JPH02207787A - Inclusive immobilized micro-organism - Google Patents

Inclusive immobilized micro-organism

Info

Publication number
JPH02207787A
JPH02207787A JP2735889A JP2735889A JPH02207787A JP H02207787 A JPH02207787 A JP H02207787A JP 2735889 A JP2735889 A JP 2735889A JP 2735889 A JP2735889 A JP 2735889A JP H02207787 A JPH02207787 A JP H02207787A
Authority
JP
Japan
Prior art keywords
micro
organism
microorganisms
polymer gel
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2735889A
Other languages
Japanese (ja)
Inventor
Toshio Inoue
俊夫 井上
Yoshiaki Nomura
野村 善昭
Hideyuki Asano
浅野 英之
Haruki Akega
明賀 春樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Organo Corp
Original Assignee
Chubu Electric Power Co Inc
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Organo Corp, Japan Organo Co Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP2735889A priority Critical patent/JPH02207787A/en
Publication of JPH02207787A publication Critical patent/JPH02207787A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To secure larger space of micro-organism multiplication in polymer gel by sealing a micro-organism used for micro-organism treatment and a solid material of fine particles having properties of being dissolved during the micro- organism treatment. CONSTITUTION:A concentrated solution of micro-organism to be used for micro- organism treatment, obtained by pure culture or trained culture is sufficiently blended with a given amount of a fine particulate solid material having properties of being gradually dissolved during the micro-organism treatment and 10-300mu particle diameter. Then the blend is mixed with an aqueous solution of polymer gel material such as PVA or polyacrylamide to give a mixture of the micro-organism and the polymer gel material containing fine particles of the solid material. Then the mixture is frozen, gelatinized and then iced materials such as coexisting water are melted to give bulk of inclusive immobilized micro-organism. Consequently, a greater amount of micro-organisms can be retained than by a conventional procedure and organisms can be efficiently treated.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、例えば下廃水あるいは上水等の水の微生物学
的処理に代表される、いわゆる微生物処理に使用する微
生物を高分子ゲル内に封じ込んだ包括固定化微生物の改
良に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is directed to the use of microorganisms used in so-called microbial treatment, typified by the microbiological treatment of water such as sewage water or tap water, in a polymer gel. This invention relates to the improvement of entrapped and immobilized microorganisms.

〈従来の技術〉 下水や工場廃水等の廃水、あるいは比較的汚染された河
川水等の水の中に含まれている有機物や無機の窒素化合
物等の汚染物質を微生物学的に除去する方法の一つとし
て、最近包括固定化微生物法が注目を集めている。
<Prior art> A method for microbiologically removing pollutants such as organic substances and inorganic nitrogen compounds contained in wastewater such as sewage and industrial wastewater, or relatively polluted water such as river water. As one example, the comprehensive immobilization microbial method has recently attracted attention.

当該包括固定化微生物法は、前記汚染物質の除去に関与
する微生物を、当該微生物は透過しないが水中に溶存し
ている汚染物質は透過する性質を有する、いわゆる高分
子ゲル内に封じ込んで固定化した包括固定化微生物を利
用して微生物処理を行う方法であり、例えば当該固定化
微生物を固定床式あるいは流動床式のりアクタ内に充填
して被処理水の処理を行うものである。
The comprehensive immobilization microorganism method encapsulates and immobilizes the microorganisms involved in the removal of the contaminants in a so-called polymer gel that does not penetrate the microorganisms but allows the contaminants dissolved in water to pass through. This is a method of performing microbial treatment using entrapped immobilized microorganisms, for example, in which the immobilized microorganisms are filled into a fixed bed type or fluidized bed type glue actor to treat water to be treated.

当該方法においては、予め培養または馴養することによ
って得た目的微生物あるいは目的微生物を比較的多量に
含む微生物群を、高分子ゲル内に封じ込んで離脱出来な
い状態に固定化したものを用いて水処理を行う。従って
、目的微生物の離脱がな(、当該微生物を処理系内に比
較的多量に保持することが出来、通常の活性汚泥処理の
ような、いわゆる浮遊式の微生物処理法では系内に多量
に保持することの難しい、増殖速度の遅い微生物やフロ
ック形成力の弱い微生物を用いる水処理に特に適してお
り、このような場合にも効率のよい処理を行うことが出
来るという特長を有している。
In this method, a target microorganism or a group of microorganisms containing a relatively large amount of target microorganisms, obtained by culturing or acclimatization in advance, are encapsulated in a polymer gel and immobilized in an irremovable state. Perform processing. Therefore, the target microorganisms can be retained in a relatively large amount within the treatment system, and in so-called floating microbial treatment methods such as ordinary activated sludge treatment, a large amount of the target microorganisms can be retained within the system. It is particularly suitable for water treatment using microorganisms that are difficult to control, have a slow growth rate, or microorganisms with weak floc-forming ability, and has the advantage of being able to perform efficient treatment even in such cases.

また、浮遊式微生物処理法において問題になりがちな、
処理後の微生物と処理水との分離が極めて容易になると
いう利点もある。
In addition, the problems that tend to occur in floating microbial treatment methods,
Another advantage is that it is extremely easy to separate microorganisms from treated water after treatment.

微生物を包括固定するための高分子ゲル材料としては、
一般にポリビニルアルコール(PVA)、ポリアクリル
アミド、光硬化性樹脂等の合成高分子、あるいはアルギ
ン酸ソーダ、K−カラギーナン等の天然高分子が用いら
れる。これらの高分子ゲル材料を用いて微生物を固定化
する場合には、ゲル化する前の高分子ゲル材料と、固定
化すべき微生物とを混合した後、当該混合物を適当な方
法でゲル化して球状、角状等とした包括固定化微生物を
作製している。
As a polymer gel material for comprehensive immobilization of microorganisms,
Generally, synthetic polymers such as polyvinyl alcohol (PVA), polyacrylamide, and photocurable resins, or natural polymers such as sodium alginate and K-carrageenan are used. When immobilizing microorganisms using these polymer gel materials, the polymer gel material before gelling and the microorganisms to be immobilized are mixed, and then the mixture is gelled by an appropriate method to form a sphere. , we have produced entrapping immobilized microorganisms in the shape of horns, etc.

例えば、高分子ゲル材料としてPVAを用いる場合には
、PVA水溶液と微生物とを混合したものを適当な容器
に入れ、これを冷凍してゲル化し、その後共存水等の氷
体を融解し、残留するゲルを細断して包括固定化微生物
を作製(PVA−冷凍法)したり、あるいはPVA水溶
液と微生物との混合物をホウ酸溶液中に滴下することに
よってゲル化して作製(PVA−ホウ酸性)する方法等
が知られている。
For example, when using PVA as a polymer gel material, a mixture of PVA aqueous solution and microorganisms is placed in a suitable container, frozen to form a gel, and then the coexisting ice bodies such as water are melted and the remaining The entrapping immobilized microorganisms are created by shredding the gel (PVA-freezing method), or by dropping a mixture of PVA aqueous solution and microorganisms into a boric acid solution to form a gel (PVA-boric acid). There are known methods to do this.

〈発明が解決しようとする問題点〉 しかしながら、上述のような従来の包括固定化微生物法
においては、微生物のみを高分子ゲル内に封じ込んでな
る包括固定化微生物を使用するので、高分子ゲル内にお
ける微生物の増殖し得る空間が限られてしまい、従って
高分子ゲル内の微生物保持量をあまり多くすることが出
来ないという問題点がある。その結果、前記リアクタに
おける容積負荷をあまり高くすることが出来ないという
問題を生じる。
<Problems to be solved by the invention> However, in the conventional entrapping immobilized microorganism method as described above, entrapping immobilized microorganisms in which only microorganisms are encapsulated within a polymer gel are used. There is a problem in that the space in which microorganisms can grow is limited, and therefore the amount of microorganisms retained within the polymer gel cannot be increased very much. As a result, a problem arises in that the volumetric load in the reactor cannot be made very high.

本発明は、上述のような問題点を解決し、高分子ゲル内
に微生物の増殖し得る空間を従来より多く確保すること
が出来、従って従来より効率のよい水処理を行うことの
出来る包括固定化微生物を提供することを目的とするも
のである。
The present invention solves the above-mentioned problems, and is capable of securing more space for microorganisms to grow within the polymer gel than before, and therefore enables more efficient water treatment than before. The purpose is to provide biochemical microorganisms.

く問題点を解決するための手段〉 上記問題点を解決するためになされた本発明は、微生物
処理に用いる微生物と、微生物処理中に溶解する性質を
有する微粒子状の固形物とを高分子ゲル材料で封じ込ん
だことを特徴とする包括固定化微生物である。
Means for Solving the Problems> The present invention, which was made to solve the above problems, combines microorganisms used in microbial treatment and fine particulate solids that have the property of dissolving during microbial treatment into a polymer gel. It is an entrapping immobilized microorganism characterized by being enclosed in a material.

〈作用〉 以下に、水中のアンモニア態窒素(NH4−N)を分解
して硝酸態窒素(No、−N)に硝化する反応に関与す
る微生物、すなわち硝化菌を前記PVA−冷凍法によっ
て包括固定する場合を例にして、本発明の詳細な説明す
る。
<Effect> Below, microorganisms involved in the reaction of decomposing ammonia nitrogen (NH4-N) in water and nitrifying it to nitrate nitrogen (No, -N), that is, nitrifying bacteria, are comprehensively immobilized by the PVA-freezing method. The present invention will be described in detail by taking a case in which:

第1図は、本発明の包括固定化微生物の作製方法の一例
を示すブロック図であり、予め純粋培養して得た硝化菌
、あるいは馴養によって得た硝化菌(すなわち硝化菌の
みの純粋培養系ではないが、硝化菌が優占種となった培
養系のもの、例えば、既に稼動している硝化装置内の微
生物等)の濃厚溶液中に、例えば炭酸カルシウム(Ca
COz)等の、微生物処理中に好ましくは徐々に溶解し
得る性質を有する微粒子状の固形物を、所定量添加して
十分混合する。次いでこれを、例えば重合度が500〜
3,000で、ケン化度が70%以上であるPVAの1
0〜30%(重量)水溶液と混合し、c a c O3
微粒子を共存せしめた、硝化菌(微生物)とpVA (
高分子ゲル材料)との混合物を得る。当該混合物を適当
な容器の中に入れて一20℃あるいはそれ以下の温度で
所定時間冷凍してPVAをゲル化させ、その後共存水等
の氷体を室温で融解することにより、硝化菌と前記固形
物とをPVAのゲルで封じ込んだ包括固定化微生物の塊
を得る。
FIG. 1 is a block diagram showing an example of the method for producing entrapping immobilized microorganisms of the present invention. However, in a culture system in which nitrifying bacteria are the dominant species (for example, microorganisms in an already operating nitrification equipment), for example, calcium carbonate (Ca
A predetermined amount of a finely divided solid substance, such as COz), which preferably has a property of gradually dissolving during microbial treatment, is added and thoroughly mixed. Next, this is processed, for example, to a polymerization degree of 500 to
1 of PVA with a saponification degree of 70% or more at 3,000%
Mix with 0-30% (wt) aqueous solution, c a c O3
Nitrifying bacteria (microorganisms) and pVA (
(polymer gel material) to obtain a mixture. The mixture is placed in a suitable container and frozen at a temperature of -20°C or lower for a predetermined period of time to gel the PVA, and then the ice bodies such as coexisting water are melted at room temperature to combine the nitrifying bacteria and the above. A mass of entrapping immobilized microorganisms is obtained in which the solid matter is encapsulated with PVA gel.

このようにして得た包括固定化微生物の内部、換言すれ
ば高分子ゲル内には、添加したC a CO3微粒子が
硝化菌とともに微粒子状のままで封じ込まれている。と
いうのは、CaCO3は中性ないしアルカリ性の水中で
は難溶性の物質であり、上記操作中においてもほとんど
溶解しないからである。そして、封じ込まれたcaco
sa粒子は、硝化菌を付着した状態、あるいは硝化菌と
結合した状態で高分子ゲル内に存在している。
Inside the entrapping immobilized microorganism thus obtained, in other words, inside the polymer gel, the added Ca CO3 fine particles are encapsulated in fine particle form together with the nitrifying bacteria. This is because CaCO3 is a poorly soluble substance in neutral or alkaline water, and hardly dissolves even during the above operation. And the trapped caco
The sa particles exist within the polymer gel with nitrifying bacteria attached to them or in combination with nitrifying bacteria.

次いで、得られた本発明の包括固定化微生物の塊を水洗
した後、これを例えば3日角程度の立方体に細断等によ
って成形して廃水等の硝化処理に供する。
Next, the obtained mass of entrapping immobilized microorganisms of the present invention is washed with water, and then shaped into cubes of about 3 day squares by shredding or the like, and subjected to nitrification treatment of wastewater or the like.

以上のようにして得られた本発明の包括固定化微生物(
ここでは硝化菌)を用いて、NH4−Nを含む被処理水
を処理した場合には、当該固定化微生物内に微生物とと
もに封じ込まれているCaCOs微粒子が処理系内にお
いて徐々に溶解する。
Encapsulatively immobilized microorganisms of the present invention obtained as described above (
When treated water containing NH4-N is treated using nitrifying bacteria (in this case, nitrifying bacteria), the CaCOs fine particles contained in the immobilized microorganisms together with the microorganisms gradually dissolve in the treatment system.

というのは、CaC0,は前述の如く中性ないしアルカ
リ性の水中では難溶性であるが、酸性水には溶解する性
質を有する。一方、硝化反応はその過程においてアルカ
リを必要とする反応であり、そのため硝化処理において
は系内のアルカリが消費されて系内のpH1特に硝化菌
を固定化した高分子ゲル内のpHが酸性側になり易く、
従って高分子ゲル内に包み込まれたCaCoza粒子が
徐々に溶解するのである。
This is because, as mentioned above, CaC0 is poorly soluble in neutral or alkaline water, but has the property of being soluble in acidic water. On the other hand, the nitrification reaction is a reaction that requires alkali in the process, so in the nitrification process, the alkali in the system is consumed, and the pH in the system becomes 1. In particular, the pH in the polymer gel that immobilizes the nitrifying bacteria becomes acidic. easy to become,
Therefore, the CaCoza particles encapsulated in the polymer gel gradually dissolve.

このようにしてcacos微粒子が溶解した後には、そ
の部分に空間部を生じる。当該空間部のうち、硝化菌を
付着、あるいは硝化菌と結合しているCaC01微粒子
が溶解して生じた空間部は、当然のことながら硝化菌の
増殖空間として有効に活用され、その結果単位体積の包
括固定化微生物内、換言すれば高分子ゲル内に従来より
多くの硝化菌を保持することが出来るようになり、従っ
て従来の包括固定化微生物より効率のよい硝化処理を行
うことが出来る。
After the cacos fine particles are dissolved in this manner, a space is created in that part. Of these spaces, the spaces created by the dissolution of CaC01 particles adhering to nitrifying bacteria or bonding with nitrifying bacteria are naturally used effectively as growth spaces for nitrifying bacteria, and as a result, the unit volume It is now possible to hold more nitrifying bacteria than before in the entrapping immobilized microorganisms, in other words, within the polymer gel, and therefore it is possible to perform nitrification treatment more efficiently than with conventional entrapping immobilized microorganisms.

なお、上述した本発明の包括固定化微生物の作製方法の
実施態様では、微生物としての硝化菌と、高分子材料と
してのPVAとの混合物内にCaCO3微粒子を共存せ
しめる手順として、先ず硝化菌とCaC0,微粒子とを
混合し、次いでPVA水溶液を混合するようにしたが、
CaCO3微粒子を共存せしめる手順はこれに限定され
るものでメ はなく、例えばキ者を同時に混合してもよく、あるいは
Ca COs微粒子とPVAとを先に混合しておき、次
いで硝化菌を混合するようにしてもよい。
In the above-described embodiment of the method for producing entrapping immobilized microorganisms of the present invention, as a procedure for causing CaCO3 fine particles to coexist in a mixture of nitrifying bacteria as microorganisms and PVA as a polymeric material, first, nitrifying bacteria and CaCO , fine particles were mixed, and then the PVA aqueous solution was mixed.
The procedure for making CaCO3 particles coexist is not limited to this, and there are no options; for example, CaCOs particles and PVA may be mixed at the same time, or CaCOs particles and PVA may be mixed first, and then nitrifying bacteria may be mixed. You can do it like this.

本発明に用いる、微生物処理中に溶解し得る性質を有す
る固形物としては、上記CaCO5の如く中性ないしア
ルカリ性の水中では難溶性であるが酸性水には溶解する
性質を有するもの、あるいは水に徐々に溶ける性質を有
するもの等、要するに水に対する溶解度の小さいもので
あって、かつ溶解した際に微生物の活性を阻害しないも
のを使用することが好ましい。例えば、上記Ca CO
s以外の固形物としては、炭酸マグネシウム(MgCO
l)、リン酸カルシウム(Ca s (P 04) z
)、リン酸ヒドロキシアパタイト(Ca s (OH)
(PO2) り 、炭酸バリウム(p、aCOユ)等を
用いることが出来、更にこれらの物質を主成分とする鉱
石等を用いることも出来る。
The solid substances used in the present invention that have the property of being soluble during microbial treatment include those that are poorly soluble in neutral or alkaline water but soluble in acidic water, such as the above-mentioned CaCO5, or those that have the property of dissolving in acidic water. It is preferable to use a material that has a property of gradually dissolving, that is, a material that has low solubility in water and does not inhibit the activity of microorganisms when dissolved. For example, the above Ca CO
Solid substances other than s include magnesium carbonate (MgCO
l), calcium phosphate (Ca s (P 04) z
), hydroxyapatite phosphate (Ca s (OH)
(PO2), barium carbonate (p, aCO), etc. can be used, and furthermore, ores containing these substances as main components can also be used.

また、上記固形物の粒子径は、粒子径があまり大き過ぎ
ると溶解によって生じる空間部が大となって包括固定化
微生物の物理強度を低下させるので好ましくな(、また
粒子径があまり小さ過ぎると、生じる空間部が微生物の
大きさ(通常約1μ)より°小となって微生物が増殖し
得なくなるのでやはり好ましくなく、通常粒子径lO〜
300μのものを使用するとよい。
In addition, the particle size of the solid material is not preferable because if the particle size is too large, the space created by dissolution will become large and reduce the physical strength of the entrapping immobilized microorganisms (and if the particle size is too small) This is also undesirable because the resulting space is smaller than the size of the microorganism (usually about 1μ), making it impossible for microorganisms to grow.
It is best to use a 300μ thick one.

また、固形物の添加量としては、使用する高分子ゲル材
料に対して重量比で5〜50%とするとよい。
Further, the amount of solid matter to be added is preferably 5 to 50% by weight based on the polymer gel material used.

なお、上述の実施態様では、微生物として硝化菌を用い
、包括用の高分子ゲル材料としてPVAを用いた例につ
いて説明したが、本発明はこれに限定されるものではな
く、水処理に一般に使用されている微生物を初め、いか
なる微生物にも適用することが出来、また高分子ゲル材
料としては、前記したポリアクリルアミド、光硬化性樹
脂、アルギン酸ソーダ、K−カラギーナン等の従来公知
の高分子材料を用いることが出来る。
In addition, in the above-mentioned embodiment, an example was explained in which nitrifying bacteria were used as the microorganism and PVA was used as the entrapping polymer gel material, but the present invention is not limited to this, and it can be used in general use in water treatment. It can be applied to any microorganism, including microorganisms such as It can be used.

〈実施例〉 以下に本発明の詳細な説明する。<Example> The present invention will be explained in detail below.

塩化アンモニウムを主成分とする基質で馴養した硝化菌
含有液(硝化菌の純粋培養系ではないが硝化菌が優占種
であるもの)を、遠心濃縮してMLSS濃度40,00
0■/lとした硝化菌の濃厚溶液5 Qmj2に、平均
粒子径10μの微粒子状のCa COs (市販の粉末
状CaC0,試薬をそのまま使用) 25gを添加して
十分に混合した後、更に平均重合度1,700〜2,4
00、ケン化度100%のPVAの20%水溶液75m
j+を添加して再び混合した。得られた混合液を容器内
に入れ、−50℃で24時間冷凍してゲル化させ、その
後室温で融解して包括固定化微生物の塊を得た。
A solution containing nitrifying bacteria (not a pure culture system of nitrifying bacteria, but in which nitrifying bacteria are the dominant species) that has been acclimated with a substrate containing ammonium chloride as a main component is centrifugally concentrated to an MLSS concentration of 40.00.
Add 25 g of fine particulate CaCOs (commercially available powdered CaCO, reagent used as is) with an average particle size of 10 μm to a concentrated solution of nitrifying bacteria 5 Qmj2 with a concentration of 0 μ/l, mix thoroughly, and then Degree of polymerization 1,700-2,4
00, 75ml of 20% aqueous solution of PVA with 100% saponification degree
j+ was added and mixed again. The resulting mixture was placed in a container, frozen at -50°C for 24 hours to form a gel, and then thawed at room temperature to obtain a mass of entrapping immobilized microorganisms.

得られた包括固定化微生物の塊を水道水でよく水洗した
後、311角の立方体に細断した。このようにして作製
した包括固定化微生物の全量を、第2図に示したような
実験用の流動床式のりアクタ内に充填し、当該リアクタ
を用いて以下のような硝化実験を行った。
The resulting mass of entrapping immobilized microorganisms was thoroughly washed with tap water and then shredded into cubes with 311 sides. The entire amount of entrapping immobilized microorganisms thus produced was filled into an experimental fluidized bed type glue reactor as shown in FIG. 2, and the following nitrification experiment was conducted using the reactor.

すなわち、作製した包括固定化微生物1を入れたりアク
タ2内に、NH4−Nを50■/l含み、他にP Oa
  P 1 rair / j!およびN a HCO
z 600■/lを含む合成水3を連続的に流入させ、
それと同時にリアクタ2の底部に付設した散気法4から
、当該散気法4に連通した空気導入管5を介して空気を
導入した。当該空気の導入による曝気によって包括固定
化微生物1を流動化させながら合成水3の硝化処理を行
い、処理水6はオーバーフローによってリアクタ2外に
流出させた。なお、第2図において符号7は包括固定化
微生物1が処理水6とともにリアクタ2外にオーバーフ
ローするのを防止するための邪魔板を示している。
That is, the prepared entrapment-immobilized microorganism 1 is placed in the acta 2, and NH4-N is contained at 50 μ/l, and in addition, P Oa
P 1 rair/j! and N a HCO
Synthetic water 3 containing z 600■/l is continuously introduced,
At the same time, air was introduced from an aeration method 4 attached to the bottom of the reactor 2 through an air introduction pipe 5 communicating with the aeration method 4. The synthetic water 3 was nitrified while the entrapped immobilized microorganisms 1 were fluidized by aeration caused by the introduction of the air, and the treated water 6 was caused to flow out of the reactor 2 by overflow. In FIG. 2, reference numeral 7 indicates a baffle plate for preventing the entrapment-immobilized microorganisms 1 from overflowing to the outside of the reactor 2 together with the treated water 6.

上述のような硝化実験を継続して行い、得られる処理水
中の残留NH4−N濃度を適宜測定してその時のりアク
タ単位容積光たりの硝化速度(すなわち、NH4−Nの
除去速度、kg−NH4N/d・日)を求めた。この時
の硝化速度と経過日数との関係を第3図のグラフに実線
で示す。
The above-mentioned nitrification experiments were continued, and the residual NH4-N concentration in the resulting treated water was appropriately measured. /d・day) was calculated. The relationship between the nitrification rate and the number of days elapsed at this time is shown in the graph of FIG. 3 by a solid line.

比較例として、硝化菌の濃厚溶液5 Q m llに、
Ca CO:lを添加する代わりに水道水を25m1(
約25g)添加してPVA水溶液と混合する以外は、実
施例と全く同様にして従来の包括固定化微生物を作製し
、当該固定化微生物を用いて実施例と同様の硝化実験を
行った。この時の硝化速度と経過日数との関係を前記第
3図のグラフに点線で示す。
As a comparative example, 5 Q ml of a concentrated solution of nitrifying bacteria was
Add 25 ml of tap water instead of adding Ca CO:l (
A conventional entrapping immobilized microorganism was prepared in exactly the same manner as in the example except that about 25 g) was added and mixed with the PVA aqueous solution, and a nitrification experiment similar to that in the example was conducted using the immobilized microorganism. The relationship between the nitrification rate and the number of days elapsed at this time is shown in the graph of FIG. 3 by the dotted line.

第3図に示した如く、実施例の場合には処理開始後約3
5日経過後においてもまだ硝化速度が増大する傾向にあ
るが、比較例の場合には約35日経過後に硝化速度がほ
ぼ一定の値に達している。
As shown in FIG. 3, in the case of the example, approximately 3
Although the nitrification rate still tends to increase even after 5 days have elapsed, in the case of the comparative example, the nitrification rate reaches a nearly constant value after about 35 days.

そして、比較例におけるこの時の硝化速度が約0゜7 
kg−N Ha  N / n? ・日であるのに対し
、実施例におけるそれは既に約1.6 kg−N Ha
  N / rrr・日に達し、比較例の2倍以上の硝
化速度を示している。つまり、本発明の包括固定化微生
物を用いた場合には、従来の包括固定化微生物を用いた
場合に比べて2倍以上の容積負荷で処理を行うことが可
能であり、従ってその分装置をコンパクトにすることが
出来る。
The nitrification rate at this time in the comparative example was approximately 0°7.
kg-N Ha N/n? - Days, whereas in the example it is already about 1.6 kg-N Ha
The nitrification rate reached N/rrr·day, which is more than twice that of the comparative example. In other words, when using the entrapping immobilized microorganism of the present invention, it is possible to perform treatment with a volume load that is more than twice as large as when using the conventional entrapping immobilized microorganism, and therefore the equipment can be used accordingly. It can be made compact.

〈効果〉 以上説明した如く、本発明の包括固定化微生物は微生物
処理に用いる微生物と、微生物処理中に溶解し得る性質
を有する微粒子状の固形物とを高分子ゲル内に封じ込ん
でいるので、本発明の包括固定化微生物を水処理に使用
した場合には、前記固形物が処理系内において徐々に溶
解して高分子ゲル内に従来より多くの空間を生じさせる
ことが出来る。当該空間部においては、当然のことなが
ら微生物の増殖が行われ、その結果、単位体積当たりの
包括固定化微生物中に、従来より多くの微生物を保持す
ることが出来、よって効率のよい生物処理を行うことが
可能となる。
<Effects> As explained above, the entrapping immobilized microorganism of the present invention confines the microorganism used for microbial treatment and fine particulate solid matter having the property of dissolving during the microbial treatment within a polymer gel. When the entrapping immobilized microorganism of the present invention is used for water treatment, the solids are gradually dissolved in the treatment system, making it possible to create more space in the polymer gel than before. Naturally, microorganisms proliferate in this space, and as a result, more microorganisms can be retained in the enclosing immobilized microorganisms per unit volume than before, making it possible to carry out efficient biological treatment. It becomes possible to do so.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の包括固定化微生物の作製方法の一例を
示すブロック説明図であり、第2図は実施例および比較
例に使用した流動床式りアクタの模式図であり、第3図
は実施例および比較例における経過日数と硝化速度との
関係を示すグラフであって、横軸に経過日数、縦軸に硝
化速度を示す。 1・・・包括固定化微生物  2・・・リアクタ3・・
・合成水       4・・・散気法5・・・散気管
       6・・・処理水7・・・邪魔板 第 図 第2 図 第3図 経過日数(日)
FIG. 1 is a block explanatory diagram showing an example of the method for producing entrapping immobilized microorganisms of the present invention, FIG. 2 is a schematic diagram of a fluidized bed reactor used in Examples and Comparative Examples, and FIG. is a graph showing the relationship between the number of elapsed days and the nitrification rate in Examples and Comparative Examples, where the horizontal axis shows the number of elapsed days and the vertical axis shows the nitrification rate. 1... Comprehensive immobilized microorganisms 2... Reactor 3...
・Synthetic water 4...Aeration method 5...Aeration pipe 6...Treated water 7...Baffle plate Figure 2 Figure 3 Number of elapsed days (days)

Claims (1)

【特許請求の範囲】[Claims] 微生物処理に用いる微生物と、微生物処理中に溶解する
性質を有する微粒子状の固形物とを高分子ゲル材料で封
じ込んだことを特徴とする包括固定化微生物。
1. An entrapping immobilized microorganism characterized in that microorganisms used for microbial treatment and fine particulate solid matter having a property of dissolving during microbial treatment are encapsulated in a polymer gel material.
JP2735889A 1989-02-08 1989-02-08 Inclusive immobilized micro-organism Pending JPH02207787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2735889A JPH02207787A (en) 1989-02-08 1989-02-08 Inclusive immobilized micro-organism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2735889A JPH02207787A (en) 1989-02-08 1989-02-08 Inclusive immobilized micro-organism

Publications (1)

Publication Number Publication Date
JPH02207787A true JPH02207787A (en) 1990-08-17

Family

ID=12218828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2735889A Pending JPH02207787A (en) 1989-02-08 1989-02-08 Inclusive immobilized micro-organism

Country Status (1)

Country Link
JP (1) JPH02207787A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2087833A1 (en) * 1995-01-13 1996-07-16 Hernandez Ernesto Garcia Biological chemical activator for the purification of wastewater
KR100481924B1 (en) * 2001-06-19 2005-04-11 주식회사 폴리스타 Gel type formulation for small size wastewater treatment
CN102247820A (en) * 2011-07-06 2011-11-23 大连工业大学 Fibrillar heavy metal ion adsorbent as well as preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261583A (en) * 1985-09-13 1987-03-18 Hitachi Plant Eng & Constr Co Ltd Immobilization of nitrifying bacteria

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261583A (en) * 1985-09-13 1987-03-18 Hitachi Plant Eng & Constr Co Ltd Immobilization of nitrifying bacteria

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2087833A1 (en) * 1995-01-13 1996-07-16 Hernandez Ernesto Garcia Biological chemical activator for the purification of wastewater
KR100481924B1 (en) * 2001-06-19 2005-04-11 주식회사 폴리스타 Gel type formulation for small size wastewater treatment
CN102247820A (en) * 2011-07-06 2011-11-23 大连工业大学 Fibrillar heavy metal ion adsorbent as well as preparation method and application thereof

Similar Documents

Publication Publication Date Title
US4917802A (en) Method for treating waste water
JPH11123076A (en) Carrier for biological treatment
CN1076323C (en) Sewage treating method
JPH02207787A (en) Inclusive immobilized micro-organism
JPS6352556B2 (en)
JPS6342788A (en) Cleaning method for water tank
JPS61192389A (en) Biological treatment of water
JPS61242692A (en) Biological treatment of water
JPH0683832B2 (en) Microorganism carrier
JPH07313970A (en) Method for simultaneously removing ammonia and phosphorus from water
JPH0378157B2 (en)
JPS61178092A (en) Treatment of sewage
JPH067958B2 (en) Microbial activator using sewage sludge incineration ash and its manufacturing method
JPS63126599A (en) Biochemical treatment of waste water
JP2002066592A (en) Method for manufacturing activating material for nitrate nitrogen removal
JP2003047974A (en) Underwater dephosphorizing agent composition and method for removing phosphor from water by using the same
JPH02207895A (en) Method for nitrification by using included and immobilized microorganism
JP2664649B2 (en) Pellet for water treatment and method for producing the same
JP3420838B2 (en) Method for treating phosphorus-containing organic wastewater
JPH02207894A (en) Method for nitrification by using included and immobilized microorganism
JPH078984A (en) Gel particle carrier for immobilization of microorganism, preparation thereof and method for water treatment by using it
KR100506329B1 (en) Material for water-treating and water-treating apparatus
JPS61173777A (en) Immobilized bacterium, production thereof and method of water treatment
JPH035879B2 (en)
JPH03115387A (en) Soil activator