어 가압성형에는 상기한 혼합물을 가압성형몰드에 채운 후 50~200kgf/㎠의 압력으로 0.5~2분간 가압하는 방법을 이용할 수 있다. 이와 같이 가압성형한 다음 수열합성하게 되면 도 1에서와 같이 다양한 형태의 토베모라이트 결정이 생성될 수 있다. According to the present invention, the base component, the porous material and the binder are mixed and press-molded into a panel of a predetermined shape. For example, for press molding, after the above-mentioned mixture is filled in a press molding mold, a method of pressurizing at a pressure of 50 to 200 kgf / cm 2 for 0.5 to 2 minutes may be used. As such, after pressing and hydrothermal synthesis, various types of tobemorite crystals may be generated as shown in FIG. 1.

토베모라이트 결정은 도 5에서와 같이 Ca(OH)2 층에 SiO4 4면체의 연속적 구조로서, 실리케이트 이온 층간의 공동(空洞) 부분에 Ca2+ 이온이나, H2O가 위치한다. 이때 공동 부분의 층간 두께가 몇 nm인지에 따라 예를 들어 1.1nm 혹은 1.4nm의 토베모라이트라 부른다. 이 공동부분은 나노크기(nano size)의 미세 기공으로 작용하여, 습기의 흡수 및 방출에 기여할 수 있다. The tobemorite crystal is a continuous structure of SiO 4 tetrahedron in a Ca (OH) 2 layer as shown in FIG. 5, in which Ca 2+ ions or H 2 O are located in the cavity between the silicate ion layers. At this time, the thickness of the interlayer of the cavity is called, for example, tobemorite of 1.1 nm or 1.4 nm. This cavity can act as nano-sized micropores, contributing to the absorption and release of moisture.

특히 본 발명에 따라 다공성 무기재인 규조토, 메타카올린, 황토, 화산석 등을 사용할 경우, 나노기공(nano pore)의 제어 효과를 얻을 수 있다. In particular, when using a porous inorganic material of diatomaceous earth, metakaolin, ocher, volcanic stone, etc., it is possible to obtain a control effect of nano pores (nano pore).

본 발명에 따르는 기재와 다공성재료를 사용하면 나노기공을 적절하게 제어할 수 있고, 이후 토베모라이트의 형성에 의해 다시 한번 나노기공을 생성하여, 기공의 형성을 제어할 수 있게 된다. By using the substrate and the porous material according to the present invention, it is possible to appropriately control the nanopores, and then to form nanopores once again by the formation of tobemorite, thereby controlling the formation of the pores.

본 발명에 의해 제조되는 나노기공 제어형 조습기능 경량기포콘크리트 패널은 도 3에 나타낸 바와 같이 패널구성 물질과의 수소결합에 의해 수분의 이동제어가 가능하게 된다. The nano-pore controlled moisture-absorbing lightweight foam concrete panel manufactured by the present invention is capable of controlling the movement of moisture by hydrogen bonding with the panel material as shown in FIG. 3.

상술한 바와 같은 본 발명의 효과 및 기타의 특징으로 후술하는 실시예로 부터 보다 명백하게 될 것이다. The effects and other features of the present invention as described above will become more apparent from the following examples.

[실시예]EXAMPLE

기재성분으로 소석회, 규사, 시멘트 및 석고를 사용하고, 바인더로서 PVA 또는 물유리를 사용하였으며, 다공성 소재로 규조토를 사용하였다. Sintered lime, silica, cement and gypsum were used as the base components, PVA or water glass was used as the binder, and diatomaceous earth was used as the porous material.

소석회, 규사, 시멘트 및 석고를 혼합하되 생석회와 규사로 CaO/SiO2비가 0.5-1.0이 되도록 조절하고, 여기에 다공성 소재인 규조토, 황토 및 메타카올린을 외할로 1~30중량% 혼합하였다. Calcined lime, silica sand, cement and gypsum were mixed, but the CaO / SiO2 ratio was adjusted to 0.5-1.0 with quicklime and silica sand, and porous materials of diatomaceous earth, loess and metakaolin were mixed in an amount of 1 to 30% by weight.

다공성 소재를 혼합하지 않은 시료(대조예: Ref.)와 외할로 다공성 소재를 10%, 20%, 30%혼합한 시료(실시예)들 모두를 바인더와 혼련한 후(W/P=0.15), 가압성형몰드에 채우고 가압기를 이용하여 50~200kg/f의 압력으로 0.5~2분간 가압하였다. 이후 시험체를 탈형하여 오토클레이브(autoclave)에서 수열합성(180℃에서 7시간 유지)한 후 서냉하여 상온에 도달하면 오토클레이브에서 시험편을 꺼내고, 100℃ 조건에서 항량 조건에 도달할 때까지 충분히 건조한 후 흡습특성을 시험하였다. 흡습특성은 시험편의 크기를 200×200×7mm로 제조한 후, 23℃-상대습도 40% 조건에서 항량이 될 때까지 유지하여 무게를 측정(w1)하였다. After mixing the non-porous material (control example: Ref.) And the sample mixed with 10%, 20%, and 30% porous material (ex.) With the binder (W / P = 0.15) Filled in a press molding mold and pressurized using a pressurizer at a pressure of 50-200 kg / f for 0.5-2 minutes. After demolding the specimen, hydrothermal synthesis in an autoclave (maintained at 180 ° C. for 7 hours), followed by slow cooling and removal of the specimen from the autoclave when reaching room temperature, and sufficient drying after reaching a constant condition at 100 ° C. Hygroscopic properties were tested. The hygroscopic properties were prepared by measuring the size of the test piece at 200 × 200 × 7 mm, and then maintaining the weight under a condition of 23 ° C.-40% relative humidity until weighing was measured (w1).

이후 상대습도를 23℃-70% 로 변화시켜 12시간 동안 유지하여 무게를 측정(w2)하였다. 이때 흡습량의 계산은 단위면적당 수분의 변화량[(w2-w1)/0.04㎡]으로 하였다. Thereafter, the relative humidity was changed to 23 ° C.-70% and maintained for 12 hours to measure the weight (w2). At this time, the moisture absorption amount was calculated as the change amount of water per unit area [(w2-w1) /0.04 m 2].

각각의 다공성 혼합재를 혼합하여 제조한 패널을 항온항습기에 넣은 후 습도를 변화시켜 흡습특성을 평가하였다. 흡습시간은 12시간으로 고정하였으며, 이후 흡습전후의 무게를 측정하여 흡습량을 측정하였으며, 이를 도 4에 나타내었다. The panels prepared by mixing the porous mixtures were placed in a thermo-hygrostat and the humidity was changed to evaluate the hygroscopic properties. The moisture absorption time was fixed to 12 hours, after which the moisture absorption amount was measured by measuring the weight before and after moisture absorption, which is shown in FIG. 4.

도 4에서 알 수 있는 바와 같이, 대조예 시편의 흡습량은 약 80g/㎡ 수준이었으나, 규조토를 혼합한 시편에서는 흡습량이 매우 높았으며, 특히 규조토 30% 시편에서는 흡습량이 280g/㎡ 로 매우 우수한 결과가 도출되었다. 이는 출발원료의 다공특성 및 제조된 시편의 낮은 비중(높은 기공율)으로 인하여 흡습특성은 크게 개선된 것으로 판단된다. 또한 메타카올린 10% 혼합 시료에서도 대조예 보다 우수한 흡습 특성을 나타내었다. As can be seen in Figure 4, the moisture absorption of the control sample was about 80g / ㎡ level, the moisture absorption was very high in the specimen mixed with diatomaceous earth, especially the moisture absorption amount of 280g / ㎡ in 30% diatomaceous earth very good results Was derived. This is due to the porous properties of the starting material and the low specific gravity (high porosity) of the prepared specimens, it is considered that the moisture absorption characteristics are greatly improved. In addition, the metakaolin 10% mixed sample showed better moisture absorption characteristics than the control example.

방습 특성도 규조토가 혼합된 시편에서 우수한 특성을 나타내었으며, 이는 대조예 시료보다 2배 이상의 우수한 특성값이다. 즉 본 시험을 통해 생석회, 규사, 시멘트 및 석고 등과 함께 규조토 및 메타카올린 등을 혼합하여 패널을 제조할 때에는 흡방습 특성이 우수한 패널이 제조됨을 확인할 수 있었다.Moisture-proof properties were also excellent in the diatomaceous earth mixed specimens, which is two times better than the control sample. In other words, when the panel was manufactured by mixing diatomaceous earth and metakaolin together with quicklime, silica sand, cement, and gypsum, it was confirmed that a panel having excellent moisture absorption and moisture absorption characteristics was manufactured.

도 5 내지 도 6의 사진은 기존 패널(일본의 사라라), 대조예. 패널과 규조토를 10% 및 30% 첨가한 패널의 미세구조를 주사전자현미경으로 촬영한 사진이다. 사진에서와 같이 대조예와 규조토 혼합 시편 모두에서 토베모라이트 결정이 생성되었음을 확인할 수 있으며, 아직 반응이 종료되지 않은 규사 입자도 일부 존재함을 알 수 있었다. 특히 토베모라이트 결정 사이는 50-500nm 크기의 빈 공간으로 구성되어 있음을 관찰할 수 있었다. 이는 수분의 흡수 등에 충분히 영향을 줄 수 있을 것으로 사료된다. 5-6 is a conventional panel (Sarara of Japan), a control example. The microstructure of the panel with 10% and 30% of diatomaceous earth added was taken by scanning electron microscope. As shown in the photograph, it was confirmed that the tobemorite crystals were produced in both the control sample and the diatomaceous earth mixed specimen, and it was also found that some of the silica sand particles which had not been terminated yet existed. In particular, it was observed that the tobemorite crystals were composed of empty spaces having a size of 50-500 nm. This is thought to be able to sufficiently affect the absorption of moisture.

위에서 설명한 바와 같이 본 발명에 따라 기재성분에 다공성재료와 바인더를 혼합하여 건식으로 가압성형하고 수열합성하게 되면 조습(흡방습) 특성이 우수하게 발현되는 나노기공 제어형 조습기능 경량기포콘크리트 패널을 낮은 에너지로 제조하는 가능하게 된다. As described above, when the porous material and the binder are mixed with the base component according to the present invention, pressurized and dry hydrothermally synthesized, the nano-pore controlled humidity control function lightweight foam concrete panel exhibits excellent humidity control (moisture absorption) characteristics. It becomes possible to manufacture with.

Claims (5)

(a) 소석회, 규사, 시멘트 및 석고를 함유하며 상기 소석회와 규사로 CaO/SiO2비를 0.5-1.0로 조절한 기재성분과, (b) 다공성 무기재 및 (c) 바인더를 혼합하여 소정형상의 패널로 가압성형하고, 100℃∼200℃의 온도 조건에서 수열합성반응시키는 것을 하는 것을 특징으로 하는 나노기공 제어형 조습기능 경량기포콘크리트 패널의 제조방법.(a) a base material containing calcined lime, silica sand, cement and gypsum, the CaO / SiO 2 ratio being adjusted to 0.5-1.0 with calcined lime and silica sand, and (b) a porous inorganic material and (c) a binder. A method for producing a nano-pore controlled humidity-modifying lightweight concrete panel, which is press-molded with a panel and subjected to hydrothermal synthesis at a temperature of 100 ° C to 200 ° C. 제 1 항에 있어서, 상기 다공성 무기재가 규조토, 메타카올린, 황토 및 화산석으로 이루어진 군에서 선택되는 1종 또는 2종 이상의 혼합물인 것을 특징으로 하는 방법. The method according to claim 1, wherein the porous inorganic material is one or a mixture of two or more selected from the group consisting of diatomaceous earth, metakaolin, ocher and volcanic stone. 제 1 항에 있어서, 상기 다공성 무기재를 기재성분 100중량부에 대해 1~30중량부의 양으로 사용하는 것을 특징으로 하는 방법.The method of claim 1, wherein the porous inorganic material is used in an amount of 1 to 30 parts by weight based on 100 parts by weight of the base component. 제 1 항에 있어서, 상기 바인더로서 폴리비닐알코올 또는 물유리를 사용하는 것을 특징으로 하는 방법. The method according to claim 1, wherein polyvinyl alcohol or water glass is used as the binder. 상기 청구항 1 내지 청구항 4 중 어느 한 항 기재의 방법으로 제조되는 나노기공 제어형 조습기능 경량기포콘크리트 패널.Nanopore controlled humidity control function lightweight foam concrete panel manufactured by the method of any one of claims 1 to 4.
KR1020070053788A 2007-06-01 2007-06-01 Preparation of nano pore control type Alc panel KR100925355B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070053788A KR100925355B1 (en) 2007-06-01 2007-06-01 Preparation of nano pore control type Alc panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070053788A KR100925355B1 (en) 2007-06-01 2007-06-01 Preparation of nano pore control type Alc panel

Publications (2)

Publication Number Publication Date
KR20080105773A KR20080105773A (en) 2008-12-04
KR100925355B1 true KR100925355B1 (en) 2009-11-09

Family

ID=40367004

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070053788A KR100925355B1 (en) 2007-06-01 2007-06-01 Preparation of nano pore control type Alc panel

Country Status (1)

Country Link
KR (1) KR100925355B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101376297B1 (en) 2012-03-26 2014-03-25 (주) 에스와이씨 ALC composition for carbonation resistance enhancement
KR20230014110A (en) 2021-07-20 2023-01-30 신기현 Anti-corrosion performance with modified tensile strength and surface hardness Natural stone texture ALC design stone embedded material Manufacturing method and ALC design stone interior material composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101339957B1 (en) * 2011-11-03 2013-12-10 성상복 Silica sand agglomerates for extracting metal grade silicon and menufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09132474A (en) * 1995-11-06 1997-05-20 Shinko Kosen Kogyo Kk Board capable of absorbing sound and conditioning humidity and its production
KR20050041090A (en) * 2003-10-29 2005-05-04 봉 경 김 Composition for low density gypsum board, sandwich panel using the composition and manufacturing method thereof
KR20050113048A (en) * 2004-05-28 2005-12-01 김경모 Shock absorbing composition for inter layer noise proofing of a construction and floor forming method for inter layer noise proofing of a construction using the shock absorbing composition
KR100551249B1 (en) 2004-03-03 2006-02-10 임재삼 A construction material and composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09132474A (en) * 1995-11-06 1997-05-20 Shinko Kosen Kogyo Kk Board capable of absorbing sound and conditioning humidity and its production
KR20050041090A (en) * 2003-10-29 2005-05-04 봉 경 김 Composition for low density gypsum board, sandwich panel using the composition and manufacturing method thereof
KR100551249B1 (en) 2004-03-03 2006-02-10 임재삼 A construction material and composition
KR20050113048A (en) * 2004-05-28 2005-12-01 김경모 Shock absorbing composition for inter layer noise proofing of a construction and floor forming method for inter layer noise proofing of a construction using the shock absorbing composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101376297B1 (en) 2012-03-26 2014-03-25 (주) 에스와이씨 ALC composition for carbonation resistance enhancement
KR20230014110A (en) 2021-07-20 2023-01-30 신기현 Anti-corrosion performance with modified tensile strength and surface hardness Natural stone texture ALC design stone embedded material Manufacturing method and ALC design stone interior material composition

Also Published As

Publication number Publication date
KR20080105773A (en) 2008-12-04

Similar Documents

Publication Publication Date Title
Gouny et al. A geopolymer mortar for wood and earth structures
JP5066766B2 (en) Geopolymer high-strength cured product containing calcined kaolin as active filler and method for producing the same
KR101149065B1 (en) Panel with formaldehyde adsorption, water adsorption and desorption functions and preparation thereof
Wang et al. High strength inorganic-organic polymer composites (IOPC) manufactured by mold pressing of geopolymers
CN111499405B (en) Preparation method of porous ceramsite, product and application of porous ceramsite in concrete subway track acoustic panel
Liguori et al. Fiber-reinforced lime-based mortars: Effect of zeolite addition
KR100926180B1 (en) Construction functional board and method formanufacturing thereof
KR100915018B1 (en) Preparation of nano pore control type Alc panel
Degefu et al. The dependence of thermophysical and hygroscopic properties of macro-porous geopolymers on Si/Al
KR100925355B1 (en) Preparation of nano pore control type Alc panel
US20150159365A1 (en) High performance thermal insulation products
Xie et al. Production and properties of the polyvinyl alcohol modified macro-defect-free α-hemihydrate gypsum composite
JP3212587B1 (en) Humidity control building materials
JP2007217208A (en) Method of manufacturing xonotlite based calcium silicate hydrate porous formed body
JP3212590B1 (en) Humidity control building materials
JP2006001795A (en) Building material and method for producing the same
KR20050117613A (en) The manufacturing method of ceramic body having good adiabatic capacity
US20070281146A1 (en) Porous, heat-insulating shaped body, method for producing the shaped body and the use thereof
JP3212591B1 (en) Humidity control building materials
JP2002004447A (en) Moisture adjusting building material
JP6912872B2 (en) Manufacturing method of humidity control building materials
JP3065607B1 (en) Humidity control building materials
US20230399260A1 (en) Aerogel Enhanced Bio-Based Building Material
JP2019151521A (en) Calcium silicate plate and method for producing the same
JP3979592B2 (en) Method for producing humidity conditioning building material using allophane or imogolite-containing composition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121030

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131028

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20141029

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20151027

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20161017

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20181015

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190925

Year of fee payment: 11